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Abstract We consider two-player zero-sum stochastic games on gweifths-regular win-
ning conditions specified as parity objectives. These gdraes applications in the design
and control of reactive systems. We survey the complexisylts for the problem of de-
ciding the winner in such games, and in classes of interdafraddl as special cases, based
on the information and the power of randomization availablthe players, on the class of
objectives and on the winning mode.

On the basis of information, these games can be classifiedllasvé: (a) partial-
observation (both players have partial view of the gamé)p(te-sided partial-observation
(one player has partial-observation and the other playgicbmplete-observation); and (c)
complete-observation (both players have complete vielwe§ame). The one-sided partial-
observation games have two important subclasses: thelapergames, known as partial-
observation Markov decision processes (POMDPSs), and the bhe-player games, known
as probabilistic automata.

On the basis of randomization, (a) the players may not b&vatido use randomization
(pure strategies), or (b) they may choose a probabilityitigion over actions but the actual
random choice is external and not visible to the player dastinvisible), or (c) they may
use full randomization.

Finally, various classes of games are obtained by restgidtie parity objective to a
reachability, safety, Biichi, or coBuichi condition. Ws@ktonsider several winning modes,
such as sure-winning (i.e., all outcomes of a strategy hagatisfy the winning condition),
almost-sure winning (i.e., winning with probability, limit-sure winning (i.e., winning with
probability arbitrarily close td), and value-threshold winning (i.e., winning with prodabi
ity at leastv, wherev is a given rational).
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1 Introduction

Games on graphsGames played on graphs provide the mathematical framewankalyze
several important problems in computer science as well asathematics. In particular,
the synthesis problem (Church’s problem) can be reducetketadnstruction of a winning
strategy in a game played on a graph where the vertices ard eflthe graph represent the
states and transitions of a reactive system [7,36, 34, 3&jn&stheoretic formulations have
also proved useful for the verification [1], refinement [28)d compatibility checking [22]
of reactive systems. Games played on graphs are dynamicsghatgroceed for an infinite
number of rounds. In each round, one of the players chooses/a which, together with
the current state, determine a probability distributioerahe successor state. An outcome
of the game, called glay, consists of the infinite sequence of states that are visited

Strategies and objectivesA strategy for a player is a recipe that describes how thegplay
chooses a move to extend a play prefix. Strategies can béfieldss follows:pure strate-
gies, which always deterministically choose a move to ektde play, andandomized
strategies, which may choose at a state a probability biigian over the available moves.
If the randomized strategy is allowed to observe the redulh® move chosen from the
probability distribution, then it is a randomizedtion-visiblestrategy; otherwise it is a ran-
domizedaction-invisiblestrategy. Objectives are generally Borel measurable inme{31]:
the objective for a player is a Borel sBtin the Cantor topology o®“ (whereQ is the set
of states), and the objective is satisfied if the outcome®tiime is a member &f. In veri-
fication, objectives are usually-regular languagesThew-regular languages generalize the
classical regular languages to infinite strings; they oactine low levels of the Borel hier-
archy (they lie in¥’s N II3, called the firs 1 /5-levels of the Borel hierarchy) and they form
a robust and expressive language for determining payafisoimmonly used specifications.
We consider the parity objective and its subclasses, wisichdanonical form to express
w-regular objectives in verification.

Classification of games.Games played on graphs can be classified according to the
knowledge of the players about the state of the game. Aacugiydithere are (apartial-
observationgames, where each player only has a partial or incomplete al@out the
states visited and the actions played in the gamegifle}sided partial-observatiogames,
where one player has partial knowledge and the other plaggcbmplete knowledge; and
(c) complete-observatiogames, where each player has complete knowledge of the play.
Partial-observation games are useful to model many impbpiablems related to reactive
systems, for example, the interaction of a plant and cdetralhen the plant has private vari-
ables not accessible to the controller. The class of oredgidrtial-observation games has
two important subclasses when there is only one player:r@)ptayer partial-observation
games, called partial-observation Markov decision preeg$POMDPSs); and (b) the special
case of POMDPs with a single observation, which are called i*fOMDPs or probabilistic
automata [35].

Analysis. The analysis of games can be classified oualitativeandquantitativeanalysis.
The qualitative analysis consists of the following questiogiven an objective and a state
of the game, (a) can player 1 ensure that the objective isfigatiwith certainty against all
strategies of player Z(re winningproblem); (b) can player 1 ensure that the objective is
satisfied with probabilityl against all strategies of player @lifhost-sure winningroblem);
and (c) can player 1 ensure that the objective is satisfiel pvitbability arbitrarily close

to 1 against all strategies of player Init-sure winningproblem). Given an objective, an
initial state of the game, and a rational thresheldhe quantitative analysis problem asks



whether the maximal probability with which player 1 can emsthe objective against all
player-2 strategies is at least

Structure of the paper. We survey the main complexity results about various clas$es
partial-observation games, for different classes of panfijectives, for all three types of
strategies (pure, randomized action-visible, and randedaction-invisible). We organize
the results according to sure winning (see Table 1), almost-winning (see Table 2 and
Table 3), limit-sure winning (see Table 4), and quantigatwnalysis (see Table 5).

2 Definitions

We define the class of two-player partial-observation sietib games, and we consider
some relevant subclasses.

A probability distributionon a finite setS is a functions : S — [0,1] such that
> ses k(s) = 1. Thesupportof « is the seSupp(x) = {s € S | x(s) > 0}. We denote by
D(S) the set of probability distributions a$i.

Stochastic gamesGiven finite alphabets\; of actions for playei (i = 1, 2), atwo-player
stochastic gaméor simply agamg is a tupleG = (Q1, Q2, d) where

— Q1 is a finite state of playet-states()s is a finite state of playe?-states, withQ1 N
Q2= 0.

- §:Q; x A; — D(Qs—;) is a probabilistic transition function.

Let @ = Q1 U Q2. Games are played for infinitely many rounds from an initiates
qo € Q. In each round, if the current statedse Q; (i € {1,2}), then playeri chooses
an actiona € A; and the game proceeds to the next round in sjatith probability
5(q,a)(q’). In this way, the players construct an infinite path callgdag.

The game igleterministicif for + = 1,2, for all states; € @Q; and all actions: € A;,
there exists a statgé € Qs_; such that(q,a)(¢') = 1.

Partial-observation stochastic gamesdn partial-observation games, the players have a par-
tial or incomplete view of the states visited in the game, thiedviews of the two players are
in general different. Apartial-observation two-player stochastic gamensists of a game
G = (Q1,Q2,0) and two set®); C 29 (i = 1,2) of observationdor playeri that define
two partitions ofQ. The states in an observation ©f are indistinguishable for player
These partitions uniquely define two functiasts; : Q — O; (i = 1, 2) that map each state
q € Q to its observation for playersuch thaty € obs;(g). A model of games where states
may have multiple observations (i.e., the observationc@iverlap) can be encoded in the
model where observations form a partition of the state sfiale

Fig. 1 shows an example of a two-player stochastic game viherglayeri states); =
{q1, q2, g5 } are circles, and the play@rstates)2 = {qo, g3, g4, @} are boxes. The transition
from g1 ona is such that(q1,a)(g3) = 5(q1,a)(®) = 3. Observations (not depicted) are
01 = {{ao}, {a; | 1 < i < 5},{©}} for player1, andO> = {{go},{a1}. {g2}...} for
player2. Hence, played can observe the initial state and the statewhile player2 can
distinguish all states.

Special casesNe consider the following subclasses of partial-obseovegtochastic games:
— (Observation restriction)The games witlone-sided partial-observatioare the special

case of games whei@, = {{¢} | ¢ € Q} (equivalently,obs2(q) = {¢} for all ¢ € Q),
i.e. player 2 has complete observation, and only player bhaggl-observation.
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Fig. 1 Atwo-player stochastic game.

The games of complete observatiare the special case of games whé&e= 0, =
{{q} | ¢ € Q},i.e. every state is visible to each player and hence botfeaave com-
plete observation. Two-player games of complete obseatie also called perfect-
information stochastic games, Dt/»-player games.

— (Player restriction).The partial-observation Markov decision process®OMDP) are
the the special case of games whekgis a singleton, i.e. only player has multiple
choice. An important subclass of POMDP is obtained whengslayhas only one ob-
servation (i.e.0, = {Q}) and is called blind POMDPs @robabilistic automatd35].

Strategies. Strategies are recipes used by the players to choose thw&n.an partial-
observation games, it is more powerful to use randomizaticstrategies, and when ran-
domization is used it is more powerful to observe which actias (randomly) chosen, as
compared to the case where the action is not visible. Therefee consider the following
classes of strategies.

— Randomized action-visibleet A; = A; U {e}. A randomized action-visible strategy
G for playeri is a functiono; : (O, - A)* - O; — D(A;).

— Randomized action-invisibl& randomized action-invisible strategy G for playeri is
a functiono; : Oj — D(4;) Whereojr is the set of nonempty sequences of observa-
tions.

— Pure. A pure strategyin G for playeri is a randomized action-invisible strategy such
that for all observation sequencgse Oj, there exists an actiom € A; such that
oi(p)(a) = 1.

For pure strategies, it does not matter whether the actimwisible or not because
given a pure strategy;, and a finite prefixp € Oj, the actions played by playerlong p
can be completely reconstructed.

Note that games where the players use randomized actiditevigrategies can be en-
coded into games where the actions are invisible, in whiehdhkt action played is stored
in the state space, and the observations on states areeshtcheveal the last action. This
encoding has a polynomial blow-up. The same trick can be ttssedcode games where the
actions can be partially observed (e.g., through obsemnston the action sets) into games
with actions invisible [25]. Hence the model with actionisible is more general.



Memory of strategies. A randomized action-invisible strategy for playemusesfinite-
memonyif it can be encoded by a deterministic transdu@dem, mg, aw, an) WhereMem

is a finite set (the memory of the strategy)p, € Mem is the initial memory value,

ay : Mem x O; — Mem is an update function, and, : Mem x O; — D(4;) is

a next-move function. Thenemory sizef the strategy is the numbéiMem| of memory
values. The strategy imemorylessf |[Mem| = 1. If the current observation is € O;,

and the current memory valuesis, then the strategy chooses the next action according to
the probability distribution, (m, o), and the memory is updated &, (m, o). Formally,
(Mem, mo, aw, an ) defines the strategy such thatr(p - 0) = an(&w(mo, obsi(p)),o) for

all p € O} ando € 0;, whered,, extends,, to sequences of observations as expected. The
memory used by randomized action-visible strategies catefived analogously.

Outcome. Strategies induce a set of plays and a (probability) megsorer play prefixes,
defined as follows:

— For randomized action-visible strategies, we lift the fiimts obs; to sequences of in-
terleaved states and actions: for 1,2, denote byobs;(goaoqias - . . q;) the sequence
obs;(qo) ap obs;(q1) a’ ... obs;(q) wherea); = a; if ¢; € Q;, anda’; = ¢if ¢; € Q3.
Letstate(goaoqiai - .. ;) be the sequenag ¢ ... ¢ (i.e., the projection that removes
all actions).
A play p = qoq1... is anoutcomeof the randomized action-visible strategies
for player 1 and oo for player 2 from a stateq € Q if qo = ¢ and there ex-
ists a sequence = goapqiai ...q, such thatp = state(w) and for allj > 0, if
q; € Q; thenai(obsi(qoaoql .. .Qj))(aj) > 0, andci(qj, aj)(qule) > 0. We denote
by Outcome(G, q, 01, 02) the set of all outcomes of the strategiesandoz from g.
Define the functiorgg"”* : (Q - (A1 U A2))* - Q — [0,1] inductively as follows. Let
77 (q0) = 1if go = g, ande7"7*(qo) = 01if go # ¢. Forallw € (Q-(A1UA2))"-Q,
andq’ € Q, leti € {1,2} such thatLast(n) € Q; (WhereLast(r) is the last state in the
sequencer), and define

01,02 n €307 () - oi(obsi(m))(a) - §(Last(r),a)(q') if a € A;
S (W'a"”_{oq ifacAs

From¢gt 22, define the functiomg 72 : QT — [0, 1] by

W7 0) = > 657 (m)

TE(Q-(A1UA2))*-Q | state(m)=p

— For randomized action-invisible strategies, we lift thedtionsobs; to sequences of
states and denote las; (goqi - - - gx) the sequencebs;(qo)obs;(q1) . .. obs; (g ).
Aplay p = qoq1 - .. is anoutcomeof the strategies; for player1l ando- for player2
from a stateq € Q if go = ¢ and for allj > 0, if ¢; € Q; then there exists
a € A; such thato;(obs;(qo ... q;))(a) > 0, anddé(g;,a)(gj+1) > 0. We denote by
Outcome(G, ¢, 01, 02) the set of all outcomes of the strategigsando, from g. De-
fine the functionug*?* : Q™ — [0,1] inductively as follows. Lefug 72 (qo) = 1 if
qo = g, andug7*(qo) = 0if go # ¢. Forallp € QT andq € Q, leti € {1,2} such
thatLast(p) € Q; (WhereLast(p) is the last state in the sequengeand define

Hg " (p-a) = ug" 7 (p) - Y oi(obsi(p))(as) - §(Last(p),ai)(q)-
a; €A;



— The definition of outcome for pure strategies is derived geeaial case of the definition
of outcome for randomized action-invisible strategies.

By Caratheddary’'s extension theorem, the funciigv®? can be uniquely extended to a

01,02

probability measur®r;'*?*(-) over Borel sets of infinite plays [39, 6].

Objectives. An objectivein G is a Borel setp C Q% of plays in the Cantor topology
on Q“ [28]. All objectives we consider in this paper lie in the figs{-levels of the Borel
hierarchy. We specifically consider the parity objectivljah is a canonical form to express
all w-regular objectives [38]. For a play= goqig= . . ., denote byinf(p) = {g € Q | Vi >
0-3j >4 : q; = q} the set of states that occur infinitely ofterpin/Ve consider the following
objectives.

— Reachability and safety objectiveSiven a set7 C @ of target states, theeachability
objectiveReach(7) = {qoqiq2 ... € Q¥ | 3k > 0: q;, € T } requires that a target state
in 7 be visited at least once. Dually, teafetyobjectiveSafe(7) = {qoq1q2 ... € Q* |
Vk > 0: ¢, € T} requires that only states if be visited.

— Buchi and coBichi objectivesGiven a setl” C @ of target states ThBuchi objective
Buchi(7) = {p € Q¥ | Inf(p) N T # @} requires that a state i be visited infinitely
often. Dually, thecoBuchi objectivecoBuchi(7) = {p € Q“ | Inf(p) C T} requires
that only states iT” be visited infinitely often.

— Parity objectivesFord € N, letp : @ — {0,1,...,d} be apriority function that
maps each state to a nonnegative integer priority. javéty objectiveParity(p) = {p €
Q% | min{p(q) | ¢ € Inf(p)} is ever} requires that the smallest priority that appears
infinitely often be even.

Note that a reachability objectiviReach(7") can be viewed as a special case of Biichi
objectives, and safety objectives are special cases afdu®bjectives.

And the objectiveBuchi(7") andcoBuchi(7) are special cases of parity objectives de-
fined by respective priority functions;, p2 such thap1(q) = 0 andpa(q) = 2if g € T,
andpi1(q) = p2(q) = 1 otherwise.

Winning modes.Given a game structur@, a state;, and an objective, and classes;, Co
of strategies, we say that:

— astrategyr; € C; for player1 is sure winningif Outcome(G, ¢,01,02) C ¢ for all
strategiesr, € C, for player2,

— astrategy1 € C; for player1 is almost-sure winningf Prg"*?*(¢) = 1 for all strate-
giesoy € C for player2,

— player1 is limit-sure winningif for all ¢ > 0 there exists a strategy € C; for playerl
such that for all strategies, € C; for player2, we havePrg" 7 (¢) > 1 — ¢,

— thevalue function(1)% ,(¢) : Q@ — R for player 1 assigns to every state the maximal
probability with which player 1 can guarantee thatising a strategy i@, against all
strategies of’, for player 2. Formally, let

() 5a(e)(@) = sup inf Pry?(p).
01€C;, 92€C2
In the above definitions, the clags of player2 strategies can be taken as any of the
three classes of strategies we have defined (i.e., purepmared action-invisible, or ran-
domized action-visible) without changing the definitiomigis because once a strategy of
player1 is fixed, we obtain a (possibly infinite-state) POMDP in whplre strategies are
sufficient for parity objectives [15].



For limit-sure and the value function, the complexity andidability results presented
in this survey are independent of the choice of the dflasmmong the three classes we have
defined.

Qualitative and quantitative analysis.We are interested in the problems of deciding, given
a gamed, a stateg, and an objectivep, whether there exists fpure, randomized action-
invisible, randomized action-visibjestrategy for playei that is{sure, almost-sugewin-
ning from ¢ for the objectivep, or whether playeil is limit-sure winning fromq for the
objectivey

Given a rational valu® < v < 1, thevalue decision problerasks whether the value
(1% ,(¢)(q) of the game ay is at leastv. The qualitative analysis consists of the sure,
almost-sure and limit-sure winning problems, and the qtativie analysis is the value de-
cision problem.

Consider the objectivBuchi({®}) in the example of Fig. 1. There is no sure winning
strategy for playet for this objective, but player has an almost-sure winning strategy that
uses randomization (play everywherandb with probability 1), as well as a pure almost-
sure winning strategy (alternate playingandb). Hence for the three classes of strategies,
we have((1)% (Buchi({®}))(g0) = 1.

val

3 The Complexity of Partial-Observation Stochastic ParityGames

In this section we present a survey of results about the ctatipnal complexity and strat-
egy complexity of different classes of partial-observatgames, with different classes of
parity objectives and strategies, both for qualitative gndntitative analysis. We organize
the results as follows: we first present the results for sumaiwg, then for almost-sure win-
ning, followed by limit-sure winning, and finally the quatative analysis (value problem).

3.1 Complexity of sure winning

In this section we consider partial-observation games nslubclasses with parity objec-
tives and the winning mode is sure winning. We first preseimnalge result from the litera-
ture that shows that for sure winning, pure strategies dfieigumt for all partial-observation
games.

Pure strategies suffice for sure winning.The key argument to show that pure strategies
suffice for sure winning is as follows. Consider a randomiaetion-visible strategy for
player 1, let o be a pure strategy such that for all finite prefixeshe strategyf (p)
chooses an action froSupp(a1(p)). Then for all stateg and all strategiess for player2,

we haveOutcome(G, ¢,01, 52) C Outcome(G, ¢, 01, 02), and thus ifo; is sure winning,
then so isz .

Counting spoiling strategies.To spoil a strategy of player (for sure-winning), playee
does not need the full memory of the history of the play, buy ereeds counting strate-
gies [17]. We say that a pure strategyfor player2 is countingif for all finite prefixesp, p’
such thatp| = |p|, we havess(p) = o2(p’). The memory needed by a counting strategy
is only the number of turns that have been played. This tystrafegy is sufficient to spoil
the non-winning strategies of play&f17].

Sure winning coincide for partial-observation and one-siegédd gamesFor all partitionsO-

of a partial-observation game, counting strategies aiid gilategies. Since pure strategies



suffice for sure winning and counting strategies suffice fmilsng pure strategies, it follows
that for spoiling strategies in sure winning games, the ndagien for player 2 does not
matter, and hence for sure winning, partial-observatiah@re-sided games coincide.

Computational complexity of sure winning. We now summarize the results related to the
computational complexity of sure winning in various classeépartial-observation games.
The following basic facts follow from the above argumenj:Fr sure winning, pure strate-
gies are as powerful as randomized action-visible strasegind hence we only focus on
pure strategies. (2) For sure winning, partial-observagiames are equivalent as the special
class of one-sided partial-observation games.

1. Complete-observation gameBhe results for complete-observation games are as fol-
lows: (1) safety and reachability objectives can be solvetinear time (this is alter-
nating reachability in AND-OR graphs) [27]; (2) Buchi andBiichi objectives can
be solved in quadratic time [38]; and (3) parity objectiviesih NP N coNP and no
polynomial time algorithm is known [23]. The results for swinning are derived as
follows: for sure winning since all paths need to satisfy dhgective, the probabilistic
choices can be interpreted as the choice of the adversayefp?) and then we obtain
complete-observation deterministic games, and all redaltow from the results for
complete-observation deterministic games.

2. Probabilistic automata and POMDPhe sure winning problem for probabilistic au-
tomata is the same as the blind games problem considerediffdReand the POMDP
problem is same as the sure winning problem for one-sideztm@tistic games (again
interpreting the probabilistic choice as adversarial capiThe results for blind games
are as follows: using the subset construction techniquié sRewed that the blind games
problem can be solved as a graph problem on an exponentiajg raph for reacha-
bility objectives [37]. It follows from [17] that the sameu(sset construction) technique
also works for parity objectives, and [5] presents a reduadif parity objectives to safety
objectives. As a consequence it follows that the sure winpimblem for probabilistic
automata with parity objectives can be solved in PSPACE{lze&SPACE lower bound
follows from the universality problem for non-determimisfinite automata [37]. Hence
we have PSPACE-completeness for the sure winning probleprdbabilistic automata.
The result for POMDPs is the same as for one-sided gamessdisdibelow.

3. One-sided and partial-observation gam&be results for one-sided partial-observation
games are as follows: (1) the EXPTIME-completeness forhaitity objectives fol-
lows from the results of [37]; (2) the EXPTIME-completenéaissafety objectives fol-
lows from the results of [5]; and (3) the EXPTIME-upper bodadall parity objectives
follows from the results of [17] and hence it follows that &f Biichi, coBiichi and par-
ity objectives we have EXPTIME-complete bound. Again theFEXME upper bound
follows by constructing and solving an exponential-sizengaf complete observation.
The lower bound follows from a reduction of the membershipbfgm of alternating
polynomial space Turing machines. The results follow fatipkobservation games as
sure winning for partial-observation games coincides witte winning for one-sided
partial-observation games.

The results are summarized in Theorem 1 and shown in Table 1.

Strategy complexity of sure winning.The sure winning problem for complete-observation
games is the same as complete-observation deterministiegeand hence the existence
of pure memoryless sure winning strategies for completenlation games with parity
objectives follows from the results of [23]. For probaliisautomata, POMDP, and partial-
observation games, sure-winning strategies of exporesitia suffices: the witness sure



Complete-observation| Prob. Automata POMDP One-sided Partial-observation
Safety Linear-time PSPACE-comp.| EXPTIME-comp. | EXPTIME-comp. EXPTIME-comp.
Reachability Linear-time PSPACE-comp.| EXPTIME-comp. | EXPTIME-comp. EXPTIME-comp.
Bichi Quadratic-time PSPACE-comp.| EXPTIME-comp. | EXPTIME-comp. EXPTIME-comp.
coBuchi Quadratic-time PSPACE-comp.| EXPTIME-comp. | EXPTIME-comp. EXPTIME-comp.
Parity NP N coNP PSPACE-comp.| EXPTIME-comp. | EXPTIME-comp. EXPTIME-comp.

Table 1 Complexity of sure winning.

Complete-observation| Prob. Automata POMDP One-sided Partial-observation
Safety Linear-time PSPACE-comp. | EXPTIME-comp. EXPTIME-comp. EXPTIME-comp.
Reachability Linear-time PSPACE-comp. | EXPTIME-comp. EXPTIME-comp. 2EXPTIME-comp.
Buchi Quadratic-time PSPACE-comp. | EXPTIME-comp. EXPTIME-comp. 2EXPTIME-comp.
coBuchi Quadratic-time Undecidable Undecidable Undecidable Undecidable
Parity NP N coNP Undecidable Undecidable Undecidable Undecidable

Table 2 Complexity of almost-sure winning: randomized actioniblis strategies.

winning strategy is based on the subset construction wineresubset represents the-
lief of the player (where belief represents the possible custates of the game). It fol-
lows that pure belief-based sure winning strategies ekrst. exponential lower bound for
memory follows from the fact that the shortest word to wishdge non-universality of a
non-deterministic finite automata is of exponential size.

Theorem 1 (Complexity of sure winning) The following assertions hold:

1. The sure winning problem for complete-observation ga(iewith reachability and
safety objectives can be solved in linear time; (ii) withcBi and coBichi objectives
can be solved in quadratic time; and (iii) with parity obje&s is in NPN coNP.

2. The sure winning problem for probabilistic automata wigtachability, safety, Bchi,
coBuchi and parity objectives are PSPACE-complete.

3. The sure winning problem for POMDPSs, one-sided partizdervation games, and
partial-observation games with reachability, safetyicBi, coBichi and parity objec-
tives are EXPTIME-complete.

4. Pure memoryless sure-winning strategies exist in caeyqulbservation parity games.
Sure-winning strategies with exponential memory is sefficfor probabilistic au-
tomata, POMDP, one-sided partial-observation games, aantigd-observation games
with parity objectives, and exponential memory is necgsfarsure-winning strategies
in probabilistic automata with safety and reachability etjives.

3.2 Complexity of almost-sure winning

In this section, we discuss the results for almost-sure iw@rin contrast to sure winning in
partial-observation games where all problems are de@d#ie almost-sure winning prob-
lem becomes undecidable in many cases. We start with theundéctidability result related
to almost-sure winning.

Undecidability result for almost-sure winning. The main undecidability result for the
almost-sure winning problem was established in [2] whergais shown that the problem
of deciding the existence of a pure almost-sure winningesgsafor probabilistic automata



with coBuichi objectives is undecidable. The key steps f deep result are: (1) First the
authors consider the undecidability of the approximatimbfem for probabilistic automata
over finite words which shows that given a probabilistic auwdta on finite words and a con-
stant0 < ¢ < 1 such that either there is a word accepted with probabllity = or all
words are accepted with probability at mestlecide which is the case, is undecidable [30].
(2) Then the approximation problem is reduced to the proldéatnecking, given two prob-
abilistic Buchi automata, whether there is a word that seated with positive probability
by both the automata. (3) Using the closure properties digiviistic Buichi automata [3], it
follows that the problem of deciding the existence of a wavli¢h is same as a pure strat-
egy for probabilistic automata) that is accepted with pasiprobability is undecidable for
probabilistic automata with Biichi conditions. As the emBi condition is dual to the Biichi
condition, and almost-sure acceptance criteria is duat¢e@tance with positive probabil-
ity, it follows that the problem of deciding the existenceafe almost-sure winning strategy
for probabilistic automata with coBuchi objectives is enitlable.

Undecidability result for randomized strategies. As discussed above, the existence of
pure almost-sure winning strategy for probabilistic auaterwith coBichi objectives is un-
decidable. It was established in [15] that for POMDPs puigegies are as powerful as ran-
domized action-visible strategies for all objectives.(ifer one-player games randomization
is not useful for strategies). As a consequence it folloves the existence of randomized
action-visible almost-sure winning strategy for probishit automata coincides with the ex-
istence of pure almost-sure winning strategies. Hencdldvfs that the existence of almost-
sure winning strategy for probabilistic automata, POMD&t&-sided partial-observation
games, and partial observation games is undecidable faicdvBand hence also for parity)
objectives for all classes (pure, randomized action-igsiind randomized action-invisible)
of strategies.

Some basic factsln contrast to sure winning in all classes of games and aksuost win-
ning for probabilistic automata and POMDPs, where puretedias are as powerful as
randomized action-visible strategies, the scenario iteqtifferent for one-sided partial-
observation games. It was shown in [17, Example 2.3] thadlfapst-sure winning, random-
ized action-visible strategies are more powerful than pir@tegies for one-sided partial-
observation games with reachability objectives (and treargpte of [17] also shows that
randomized action-invisible strategies are more powdtah pure strategies for almost-
sure winning in one-sided partial-observation games).al shown in [21, Section 3] that
for one-sided partial-observation games, randomizedmsfisible strategies are more pow-
erful than randomized action-invisible strategies for @dtrsure winning with reachability
objectives. For safety objectives, the counter-examplesilavays finite prefixes, and it can
be shown that for a given strategy for player 1 if there is ategy for player 2 to produce
a finite counter-example, then the finite counter-examplerasluced with some constant
positive probability. It follows that for partial-obsemtian games and one-sided partial-
observation games, and all the subclasses with safetytigigcthe almost-sure problem
coincide with the sure winning problem.

Complexity of almost-sure winning: randomized action-visble strategies. We now
summarize the results related to the computational coritplex deciding the existence
of randomized action-visible almost-sure winning straegdn various classes of partial-
observation games. As for safety objectives the resulteaetly the same as in the case of
sure winning, we omit the discussion of safety objectivdewe

1. Complete-observation game&.quadratic-time reduction of the almost-sure winning
problem to the sure winning problem for parity objectivesvestablished in [18,12].
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The reduction is linear-time for reachability, Biichi armBgichi objectives. It follows
that reachability objectives can be solved in linear timiéctid and coBuchi objectives
in quadratic time, and parity objectives in NFCoNP.

2. Probabilistic automataThe PSPACE-completeness of the almost-sure winning prob-
lem for reachability and Biichi objectives was establisimef@®, 10] for pure strategies.
Since for probabilistic automata, the problem for puretstgies coincides with random-
ized action-visible strategies, the result of PSPACE-deiepess follows for all classes
of strategies. The almost-sure winning problem is undétédéor coBuchi and parity
objectives [2].

3. POMDPs.The EXPTIME upper bound for the almost-sure winning probfenreach-
ability and Buchi objectives was established in [2] for @strategies (and hence also
for randomized action-visible strategies), and the EXPEIMwer bound was shown
in [16]. The almost-sure winning problem is undecidabledoBichi and parity objec-
tives [2].

4. One-sided gamedhe EXPTIME-completeness for almost-sure winning withcrea
ability and Buchi objectives for one-sided partial-ohsgion games was established
in [17]. The standard subset construction does not worklfoost-sure winning, as the
standard subset construction yields a complete-obsernvgime where randomization
is not useful, whereas in one-sided partial-observationggarandomized strategies are
more powerful than pure strategies for almost-sure winmiitly reachability objectives.
A slightly more involved exponential-size game can be aoe$ed to solve the almost-
sure winning problem, and an EXPTIME lower bound was esthbli through a reduc-
tion of the membership problem of alternating polynomgadae Turing machine [17].
The almost-sure winning problem is undecidable for coBiacll parity objectives [2].

5. Partial-observation game3he 2EXPTIME-completeness for almost-sure winning with
reachability and Buchi objectives for partial-obseroatgames was shown in [4]: the
upper bound was established generalizing the result ofghd]the lower bound was
established through a reduction of the membership probfestternating exponential-
space Turing machine. The almost-sure winning problem decidable for coBuchi
and parity objectives [2].

This gives the results for almost-sure winning, summarire@heorem 2 below (see
also Table 2).

Strategy complexity of almost-sure winning: randomized ation-visible strategies.The
existence of pure memoryless almost-sure winning strétegyomplete-observation games
with parity objectives was established in [18,12], and aseguience of the result also
shows that for complete-observation games with parity ailyjes pure memoryless strate-
gies are as powerful as randomized action-visible straseffiwas shown in [17] that in one-
sided partial-observation games belief-based randonsizéoh-visible almost-sure winning
strategies exist for reachability and Buichi objectives.a®consequence, an exponential up-
per bound for memory follows for all decidable problems. Exponential lower bound
for memory for POMDPs with reachability objectives was bbshed in [16], and the con-
struction can be adapted to show the same lower bound foapilatiic automata. It was
shown in [4] that even in partial-observation games bdiesed randomized action-visible
almost-sure winning strategies exist for reachability Biidhi objectives. As a consequence
optimal exponential memory bound follows for randomizeticaevisible almost-sure win-
ning strategies for reachability and Biichi objectivesgosbabilistic automata, POMDPs,
one-sided partial observation games, and partial-obsenvgames. For coBichi and par-
ity objectives, no bound on memory of almost-sure winnirrgtsgies can be established
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as the problem is undecidable. In the sequel, we do not disitissmemory bounds for
problems where undecidability has been established aswthexidability result implies that
infinite memory is necessary (as sufficiency of finite-mensirgtegies would imply semi-
decidability, contradicting the undecidability results)

Theorem 2 (Complexity of almost-sure winning: randomized ation-visible strategies)
The following assertions hold for randomized action-vesitrategies:

1. The almost-sure winning problem for complete-obseovagiames (i) with reachability
and safety objectives can be solved in linear time; (ii) Vvlditithi and coBichi objectives
can be solved in quadratic time; and (iii) with parity objees is in NPN coNP.

2. The almost-sure winning problem for probabilistic autdenwith reachability, safety,
Biichi objectives are PSPACE-complete, and undecidabledBiachi and parity objec-
tives.

3. The almost-sure winning problem for POMDPs and one-sigadial-observation
games with reachability, safety, andi&hi objectives are EXPTIME-complete, and un-
decidable for coBchi and parity objectives.

4. The almost-sure winning problem for partial-observatgames is EXPTIME-complete
for safety objectives, 2EXPTIME-complete for reachahilind Bichi objectives, and
undecidable for coBchi and parity objectives.

5. Pure memoryless almost-sure winning strategies existomplete-observation par-
ity games. Exponential memory is sufficient for almost-suilening strategies in
probabilistic automata, POMDP, one-sided partial-obsgion games, and partial-
observation games with safety, reachability arictBi objectives; and exponential mem-
ory is necessary for almost-sure winning strategies in pholistic automata with safety
and reachability objectives. For probabilistic automaiafinite memory may be neces-
sary for almost-sure winning with c@Bhi and parity objectives.

Computational and strategy complexity of almost-sure wining: pure and random-
ized action-invisible strategies.We now summarize the results related to the computa-
tional complexity of pure and randomized action-invisiblenost-sure winning strategies.
We start with some basic facts. (1) For complete-obsemagames, probabilistic automata,
and POMDPs, the results for randomized action-visibledoanized action-invisible and
pure strategies are the same for almost-sure winning, aslftirese classes pure strategies
are as powerful as randomized action-visible strategi8k [2) For almost-sure winning
for reachability and Buchi objectives, the equivalencehef pure and randomized action-
invisible strategies has been established in [14] (polyiabtime reduction in both direc-
tions for equivalence). Note that randomized action-iblésstrategies are more powerful
than pure strategies for almost-sure winning; howevergtaction of [14] shows that given
a game, a gameH (polynomial in the size of7) can be constructed such that there is a
randomized action-invisible almost-sure winning strgtegG iff there is a pure one it
and similarly a reduction in the other direction. (3) Foretgfobjectives, all results are sim-
ilar to the case of sure winning. (4) For almost-sure winniimgBUchi objectives, there
is a linear-time reduction to reachability objectives foolpabilistic automata [2], and the
same reduction also works for partial-observation gantgslife undecidability results for
coBlichi and parity objectives follows from the results ofipabilistic automata.

In view of the above facts we discuss the results for almosg-svinning strategies
for reachability objectives in one-sided partial-obséora games and in general partial-
observation games. It was previously claimed that belgsell randomized action-invisible
strategies suffices for almost-sure winning for reachigbilbjectives in partial-observation
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Complete-observation| Prob. Automata POMDP One-sided Partial-observation
Safety Linear-time PSPACE-comp. | EXPTIME-comp. EXPTIME-comp. EXPTIME-comp.
Reachability Linear-time PSPACE-comp. | EXPTIME-comp. EXPTIME-comp. ??(open)
Bichi Quadratic-time PSPACE-comp. | EXPTIME-comp. EXPTIME-comp. ??(open)
coBuchi Quadratic-time Undecidable Undecidable Undecidable Undecidable
Parity NP N coNP Undecidable Undecidable Undecidable Undecidable

Table 3 Complexity of almost-sure winning: pure and randomizedbaeinvisible strategies.

games, and enumerating over the space of exponentially beligf-based strategies gives
a 2EXPTIME upper bound for the problem [25]. However, it whswn that this result is

not correct, and even in the special case of one-sided babs@rvation games both pure
and randomized action-invisible almost-sure winningtegees require more than belief
memory, still exponential memory is sufficient for reachigpibbjectives and the problem
is EXPTIME-complete for one-sided partial-observatiomea [14]. However, the scenario

is much more complicated for partial-observation gamed,atiough finite-memory pure
and randomized action-invisible strategies suffice foraasure winning for reachability
objectives, memory of non-elementary size is required mega [14], in contrast to the ex-
ponential upper bound claimed in [25]. The exact computalicomplexity of the problem
remains open. The results are summarized in Table 3.

Theorem 3 (Complexity of almost-sure winning: pure and randmized action-invisible
strategies) The following assertions hold for pure and randomized actiwvisible strate-
gies:

1. The almost-sure winning problem for complete-obseovagiames (i) with reachability
and safety objectives can be solved in linear time; (ii) vidifchi and coBichi objectives
can be solved in quadratic time; and (iii) with parity objee&s is in NPN coNP.

2. The almost-sure winning problem for probabilistic autdenwith reachability, safety,
and Hichi objectives are PSPACE-complete, and undecidabledBiichi and parity
objectives.

3. The almost-sure winning problem for POMDPs and one-sigadial-observation
games with reachability, safety, andiéhi objectives are EXPTIME-complete, and un-
decidable for coBchi and parity objectives.

4. The almost-sure winning problem for partial-observatgames is EXPTIME-complete
for safety objectives, and undecidable for &éoBi and parity objectives.

5. Pure memoryless almost-sure winning strategies exisbmplete-observation parity
games. Almost-sure winning strategies with exponentiahang is sufficient for proba-
bilistic automata, POMDP, and one-sided partial-obseiwatgames with safety, reach-
ability and Bichi objectives; and exponential memory is necessary farosat-sure
winning strategies in probabilistic automata with safetydareachability objectives.
For probabilistic automata infinite memory may be neces$aryalmost-sure winning
with coBichi and parity objectives. For partial-observation gameih reachability
and Hichi objectives finite-memory almost-sure winning strigegxist, and in general
almost-sure winning strategies require at least memoryoofelementary size.

3.3 Complexity of limit-sure winning

In this section we discuss the results for limit-sure wirgnin
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Complete-observation| Prob. Automata POMDP One-sided Partial-observation
Safety Linear-time PSPACE-comp.| EXPTIME-comp. | EXPTIME-comp. EXPTIME-comp.
Reachability Linear-time Undecidable Undecidable Undecidable Undecidable
Buchi Quadratic-time Undecidable Undecidable Undecidable Undecidable
coBuchi Quadratic-time Undecidable Undecidable Undecidable Undecidable
Parity NP N coNP Undecidable Undecidable Undecidable Undecidable

Table 4 Complexity of limit-sure winning.

Complexity of limit-sure winning. We summarize the results for limit-sure winning. Like
in the case of almost-sure winning, for safety objectivastisure winning coincides with
sure winning (the same argument of finite counter-exammeties). Hence, all results for
limit-sure winning for safety objectives follow from thests for sure winning.

1. Complete-observation gamdsfollows from the results of [18,12] that for complete-
observation games limit-sure winning coincide with almsste winning for all parity
objectives, and hence all results follow from the resultsafmost-sure winning

2. Probabilistic automataThe main undecidability result for limit-sure winning was-e
tablished for probabilistic finite automata. In [24] the lars start with the automata
construction of [2] and show that the following question iglacidable for probabilis-
tic finite automata: for alk > 0 is there a wordw. that is accepted with probability
greater tharl — ¢? The results of [24] can be easily adapted to show that tletemde
of pure strategies for limit-sure winning is undecidable geobabilistic automata with
reachability objectives. By the result of [15] for probadtic automata pure strategies
are as powerful as randomized action-visible strategied,heence the limit-sure win-
ning problem is undecidable for all classes of strategigsababilistic automata. Since
(i) reachability objectives are a special case of BucHiozhi and parity objectives, and
(ii) probabilistic automata are a special class of POMDRs;sided partial-observation
games, and partial-observation games, the undecidafaligws for all more general
problems.

This gives the results for limit-sure winning, and they anensarized in Theorem 4
(see also Table 4).

Theorem 4 (Complexity of limit-sure winning) The following assertions hold:

1. The results for limit-sure winning for complete-obseima games with all classes of
parity objectives, and for all classes of games with saféjgdives coincide with the
corresponding results for the almost-sure winning problem

2. The limit-sure winning problem for probabilistic autotagPOMDPs, one-sided partial-
observation games, and partial-observation games witlchahility, Bichi, coBichi,
and parity objectives is undecidable.

3.4 Complexity of value decision problem

In this section we consider the quantitative analysis mohli.e., the value decision prob-
lem.

Complexity of the value decision problemsSince the limit-sure winning problem is a spe-
cial case of the value decision problem (with= 1), the undecidability results for all objec-
tives other than safety objectives follow from Theorem 4dibclasses other than complete-
observation games. The undecidability of the value dewigioblem for probabilistic safety
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Complete-observation| Prob. Automata POMDP One-sided Partial-observation
Safety NP N coNP Undecidable | Undecidable| Undecidable Undecidable
Reachability NP N coNP Undecidable | Undecidable| Undecidable Undecidable
Biichi NP N coNP Undecidable | Undecidable| Undecidable Undecidable
coBlichi NP N coNP Undecidable Undecidable | Undecidable Undecidable
Parity NP N coNP Undecidable Undecidable | Undecidable Undecidable

Table 5 Complexity of value decision (quantitative analysis).

automata with pure strategies can be derived from the sesfi[85, 33], and from [15] the
undecidability follows for all other classes of strategiesr complete-observation games,
the value decision problem was shown to be inMNBoNP for reachability and safety ob-
jectives in [20], and parity objectives in [19,12], and faneplete-observation games with
parity objectives pure memoryless optimal strategiest ¢ 19,12]. We summarize the
results in Theorem 5 and Table 5.

Theorem 5 (Complexity of value decision problems)he value decision problem for
complete-observation games with with safety, reachgbHifichi, coBichi, and parity ob-
jectives lie in NPN coNP; and for probabilistic automata, POMDPs, one-sidedtipé
observation games and partial-observation games are tiddble.

4 Other Related Results

We presented a survey of results for partial-observatioohststic games and their sub-
classes, with parity objectives for different classes @ftegies. To keep the presentation fo-
cused we omitted several special cases (such as deteimgastes), generalizations (such
as arithmetic hierarchy characterizations of the undédédproblems), other variants (such
as positive winning), and applications. We briefly discimes below.

Deterministic games.In this article we considered stochastic games where timsitian
function is probabilistic. The special case of determiaigames consist of games graphs
with deterministic transition function that given a statelan action gives a unique next
state rather than a probability distribution over the n¢ates. All the problems we studied
in this work can also be studied for deterministic games, thedcollection of results for
deterministic games is presented in [13].

Arithmetic hierarchy characterization. As we have discussed in the survey, many prob-
lems related to qualitative and quantitative analysis adeaidable. An interesting theoret-
ical question is to establish in which level of the arithrodtierarchy the undecidable prob-
lems lie. The arithmetic hierarchy characterization fomgnaf the problems we consider
for the special case of probabilistic automata has beenidenesl in [10,11] where it has
been established that the undecidable problems lie in théelel of arithmetic hierarchy.

Positive winning.Along with sure, almost-sure and limit-sure winning, thisranother vari-
ant of qualitative analysis, namely positive winning, ddesed in literature. The positive
winning problem asks for the existence of a strategy to enthat an objective is satisfied
with positive probability. Intuitively, the positive wirmg problem is dual to the almost-
sure winning problem, and the results of [2] show that thdtpeswinning problem for
Buchi objectives is undecidable for probabilistic autéma he positive winning problem
for partial-observation games with safety and reachghiliijectives has been considered
in [4] where optimal complexity and memory bounds have bestaldished.
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Applications and future directions. Partial-observation games are an important general-
ization of complete-observation games, and arise nayuialmany applications such as
controller synthesis where the controller does not havesscto private variables of the
plant; in program analysis such as synchronizers for loecgrhent in concurrent pro-
grams [8]; and in artificial intelligence such as contrdlar robot planning [29]. Thus anal-
ysis of partial-observation games is an important pracpoablem. However many prob-
lems are undecidable and decidable problems often havedoigiplexity. An interesting
direction of future research would be to identify naturadl gmactically relevant subclasses
of partial-observation games where the qualitative andhijiadive analysis problems are
more tractable.
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