
Chapter 4
A Survey of Partitional and Hierarchical
Clustering Algorithms

Chandan K. Reddy
Department of Computer Science
Wayne State University
Detroit, MI
reddy@cs.wayne.edu

Bhanukiran Vinzamuri
Department of Computer Science
Wayne State University
Detroit, MI
bhanukiranv@wayne.edu

4.1 Introduction . 88
4.2 Partitional Clustering Algorithms . 88

4.2.1 K-Means Clustering . 89
4.2.2 Minimization of Sum of Squared Errors . 91
4.2.3 Factors Affecting K-Means . 91

4.2.3.1 Popular Initialization Methods 91
4.2.3.2 Estimating the Number of Clusters 92

4.2.4 Variations of K-Means . 94
4.2.4.1 K-Medoids Clustering . 94
4.2.4.2 K-Medians Clustering . 94
4.2.4.3 K-Modes Clustering . 95
4.2.4.4 Fuzzy K-means Clustering 95
4.2.4.5 X-Means Clustering . 96
4.2.4.6 Intelligent K-Means Clustering 96
4.2.4.7 Bisecting K-Means Clustering 97
4.2.4.8 Kernel K-Means Clustering 97
4.2.4.9 Mean Shift Clustering . 98
4.2.4.10 Weighted K-Means Clustering 99
4.2.4.11 Genetic K-Means Clustering 100

4.2.5 Making K-Means Faster . 100
4.3 Hierarchical Clustering Algorithms . 101

4.3.1 Agglomerative Clustering . 101
4.3.1.1 Single and Complete Link 102
4.3.1.2 Group Averaged and Centroid Agglomerative

Clustering . 103
4.3.1.3 Ward’s Criterion . 103
4.3.1.4 Agglomerative Hierarchical Clustering

Algorithm . 103
4.3.1.5 Lance-Williams Dissimilarity Update Formula 104

87

88 Data Clustering: Algorithms and Applications

4.3.2 Divisive Clustering . 104
4.3.2.1 Issues in Divisive Clustering 104
4.3.2.2 Divisive Hierarchical Clustering Algorithm . . . 105
4.3.2.3 Minimum Spanning Tree based Clustering 105

4.3.3 Other Hierarchical Clustering Algorithms 106
4.4 Discussion and Summary . 107

Bibliography . 107

4.1 Introduction
The two most widely studied clustering algorithms are partitional and hierarchical clustering.

These algorithms have been heavily used in a wide range of applications primarily due to their
simplicity and ease of implementation relative to other clustering algorithms. Partitional clustering
algorithms aim to discover the groupings present in the data by optimizing a specific objective
function and iteratively improving the quality of the partitions. These algorithms generally require
certain user parameters to choose the prototype points that represent each cluster. For this reason
they are also called as prototype based clustering algorithms.

Hierarchical clustering algorithms, on the other hand, approach the problem of clustering by
developing a binary tree based data structure called the dendrogram. Once the dendrogram is con-
structed, one can automatically choose the right number of clusters by splitting the tree at different
levels to obtain different clustering solutions for the same dataset without re-running the clustering
algorithm again. Hierarchical clustering can be achieved in two different ways, namely, bottom-up
and top-down clustering. Though, both of these approaches utilize the concept of dendrogram while
clustering the data, they might yield entirely different set of results depending on the criterion used
during the clustering process.

Partitional methods need to be provided with a set of initial seeds (or clusters) which are then
improved iteratively. Hierarchical methods, on the other hand, can start off with the individual data
points in single clusters and build the clustering. The role of the distance metric is also different
in both of these algorithms. In hierarchical clustering, the distance metric is initially applied on the
data points at the base level and then progressively applied on subclusters by choosing absolute
representative points for the subclusters. However, in the case of partitional methods, in general, the
representative points chosen at different iterations can be virtual points such as the centroid of the
cluster (which is non-existent in the data).

This chapter is organized as follows. In section 4.2, the basic concepts of partitional clustering
are introduced and the related algorithms in this field are also discussed. More specifically, sub-
sections 4.2.1-4.2.3 will discuss the widely studied K-Means clustering algorithm and highlight the
major factors involved in these partitional algorithms such as initialization methods and estimating
the number of clusters K. Subsection 4.2.4 will highlight several variations of the K-Means cluster-
ing. The distinctive features of each of these algorithms and their advantages are also highlighted.
In section 4.3 the fundamentals of hierarchical clustering are explained. Subsections 4.3.1 and 4.3.2
will discuss the agglomerative and divisive hierarchical clustering algorithms respectively. We will
also highlight the differences between the algorithms in both of these categories in this section. Sub-
section 4.3.3 will briefly discuss the other prominent hierarchical clustering algorithms. Finally, in
section 4.4, we will conclude our discussion highlighting the merits and drawbacks of both families
of clustering algorithms.

A Survey of Partitional and Hierarchical Clustering Algorithms 89

4.2 Partitional Clustering Algorithms
The first partitional clustering algorithm that will be discussed in this section is the K-Means

clustering algorithm. It is one of the simplest and most efficient clustering algorithms proposed in
the literature of data clustering. After the algorithm is described in detail, some of the major factors
that influence the final clustering solution will be highlighted. Finally, some of the widely used
variations of K-Means will also be discussed in this section.

4.2.1 K-Means Clustering

K-means clustering [33, 32] is the most widely used partitional clustering algorithm. It starts by
choosing K representative points as the initial centroids. Each point is then assigned to the closest
centroid based on a particular proximity measure chosen. Once the clusters are formed, the centroids
for each cluster are updated. The algorithm then iteratively repeats these two steps until the centroids
do not change or any other alternative relaxed convergence criterion is met. K-means clustering is
a greedy algorithm which is guaranteed to converge to a local minimum but the minimization of
its score function is known to be NP-Hard [35]. Typically, the convergence condition is relaxed
and a weaker condition may be used. In practice, it follows the rule that the iterative procedure
must be continued until 1% of the points change their cluster memberships. A detailed proof of the
mathematical convergence of K-means can be found in [45].

Algorithm 13 K-Means Clustering
1: Select K points as initial centroids.
2: repeat
3: Form K clusters by assigning each point to its closest centroid.
4: Recompute the centroid of each cluster.
5: until Convergence criterion is met.

Algorithm 13 provides an outline of the basic K-Means algorithm. Figure 4.1 provides an il-
lustration of the different stages of the running of 3-means algorithm on the Fisher Iris dataset.
The first iteration initializes three random points as centroids. In subsequent iterations the centroids
change positions until convergence. A wide range of proximity measures can be used within the
K-means algorithm while computing the closest centroid. The choice can significantly affect the
centroid assignment and the quality of the final solution. The different kinds of measures which can
be used here are Manhattan distance (L1 norm), Euclidean distance (L2 norm) and Cosine similar-
ity. In general, for the K-means clustering, Euclidean distance metric is the most popular choice. As
mentioned above, we can obtain different clusterings for different values of K and proximity mea-
sures. The objective function which is employed by K-means is called the Sum of Squared Errors
(SSE) or Residual Sum of Squares (RSS). The mathematical formulation for SSE/RSS is provided
below.

Given a dataset D={x1,x2, . . . ,xN} consists of N points and let us denote the clustering obtained
after applying K-means clustering by C = {C1,C2, . . . ,Ck . . . ,CK}. The SSE for this clustering is de-
fined in the Equation (4.1) where ck is the centroid of cluster Ck. The objective is to find a clustering
that minimizes the SSE score. The iterative assignment and update steps of the K-means algorithm
aim to minimize the SSE score for the given set of centroids.

SSE(C) =
K

∑
k=1

∑
xi∈Ck

∥ xi− ck ∥2 (4.1)

90 Data Clustering: Algorithms and Applications

4 4.5 5 5.5 6 6.5 7 7.5 8
2

2.5

3

3.5

4

4.5

Cluster 1
Cluster 2
Cluster 3
Centroids

Iteration 1
4 4.5 5 5.5 6 6.5 7 7.5 8

2

2.5

3

3.5

4

4.5

Cluster 1
Cluster 2
Cluster 3
Centroids

Iteration 2

4 4.5 5 5.5 6 6.5 7 7.5 8
2

2.5

3

3.5

4

4.5

Cluster 1
Cluster 2
Cluster 3
Centroids

Iteration 3
4 4.5 5 5.5 6 6.5 7 7.5 8

2

2.5

3

3.5

4

4.5

Cluster 1
Cluster 2
Cluster 3
Centroids

Iteration 4

FIGURE 4.1: An illustration of 4 iterations of K-means over the Fisher Iris dataset.

A Survey of Partitional and Hierarchical Clustering Algorithms 91

ck =

∑
xi∈Ck

xi

|Ck|
(4.2)

4.2.2 Minimization of Sum of Squared Errors

K-means clustering is essentially an optimization problem with the goal of minimizing the Sum
of Squared Error (SSE) objective function. We will mathematically prove the reason behind choos-
ing the mean of the data points in a cluster as the prototype representative for a cluster in the
K-means algorithm. Let us denote Ck as the kth cluster, xi is a point in Ck and ck is the mean of the
kth cluster. We can solve for the representative of C j which minimizes the SSE by differentiating the
SSE with respect to c j and setting it equal to zero.

SSE(C) =
K

∑
k=1

∑
xi∈Ck

(ck− xi)
2 (4.3)

∂
∂c j

SSE =
∂

∂c j

K

∑
k=1

∑
xi∈Ck

(ck− xi)
2

=
K

∑
k=1

∑
xi∈C j

∂
∂c j

(c j− xi)
2

= ∑
xi∈C j

2∗ (c j− xi) = 0

∑
xi∈C j

2∗ (c j− xi) = 0⇒ |C j| · c j = ∑
xi∈C j

xi⇒ c j =

∑
xi∈C j

xi

|C j|

Hence, the best representative for minimizing the SSE of a cluster is the mean of the points in
the cluster. In K-means, the SSE monotonically decreases with each iteration. This monotonically
decreasing behaviour will eventually converge to a local minimum.

4.2.3 Factors Affecting K-Means

The major factors that can impact the performance of the K-means algorithm are the following:

1. Choosing the initial centroids.

2. Estimating the number of clusters K.

We will now discuss several methods proposed in the literature to tackle each of these factors.

4.2.3.1 Popular Initialization Methods

In his classical paper [33], Macqueen proposed a simple initialization method which chooses
K seeds at random. This is the most simplest method and has been widely used in the literature.
The other popular K-means initialization methods which have been successfully used to improve
the clustering performance are given below.

1. Hartigan and Wong [19]: Using the concept of nearest neighbour density, this method sug-
gests that the points which are well-separated and have a large number of points within their
surrounding multi-dimensional sphere can be good candidates for initial points. The average

92 Data Clustering: Algorithms and Applications

pair-wise Euclidean distance between points is calculated using Equation (4.4). Subsequent
points are chosen in the order of their decreasing density and simultaneously maintaining
the separation of d1 from all previous seeds. Note that for the formulae provided below we
continue using the same notation as introduced earlier.

d1 =
1

N(N−1)

N−1

∑
i=1

N

∑
j=i+1

∥ xi− x j ∥ (4.4)

2. Milligan [37]: Using the results of agglomerative hierarchical clustering (with the help of the
dendrogram), this method uses the results obtained from the Ward’s method. Ward’s method
chooses the initial centroids by using the sum of squared errors to evaluate the distance be-
tween two clusters. Ward’s method is a greedy approach and keeps the agglomerative growth
as small as possible.

3. Bradley and Fayyad [5]: Choose random subsamples from the data and apply K-means clus-
tering to all these subsamples using random seeds. The centroids from each of these subsam-
ples are then collected and a new dataset consisting of only these centroids is created. This
new dataset is clustered using these centroids as the initial seeds. The minimum SSE obtained
guarantees the best seed set chosen.

4. K-Means++ [1]: The K-means++ algorithm carefully selects the initial centroids for K-means
clustering. The algorithm follows a simple probability based approach where initially the first
centroid is selected at random. The next centroid selected is the one which is farthest from the
currently selected centroid. This selection is decided based on a weighted probability score.
The selection is continued until we have K centroids and then K-means clustering is done
using these centroids.

4.2.3.2 Estimating the Number of Clusters

The problem of estimating the correct number of clusters (K) is one of the major challenges
for the K-means clustering. Several researchers have proposed new methods for addressing this
challenge in the literature. We will briefly describe some of the most prominent methods.

1. Calinski-Harabasz Index [6]: The Calinski-Harabasz index is defined by Equation (4.5).

CH(K) =

B(K)
(K−1)
W (K)
N−K

(4.5)

where N represents the number of data points. The number of clusters are chosen by maxi-
mizing the function given in Equation (4.5). Here B(K) and W (K) are the between and within
cluster sum of squares respectively (with K clusters).

2. Gap Statistic [48]: In this method, B different datasets each with the same range values as
the original data are produced. The within cluster sum of squares is calculated for each of
them with different number of clusters. W ∗b (K) is the within cluster sum of squares for the bth

uniform dataset.
Gap(K) =

1
B
×∑

b
log(W ∗b (K))− log(W (K)) (4.6)

where sk represents the estimate of standard deviation of log(W ∗b (K)). The number of clusters
chosen is the smallest value of K which satisfies Equation (4.7).

Gap(K)≥ Gap(K +1)− sk+1 (4.7)

A Survey of Partitional and Hierarchical Clustering Algorithms 93

3. Akaike Information Criterion (AIC) [52]: AIC has been developed by considering the log-
likelihood and adding additional constraints of Minimum Description Length (MDL) to esti-
mate the value of K. M represents the dimensionality of the dataset. SSE (Eq.4.1) is the sum
of squared errors for the clustering obtained using K. K-means uses a modified AIC as given
below.

KMeansAIC : K = argminK [SSE(K)+2MK] (4.8)

4. Bayesian Information Criterion (BIC) [39]: BIC serves as an asymptotic approximation to a
transformation of the Bayesian posterior probability of a candidate model. Similar to AIC,
the computation is also based on considering the logarithm of likelihood (L). N represents the
number of points. The value of K that minimizes the BIC function given below will be used
as the initial parameter for running the K-means clustering.

BIC =
−2∗ ln(L)

N
+

K ∗ ln(N)

N
=

1
N
× ln(

NK

L2) (4.9)

5. Duda and Hart [11]: It is a method for estimation that involves stopping the hierarchical
clustering process by choosing the correct cut-off level in the dendrogram. The methods which
are typically used to cut a dendrogram are the following: (i) Cutting the dendrogram at a pre-
specified level of similarity where the threshold has been specified by the user; (ii) Cutting
the dendrogram where the gap between two successive merges is the largest. (iii) Stopping
the process when the density of the cluster that results from the merging is below a certain
threshold.

6. Silhouette Coefficient [26]: This is formulated by considering both the intra- and inter-cluster
distances. For a given point xi, firstly the average of the distances to all points in the same
cluster is calculated. This value is set to ai. Then for each cluster that does not contain xi,
average distance of xi to all the data points in each cluster is computed. This value is set to
bi. Using these two values the silhouette coefficient of a point is estimated. The average of
all the silhouettes in the dataset is called the average silhouettes width for all the points in
the dataset. To evaluate the quality of a clustering one can compute the average silhouette
coefficient of all points.

S =

N
∑

i=1

bi−ai
max(ai,bi)

N
(4.10)

7. Newman and Girvan [40]: In this method, the dendrogram is viewed as a graph and a between-
ness score (which will be used as a dissimilarity measure between the edges) is proposed. The
procedure starts by calculating the betweenness score of all the edges in the graph. Then the
edge with the highest betweenness score is removed. This is followed by recomputing the
betweenness scores between the remaining edges until the final set of connected components
are obtained. The cardinality of the set derived through this process serves as a good estimate
for K.

8. ISODATA [2]: ISODATA was proposed for clustering the data based on the nearest centroid
method. In this method, firstly K-means is run on the dataset to obtain the clusters. Clusters
are merged if their distance is less than a threshold ϕ or if they have fewer than a certain
number of points. Similarly, a cluster is split if the within cluster standard deviation exceeds
that of a user defined threshold.

94 Data Clustering: Algorithms and Applications

4.2.4 Variations of K-Means

The simple framework of the K-Means algorithm makes it very flexible to modify and build
further more efficient algorithms on top of it. Some of the variations proposed to the K-Means al-
gorithm are based on: (i) Choosing different representative prototypes for the clusters (K-Medoids,
K-Medians, K-Modes), (ii) Choosing better initial centroid estimates (Intelligent K-means, Genetic
K-means), (iii) Applying some kind of feature transformation techniques (Weighted K-Means, Ker-
nel K-Means). In this section, we will discuss the most prominent variants of K-Means clustering
that have been proposed in the literature of partitional clustering.

4.2.4.1 K-Medoids Clustering

K-medoids is a clustering algorithm which is more resilient to outliers compared to K-
means [38]. Similar to K-means, the goal of K-medoids is also to find a clustering solution that
minimizes a pre-defined objective function. The K-medoids algorithm chooses the actual data points
as the prototypes and is more robust to noise and outliers in the data. The K-medoids algorithm aims
to minimize the absolute error criterion rather than the SSE. Similar to the K-means clustering algo-
rithm, the K-medoids algorithm also proceeds iteratively until each representative object is actually
the medoid of the cluster. The basic K-medoids clustering algorithm is given in Algorithm 14.

In the K-medoids clustering algorithm, specific cases are considered where an arbitrary random
point xi is used to replace a representative point m. Following this step the change in the membership
of the points that originally belonged to m are checked. The change in membership of these points
can occur in one of the two ways. These points can now be closer to xi (new representative point) or
can be closer to any of the other set of representative points. The cost of swapping is calculated as
the absolute error criterion for K-medoids. For each re-assignment operation this cost of swapping
is calculated and this contributes to the overall cost function.

Algorithm 14 K-Medoids Clustering
1: Select K points as the initial representative objects.
2: repeat
3: Assign each point to the cluster with the nearest representative object.
4: Randomly select a non-representative object xi.
5: Compute the total cost S of swapping the representative object m with xi.
6: If S < 0, then swap m with xi to form the new set of K representative objects.
7: until Convergence criterion is met.

To deal with the problem of executing multiple swap operations while obtaining the final rep-
resentative points for each cluster, a modification of the K-Medoids clustering called Partitioning
Around Medoids (PAM) algorithm is proposed [26]. This algorithm operates on the dissimilarity
matrix of a given dataset. PAM minimizes the objective function by swapping all the non-medoid
points and medoids iteratively until convergence. K-Medoids is more robust compared to K-means
but the computational complexity of K-Medoids is higher and hence is not suitable for large datasets.
PAM was also combined with a sampling method to propose the Clustering LARge Application
(CLARA) algorithm. CLARA considers many samples and applies PAM on each one of them to
finally return the set of optimal medoids.

4.2.4.2 K-Medians Clustering

The K-medians clustering calculates the median for each cluster as opposed to calculating the
mean of the cluster (as done in K-means). K-Medians clustering algorithm chooses K cluster centers
that aim to minimize the sum of a distance measure between each point and the closest cluster center.
The distance measure used in the K-medians algorithm is the L1-norm as opposed to the square of

A Survey of Partitional and Hierarchical Clustering Algorithms 95

the L2-norm used in the K-means algorithm. The criterion function for the K-medians algorithm is
defined as follows:

S =
K

∑
k=1

∑
xi∈Ck

|xi j−medk j| (4.11)

where xi j represents the jth attribute of the instance xi and medk j represents the median for the
jth attribute in the kth cluster Ck. K-medians is more robust to outliers compared to K-means. The
goal of the K-Medians clustering is to determine those subset of median points which minimize the
cost of assignment of the data points to the nearest medians. The overall outline of the algorithm
is similar to that of K-means. The two steps that are iterated until convergence are: (i) All the data
points are assigned to their nearest median. (ii) The medians are recomputed using the median of
the each individual feature.

4.2.4.3 K-Modes Clustering

One of the major disadvantages of K-means is its inability to deal with non-numerical at-
tributes [51, 3]. Using certain data transformation methods, categorical data can be transformed
into new feature spaces and then the K-means algorithm can be applied to this newly transformed
space to obtain the final clusters. However, this method has proven to be very ineffective and does
not produce good clusters. It is observed that the SSE function and the usage of the mean are not
appropriate when dealing with categorical data. Hence, the K-modes clustering algorithm [21] has
been proposed to tackle this challenge.

K-modes is a non-parametric clustering algorithm suitable for handling categorical data and
optimizes a matching metric (L0 loss function) without using any explicit distance metric. The loss
function here is a special case of the standard Lp norm where p tends to zero. As opposed to the Lp
norm which calculates the distance between the data point and centroid vectors, the loss function in
K-modes clustering works as a metric and uses the number of mismatches to estimate the similarity
between the data points. The K-modes algorithm is described in detail in Algorithm 15. As with K-
means, this is also an optimization problem and this method also cannot guarantee a global optimal
solution.

Algorithm 15 K-Modes Clustering
1: Select K initial modes.
2: repeat
3: Form K clusters by assigning all the data points to the cluster with the nearest mode using

the matching metric.
4: Recompute the modes of the clusters.
5: until Convergence criterion is met.

4.2.4.4 Fuzzy K-means Clustering

It is also popularly known as Fuzzy C-Means clustering. Performing hard assignments of points
to clusters is not feasible in complex datasets where there are overlapping clusters. To extract such
overlapping structures, fuzzy clustering algorithm can be used. In fuzzy C-means clustering algo-
rithm (FCM) [12, 4], the membership of points to different clusters can vary from 0 to 1. The SSE
function for FCM is provided in Equation (4.12).

SSE(C) =
K

∑
k=1

∑
xi∈Ck

wβ
xik ∥ xi− ck ∥2 (4.12)

96 Data Clustering: Algorithms and Applications

wxik =
1

K
∑
j=1

(xi−ck
xi−c j

)
2

β−1

(4.13)

ck =

∑
xi∈Ck

wβ
xikxi

∑
xi∈Ck

wxik
(4.14)

Here wxik is the membership weight of point xi belonging to Ck. This weight is used during
the update step of fuzzy C-means. The weighted centroid according to the fuzzy weights for Ck
is calculated (represented by ck). The basic algorithm works similar to K-means where the algo-
rithm minimizes the SSE iteratively followed by updating wxik and ck. This process is continued
until the convergence of centroids. As in K-means, even FCM algorithm is sensitive to outliers and
the final solutions obtained will also correspond to the local minimum of the objective function.
There are also further extensions of this algorithm in the literature such as Rough C-means [34] and
Possibilistic C-means [30].

4.2.4.5 X-Means Clustering

X-Means [42] is a clustering method which can be used to efficiently estimate the value of K. It
uses a method called blacklisting to identify those set of centroids amongst the current existing ones
which can be split in order to fit the data better. The decision making here is done using the Akaike
or Bayesian Information Criterion. In this algorithm, the centroids are chosen by initially reducing
the search space using a heuristic. K values for experimentation are chosen between a selected
lower and upper bound value. This is followed by assessing the goodness of the model for different
K in the bounded space using a specific model selection criterion. This model selection criterion
is developed using the Gaussian probabilistic model and the maximum likelihood estimates. The
best K value corresponds to the model that scores the highest on the model score. The primary goal
of this algorithm is to estimate K efficiently and provide a scalable K-Means clustering algorithm
when the number of data points becomes large.

4.2.4.6 Intelligent K-Means Clustering

Intelligent K-means (IK-means) clustering [38] is a method which is based on the following
principle: the farther a point is from the centroid the more interesting it becomes. IK-Means uses
the basic ideas of principal component analysis (PCA) and selects those points farthest from the
centroid which correspond to the maximum data scatter. The clusters derived from such points are
called as anomalous pattern clusters. The IK-means clustering algorithm is given in Algorithm 16.

In Algorithm 16, line 1 initializes the centroid for the dataset as cg. In line 3, a new centroid
is created which is farthest from the centroid of the entire data. In lines 4-5, a version of 2-means
clustering assignment is made. This assignment uses the center of gravity of the original dataset
cluster cg and that of the new anomalous pattern cluster sg as the initial centroids. In line 6, the
centroid of the dataset is updated with the centroid of the anomalous cluster. In line 7, a threshold
condition is applied to discard small clusters being created because of outlier points. Lines 3-7 are
run until one of the stopping criteria is met. (i) Centroids converge or (ii) Pre-specified K number of
clusters have been obtained or (iii) The entire data has been clustered.

There are different ways by which we can select the K for IK-Means, some of which are similar
to choosing K in K-means described earlier. A structural based approach which compares the inter-
nal cluster cohesion with between-cluster separation can be applied. Standard hierarchical clustering
methods which construct a dendrogram can also be used to determine K. K-means is considered to
be a non-deterministic algorithm whereas IK-means can be considered a deterministic algorithm.

IK-Means can be very effective in extracting clusters when they are spread across the dataset

A Survey of Partitional and Hierarchical Clustering Algorithms 97

Algorithm 16 IK-Means Clustering
1: Calculate the center of gravity for the given set of data points cg.
2: repeat
3: Create a centroid c farthest from cg.
4: Create a cluster Siter of data points that is closer to c compared to cg by assigning all the

remaining data points xi to Siter if d(xi,c)< d(xi,cg).
5: Update the centroid of Siter as sg.
6: Set cg = sg.
7: Discard small clusters (if any) using a pre-specified threshold.
8: until Stopping criterion is met.

rather than being compactly structured in a single region. IK-means clustering can also be used for
initial centroid seed selection before applying K-means. At the end of the IK-means we will be
left with only the good centroids for further selection. Small anomalous pattern clusters will not
contribute any candidate centroids as they have already been pruned.

4.2.4.7 Bisecting K-Means Clustering

Algorithm 17 Bisecting K-Means Clustering
1: repeat
2: Choose the parent cluster to be split C.
3: repeat
4: Select two centroids at random from C.
5: Assign the remaining points to the nearest subcluster using a pre-specified distance mea-

sure.
6: Recompute centroids and continue cluster assignment until convergence.
7: Calculate inter-cluster dissimilarity for the 2 subclusters using the centroids.
8: until I iterations are completed.
9: Choose those centroids of the subclusters with maximum inter-cluster dissimilarity.

10: Split C as C1 and C2 for these centroids.
11: Choose the large cluster among C1 and C2 and set it as the parent cluster.
12: until K clusters have been obtained.

Bisecting K-means clustering [47] is a divisive hierarchical clustering method which uses K-
means repeatedly on the parent cluster C to determine the best possible split to obtain two child
clusters C1 and C2. In the process of determining the best split, bisecting K-means obtains uniform
sized clusters. The algorithm for Bisecting K-means clustering is given in Algorithm 17.

In line 2, the parent cluster to be split is initialized. In lines 4-7, a 2-means clustering algorithm
is run I times to determine the best split which maximizes the Ward’s distance between C1 and C2.
In lines 9-10, the best split obtained will be used to divide the parent cluster. In line 11, larger among
the split clusters is made as the new parent for further splitting. The computational complexity of
the Bisecting K-means is much higher compared to the standard K-Means.

4.2.4.8 Kernel K-Means Clustering

In Kernel K-means clustering [44], the final clusters are obtained after projecting the data onto
the high-dimensional kernel space. The algorithm works by initially mapping the data points in
the input space onto a high-dimensional feature space using the kernel function. Some important
kernel functions are polynomial kernel, gaussian kernel and sigmoid kernel. The formula for the

98 Data Clustering: Algorithms and Applications

SSE criterion of Kernel K-means along with that of the cluster centroid is given in Equation (4.15).
The formula for the kernel matrix K for any two points xi,x j ∈Ck is also given below.

SSE(C) =
K

∑
k=1

∑
xi∈Ck

||ϕ(xi)− ck||2 (4.15)

ck =

∑
xi∈Ck

ϕ(xi)

|Ck|
(4.16)

Kxix j = ϕ(xi) ·ϕ(x j) (4.17)

The difference between the standard K-Means criteria and this new kernel K-means criteria is
only in the usage of projection function ϕ. The Euclidean distance calculation between a point and
the centroid of the cluster in the high-dimensional feature space in kernel K-means will only require
the knowledge of the kernel matrix K. Hence, the clustering can be performed without the actual
individual projections ϕ(xi) and ϕ(x j) for the data points xi, x j ∈ Ck. It can be observed that the
computational complexity is much higher than K-means since the kernel matrix has to be gener-
ated from the kernel function for the given data. A weighted version of the same algorithm called
Weighted Kernel K-means has also been developed [10]. The widely studied spectral clustering can
be considered as a variant of kernel K-means clustering.

4.2.4.9 Mean Shift Clustering

Mean shift clustering [7] is a popular non-parametric clustering technique which has been used
in many areas of pattern recognition and computer vision. It aims to discover the modes present in
the data through a convergence routine. The primary goal of the mean shift procedure is to determine
the local maxima or modes present in the data distribution. The Parzen window kernel density
estimation method forms the basis for the mean shift clustering algorithm. It starts with each point
and then performs a gradient ascent procedure until convergence. As the mean shift vector always
points toward the direction of maximum increase in the density, it can define a path leading to
a stationary point of the estimated density. The local maxima (or modes) of the density are such
stationary points. This mean shift algorithm is one of the widely used clustering methods that fall in
the category of mode-finding procedures.

We provide some of the basic mathematical formulation involved in the mean shift clustering
algorithm below. Given N data points xi, where i = 1, . . . ,N on a d-dimensional space Rd . Let the
multivariate parzen window kernel density estimate f (x) is obtained with kernel K(x) and window
radius h. It is given by

f (x) =
1

Nhd

N

∑
i=1

K
(

x− xi

h

)
(4.18)

mh(x) =

N
∑

i=1
xi ·g(∥ x−xi

h ∥
2)

N
∑

i=1
g(∥ x−xi

h ∥2)

(4.19)

More detailed information about obtaining the gradient from the kernel function and the exact
kernel functions being used can be obtained from [7]. A proof of convergence of the modes is also
provided in [8].

A Survey of Partitional and Hierarchical Clustering Algorithms 99

Algorithm 18 Mean Shift Clustering
1: Select K random points as the modes of the distribution.
2: repeat
3: For each given mode x calculate the mean shift vector mh(x).
4: Update the point x = mh(x).
5: until Modes become stationary and converge.

4.2.4.10 Weighted K-Means Clustering

Weighted K-Means (WK-Means) algorithm [20] introduces feature weighting mechanism into
the standard K-means. It is an iterative optimization algorithm in which the weights for different
features are automatically learned. Standard K-means ignores the importance of a particular feature
and considers all of the features to be equally important. The modified SSE function optimized by
the WK-means clustering algorithm is given in Equation (4.20). Here the features are numbered
from v = 1, . . . ,M and the clusters are numbered from k = 1, . . . ,K. A user-defined parameter β
which employs the impact of the feature weights on the clustering is also used. The clusters are
numbered C =C1, . . . ,Ck, . . . ,CK and ck is the M-dimensional centroid for cluster Ck, and ckv repre-
sents the vth feature value of the centroid. Feature weights are updated in WK-means according to
wv. Dv is the sum of within cluster variances of feature v weighted by cluster cardinalities.

SSE(C,w) =
K

∑
k=1

∑
xi∈Ck

M

∑
v=1

sxikwβ
v (xiv− ckv)

2 (4.20)

wv =
1

∑
u∈V

[Dv
Du

]
1

β−1
(4.21)

d(xi,ck) =
M

∑
v=1

wβ
v (xiv− ckv)

2 (4.22)

sxik ∈ (0,1)

K
∑

k=1
sxik = 1

M
∑

v=1
wv = 1

(4.23)

Algorithm 19 Weighted K-means Clustering
1: Choose K random centroids and set up M feature weights such that they sum to 1.
2: repeat
3: Assign all data points xi to the closest centroid by calculating d(xi,ck).
4: Recompute centroids of the clusters after completing assignment.
5: Update weights using wv.
6: until Convergence criterion has been met.

The WK-means clustering algorithm runs similar to K-means clustering but the distance mea-
sure is also weighted by the feature weights. In line 1, the centroids and weights for M features are
initialized. In lines 3-5, points are assigned to their closest centroids and the weighted centroid is
calculated. This is followed by a weight update step such that the sum of weights is constrained as

100 Data Clustering: Algorithms and Applications

shown in Equation (4.23). These steps are continued until the centroids converge. This algorithm
is computationally more expensive compared to K-Means. Similar to K-means, this algorithm also
suffers from convergence issues. Intelligent K-means (IK-Means) [38] can also be integrated with
WK-means to yield the Intelligent Weighted K-means algorithm.

4.2.4.11 Genetic K-Means Clustering

K-means suffers from the problem of converging to a local minimum. To tackle this problem,
stochastic optimization procedures which are good at avoiding the convergence to a local optimal
solution can be applied. Genetic algorithms (GA) are proven to converge to a global optimum. These
algorithms evolve over generations, where during each generation they produce a new population
from the current one by applying a set of genetic operators such as natural selection, crossover, and
mutation. They develop a fitness function and pick up the fittest individual based on the probability
score from each generation and use them to generate the next population using the mutation operator.
The problem of local optima can be effectively solved by using GA and this gives rise to the Genetic
K-means algorithm (GKA) [29]. The data is initially converted using a string of group numbers
coding scheme and a population of such strings forms the initial dataset for GKA. The following
are the major steps involved in the GKA algorithm.

1. Initialization: Selecting a random population initially to begin the algorithm. This is analo-
gous to the random centroid initialization step in K-Means.

2. Selection: Using the probability computation given in Equation (4.24), identify the fittest
individuals in the given population.

P(si) =
F(si)

N
∑
j=1

F(s j)

(4.24)

where F(si) represents the fitness value of a string si in the population. A fitness function is
further developed to assess the goodness of the solution. This fitness function is analogous to
the SSE of K-Means.

3. Mutation: This is analogous to the K-Means assignment step where points are assigned to
their closest centroids followed by updating the centroids at the end of iteration. The selection
and mutation steps are applied iteratively until convergence is obtained.

The pseudocode of the exact GKA algorithm is discussed in detail in [29] and a proof of con-
vergence of the GA is given [43].

4.2.5 Making K-Means Faster

It is believed that the K-Means Clustering algorithm consumes a lot of time in its later stages
when the centroids are close to their final locations but the algorithm it yet to converge. An im-
provement to the original Lloyd’s K-Means clustering using a kd-tree data structure to store the data
points was proposed in [24]. This algorithm is called the filtering algorithm where for each node a
set of candidate centroids is maintained similar to a normal kd-tree. These candidate set centroids
are pruned based on a distance comparison which measures the proximity to the midpoint of the
cell. This filtering algorithm runs faster when the separation between the clusters increases. In the
K-Means clustering algorithm, usually there are several redundant calculations that are performed.
For example, when a point is very far from a particular centroid, then calculating its distance to
that centroid may not be necessary. The same applies for a point which is very close to the centroid
as it can be directly assigned to the centroid without computing its exact distance. An optimized

A Survey of Partitional and Hierarchical Clustering Algorithms 101

K-Means clustering method which uses the triangle inequality metric is also proposed to reduce the
number of distance metric calculations [13]. The mathematical formulation for the lemma used by
this algorithm is as follows. Let x be a data point and let b and c be the centroids.

d(b,c) ≥ 2d(x,b)→ d(x,c)≥ d(x,b) (4.25)
d(x,c) ≥ max{0,d(x,b)−d(b,c)} (4.26)

This algorithm runs faster than the standard K-Means clustering algorithm as it avoids both kinds of
computations mentioned above by using the lower and upper bounds on distances without affecting
the final clustering result.

4.3 Hierarchical Clustering Algorithms
Hierarchical clustering algorithms [23] were developed to overcome some of the disadvantages

associated with flat or partitional based clustering methods. Partitional methods generally require
a user pre-defined parameter K to obtain a clustering solution and they are often non-deterministic
in nature. Hierarchical algorithms were developed to build a more deterministic and flexible mech-
anism for clustering the data objects. Hierarchical methods can be categorized into agglomerative
and divisive clustering methods. Agglomerative methods start by taking singleton clusters (that con-
tain only one data object per cluster) at the bottom level and continue merging two clusters at a time
to build a bottom-up hierarchy of the clusters. Divisive methods, on the other hand, start with all the
data objects in a huge macro-cluster and split it continuously into two groups generating a top-down
hierarchy of clusters.

A cluster hierarchy here can be interpreted using the standard binary tree terminology as follows.
The root represents all the set of data objects to be clustered and this forms the apex of the hierarchy
(level 0). At each level, the child entries (or nodes) which are subsets of the entire dataset correspond
to the clusters. The entries in each of these clusters can be determined by traversing the tree from
the current cluster node to the base singleton data points. Every level in the hierarchy corresponds
to some set of clusters. The base of the hierarchy consists of all the singleton points which are the
leaves of the tree. This cluster hierarchy is also called a dendrogram. The basic advantage of having
a hierarchical clustering method is that it allows for cutting the hierarchy at any given level and
obtaining the clusters correspondingly. This feature makes it significantly different from partitional
clustering methods in that it does not require a pre-defined user specified parameter k (number of
clusters). We will discuss more details of how the dendrogram is cut later in this chapter.

In this section, we will first discuss different kinds of agglomerative clustering methods which
primarily differ from each other in the similarity measures that they employ. The widely studied
algorithms in this category are the following: single link (nearest neighbour), complete link (di-
ameter), group average (average link),centroid similarity and Ward’s method (minimum variance).
Subsequently, we will also discuss some of the popular divisive clustering methods.

4.3.1 Agglomerative Clustering

The basic steps involved in an agglomerative hierarchical clustering algorithm are the following.
Firstly, using a particular proximity measure a dissimilarity matrix is constructed and all the data
points are visually represented at the bottom of the dendrogram. The closest set of clusters are
merged at each level and then the dissimilarity matrix is updated correspondingly. This process
of agglomerative merging is carried on until the final maximal cluster (that contains all the data
objects in a single cluster) is obtained. This would represent the apex of our dendrogram and mark

102 Data Clustering: Algorithms and Applications

the completion of the merging process. We will now discuss about the different kinds of proximity
measures which can be used in agglomerative hierarchical clustering. Subsequently, we will also
provide a complete version of the agglomerative hierarchical clustering algorithm in Algorithm 20.

4.3.1.1 Single and Complete Link

The most popular agglomerative clustering methods are single link and complete link cluster-
ings. In single link clustering [36, 46], the similarity of two clusters is the similarity between their
most similar (nearest neighbour) members. This method intuitively gives more importance to the
regions where clusters are closest and neglecting the overall structure of the cluster. Hence, this
method falls under the category of a local similarity based clustering method. Because of its local
behaviour, single linkage is capable of effectively clustering non-elliptical, elongated shaped groups
of data objects. However, one of the main drawbacks of this method is its sensitivity to noise and
outliers in the data.

Complete link clustering [27] measures the similarity of two clusters as the similarity of their
most dissimilar members. This is equivalent to choosing the cluster pair whose merge has the small-
est diameter. As this method takes the cluster structure into consideration it is non-local in be-
haviour and generally obtains compact shaped clusters. However, similar to single link clustering,
this method is also sensitive to outliers. Both single link and complete link clustering have their
graph-theoretic interpretations [16], where the clusters obtained after single link clustering would
correspond to the connected components of a graph and those obtained through complete link would
correspond to the maximal cliques of the graph.

1 2 3 4

0.20 0.0 0.40 0.50

0.15 0.40 0.0 0.10

0.30 0.50 0.10 0.0

1

2

4

3

0.0 0.20 0.15 0.30

(a) Dissimilarity Matrix

3

0.1

0.15

0.20

24 1

(b) Single Link

0.1

3 4 1 2

0.50

0.20

(c) Complete Link

FIGURE 4.2: An illustration of agglomerative clustering. (a) A dissimilarity matrix computed for
four arbitrary data points. The corresponding dendrograms obtained using (b) single link and (c)
complete link hierarchical clustering methods.

dmin((3,4),1) = min(d(3,1),d(4,1)) = 0.15 (4.27)
dmin((3,4,1),2) = min(d(3,2),d(4,2),d(1,2)) = 0.20

dmax((3,4),1) = max(d(3,1),d(4,1)) = 0.30
dmax((3,4),2) = max(d(3,2),d(4,2)) = 0.50

dmax((3,4),(1,2)) = max(d(3,1),d(3,2),d(4,1),d(4,2)) = 0.50

Figure 4.2 shows the dissimilarity matrix and the corresponding two dendrograms obtained
using single link and complete link algorithms on a toy dataset. In the dendrograms, the X-axis
indicates the data objects and the Y-axis indicates the dissimilarity (distance) at which the points
were merged. The difference in merges between both the dendrograms occurs due to the different

A Survey of Partitional and Hierarchical Clustering Algorithms 103

criteria used by single and complete link algorithms. In single link, firstly data points 3 and 4 are
merged at 0.1 as shown in (b). Then, based on the computations shown in Equation (4.27), cluster
(3,4) is merged with data point 1 at the next level; at the final level cluster (3,4,1) is merged with 2.
In complete link, merges for cluster (3,4) are checked with points 1 and 2 and as d(1,2)=0.20, points
1 and 2 are merged at the next level. Finally, clusters (3,4) and (1,2) are merged at the final level.
This explains the difference in the clustering in both the cases.

4.3.1.2 Group Averaged and Centroid Agglomerative Clustering

Group Averaged Agglomerative Clustering (GAAC) considers the similarity between all pairs of
points present in both the clusters and diminishes the drawbacks associated with single and complete
link methods. Before we look at the formula let us introduce some terminology. Let two clusters Ca
and Cb be merged so that the resulting cluster is Ca∪b= Ca ∪Cb. The new centroid for this cluster is
ca∪b =

Naca+Nbcb
Na+Nb

, where Na and Nb are the cardinalities of the clusters Ca and Cb respectively. The
similarity measure for GAAC is calculated as follows:

SGAAC(Ca,Cb) =
1

(Na +Nb)(Na +Nb−1) ∑
i∈Ca∪Cb

∑
j∈Ca∪Cb,i ̸= j

d(i, j) (4.28)

We can see that the distance between two clusters is the average of all the pair-wise distances be-
tween the data points in these two clusters. Hence, this measure is expensive to compute especially
when the number of data objects becomes large. Centroid based agglomerative clustering, on the
other hand, calculates the similarity between two clusters by measuring the similarity between their
centroids. The primary difference between GAAC and Centroid agglomerative clustering is that,
GAAC considers all pairs of data objects for computing the average pair-wise similarity, whereas
centroid based agglomerative clustering uses only the centroid of the cluster to compute the simi-
larity between two different clusters.

4.3.1.3 Ward’s Criterion

Ward’s criterion [49, 50] was proposed to compute the distance between two clusters during
agglomerative clustering. This process of using Ward’s criterion for cluster merging in agglomera-
tive clustering is also called as Ward’s agglomeration. It uses the K-means squared error criterion
to determine the distance. For any two clusters, Ca and Cb, the Ward’s criterion is calculated by
measuring the increase in the value of the sum of squared error criterion (SSE) for the clustering
obtained by merging them into Ca ∪Cb. The Ward’s criterion is defined as follows:

W (Ca∪b,ca∪b)−W (C,c) =
NaNb

Na +Nb

M

∑
v=1

(cav− cbv)
2 (4.29)

=
NaNb

Na +Nb
d(ca,cb)

So the Ward’s criterion can be interpreted as the squared Euclidean distance between the cen-
troids of the merged clusters Ca and Cb weighted by a factor that is proportional to the product of
cardinalities of the merged clusters.

4.3.1.4 Agglomerative Hierarchical Clustering Algorithm

In Algorithm 20, we provide a basic outline of an agglomerative hierarchical clustering algo-
rithm. In line 1, the dissimilarity matrix is computed for all the points in the dataset. In lines 3-4, the
closest pair of clusters are repeatedly merged in a bottom-up fashion and the dissimilarity matrix is
updated. The rows and columns pertaining to the older clusters are removed from the dissimilarity
matrix and are added for the new cluster. Subsequently, merging operations are carried out with this
updated dissimilarity matrix. Line 5 indicates the termination condition for the algorithm.

104 Data Clustering: Algorithms and Applications

Algorithm 20 Agglomerative Hierarchical Clustering
1: Compute the dissimilarity matrix between all the data points.
2: repeat
3: Merge clusters as Ca∪b=Ca ∪Cb. Set new cluster’s cardinality as Na∪b=Na + Nb.
4: Insert a new row and column containing the distances between the new cluster Ca∪b and the

remaining clusters.
5: until Only one maximal cluster remains

4.3.1.5 Lance-Williams Dissimilarity Update Formula

We discussed many different proximity measures that are used in agglomerative hierarchical
clustering. A convenient formulation in terms of dissimilarity which embraces all the hierarchical
methods mentioned so far is the Lance-Williams dissimilarity update formula [31]. If points i and j
are agglomerated into cluster i∪ j, then we will have to just specify the new dissimilarity between
the cluster and all other points. The formula is given as follows:

d(i∪ j,k) = αid(i,k)+α jd(j,k)+βd(i, j)+ γ|d(i,k)−d(j,k)| (4.30)

Here, αi, α j, β, and γ define the agglomerative criterion. These coefficient values for the different
kinds of methods we have studied so far are provided in Table 4.1.

TABLE 4.1: Values of the coefficients for the Lance-Williams dissimilarity update formula for
different hierarchical clustering algorithms.

Name of the method Lance Williams Dissimilarity Update formula
Single Link αi=0.5; β=0; and γ=-0.5
Complete Link αi=0.5; β=0; and γ=0.5
GAAC αi =

|i|
|i|+| j| ; β=0; and γ=0

Centroid αi =
|i|
|i|+| j| ; β =− |i|| j|

(|i|+| j|)2 ; and γ=0

Ward’s αi =
|i|+|k|
|i|+| j|+|k| ; β =− |k|

|i|+| j|+|k| ; and γ=0

4.3.2 Divisive Clustering

Divisive hierarchical clustering is a top-down approach where the procedure starts at the root
with all the data points and recursively splits it to build the dendrogram. This method has the advan-
tage of being more efficient compared to agglomerative clustering especially when there is no need
to generate a complete hierarchy all the way down to the individual leaves. It can be considered as
a global approach since it contains the complete information before splitting the data.

4.3.2.1 Issues in Divisive Clustering

We will now discuss the factors that affect the performance of divisive hierarchical clustering.

1. Splitting criterion: The Ward’s K-means square error criterion is used here. The greater re-
duction obtained in the difference in the SSE criterion should reflect the goodness of the split.
Since the SSE criterion can be applied to numerical data only, Gini index (which is widely
used in decision tree construction in classification) can be used for handling the nominal data.

A Survey of Partitional and Hierarchical Clustering Algorithms 105

2. Splitting method: The splitting method used to obtain the binary split of the parent node is also
critical since it can reduce the time taken for evaluating the Ward’s criterion. The Bisecting
K-means approach can be used here (with K=2) to obtain good splits since it is based on the
same criterion of maximizing the Ward’s distance between the splits.

3. Choosing the cluster to split: The choice of cluster chosen to split may not be as important as
the first two factors, but it can still be useful to choose the most appropriate cluster to further
split when the goal is to build a compact dendrogram. A simple method of choosing the
cluster to be split further could be done by merely checking the square errors of the clusters
and splitting the one with the largest value.

4. Handling noise: Since the noise points present in the dataset might result in aberrant clusters, a
threshold can be used to determine the termination criteria rather splitting the clusters further.

4.3.2.2 Divisive Hierarchical Clustering Algorithm

In Algorithm 21, we provide the steps involved in divisive hierarchical clustering. In line 1, we
start with all the points contained in the maximal cluster. In line 3, the Bisecting K-means approach
is used to determine the uniform splitting mechanism to obtain C1 and C2. In line 4, we use the
heuristic mentioned above and choose the cluster with higher squared error for splitting as the next
parent. These steps (lines 3-4) are run repeatedly until the complete dendrogram (up to the individual
leaves) has been constructed. As mentioned above, we can use the threshold to handle noise during
the construction of the dendrogram.

Algorithm 21 Basic Divisive Hierarchical Clustering
1: Start with the root node consisting all the data points
2: repeat
3: Split parent node into two parts C1 and C2 using Bisecting K-means to maximize Ward’s

distance W(C1,C2).
4: Construct the dendrogram. Among the current leaves, choose the cluster with the highest

squared error.
5: until Singleton leaves are obtained.

4.3.2.3 Minimum Spanning Tree based Clustering

In a weighted graph, a minimum spanning tree is an acyclic subgraph that covers all the vertices
with the minimum edge weights. Prim’s and Kruskal’s algorithms [9] are used for finding the mini-
mum spanning tree (MST) in a weighted graph. In a Euclidean minimum spanning tree (EMST), the
data points represent the vertices and the edge weights are computed using the Euclidean distance
between two data points. Each edge in an EMST represents the shortest distance between those two
points. Using this EMST a divisive clustering method can be developed which removes the largest
weighted edge to get two clusterings and subsequently removes the next largest edge to get three
clusterings and so on. This process of removing edges from an EMST gives rise to an effective
divisive clustering method. The major advantage of this method is that it is able to detect clusters
with non-spherical shapes effectively.

A basic EMST clustering algorithm proceeds by taking a user supplied parameter K where
the edges present in the graph are sorted in a descending order. This is followed by removing the
edges with the top (K-1) weights one by one to get the K connected components. This is similar
to the process of divisive clustering where finer clustering partitions are obtained after each split.
Subsequently, we can also use the EMST to build a clustering algorithm which continuously prunes

106 Data Clustering: Algorithms and Applications

the inconsistent edges present in the graph. An inconsistent edge is the one whose edge weight is
much higher than the average weight of the edges in the neighbourhood of that edge. Algorithm 22
describes the minimum spanning tree based clustering algorithm that was originally proposed by
Zahn [53].

Algorithm 22 Zahn Minimum Spanning Tree Based Divisive Clustering
1: Create the EMST using Prim’s/Kruskal’s algorithm on all the data points.
2: repeat
3: Remove edge with highest inconsistency measure.
4: until No more inconsistent edges can be removed.

4.3.3 Other Hierarchical Clustering Algorithms

The agglomerative and divisive hierarchical clustering methods are successful in capturing con-
vex shaped clusters effectively. As mentioned above, agglomerative methods, especially single link
and complete link, suffer from the “chaining problem" and are ineffective at capturing arbitrarily-
shaped clusters. Hence, to capture arbitrary shaped clusters, algorithms such as CURE [17] and
CHAMELEON [25] have been proposed in the literature. Some of the popular extensions of hierar-
chical algorithms are discussed below.

1. CURE (Clustering Using REpresentatives) [17] is an algorithm which incorporates a novel
feature of representing a cluster using a set of well scattered representative points. The dis-
tance between two clusters is calculated by looking at the minimum distance between the
representative points chosen. In this manner, CURE incorporates features of both the Single
link and GAAC hierarchical clustering methods. Choosing scattered points helps CURE cap-
ture clusters of arbitrary shapes also. In addition, CURE employs a shrinking factor α in the
algorithm, where the points are shrunk towards the centroid by a factor α. α shrinking has
a greater effect in the case of outliers compared to normal points. This makes CURE more
robust to outliers. Similar to this approach, an algorithm called ROCK [18] was also proposed
to handle categorical data. This algorithm uses the concept of common links and determines
the Jaccard coefficient between candidate clusters for hierarchical clustering.

2. CHAMELEON [25] is a clustering algorithm which uses graph partitioning methods on
the K-nearest neighbour graph of the data. These initial partitions are then used as the seed
clusters for the agglomerative hierarchical clustering process. The algorithm uses two metrics
based on the relative inter-connectivity and relative closeness of clusters to merge the clusters.
These metrics capture the local information of the clusters during the clustering process thus
enabling this algorithm to behave like a dynamic framework. CHAMELEON is one of the
best hierarchical clustering algorithms and is extremely effective in capturing arbitrary shaped
clusters which is primarily due to the dynamic behaviour. A detailed comparison between the
clustering results of CURE and CHAMELEON for synthetic datasets with clusters of varying
shapes can also be found in [25].

3. COBWEB [15]: This is a conceptual clustering algorithm that works incrementally by up-
dating the clusters object by object. Probabilistically described clusters arranged as a tree to
form a hierarchical clustering known as probabilistic categorization tree. It handles uncer-
tainty associated with categorical attributes in clustering through a probabilistic framework
that is similar to Naive Bayes. The dendrogram in this algorithm is also called a classification
tree and the nodes are referred to as concepts.

4. Self-Organizing Maps (SOM) [28] were developed on the same lines of Artificial Neural

A Survey of Partitional and Hierarchical Clustering Algorithms 107

Networks and are useful for hierarchical representation. It is an efficient data visualization
technique. Similar to K-means, data points are assigned to their closest centroids. The dif-
ference arises in the centroid update step where when a centroid is updated then those in its
neighbourhood which are close to this centroid are also updated. The final output is a SOM
neural network which can be explored to understand the relationships between different ob-
jects involved in the clustering.

4.4 Discussion and Summary
A major advantage of partitional clustering algorithms is that they can gradually improve the

clustering quality through iterative optimization process [3]. This cannot be done in standard hierar-
chical clustering since the dendrogram cannot revisit the merges (or splits) that were already done.
Partitional algorithms are also effective in detecting compact spherical shaped clusters and are easy
to implement and use in practice [22]. K-means is also a computationally efficient algorithm com-
pared to hierarchical clustering. Although there is no consensus, it is believed that K-means is better
than hierarchical clustering algorithms [35] in terms of the quality of the final clustering solution.

Hierarchical clustering methods can potentially overcome some of the critical problems asso-
ciated with flat (partitional) clustering methods. One of the major advantages of hierarchical algo-
rithms is the generation of the visual dendrograms which can assist the end-users during the cluster-
ing process. In such applications, generally a user will label the clusters to understand more about
them. This is also called as cluster labelling. Hierarchical methods are also deterministic compared
to the non-deterministic behaviour experienced with the basic K-means algorithm.

Despite these advantages, it is observed that in hierarchical clustering methods the merge or split
decisions once made at any given level in the hierarchy cannot be undone [3]. This is considered to
be a weakness for such hierarchical algorithms since it reduces the flexibility. To overcome this prob-
lem, [14] proposes an iterative optimization strategy that keeps modifying the created dendrogram
until the optimal solution is obtained. The run-time complexity of these hierarchical algorithms is
quadratic which is not desirable especially for large-scale problems. Parallel hierarchical clustering
methods [41] have also been proposed to reduce the complexity to linear time.

In spite of the numerous advances made in the field of data clustering in the past two decades,
both partitional and hierarchical clustering algorithms form a solid foundation for data clustering.
Many of the newly proposed data clustering algorithms (to be discussed in the next few chapters)
typically compare their performance to these fundamental clustering algorithms. In addition, due
to their simplicity and ease of usage, these algorithms are heavily used in several other application
domains such as bioinformatics, information retrieval, text mining, imaging, climate science, and
astronomy. The development of new variants of both partitional and hierarchical clustering algo-
rithms is still an active area of research.

Bibliography
[1] D. Arthur and S. Vassilvitskii. K-means++: The advantages of careful seeding. In Proceedings

of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 1027–1035.
Society for Industrial and Applied Mathematics, 2007.

108 Data Clustering: Algorithms and Applications

[2] G. H. Ball and D. J. Hall. Isodata, a novel method of data analysis and pattern classification.
Technical report, DTIC Document, 1965.

[3] P. Berkhin. A survey of clustering data mining techniques. Grouping multidimensional data,
pages 25–71, 2006.

[4] J. C. Bezdek. Pattern recognition with fuzzy objective function algorithms. Kluwer Academic
Publishers, 1981.

[5] P. S. Bradley and U. M. Fayyad. Refining initial points for k-means clustering. In Proceedings
of the Fifteenth International Conference on Machine Learning, volume 66. San Francisco,
CA, USA, 1998.

[6] T. Caliński and J. Harabasz. A dendrite method for cluster analysis. Communications in
Statistics-Theory and Methods, 3(1):1–27, 1974.

[7] Y. Cheng. Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 17(8):790–799, 1995.

[8] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–619, 2002.

[9] T. H. Cormen. Introduction to algorithms. The MIT press, 2001.

[10] I. S. Dhillon, Y. Guan, and B. Kulis. Kernel k-means: spectral clustering and normalized cuts.
In Proceedings of the tenth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pages 551–556. ACM, 2004.

[11] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification (2nd Edition). Wiley-
Interscience, 2000.

[12] J. C. Dunn. A fuzzy relative of the ISODATA process and its use in detecting compact well-
separated clusters. Journal of Cybernetics, 3(3):32–57, 1973.

[13] C. Elkan. Using the triangle inequality to accelerate k-Means. In the Proceedings of Interna-
tional Conference on Machine Learning (ICML), pages 147–153, 2003.

[14] D. Fisher. Optimization and simplification of hierarchical clusterings. In Proceedings of the 1st
International Conference on Knowledge Discovery and Data Mining (KDD), pages 118–123,
1995.

[15] D. H. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine Learn-
ing, 2(2):139–172, 1987.

[16] J. C. Gower and G. J. S. Ross. Minimum spanning trees and single linkage cluster analysis.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 18(1):54–64, 1969.

[17] S. Guha, R. Rastogi, and K. Shim. Cure: an efficient clustering algorithm for large databases.
In ACM SIGMOD Record, volume 27, pages 73–84. ACM, 1998.

[18] S. Guha, R. Rastogi, and K. Shim. Rock: A robust clustering algorithm for categorical at-
tributes. In Proceedings of the 15th International Conference on Data Engineering, pages
512–521. IEEE, 1999.

[19] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering algorithm. Journal
of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108, 1979.

A Survey of Partitional and Hierarchical Clustering Algorithms 109

[20] J. Z. Huang, M. K. Ng, H. Rong, and Z. Li. Automated variable weighting in k-means type
clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5):657–668,
2005.

[21] Z. Huang. Extensions to the k-means algorithm for clustering large data sets with categorical
values. Data Mining and Knowledge Discovery, 2(3):283–304, 1998.

[22] A. K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31(8):651–
666, 2010.

[23] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM computing surveys
(CSUR), 31(3):264–323, 1999.

[24] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu. An
efficient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 24(7):881–892, 2002.

[25] G. Karypis, E. H. Han, and V. Kumar. CHAMELEON: Hierarchical clustering using dynamic
modeling. Computer, 32(8):68–75, 1999.

[26] L. Kaufman, P.J. Rousseeuw, et al. Finding groups in data: an introduction to cluster analysis,
volume 39. Wiley Online Library, 1990.

[27] B. King. Step-wise clustering procedures. Journal of the American Statistical Association,
62(317):86–101, 1967.

[28] T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480, 1990.

[29] K. Krishna and M. N. Murty. Genetic k-means algorithm. IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, 29(3):433–439, 1999.

[30] R. Krishnapuram and J. M. Keller. The possibilistic C-means algorithm: insights and recom-
mendations. IEEE Transactions on Fuzzy Systems, 4(3):385–393, 1996.

[31] G. N. Lance and W. T. Williams. A general theory of classificatory sorting strategies ii. clus-
tering systems. The computer journal, 10(3):271–277, 1967.

[32] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory,
28(2):129–137, 1982.

[33] J. MacQueen. Some methods for classification and analysis of multivariate observations. In
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, vol-
ume 1, pages 281–297, California, USA, 1967.

[34] P. Maji and S. K. Pal. Rough set based generalized fuzzy c-means algorithm and quantitative
indices. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 37(6):1529–1540,
2007.

[35] C. D. Manning, P. Raghavan, and H. Schutze. Introduction to information retrieval, volume 1.
Cambridge University Press Cambridge, 2008.

[36] L. L. McQuitty. Elementary linkage analysis for isolating orthogonal and oblique types and ty-
pal relevancies. Educational and Psychological Measurement; Educational and Psychological
Measurement, 1957.

[37] G. W. Milligan. A monte carlo study of thirty internal criterion measures for cluster analysis.
Psychometrika, 46(2):187–199, 1981.

110 Data Clustering: Algorithms and Applications

[38] B. G. Mirkin. Clustering for data mining: a data recovery approach, volume 3. CRC Press,
2005.

[39] R. Mojena. Hierarchical grouping methods and stopping rules: an evaluation. The Computer
Journal, 20(4):359–363, 1977.

[40] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks.
Physical Review E, 69(2):026113+, 2003.

[41] C. F. Olson. Parallel algorithms for hierarchical clustering. Parallel computing, 21(8):1313–
1325, 1995.

[42] D. Pelleg and A. Moore. X-means: Extending k-means with efficient estimation of the number
of clusters. In Proceedings of the Seventeenth International Conference on Machine Learning,
pages 727–734, San Francisco, 2000.

[43] G. Rudolph. Convergence analysis of canonical genetic algorithms. IEEE Transactions on
Neural Networks, 5(1):96–101, 1994.

[44] B. Schölkopf, A. Smola, and K. R. Müller. Nonlinear component analysis as a kernel eigen-
value problem. Neural computation, 10(5):1299–1319, 1998.

[45] S. Z. Selim and M. A. Ismail. K-means-type algorithms: a generalized convergence theorem
and characterization of local optimality. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6(1):81–87, 1984.

[46] P. H. A. Sneath and R. R. Sokal. Numerical taxonomy. Nature, 193:855–860, 1962.

[47] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering techniques.
In KDD workshop on text mining, volume 400, pages 525–526. Boston, 2000.

[48] R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a data set via
the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
63(2):411–423, 2001.

[49] J. Ward. Hierarchical Grouping to Optimize an Objective Function. Journal of the American
Statistical Association, 58(301):236–244, 1963.

[50] D. Wishart. 256. note: An algorithm for hierarchical classifications. Biometrics, 25(1):165–
170, 1969.

[51] R. Xu and D. Wunsch. Survey of clustering algorithms. IEEE transactions on neural networks,
16(3):645–678, 2005.

[52] K.Y. Yeung, C. Fraley, A. Murua, A.E. Raftery, and W.L. Ruzzo. Model-based clustering and
data transformations for gene expression data. Bioinformatics, 17(10):977–987, 2001.

[53] C.T. Zahn. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE
Transactions on Computers, 100(1):68–86, 1971.

