
Survey of Petri nets Slicing

Yasir Imtiaz Khan and Nicolas Guelfi

University of Luxembourg, Laboratory of Advanced Software Systems
6, rue R. Coudenhove-Kalergi, Luxembourg
{yasir.khan,nicolas.guelfi}@uni.lu

Abstract. Petri nets slicing is a technique that aims to improve the
verification of systems modeled in Petri nets. Different Petri nets slicing
constructions are studied along with the algorithms to compute them.
Petri nets slicing was first developed to facilitate debugging but then
developed for alleviating the state space explosion problem for model
checking Petri nets. This article has twofold objectives, the first is to
unify all the existing slicing algorithms syntactically by the definition of a
standard abstract syntax and rewriting of the studied slicing algorithms.
The second is to discuss the contribution of each slicing construction and
to compare the major differences between them. One of the interesting
exploitation of the survey is for the selection and improvement of slicing
techniques for approaches concerned by optimizing verification of state
event models.

Key words: Petri nets, Slicing, Model checking, Testing

1 Introduction

Petri nets have been extensively used to model and analyze concurrent and dis-
tributed system since their birth. Among several dedicated analysis techniques
for Petri nets, model checking and testing are used more commonly. A typical
drawback of model checking is its limits with respect to the state space explo-
sion problem: as systems get moderately complex, completely enumerating their
states demands a growing amount of resources, which in some cases makes model
checking impractical in terms of time and memory consumption. Similarly test-
ing suffers with the problems such as large input amount of test data, test case
selection etc. As a result an intense field of research is targeting to optimize these
verification techniques, either by reducing the state space or by improving the
test input data. A technique called Petri net slicing falls into the first category.
However, Petri net slicing (PN slicing) is a syntactic technique used to reduce
a Petri net model (PN model) based on the given criterion. The given criterion
refers to the point of interest for which PN model is analyzed. The sliced part
constitutes only that part of a PN model that may affect the given criterion.

In this article, we review existing PN slicing techniques that can be found
in the present iterature [2–9, 12]. We have two objectives, the first is to unify
all the existing slicing algorithms syntactically and the second is to discuss the
contribution of each work and compare major semantic differences between them.

The remaining part of the paper is structured as follows: in the section 2
, we give an overview and background of slicing together with their specific
types. Section 3 consists of formal definitions necessary for the understanding
of proposed slicing constructions. In the section 4 and 5, reviewed existing
PN slicing techniques that can be found in the present iterature. Details about
the underlying theory and techniques for each slicing construction are given. In
tthe section 6, a comparative analysis is given for all the existing PN slicing
algorithms. In the section 7, we draw the conclusion and discuss the future work
regarding the PN slicing.

2 Overview and Background

The term slicing was coined by M.Weiser for the first time in the context of
program debugging [13]. According to Wieser proposal a program slice PS is a
reduced, executable program that can be obtained from a program P based on
the variables of interest and line number by removing statements such that PS
replicates part of the behavior of program.

To explain the basic idea of program slicing according to Wieser [13], let us
consider an example program shown in Fig.1,. Fig.1(a) shows a program which
requests a positive integer number n and computes the sum and the product of
the first n positive integer numbers. We take as slicing criterion a line number
and a set of variables, C = (line10, {product}).

Fig.1(b) shows sliced program that is obtained by tracing backwards possible
influences on the variables: In line 7, product is multiplied by i, and in line 8, i
is incremented too, so we need to keep all the instructions that impact the value
of i. As a result all the computations that do not contribute to the final value
of product have been sliced away (interested reader can find more details about
program slicing from [11,14]).

Fig. 1. An example program and sliced program w.r.t. given criterion

PN slicing is a technique used to syntactically reduce a PN model in such
a way that at best the reduced PN model contains only those parts that may
influence the property the PN model is analyzed for. Let us take a simple ex-
ample of Petri net model to explain the basic idea of PN slicing. In general, it
starts by identifying which places or transitions in the PN model are directly
concerned by a property. These places constitute the slicing criterion. The slic-
ing construction takes all the transitions that create or consume tokens from the
criterion places, plus all the places that are pre-condition for those transitions.
This step is repeated for later places, until reaching a fix point (see Alg.7). As
shown in the Fig.2, a Petri net model is sliced with respect to the place B (a
given slicing criterion). The sliced part only constitutes the part of the model
that is required to analyze the properties concerning to the given place B. The
rest of the places and transitions are discarded.

A

B

C

D

E

K

t1

t2

t3 t4

A

B

D

t1

t2

t3

PN Model Sliced PN Model

Fig. 2. An example Petri net model and sliced Petri net model w.r.t. given criterion

2.1 Types of Slicing

Roughly, we can divide PN slicing in to two major classes (as shown in Fig.4),
which are:

– Static Slicing

– Dynamic Slicing

Static Slicing: A slice is said to be static if the initial markings of places are
not considered for generating the slice. Only the set of places are considered as
a slicing criterion. The static slicing starts from the given criterion place and
includes all the pre and post set of transitions together with their incoming
places. There may exist a sequence of transitions in the resultant slice that is
not fireable because some of the pre places of transitions are not initially marked
and do not get markings from any other way. Fig.2 is an example of static slice,
the slice is generated by considering the criterion place B whereas the initial
markings are not used to generate the slice.

An extension to the static slicing can also be used to reduce the slice size.
The extension is called condition slicing and the idea is to include a subset
of behaviors in the sliced PN model instead of all the behaviors. In addition
to the set of places, Slicing criterion consists of a sequence of the transitions.
The resultant slice obtained by the condition slicing is smaller as compared to
the static slicing. The reason for a smaller slice is the inclusion of a particular
sequence of transitions around the criterion places. The condition slicing is very
useful when analyzing a particular behavior, but limits the scope of verification
due to the exclusion of some sequences of transitions.

Static Slicing Dynamic Slicing

Forward Slicing Backward Slicing

Fig. 3. Different types of PN slicing

Dynamic Slicing: A slice is said to be dynamic if the initial markings of
places are considered for generating the slice. The slicing criterion will utilize
the available information of initial markings and a more smaller slice can be
generated. For a given slicing criterion, that consist of the initial markings and
a set of places for a PN model, we are interested to extract a subnet with those
places and transitions of PN model that can contribute to change the marking
of a criterion place in any execution starting from the initial marking.

Dynamic slicing can be useful, e.g., in debugging. Consider for instance that
the user is analyzing a particular trace for a marked PN model (using a simula-
tion tool) such that an erroneous state is reached. In this case, we are interested

in extracting a set of places and transitions (more formally, a subnet) that may
erroneously contribute tokens to the places of interest such that the user can
more easily locate the bug.

There are two ways to compute the static and dynamic slices that are for-
ward and backward slicing. A forward slicing starts from the initially marked
places and by forward traversal of a PN model untill the criterion places, a slice
is generated. Backward slicing starts from the criterion places and then by back-
ward traversal all the incoming transtions together with their input places, slice
is obtained.

3 Formal Definitions

In this section, we give the basic definitions needed for providing a unified formal
definition framework for the slicing alogorithms considered by our study. To the
best of our knowledge existing slicing algorithms are proposed for Petri nets or
Algebraic Petri nets. First of all, we shall informally describe Petri nets and
Algebraic Petri nets and then we shall give formal definitions of them.

A Petri net is a directed bipartite graph, whose two essential elements are
places and transitions. Informally, Petri nets places hold resources (also known
as tokens) and transitions are linked to places by input and output arcs, which
can be weighted. Usually, a Petri net has a graphical concrete syntax consisting
of circles for places, boxes for transitions and arrows to connect the two. The
semantics of a Petri net expresses the non-deterministic firing of transitions in
the net. Firing a transition means consuming tokens from the set of places linked
to the input arcs of the transition and producing tokens into the set of places
linked to the output arcs of the transition. Various evolutions of Petri nets have
been created, among others in Algebraic Petri nets the level of abstraction of
Petri nets is raised by using complex structured data [10]. Algebraic Petri Nets
has two aspects, the control aspect, which is handled by a Petri Net and the data
aspect, which is handled by one or many algebraic abstract data types (AADTs).
(Note: we refer the interested reader to Appendix for the details on algebraic
specifications used in the formal definition of APNs for our work.)

Definition 1. (Petri net)
A Petri Net PN =< P, T, f, λ,m0 > consist of:
◦ P and T as finite and disjoint sets, called places and transitions, resp.,
◦ f ⊆ ((P × T) ∪ (T × P)), the elements of which are called arcs.
◦ λ : f → (Terms → N), where Terms → {1}. A total function assigning

weights to arcs.
◦ a marking function m0 : P → N.

Definition 2. (Pre(resp.Post) set places(resp.transitions) of PN)
Let PN =< P, T, f, λ > be a Petri net, p ∈ P a place then preset and postset

of p, noted •p and p•, are defined as follows:
•p = {t ∈ T |λ(t, p) > 0}.
p• = {t ∈ T |λ(p, t) > 0}.

Analogously •t and t• are defined. We also note •P and P• representing
pre(resp.post) set of transtions of all the places in set P. Analogously, •T and
T • are noted.

Definition 3. (Enabled transitions of PN)
Let m and m′ two markings of PN and t a transition in T then < m, t,m′ >

is a valid firing triplet (represented by m[t〉m′) iff
1) ∀p ∈ •t|m(p) ≥ λ(p, t) (i.e., t is enabled by m).
2) ∀p ∈ P,m′(p) = m(p)− λ(p, t) + λ(t, p).

Definition 4. (Reading(resp.Non-reading) transitions of PN)
Let t ∈ T be a transition in PN. We call t a reading-transition iff its firing does

not change the marking of any place p ∈ (•t∪t•) , i.e., iff ∀p ∈ (•t∪t•), λ(p, t) =
λ(t, p). Conversely, we call t a non-reading transition iff λ(p, t) 6= λ(t, p).

Definition 5. (Algebraic Petri net)
A marked Algebraic Petri Net APN =< SPEC,P, T, f, λ, asg,

cond,m0 > consist of
◦ an algebraic specification SPEC = (Σ,E),
◦ P and T are finite and disjoint sets, called places and transitions, resp.,
◦ f ⊆ (P × T) ∪ (T × P), the elements of which are called arcs,
◦ an arc inscription function λ : f → (Terms → N), where Terms →

{TOP,asg(p)},
◦ a sort assignment asg : P → S,
◦ a function, cond : T → Pfin(Σ − equation), assigning to each transition a

finite set of equational conditions.
◦ an initial marking m0 assigning a finite multiset over TOP,asg(p) to every

place p.

Definition 6. (Enabled transitions of APN)
Let m and m′ two markings of APN and t a transition in T then < m, t,m′ >

is a valid firing triplet (represented by m[t〉m′) iff
1) ∀p ∈• t|m(p) ≥ λ(p, t) (i.e., t is enabled by m).
2)∀p ∈ P,m′(p) = m(p)− λ(p, t) + λ(t, p).

Definition 7. (Reading(resp.Non-reading) transitions of APN)
Let t ∈ T be a transition in an unfolded APN. We call t a reading-transition

iff its firing does not change the marking of any place p ∈ (•t ∪ t•) , i.e., iff
∀p ∈ (•t ∪ t•), λ(p, t) = λ(t, p). Conversely, we call t a non-reading transition iff
λ(p, t) 6= λ(t, p).

4 Static Slicing Algorithms

In this section, we will study basic algorithms for static PN slicing [2–5, 7–9].
The objective of every algorithm is to improve the verification process either by
reducing a PN model or by partitioning a PN model.

4.1 Chang et al Slicing

Chang et al presented an algorithm for the first time for slicing Petri nets in the
context of testing [2]. The presented algorithm slices out all the concurrency set
of a Petri net model. The concurrency set is defined as a set of paths in different
processes that should be executed concurrently. Based on the information about
which parts of the system would be executed, test input data can be generated.

Algorithm 1: Chang Slicing

Input: ProcessPN [1], ..., P rocessPN [N].
CS = {t|t ∈ T, t is a communication transition}.
Output: S[1], S[2], . . . , S[I] //A set of concurrency sets.
Variables: Mar = {t|t ∈ T, t has a mark},
TM = {t|t ∈ T, t has a temporary mark},
WS = {t|t ∈ CS, t is in current process being scanned}.
Algorithm_Slicing(ProcessPN [1], . . . , P rocessPN [N], CS :
in;S[1], S[2], . . . , S[I] : out)
forj ← 1 to N do if there exist more than one path in ProcessPN [j]
then changable[j]← true,
else changable[j]← false;
I ← 0; terminate← false;
while CS 6= ∅ and terminate = false do
I < −I + 1;S[I]← ∅;
Mar← ∅;TM ← ∅;
WS ← ∅;WS ← WS ∪ {t}; /* pick up a t from CS which covers all
communication transitions in WS. /*
Procedure_findpath(ProcessPN [1],WS : in;PA : out); /* input process
ProcessPN [1],WS, to find a path PA in ProcessPN [1] which covers all
communication transitions in WS. If there is no such path, = PA = ∅ /*
S[I]← S[1] ∪ PA;
M ←M ∪ {t|t ∈ ProcessPN [x], x = 1 and t has relation with PA};
ProcedureScanning(ProcessPN [1], . . . , P rocessPN [N] :
in;CS,Mar, TM, S[I] : in & out);
/* scanning all processes according to the base path to find a concurrency
set */
CS ← CS − CS ∩ S[I]
end while
endslicing

The algorithm first finds a base path that covers at least one communication
transition (represented as CS) and adds it into the concurrency set (represented
as S[I]). To select a path which covers all the marked transitions each is process
is scanned.

The path may generate new communication transitions that have relations
with the previous process (i.e., been scanned) or the succeeding process that
has not been scanned yet. If this path does not involve any new communication
transitions CS having relations with the previous processes or these transitions

are already in the concurrency set, then this path is added into the concurrency
set and mark those transitions having relations with the succeeding processes.
Otherwise, if this path involves new communication transitions having relations
with a previous process, say x, to find a new path to cover both marked and
temporarily marked transitions. If there is such a path, then replace with the one
already in the concurrency set by this new path and mark again the transitions
in other process. Otherwise, erase temporary marks and try to find a new path
other than the old one that was already in the concurrency set. Afterwards,
restart the scanning process from x till all the processes have been scanned
and a concurrency set has been found. The procedure is repeated until all the
communication transitions are included in the certain concurrency set.

The procedure named ProcedureScanning(ProcessPN [1], . . . , P rocessPN [
N] : in;CS,Mar, TM, S[I] : in & out) is central to the slicing construction, by
executing this procedure once, a concurrency set can be obtained. We skip the
formal description of the procedure and refer the interested reader for the formal
description to [2]. Remark that the presented algorithm is a linear time complex
and always terminates. The time complexity of the algorithm is O((n/N))N .

4.2 Lee et al Slicing

Lee et al proposed an approach in which Petri nets slices are computed based on
the structural concurrency inherent in the Petri nets and compositional reacha-
bility graph analysis is performed [5]. The proposed approach may enable verifi-
cation of properties such as boundedness and liveness, which may fail on unsliced
Petri nets due to a state explosion problem.

Algorithm 2: Lee Slicing

SliceSet = ∅;
SetofInvariant = find_minimal_invariants(PN);
do{
small_invariant = find_smallest_invariant(SetofInvariant);
SliceSet = SliceSet∪ {small_invariant};
SetofInvariant = SetofInvariant− {small_invariant}
} untill (P (SetofInvariant) ⊆ P (SliceSet) OR P (PN) ==
P (SliceSet));
if (P (SliceSet) 6= P (PN)){
Uncovered_P_Set = P (PN)− P (SliceSet);
for ∀p ∈ Uncovered_P_Set do {
slice = find_minimally_connected(SliceSet, p);
slice = slice ∪ {p}; }
}

The basic idea of a slicing algorithm is to slice a Petri net model into a set
of Petri net slices using minimal invariants. The algorithm starts with an empty
slice set and minimal invariants are selected among Setofinvariants(by find_minim
al_invariants). In the minimal invariant set, the algorithm selects an invariant
that has the minimal number of elements (by find_smallest_invariant) and

adds it into the SliceSet until SliceSet covers all the places in PN, (P (PN) ==
Place(SliceSet)) or there exists no minimal invariant which includes a new place
(P (SetofInvariant)P (SliceSet)).

If the minimal invariant set becomes empty without covering all the places
in PN , for each uncovered place, it should be added into a slice to which it is
connected by a minimal number of transitions (byfind_minimally_connected).
Like this, the slicing algorithm ensures that every place in PN belongs to some
slices.

The proposed algorithm is a linear time complex. The time complexity is
O(N)3 and depends on three procedures that are find_minimal_invariant, find_smallest_invariant an
_connected. The proposed slicing approach has been applied to dining philoso-
pher and feature interaction problem case studies. By taking the case study of
dinning philosopher evaluation of proposed slicing approach is performed. The
evaluation criterion is to compare the number of states and transitions between
Petri net model, modular Petri nets and sliced Petri nets. The numbers of reach-
able states and state transitions grow exponentially in Petri nets, the numbers
in Modular Petri nets and Petri net slices grow slowly. Remark that there is
no huge difference in the growth of states and transitions between the Modular
Petri nets and sliced Petri nets.

4.3 Rakow Slicing

A.Rakow, presented two slicing algorithms, which are CTL*−X slicing and safety
slicing in [9]. The objective of slicing algorithms is to reduce the size of a net
in order to alleviate the state explosion problem for model checking Petri nets.
Both algorithms proposed are static and follow backward slicing approach. Be-
fore slicing Petri nets, temporal formulas are used to extract the slicing criterion.
The slicing criterion consists of concerned places extracted from the temporal
formula. A slice is generated by following dependencies backward from the cri-
terion places.

P
1

1

P
1

2

Reading Transition Non Reading Transition

Fig. 4. Reading and non-reading transitions of a PN

In CTL*−X algorithm, Rakow used the concept of reading and non-reading
transitions to generate smaller slice. Informally reading transitions are those
transitions that do not change the markings of a place while non-reading transi-
tions are transitions that change the markings of a place. Excluding the reading

transitions and including the non-reading transitions during the slicing can cer-
tainly reduce the size of a slice.

Algorithm 3: CTL*−X Slicing

GenerateSlice(〈P, T, f, λ,m0〉, Crit){
T ′, Pdone = ∅;
P ′ = Crit ;
While (∃p ∈ (P ′ \ Pdone))
{ While(∃t ∈ (•p ∪ p•) \ T ′) : λ(p, t) 6= λ(t, p)) {
P ′ = P ′ ∪ •t;
T ′ = T ′ ∪ {t};
}
Pdone = Pdone ∪ {p};
}
return 〈P ′, T ′, f|P ′,T ′ , λ|P ′,T ′ ,m0|P ′ ; }

The CTL*−X algorithm takes a Petri net (PN) and the criterion places
(Crit) as an input. The algorithm iteratively builds the sliced net by taking all
the incoming and outgoing transitions together with their input places. Remark
that only the non-reading transitions are included in the sliced net. The proposed
algorithm is a linear time complex.

Algorithm 4: Safety Slicing

GenerateSlice(〈P, T, f, λ,m0〉, Crit){
T ′ = {t ∈ T | ∃p ∈ Crit : λ(p, t) 6= λ(t, p)};
P ′ = •T ∪ Crit ;
Pdone = Crit;
While (∃p ∈ (P ′ \ Pdone))
{ While(∃t ∈ (•p \ T ′) : λ(p, t) < λ(t, p)) {
P ′ = P ′ ∪ •t;
T ′ = T ′ ∪ {t};
}
Pdone = Pdone ∪ {p};
}
return 〈P ′, T ′, f|P ′,T ′ , λ|P ′,T ′ ,m0|P ′ ; }

The safety slicing algorithm focuses on the preservation of stutter-invariant
linear time safety properties. In contrast to CTL*−X , safety slicing algorithm
iteratively take only the transitions that increase the token count on places in
the sliced net places and their input places. Remark that the safety slicing does
not preserve liveness properties. We took an extermely simple example PN and
showed different sliced PNs by applying different slicing algorithms with respect
to the criterion place P3 (see Fig.5).

4.4 Khan et al Slicing

Khan et al presented a slicing algorithm for the first time in the context of
algebraic Petri nets (a variant of high-level net) [4]. They argued that the existing

P1
1 1

Petri Net

1 1

P2
1 2 P3

P4
1

11

P1
1 1

1 1

P2
1 2 P3

1

P1
1 1

P2
1 2 P3

1

P1
1 1

P2
1 2 P3

1

After applying Basic Slicing

After applying CTL-X Slicing After applying Safety Slicing

1 1

1

Fig. 5. A PN and sliced PNs by applying different slicing algorithms

slicing constructions are limited to low-level Petri nets and cannot be applied as
it is to the high-level Petri nets. In order to be applied to high-level Petri nets
they need to be adapted to take into an account the data types.

Algorithm 5: APN Slicing

APNSlicing(〈SPEC,P, T, f, asg, cond, λ,m0〉, Q){
T ′ = {t ∈ T | ∃p ∈ Q : t ∈ (•p ∪ p•) : λ(p, t) 6= λ(t, p)};
P ′ = Q ∪ {•T ′} ;
Pdone = ∅ ;
while ((∃p ∈ (P ′ \ Pdone)) do

while (∃t ∈ (•p ∪ p•) \ T ′) : λ(p, t) 6= λ(t, p)) do

P ′ = P ′ ∪ •t;
T ′ = T ′ ∪ {t};

end

Pdone = Pdone ∪ {p};

end

return 〈SPEC,P ′, T ′, f|P ′,T ′ , asg|P ′ , cond|T ′ , λ|P ′,T ′ ,m0|
P ′
〉;

}

In algebraic Petri nets (APNs), the terms may contain variables over the arcs
from places to the transitions (resp, transitions to the places) or guard conditions.
Authors proposed to unfold the APN to know the ground substitutions of the
variables. They used a particular unfolding approach developed by SMV group
i.e., a partial unfolding [1]. Perhaps, the proposed approach is independent of any

unfolding approach. The algorithm proposed for slicing APNs starts by taking
an unfolded APN and a set of the criterion places.

In APN slicing algorithm, initially T ′ (representing transitions set of the
slice) contains the set of all pre and post transitions of the given criterion place.
Only the non-reading transitions are added to T ′ set. And P′(representing the
places set of the slice) contains all the preset places of transitions in T ′. The
algorithm then iteratively adds other preset transitions together with their pre-
set places in T ′ and P ′. The proposed algorithm is somewhat similar to the
Rakow’s algorithm and uses the concept of reading and non-reading transitions.
By construction it is guaranteed that the algorithm will terminate. We took an
extermely simple example APN and showed the unfolding and its sliced APN by
applying APNslicing algorithm with respect to the criterion place B(see Fig.6).

To avoid the repeated model checking, a slicing based solution is proposed to
reason about the previously satisfied properties [3]. At first, after the evolution
of an APN model, slices are built for the evolved and non-evolved APN models
with respect to the property by the APNSlicingEvo algorithm. The algorithm is
somewhat similar to the APNSlicing algorithm given above. The main difference
is that it takes an APN model as an input instead of the unfolded APN (reducing
the overhead of unfolding). And also it does not exclude the reading transitions
from the slice as syntactically they can not be determined.

Algorithm 6: APN Evo Slicing

APNSlicingEvo(〈SPEC,P, T, f, asg, cond, λ,m0〉, Q){
T ′ = {t ∈ T | ∃p ∈ Q : t ∈ (•p ∪ p•)};
P ′ = Q ∪ {•T ′} ;
Pdone = ∅ ;
while ((∃p ∈ (P ′ \ Pdone)) do

while (∃t ∈ (•p ∪ p•) \ T ′)) do

P ′ = P ′ ∪ •t;
T ′ = T ′ ∪ {t};

end

Pdone = Pdone ∪ {p};

end

return 〈SPEC,P ′, T ′, f|P ′,T ′ , asg|P ′ , cond|T ′ , λ|P ′,T ′ ,m0|
P ′
〉;

}

Initially, T ′ (representing transitions set of the slice) contains set of all pre
and post transitions of the given criterion place. P ′(representing places set of
the slice) contains all preset places of transitions in T ′. The algorithm iteratively
adds other preset transitions together with their preset places in T ′ and P ′.

5 Dynamic Slicing Algorithms

In this section, we shall study basic algorithms for dynamic PN slicing presented
in the literature [6,12]. The dynamic slicing algorithms give more reduced Petri

[1,2]

A

t2
1

t23

t22
C

t33

B

3

1

2

3

1

2

3

1

2

3

t32

t31

2

1
t11 t12 t13

1 2 3 321

C

[1,2]

t1

t2 t3

y

x x

x

xA

C

B

x

[1,2]

A

t21

t23

t22

t33

B

3

1

2

3

1

2

3

t32

t31

2

1

Algebraic Petri net Unfolded Algebraic Petri net

After applying APNslicing

x=y

Fig. 6. An APN and its sliced unfolded APN by applying APNslicing algorithm

nets because only the dependences that occur in a specific execution of the Petri
net model are taken into account.

5.1 Llorens et al Slicing

Llorens et al presented a dynamic slicing algorithm for the first time [6]. They
introduced two different techniques for dynamic slicing of Petri nets. In the first
technique, a Petri net and the initial markings are taken into an account while
in the second technique firing sequences are fixed to have a more reduced slice.
The first technique comprises of three steps. In the first step, the basic algorithm
given below computes a backward slice.

Algorithm 7: Bakward Slicing

GenerateSlice(〈P, T, f, λ,m0〉, Crit){
T ′ = ∅;
P ′ = Crit ;
While (•p 6= T ′

{ T ′ = T ′ ∪ •P ′;
P ′ = P ′ ∪ •T ′;
}
return 〈P ′, T ′, f|P ′,T ′ , λ|P ′,T ′ ,m0|P ′ ; }

Starting from the criterion place the algorithm iteratively include all the
incoming transitions together with their input places until reaching a fix point.
In the second step a forward slicing is computed by the following algorithm.

Algorithm 8: Forward Slicing

GenerateSlice(〈P, T, f, λ,m0〉){
T ′ = {t ∈ T | m0[t〉};
P ′ = {p ∈ P | m0(p) > 0} ∪ T ′•;
Tdo = {t ∈ T \ T ′ | •t ⊆ P ′};
While (Tdo 6= ∅
{ T ′ = T ′ ∪ Tdo;
P ′ = P ′ ∪ T •do;
Tdo = {t ∈ T \ T ′ | •t ⊆ P ′}
}
return 〈P ′, T ′, f|P ′,T ′ , λ|P ′,T ′ ,m0|P ′ ; }

Starting from the set of initially marked places set the algorithm proceeds
further by checking the enabled transitions. Then post set of places are included
in the slice. The algorithm computes the paths that may be followed by the
tokens of the initial marking.

In the third step both forward and backward slices are intersected to get the
resultant slice. By bearing a slight overhead more reduce slices can be obtained.
The second technique introduced by Llorens et all fixes the firing sequences and
can result smaller slice. The algorithm is defined by auxiliary function and takes
initial markings together with the firing sequence denoted by σ and the set of
places Q of the slicing criterion.

Algorithm 9: Trace Slicing

slice(m0, σ,Q) =

Q if i = 0,

slice(m0, σ,Q) if ∀p ∈ Q.m0−1(p) ≥ m0(p), i > 0

{ti} ∪ slice(m0, σ,Q ∪ •ti) if∃p ∈ Q.m0−1(p) < m0(p), i > 0

For a particular marking, a firing sequence and a set of places Q, function slice
just moves backwards when no place in Q increased its tokens by the considered
firing. Otherwise, the fired transition ti increased the number of tokens of some
place in Q and in this case, function slice already returns this transition ti and,
moreover, it moves backwards also adding the places in •ti to the previous set
Q. When the initial marking is reached, function slice returns the accumulated
set of places.

Unfortunately, both techniques are not evaluated to case studies which is a
big question mark on the usefulness and practicality.

5.2 Wangyang et al Slicing

Wangyang et al presented a backward dynamic slicing algorithm [12]. The ba-
sic idea of proposed algorithm is similar to the algorithm proposed by Lloren

et al [6]. At first for both algorithms, a static backward slice (see algorithm
7) is computed for a given criterion place(s). Secondly, in case of Llorens et
al a forward slice is computed for the complete Petri net model (see algorithm
8) whereas in case of Wangyang et al forward slice is computed for the resul-
tant Petri net model obtained from static backward slice. Let us suppose that
there are n number of places in a Petri net model. After applying the static
backward slicing algorithm, let us suppose that there are n/2 number of places.
The algorithm of Llorens et al compute forward slice for n number of places
whereas Wangyang et al algorithm will compute the forward slice only for n/2.

Algorithm 10: Wangyang Slicing

Input: Backward static sliced PN ′,m0.
Output: Local reachability graph(LRG(PN ′))
1. MP = {p ∈ P ′ | m0(p) > 0}, be the root node, and mark with “New”;
2. While “New” nodes exist Do
2.1. Choose an arbitrary New node as MP ′;
2.2. If MP ′• = ∅
Then mark MP ′ with Terminate node;
Return to step2;
Endif
2.3. make that every place p ∈MP ′ has a token;
2.4. If there does not exist t ∈ T ′ and is enabled under this situation
Then mark B′ with Terminate node;
Return to step2;
Endif
2.5. Else if there do not exist transition set
Tl ⊆ T ′ and is enabled under this situation
2.5.1. For t ∈ Tl

2.5.1.1. Compute a new set of places MP ′′ = MP ′ \ •t ∪ t•;
2.5.1.2. If MP ′′ exists in LRG(PN ′)
Then create a directed edge from MP ′ to MP ′′, mark the edge with t;
Endif
2.5.1.3. Else if MP ′′ does not exist in LRG(PN ′) Then create a new
node MP ′′

and create a directed edge from MP ′ to MP ′′, mark edge with t; Endif
2.5.1.4. Mark MP ′′ with “New”; Endfor
Endif
2.6 Remove mark “New” of MP ′;
Repeat

The algorithm starts by taking static backward sliced Petri net model and
produce a local reachability graph LRG for the Petri net model. LRG is a di-
rected graph, its node set is the set of places. The mark of an arc is a transition.
From the initially marked places a root node is constructed and then enabled
transitions are added together with their places. The old node can contribute
tokens to new ones then (LRG(PN ′)) can be obtained by tracking backward
static slice forward, and the parts associated with slicing criterion under the ini-

tial marking m0. Finally, backward dynamic slice can be obtained coupled with
the initial marking and corresponding flow relation.

6 Comparison

In this section, the static and dynamic slicing algorithms that were presented
earlier are compared and classified. All the PN slicing constructions are proposed
for improving the testing or optimizing the model checking of Petri nets. One
major difference between the slicing constructions designed for testing and model
checking is their slicing criterion.

The slicing constructions designed for optimizing model checking extract a
slicing criterion from the temporal description of the properties. The slicing
criterion consists of a set of places and then a slice is generated around them.
We highlight different slicing algorithms that are designed for improving the
model checking with respect to the slice size in the Fig.7. As we can notice that
safety slicing algorithm may generate the smallest slice as compared to other
algorithms but the scope of safety slicing algorithm is limited to safety properties
only. Remark that all the existing slicing algorithms do not allow properties
specified with the next time operator. On the other hand the slicing algorithms
designed for improving the testing take directly the place or transitions as a
slicing criterion.

Let us study the results summarized in the table.1, the first column shows
different slicing algorithms under observation. For each algorithm, the table lists
i) in which context the slicing algorithm is presented i.e., to improve the testing
process or to improve the state space of model checking process, ii) reduction
affect describing i.e., either the PN model can be reduced or there is no affect
of slicing on the model, iii) design context refers to the application of slicing
algorithm with respect to Petri nets formalism; there are two major variants of
Petri nets that are low-level Petri nets and high-level Petri nets, iv) properties
that are preserved by the slicing construction. As some of the algorithms are
designed in the context of testing and their objective is to find a particular trace
for the analysis, we jointly refer those properties as particular v) slicing type
refers to the construction methodology i.e., either it is static or dynamic (see
section 2 for slicing types) and is following backward propagation or forward (or
both), vi) presenting the time complexity for each construction, vii) whether the
algorithm has been implemented or not.

7 Conclusion and Future Work

We have presented a survey of the PN slicing constructions that can be found in
the present literature. This work fills the gap for the people who are interested
in PN slicing and need more information about the up to date researches. The
presented syntactic unification of PN slicing algorithms will facilitate the user
to have more clear and easy understanding. By comparing existing PN slicing
constructions, we highlighted that most of them are limited to low-level Petri

PN

Basic Slicing

CTL-X Slicing

Safety Slicing

APN

Basic Slicing

APN Slicing

Fig. 7. PN and APN slicing algorithms w.r.t slice size

nets and focusing more on reducing the state space explosion problem for model
checking Petri nets. Very few slicing techniques are described in the context of
testing. We identified some possible future directions in this domain such as:

– Describing more refined constructions with in the context of testing and
more slicing constructions for high-level Petri nets.

– A tool support is very much needed for its practical usability.

References

1. D. Buchs, S. Hostettler, A. Marechal, A. Linard, and M. Risoldi. Alpina: A sym-
bolic model checker. Springer Berlin Heidelberg, pages 287–296, 2010.

2. J. Chang and D. J. Richardson. Static and dynamic specification slicing. In In
Proceedings of the Fourth Irvine Software Symposium, 1994.

3. Y. I. Khan. Optimizing verification of structurally evolving algebraic petri nets.
In V. K. A. Gorbenko, A. Romanovsky, editor, Software Engineering for Resilient
Systems, volume 8166 of Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2013.

4. Y. I. Khan and M. Risoldi. Optimizing algebraic petri net model checking by slic-
ing. International Workshop on Modeling and Business Environments (ModBE’13,
associated with Petri Nets’13), 2013.

5. W. J. Lee, H. N. Kim, S. D. Cha, and Y. R. Kwon. A slicing-based approach to
enhance petri net reachability analysis. Journal of Research Practices and Infor-
mation Technology, 32:131–143, 2000.

6. M. Llorens, J. Oliver, J. Silva, S. Tamarit, and G. Vidal. Dynamic slicing techniques
for petri nets. Electron. Notes Theor. Comput. Sci., 223:153–165, Dec. 2008.

7. A. Rakow. Slicing petri nets with an application to workflow verification. In
Proceedings of the 34th conference on Current trends in theory and practice of
computer science, SOFSEM’08, pages 436–447, Berlin, Heidelberg, 2008. Springer-
Verlag.

8. A. Rakow. Slicing and Reduction Techniques for Model Checking Petri Nets. PhD
thesis, University of Oldenburg, 2011.

9. A. Rakow. Safety slicing petri nets. In S. Haddad and L. Pomello, editors, Applica-
tion and Theory of Petri Nets, volume 7347 of Lecture Notes in Computer Science,
pages 268–287. Springer Berlin Heidelberg, 2012.

10. W. Reisig. Petri nets and algebraic specifications. Theor. Comput. Sci., 80(1):1–34,
1991.

11. F. Tip. A survey of program slicing techniques. JOURNAL OF PROGRAMMING
LANGUAGES, 3:121–189, 1995.

12. Y. Wangyang, Y. Chungang, D. Zhijun, and F. Xianwen. Extended and improved
slicing technologies for petri nets. High Technology Letters, 19(1), 2013.

13. M. Weiser. Program slicing. In Proceedings of the 5th international conference on
Software engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA, 1981. IEEE
Press.

14. B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A brief survey of program slicing.
SIGSOFT Softw. Eng. Notes, 30(2):1–36, Mar. 2005.

Acknowledgment

This work has been supported by the National Research Fund, Luxembourg,
Project MOVERE, ref.C09/IS/02.

8 Appendix

Definition 8. A signature Σ = (S,OP) consists of a set S of sorts, OP =
(OPw,s)w∈S∗,s∈S is a (S∗×S)−sorted set of operation names of OP. For ǫ being
the empty word, we call OPǫ,s the set of constant symbols.

Definition 9. A set X of Σ-variables is a family X = (Xs)s∈S of variables set,
disjoint to OP.

Definition 10. The set of terms TOP,s(X) of sort s is inductively defined by:
1. Xs ∪OPǫ,s ⊆ TOP,s(X);
2. op(t1, . . . , tn) ∈ TOP,s(X) for op ∈ OPs1,...,sn,s, n ≥ 1 and ti ∈ TOP,si(X)

(for i = 1, . . . , n).
The set TOP,s ≡ TOP,s(∅) contains the ground terms of sort s, TOP (X) ≡

⋃

s∈S TOP,s(X) is the set of Σ-terms over X and TOP ≡ TOP (∅) is the set of
Σ-ground terms.

Definition 11. A Σ-equation of sort s over X is a pair (l,r) of terms l, r ∈
TOP,s(X).

Definition 12. An algebraic specification SPEC = (Σ,E) consists of a signature
Σ = (S,OP) and a set E of Σ-equations.

Definition 13. A Σ-algebra A = (SA, OPA) consist of a family SA = (As)s∈S

of domains and a family OPA = (Nop)op∈OP of operations Nop : As1× . . . Asn →
As for op ∈ OPs1...sn,s if op ∈ OPǫ,s, Nop congruent to an element of As.

Definition 14. An assignment of Σ-variables X to a Σ-algebra A is a mapping
ass : X → A,with ass(x) ∈ Asiff x ∈ Xs. ass is canonically extended to ass :
TOP (X)→ A, inductively defined by

1. ass(x) ≡ ass(x) for x ∈ X ;
2. ass(c) ≡ Nc for c ∈ OPǫ,s;
3. ass(op(t1, . . . , tn)) ≡ Nop(ass(t1)), . . . , ass(tn)) for op(t1, . . . , tn) ∈ TOP (X).

Definition 15. Let SPEC-algebra is SPEC = (Σ,E) in which all equations in
E are valid. Two terms t1 and t2 in TOP (X) are equivalent (t1 ≡E t2) iff for all
assignments ass : X → A, ass(t1) = ass(t2).

Definition 16. Let B be a set. A multiset over B is a mapping msB: B → N.
ǫB is the empty multiset with msB(x) = 0 for all x ∈ B. A multiset is finite iff
{∀b ∈ B | msB(b) 6= 0} is finite.

Definition 17. Let MSB = {msB: B → N} be a set of multisets. The addition
function of multisets is denoted by + : MSB ×MSB →MSB. Let ms1B,ms2B
and ms3B ∈ MSB. (ms1B + ms2B) = ms3B ⇐⇒ ∀b ∈ B,ms3B(b) =
ms1B(b) +ms2B(b).

The subtraction function of multisets is denoted by − : MSB×MSB →MSB.
Let ms1B,ms2B and ms3B ∈ MSB. (ms1B − ms2B) = ms3B ⇐⇒ ∀b ∈
B,ms1B(b) ≥ ms2B(b)⇒ ∀b ∈ B,ms3B(b) = ms1B(b)−ms2B(b).

Definition 18. Let MSB = {msB: B→ N} be a set of multisets. Let ms1B,ms2B
∈ MSB . We say that ms1B is smaller than or equal to ms2B (denoted by
ms1B ≤ ms2B) iff
∀b ∈ B,ms1B(b) ≤ ms2B(b). Further, we say that ms1B 6= ms2B iff
∃b ∈ B,ms1B(b) 6= ms2B(b). Otherwise, ms1B = ms2B.

Agorithm Context Reduction Design context Preserved
properties

Type slicing Time complexity Implementation

Chang et al slicing Testing No Designed for low-
level PN

Particular Static backward
slicing

O((n/N))N No

Lee et al slicing Model checking No Designed for low-
level PN

Boundedness
and livenss

Static backward
slicing

O(N)3 No

Rakow CTL*
−X slicing Model checking Yes Designed for

low-level PN
CTL*

−X Static backward
slicing

O(2N) Own

Rakow Safety slicing Model checking Yes Designed for
low-level PN

Safety Static backward
slicing

O(2N) Own

Khan et al slicing Model checking Yes Designed for
high-level PN

LTL
−X Static backward

slicing
O(2N) Own

Khan APNevo slicing Model checking Yes Designed for
high-level PN

LTL
−X Static backward

slicing
O(2N) No

Llorens et al APNevo
slicing

Model checking /
Testing

Yes Designed for
low-level PN

Particular Dynamic for-
ward/backward

slicing

O(2T) No

Llorense et al trace
slicing

Testing Yes Designed for
low-level PN

Particular Dynamic for-
ward/backward

slicing

O(2T) No

Wangyang et al
slicing

Model checking /
Testing

Yes Designed for
low-level PN

Particular Dynamic
backward slicing

O(2T) No

Table 1. Comparison of PN slicing Algorithms

