
20/08/02 - 1 - FOR REVIEW

Submitted for publication April 2002

A Survey of Policy Specification Approaches
Nicodemos Damianou, Arosha K Bandara, Morris Sloman and Emil C Lupu
{ncd, bandara, mss, ecl1}@doc.ic.ac.uk

Department of Computing
Imperial College of Science Technology and Medicine
London, SW7 2BZ, UK

Abstract

Policies are rules governing the choices in behaviour of a system. They are often used as a means of
implementing flexible and adaptive systems for management of internet services, distributed systems, and
security systems. There is also a need for a common specification of security policy for large-scale, multi-
organisational systems where access control is implemented in a variety of heterogeneous components. In
this paper we survey both security and management policy specification approaches. We also cover the
issues relating to detecting and resolving conflicts which can arise in the policies and some ideas on how to
refine high level goals and service level agreements into implementable policies. The paper briefly outlines
some of the research issues that have to be solved for large-scale adoption of policy-based systems

Keywords
General terms: Policy specification

Additional keywords and phrases: Security policy, access control, role based access control, authorization,
security management, policy based management,

20/08/02 - 2 - FOR REVIEW

Contents
1 Introduction... 3
2 Security Policy ... 4

2.1 Logic-Based Languages .. 5
2.1.1 First Order Logic ... 5
2.1.2 Stratified Logic ... 5
2.1.3 Deontic Logic ... 6

2.2 Role-Based Access Control (RBAC) Specification .. 7
2.2.1 Role Specification Languages .. 9
2.2.2 TRBAC.. 9

2.3 Other Security Specification Approaches ... 10
2.3.1 SPL ... 10
2.3.2 XACML... 11
2.3.3 LaSCO .. 12
2.3.4 Trust Specification.. 12

3 Management Policy ... 13
3.1 IETF/DMTF Policy Core Information Model ... 13
3.2 Policy Description Language (PDL) ... 16
3.3 Configuration Management... 17

4 Enterprise and Collaboration Policy ... 18
4.1 Open Distributed Programming Reference Model (ODP-RM)... 18
4.2 Law-Governed Interaction (LGI) .. 19
4.3 Event-Trigger-Rules.. 20

5 Ponder .. 22
5.1 Domains .. 22
5.2 Ponder primitive policies .. 22
5.3 Ponder Composite Policies.. 23

6 Analysis and Refinement .. 25
6.1 Policy Analysis.. 25
6.2 Policy Refinement ... 26

7 Commercial Tools ... 29
7.1 Nortel Optivity .. 29
7.2 Orchestream Enterprise ... 29
7.3 HP Openview PolicyXpert .. 30
7.4 Cisco CiscoAssure .. 30
7.5 Allot Communications NetPolicy ... 30
7.6 Computer Associates Infrastructure Management and eTrust Solutions... 30
7.7 Tivoli Management Framework – Access Manager.. 31

8 Research Issues.. 31
9 Conclusions .. 32
References.. 33

20/08/02 - 3 - FOR REVIEW

1 Introduction
Policy-based management has become a promising solution for managing enterprise-wide networks and
distributed systems. These are typically large-scale systems which require management solutions that are
both self-adapting and that dynamically change the behaviour of the managed system. The main motivation
for the recent interest in policy-based services, networks and security systems is to support dynamic
adaptability of behaviour by changing policy without recoding or stopping the system [Sloman 2001]. This
implies that it should be possible to dynamically update the policy rules interpreted by distributed entities to
modify their behaviour.

Policies are rules governing the choices in behaviour of a system [Sloman 1994b]. Obligation policies are
event-triggered condition-action rules that can be used to define adaptable management actions. These
policies thus define the conditions for performing a wide range of management actions such as change
Quality of Service, when to perform storage server backups, register new users in a system, or install new
software. Authorisation policies are used to define what services or resources a subject (management agent,
user or role) can access. In addition, security management policies are needed to define the actions to be
taken when security violations, such as a series of login failures occur for a particular user, or an attack on
the system is detected. Furthermore, the heterogeneity of security mechanisms used to implement access
control makes security management an important and difficult task.

Policies are persistent so that a one-off command to perform an action is not a policy. Scripts and mobile
agents, based on powerful interpreted languages such as Java, can also be used to support adaptability as well
as to introduce new functionality into distributed network components. Policies define choices in behaviour
in terms of the conditions under which predefined operations or actions can be invoked rather than changing
the functionality of the actual operations themselves. In today’s Internet-based environments security
concerns tend to increase when mobile code mechanisms are introduced to enable such adaptation, and so
many researchers favour a more constrained form of rule-based policy adaptation.

Large-scale systems may contain millions of users and resources. It is not practical to specify policies
relating to individual entities – instead, it must be possible to specify policies relating to groups of entities
and also to nested groups such as sections within departments, within sites in different countries in an
international organisation. It is also useful to group the policies pertaining to the rights and duties of a role or
position within an organisation such as a network operator, nurse in a ward or mobile computing ‘visitor’ in
a hotel.

Policies are derived from business goals, service level agreements or trust relationships within or between
enterprises. The refinement of these abstract policies into policies relating to specific services and then into
policies implementable by specific devices supporting the service is not easy, and not amenable to
automation. Although the technologies for building management systems and implementing security are
available, work on the specification and deployment of policies is still scarce. The precise and explicit
specification of implementable policies is important in order to achieve the organisational goals using
currently available technologies.

This paper provides a survey of the work on policy specification for both security authorisation and policy-
driven management of security and networked systems. In section 2 we cover the various approaches to
security policy specification, including logic-based languages, role-based access control and various access
control and trust specification techniques. In section 3 we focus on approaches to management policy
specification, including standards work, event-triggered policies and configuration management policies.
Section 4 covers Enterprise and Collaboration policy, including the Open Distributed Processing Enterprise
viewpoint, law-governed systems and event-triggered rules for electronic commerce. In section 5 we
describe our Ponder policy specification language, which combines many of the above concepts and can be
used for both security and management policies. In section 6 we present an overview of the issues relating to
analysing policies for conflicts and refining high level goals into implementable policies, which is followed
by a discussion on research issues for policy-based systems. WWW references for much of the work on
policy and many of the papers described here can be found from http://www-
dse.doc.ic.ac.uk/Research/policies.

We do not discuss routing policies as these have been described in a recent survey [Stone, Lundy et al.
2001].

20/08/02 - 4 - FOR REVIEW

2 Security Policy
Access control is concerned with permitting only authorised users (subjects) to access services and resources
(targets). It limits the activity of legitimate users who have been successfully authenticated. Authorisation or
access control policy defines the high-level rules specifying the conditions under which subjects are
permitted to access targets [Samarati and Vimercati 2000]. However, in many systems there is no real policy
specification, only the implementation in terms of low-level mechanisms such as access control lists. The
study of access control has identified a number of useful access control models, which provide a formal
representation of security policies and allow the proof of properties about an access control system. Access
control policies have been traditionally divided into discretionary and mandatory policies.

Discretionary access control (DAC) policies restrict access to objects based on the identity of the subjects
and/or groups to which they belong, and are discretionary in the sense that a subject can pass it’s access
permissions on to another subject. The notion of delegation of access rights is thus an important part of any
system supporting DAC. Basic definitions of DAC policies use the access matrix model as a framework for
reasoning about the permitted accesses. In the access matrix model the state of the system is defined by a
triple (S,O,A), where S is the set of subjects, O is the set of objects and A is the access matrix where rows
correspond to subjects, columns correspond to objects and entry A[s,o] reports the privileges of s on o.
Discretionary policies do not enforce any control on the flow of information once this information is
acquired by a process, making it possible for processes to leak information to users not allowed to read it.

Mandatory access control (MAC) policies enforce access control on the basis of fixed regulations
mandated by a central authority, as typified by the Bell-LaPadula, lattice-based model [Bell and LaPadula
1973]. Lattice-based models were defined to deal with the issue of data confidentiality, and concentrate on
restricting information flow in computer systems. This is achieved by assigning a security classification to
each subject (an active entity that can execute actions) and each object (a passive entity storing information)
in the system. Subjects and objects form a lattice based on their classification, which is used to enforce some
fixed mandatory policies regarding the actions that subjects can execute on objects. The conceptual
framework of the Bell-LaPadula model forms the basis of other derived models one of which is the Biba
model. The Biba model uses similar controls as those used in the Bell-LaPadula model for providing
integrity of data [Biba 1977].

Non-discretionary access control (NDAC) identifies the situations in which authority is vested in some
users, but there are explicit controls on delegation and propagation of authority [Abrams 1993]. Any global
and persistent access control policy relying on access control decision information not directly controlled by
the security administrator is non-discretionary. Administrative policies [Sandhu and Samarati 1994]
determine who is authorised to modify the allowed access rights and exist only within discretionary policies.
Whereas, in mandatory policies, the access control is determined entirely on the basis of the security
classification of subjects and objects. Administrative policies can be divided into: (i) Centralised where a
single authoriser (or group) is allowed to grant and revoke authorisations to the users. (ii) Hierarchical where
a central authoriser is responsible for assigning administrative responsibilities to other administrators. The
administrators can then grant and revoke access authorisations to the users of the system according to the
organization chart. (iii) Cooperative where special authorisations on given resources cannot be granted by a
single authoriser but needs cooperation of several authorisers. (iv) Ownership where a user is considered the
owner of the objects he/she creates. The owner can grant and revoke access rights for other users to that
object, and (v) Decentralised where the owner or administrator of an object can also grant other users the
privilege of administering authorisations on the object.

Over the years other sophisticated security models have been proposed to formalise security policies required
for commercial applications. The Clark-Wilson model [Clark and Wilson 1987] is a well known one for
commercial data processing practices. Its main goal is to ensure the integrity of an organisation’s accounting
system and to improve its robustness against insider fraud. The Clark-Wilson model recommends the
enforcement of two main principles, namely the principle of well-formed transactions where data
manipulation can occur only in constrained ways that preserve and ensure the integrity of data, and the
principle of separation of duty. The latter reduces the possibility of fraud or damaging errors by partitioning
the tasks and associated privileges so cooperation of multiple users is required to complete sensitive tasks.
Authorised users are assigned privileges that do not lead to execution of conflicting tasks. This principle has
since been adopted as an important constraint in security systems.

20/08/02 - 5 - FOR REVIEW

A security policy model that specifies clear and concise access rules for clinical information systems can be
found in [Anderson 1996]. This model is based on access control lists and the authors claim it can express
Bell-LaPadula and other lattice-based models. Finally the Chinese-wall policy [Brewer and Nash 1989] was
developed as a formal model of a security policy applicable to financial information systems, to prevent
information flows that cause conflict of interest for individual consultants. The basis of the model is that
people are only allowed to access information that is not held to conflict with any other information that they
already possess. The model attempts to balance commercial discretion with mandatory controls, and is based
on a hierarchical organisation of data. It thus falls in the category of lattice-based access control models.

2.1 Logic-Based Languages
Logic-based languages have proved attractive for the specification of security policy, as they have a well-
understood formalism, which is amenable to analysis. However they can be difficult to use and are not
always directly translatable into efficient implementation. This section starts by presenting some of these
specification languages classified by the type of logic used in their definition. We go on to discuss languages
that were specifically developed to support the Role-Based Access Control (RBAC) model.

2.1.1 First Order Logic
There are several examples that illustrate the application of first order logic to the specification of security
policy. These include the logical notation introduced in [Chen and Sandhu 1995]; the Role Definition
Language (RDL) presented in [Hayton, Bacon et al. 1998] and RSL99 [Ahn and Sandhu 1999]. Because all
these approaches are based on the Role Based Access Control (RBAC) model, we will defer a more detailed
discussion to Section 2.2 where they can be considered together with other RBAC specification techniques.

In addition to these RBAC examples, there are some examples of the application of Z to defining security
policies for a system. Z is a formal specification language that combines features of first order predicate
logic with set theory [Spivey 1989]. In [Boswell 1995], the use of Z to specify and validate the security
model for the NATO Air Command and Control System is described. The aim of this work was to develop a
model for both mandatory and discretionary access controls based on the Bell-LaPadula approach mentioned
previously.

One of the main problems encountered when using first order logic for policy specification arises when
negation is used together with recursive rules. This leads to logic programs that cannot be decided and
cannot be evaluated in a flounder-free manner [Dantsin, Eiter et al. 1997]. Although it is possible to avoid
the use of negation or recursion, this is not practical since it diminishes significantly the expressive power of
the logical language. In the next section, we discuss an alternative solution, stratified logic, which helps
overcome the problems associated with using recursion and negation together.

2.1.2 Stratified Logic
When using first order logic based languages to describe policies, many approaches considered here are
described in terms of stratified logic, which permits a constrained use of recursion and negation while
disallowing those combinations which lead to undecidable programs. A stratified program is one where it is
possible to order the clauses such that for any clause containing a negated literal in its body, there is a clause
later in the program that defines the negated literal. Another way of describing stratified theories makes use
of directed dependency graphs. These are graphs that comprise a node for each predicate symbol appearing
in the program and a directed edge from the node representing any predicate that appears in the body of a
clause to the node representing the predicate defined in the head of the clause. The edges are labelled
positively or negatively, where a negative symbol indicates that the predicate at the tail end of the edge
appear in negated form in a clause of the program. Using this technique, a program is stratified if the
dependency graph contains no cycles having a negative edge.

The concepts of stratified theories and stratification were originally developed in the context of databases
[Chandra and Harel 1985] and were later adopted into the area of logic programming as described in [Apt,
Blair et al. 1988; van Gelder 1988]. Programs that use stratified logic can use negation to extend their
expressive power and can be evaluated in a flounder free manner. Indeed there are numerous studies that
identify stratified logic as a class of first order logic that supports logic programs that are decidable [Jager
and Stark 1993; Dantsin, Eiter et al. 1997]. Moreover, such programs are decidable in polynomial time

20/08/02 - 6 - FOR REVIEW

[Jajodia, Samarati et al. 1997]. A more detailed analysis of the computational complexity and expressive
power of stratified logic can be found in [Dantsin, Eiter et al. 1997].

The authorisation specification language (ASL) [Jajodia, Samarati et al. 1997] is an example of a stratified
first order logic language for specifying access control policies. Authorisation rules identify the actions
authorised for specific users, groups or roles, but cannot be composed into roles to provide for reusability i.e.
there is no explicit mechanism for assigning authorisations to roles; instead this is specified as part of the
condition of authorisation rules. Although the language provides support for role-based access control, it
does not scale well to large systems because there is no way of grouping rules into structures for reusability.
The following is an example of an authorisation rule in ASL, which states that all subjects belonging to
group Employees but not to Soft-Developers are authorised to read file1.

cando(file1, s, +read) ← in(s, Employees) & ¬in(s, Soft-Developers)

The cando predicate can also be used to specify negative authorisations; the sign in front of the action in the
cando predicate indicates the modality of the authorisation e.g. -read would indicate read not permitted.
However, there is no explicit specification of delegation and no way of specifying authorisation rules for
groups of target objects that are not related by type. A dercando predicate is defined in the language to
specify derived authorisations based on the existence or absence of cando rules (i.e. other authorisations in
the system). In addition, two predicates do and done, can be used to specify history-dependent authorisations
based on actions previously executed by a subject. The language includes a form of meta-policies called
integrity rules to specify application-dependent conditions that limit the range of acceptable access control
policies. In a recent paper [Jajodia, Samarati et al. 2000] the language has been extended with predicates
used to evaluate hierarchical or other relationships between the elements of a system such as the membership
of users in groups, inclusion relationships between objects or supervision relationship between users.

Barker [Barker 2000] adopts a similar approach to express a range of access control policies using stratified
clause-form logic, with emphasis on RBAC policies. According to the author, this form of logic is
appropriate for the specification of access control policies mostly due to its simple high-level declarative
nature. The function-free logic adopted by Barker, defines a normal clause as an expression of the following
form: H ← L1,L2,...,Lm (m ≥ 0). The head of the clause, H, is an atom and L1,L2,...,Lm is a
conjunction of literals that constitutes the body of the clause. If the conjunction of literals L1,L2,...,Lm is
true (proved) then H is true (proved). A literal is an atomic formula or its negation and a normal theory is
defined as a finite set of normal clauses. As described previously, a stratified theory extends a normal theory
by eliminating some forms of “recursion-via-negation”, which makes the computation of the theory more
efficient. The negation of literals is used to specify negative permissions

In [Barker and Rosenthal 2001] the authors show how policies specified in stratified logic can be
automatically translated into a subset of SQL to protect a relational database from unauthorised read and
update requests. The following example from [Barker 2001] demonstrates their approach:

permitted(U,P,O) ← ura(U,R1),activate(U,R1),senior-to(R1,R2),rpa(R2,P,O)

The above clause specifies that user U has the permission P on object O if U is assigned to a role R1, U is
active in R1, and R1 inherits the P permission on O from R2. This expression assumes that the following
predicates have been defined: activate(U, R) to denote that U is active in R, ura(U,R) to assign user U to role
R, rpa(R,P,O) to assign permission P on object O to role R, and senior-to(R1,R2) to denote that role R1 is
senior to R2.

2.1.3 Deontic Logic
Deontic logic was developed starting in the 1950s by Von Wright [von Wright 1951], Castaneda [Castaneda
1981] and [Alchourron 1971] by extending modal logic with operators for permission, obligation and
prohibition. Known as Standard Deontic Logic (SDL), traditionally it has been used in analysing the
structure of normative law and normative reasoning in law. Because SDL provides a means of analysing and
identifying ambiguities in sets of legal rules, there are many examples of the application of SDL to represent
legislative documents [Sergot, Sadri et al. 1986; Jones and Sergot 1995]. An excellent overview of the
applications of SDL is in [Wieringa and Meyer 1998].

20/08/02 - 7 - FOR REVIEW

Before looking at the details of how SDL has been applied to policy specification, it would be useful to
summarise the basic axioms of the language. These are as follows:

 [SDL0] Tautologies of propositional calculus

 [SDL1] O(p →q) → (Op →Oq)

If there is an obligation that p implies q, then an obligation to do p implies an obligation to
do q.

 [SDL2] Op →Pp

 If there is an obligation to do p then p is permitted.

 [SDL3] Pp ↔ ¬O¬p

Iff p is permitted then there is no obligation to not do p. In other words, iff p is permitted
then there is no refrain policy with respect to p.

 [SDL4] Fp ↔ ¬Pp

 Iff p is forbidden then there is no permission to do p.

 [SDL5] p, (p →q) / q (Modus Ponens)

If we can show that p holds and that q is implied by p, then it is possible to infer that q must
hold.

 [SDL6] p / Op (O-necessitation)

If we can show that p holds, then it is possible to infer that the obligation to do p also holds.

At first glance it would appear that SDL is ideally suited to specifying policy because it provides operators
for all the common policy constructs like permission, prohibition (c.f. positive and negative authorisation)
and obligation. However, closer examination of some of the axioms reveals inconsistencies between the
definition of policy rules and the behaviour of SDL. For example, SDL2 indicates that an obligation can
imply a permission and SDL3 indicates that a permission implies no obligation to not do an action. However,
these implications between permissions and obligations do not exist in many management systems in which
the obligation and authorisation policies may be specified independently and implemented in completely
different ways.

Some of the earliest work using deontic logic for security policy representation can be found in [Glasgow,
Macewen et al. 1992]. The focus of this work was to develop a means of specifying confidentiality policies
together with conditional norms.

In [Cholvy and Cuppens 1997], SDL is used to represent security policies with the aim of detecting conflicts
in the policy specifications. This approach is based on translating the SDL representation into first order
predicate logic before performing the necessary conflict detection analysis. In an extension to this work,
[Cuppens and Saurel 1996] also describes how delegation can be represented using deontic logic notation.

Ortalo describes a language to express security policies in information systems based deontic logic [Ortalo
1998]. In his approach he accepts the axiom Pp = ¬O¬p (“permitted p is equivalent to not p being not
obliged”) as a suitable definition of permission. As mentioned previously, this axiom is not appropriate for
the modelling of obligation and authorisation policies because the two need to be separated.

An inherent problem with the deontic logic approach is the existence of a number of paradoxes. For
example, Ross’ paradox can be stated as Op → O(p ∧ q), i.e. if the system is obliged to perform the action
send message, then it is obliged to perform the action send message or the action delete message. Although
there is some work that offers resolutions to these paradoxes [Prakken and Sergot 1997], the existence of
paradoxes can make it confusing to discuss policy specifications using deontic logic notations.

2.2 Role-Based Access Control (RBAC) Specification

Roles permit the grouping of a set of permissions related to a position in an organisation such as finance
director, network operator, ward-nurse or physician. This allows permissions to be defined in terms of the
position rather than the person assigned to the permission, so policies do not have to be changed when people

20/08/02 - 8 - FOR REVIEW

are reassigned to different positions within the organisation. Another motivation for RBAC has been to
reuse role specification by a form of inheritance whereby one role (often a superior in the organisation) can
inherit the rights of another role and thus avoid the need to repeat the specification of permissions.

Sandhu et al. [Sandhu, Coyne et al. 1996] have specified four conceptual models in an effort to standardise
RBAC. We discuss these models in order to provide an overview of the features supported by RBAC
implementations. RBAC0 contains users, roles, permissions and sessions. Permissions are attached to roles
and users can be assigned to roles to assume those permissions. A user can establish a session to activate a
subset of the roles to which the user is assigned. RBAC1 includes RBAC0 and introduces role hierarchies
[Sandhu 1998]. Hierarchies are a means of structuring roles to reflect an organisation’s lines of authority and
responsibility, and are specified using inheritance between roles. Role inheritance enables reuse of
permissions by allowing a senior role to inherit permissions from a junior role. For example the finance
director of a company inherits the permissions of the accounts manager, as the latter is the junior role.
Although the propagation of permissions along role hierarchies further simplifies administration by
considerably reducing the number of permissions in the system, it is not always desirable. Organisational
hierarchies do not usually correspond to permission-inheritance hierarchies. The person in the senior role
may not have the specific skills needed for the more junior role. For example a managing director would not
usually be able to perform the functions of a systems administrator much lower down in the organisational
hierarchy. Such situations lead to exceptions and complicate the specification of role hierarchies [Moffett
1998]. Another problem with RBAC is that it does not cater for multiple instances of a role with similar
policies but relating to different target objects. For example there may be two different instances of a
network operator role, responsible for the North and South regions of the network respectively.

RBAC2 includes RBAC0 and introduces constraints to restrict the assignment of users or permissions to
roles, or the activation of roles in sessions. Constraints are used to specify application-dependent conditions,
and satisfy well-defined control principles such as the principles of least-privilege and separation of duties.
Finally, RBAC3 combines both RBAC1 and RBAC2, and provides both role hierarchies and constraints. In
recent work Sandhu et al. [Sandhu, Ferraiolo et al. 2000] propose an updated set of RBAC models in an
effort to formalise RBAC. The models are called: flat RBAC, hierarchical RBAC, constrained RBAC and
symmetrical RBAC, and correspond to the RBAC0 – RBAC3 models. Although the updated models define
more precisely the basic features that must be implemented by an RBAC system, their description remains
informal. A number of variations of RBAC models have been developed, and several proposals have been
presented to extend the model with the notion of relationships between the roles [Barkley, Beznosov et al.
1999], as well as with the idea of a team, to allow for team-based access control where a set of related roles
belonging to a team are activated simultaneously [Thomas 1997].

Chen et al. [Chen and Sandhu 1995] introduce a language based on set theory for specifying RBAC state-
related constraints, which can be translated to a first-order predicate-logic language. They define an RBAC
system state as the collection of all the attribute sets describing roles, users, privileges, sessions as well as
assignments of users to roles, permissions to roles and roles to sessions. They also define constraints as the
specification of restrictions to RBAC states, called invariants, as well as to state changes, called
preconditions. They use this model to specify constraints for RBAC in two ways: (i) by treating them as
invariants that should hold at all times, and (ii) by treating them as preconditions for functions such as
assigning a role to a user. They define a set of global functions to model all operations performed in an
RBAC system, and specify constraints which include: conflicting roles for some users, conflicting roles for
sessions of some users, and prerequisite roles for some roles with respect to other users. The following
example from [Chen and Sandhu 1995] can be used as an invariant or as a precondition to a user-role
assignment, to indicate that assigned roles must not be conflicting with each other:

Role set: R = {r1 , r2 , ... , rn }
User set: U = {u1 , u2 , ... , um }
Check-condition: oneelement(R) ∈ role-set(oneelement(U)) →
 allother(R) ∩ role-set(oneelement(U)) =

The two non-deterministic functions, oneelement and allother, are introduced in the language to replace
explicit quantifiers. Oneelement selects one element from the given set, and allother returns a set by taking
out one element from its input.

20/08/02 - 9 - FOR REVIEW

2.2.1 Role Specification Languages

The Role Definition Language RDL [Hayton, Bacon et al. 1998] is based on Horn clauses and was
developed as part of the Cambridge University Oasis architecture for secure interworking services. RDL is
based on sets of rules that indicate the conditions under which a client may obtain a name or role, where a
role is synonymous to a named group. The conditions for entry to a role are described in terms of credentials
that establish a client’s suitability to enter the role, together with constraints on the parameters of those
credentials. The work on RDL also falls into the category of certificate-based access control, which is
adopted by trust-management systems described separately in Section 2.3.4. The following is an example of
an authorisation rule in RDL, which establishes the right for clients assigned to the SeniorHaematologist role
to invoke the append method if they also possess a certificate called LoggedOn(km, s) issued by the Login
service, where s is a trusted server, i.e. if they have been logged on as km on a trusted machine.

append(haematology-field, y, x) ← SeniorHaematologist(x) ∧ Login.LoggedOn(km, s):s in
TrustedServers

Roles in RDL are also considered as credentials, and can be used to assign clients to other roles as in the
following example where a user x, who belongs to both the Haematologist and the SeniorDoctor roles, is
also a SeniorHaematologist:

SeniorHaematologist(x) ← Haematologist(x) ∧ SeniorDoctor(x)

RDL has an ill-defined notion of delegation, whereby roles can be delegated instead of individual access
rights in order to enable the assignment of users to certain roles. The notion of election is introduced to
enable a client to delegate a role that they do not themselves possess, to other clients. We believe that
assignment of users to roles should be controlled with user-assignment constraints instead. The following
example from [Hayton, Bacon et al. 1998] specifies that the chief examiner may elect any logged on user
who belongs to the group Staff to be an examiner, for the examination subject e.

Examiner(p,e) ← Login.LoggedOn(p,s) ü ChiefExaminer : p in Staff

RSL99 [Ahn and Sandhu 1999] is another role specification language which extends the ideas introduced in
[Chen and Sandhu 1995] and can be used for specifying separation of duty properties in role-based systems.
The language covers both static and dynamic separation of duty constraints, and its grammar is simple,
although the expressions are rather complicated and inelegant.

2.2.2 TRBAC

Since time is not defined as part of the state of an RBAC system as defined in [Chen and Sandhu 1995], the
two proposed languages described above cannot specify temporal constraints. The specification of temporal
constraints on role activations is addressed in the work by Bertino et al. [Bertino, Bonatti et al. 2000], which
extends the RBAC models with a temporal model called TRBAC. They propose an expression language that
can be used to specify two types of temporal constraints: (i) periodic activation and deactivation of roles
using periodic expressions, and (ii) specification of temporal dependencies among role activations and
deactivations using role triggers.

(PE1) ([1/1/2000, ∞], Night-time, VH:activate doctor-on-night-duty)
(PE2) ([1/1/2000, ∞], Day-time, VH:deactivate doctor-on-night-duty)
(RT1) (activate doctor-on-night-duty → H:activate nurse-on-night-duty)
(RT2) (deactivate doctor-on-night-duty → H:deactivate nurse-on-night-duty)

A role can be activated/deactivated by means of role triggers specified as rules to automatically detect
activations/deactivations of roles. Role triggers can also be time-based or external requests to allow
administrators to explicitly activate/deactivate a role, and are specified in the form of prioritised event
expressions. The example above, from [Bertino, Bonatti et al. 2000], shows two periodic expressions (PE1
and PE2) and two role triggers (RT1 and RT2). The periodic expressions state that the role doctor-on-night-
duty must be active during the night. The role triggers state that the role nurse-on-night-duty must be active
whenever the role doctor-on-night-duty is active. In the example, the symbols VH and H stand for very high
and high respectively and denote priorities for the execution of the rules.

20/08/02 - 10 - FOR REVIEW

2.3 Other Security Specification Approaches
In this section we cover other approach to specifying security policy which includes an event-based
language, the use of XML, a graphical approach and finally trust policy specification.

2.3.1 SPL

The security policy language (SPL) [Ribeiro, Zuquete et al. 2001a] is an event-driven policy language that
supports access-control, history-based and obligation-based policies. SPL is implemented by an event
monitor that, for each event, decides whether to allow, disallow or ignore the event. Events in SPL are
synonymous with action calls on target objects, and can be queried to determine the subject who initiated the
event, the target on which the event is called, and attribute values of the subject, target and the event itself.
SPL supports two types of sets to group the objects on which policies apply: groups and categories. Groups
are sets defined by explicit insertion and removal of their elements, and categories are sets defined by
classification of entities according to their properties. The building blocks of policies in SPL are constraint
rules which can be composed using a specific tri-value algebra with three logic operators: and, or and not. A
simple constraint rule is comprised of two logical binary expressions, one to establish the domain of
applicability and another to decide on the acceptability of the event. The following extract from [Ribeiro,
Zuquete et al. 2001a] shows examples of simple rules and their composition. Note that conflicts between
positive and negative authorisation policies are avoided by using the tri-value algebra to prioritise policies
when they are combined as demonstrated by the last composite rule of the example. The keyword ce in the
examples is used to refer to the current event.

// Every event on an object owned by the author of the event is allowed
OwnerRule: ce.target.owner = ce.author :: true;

// Payment order approvals cannot be done by the owner of payment order
DutySep: ce.target.type = "paymentOrder" & ce.action.name = "approve"

:: ce.author != ce.target.owner;

// Implicit deny rule.
deny: true :: false;

// Simple rule conjunction, with default deny value
OwnerRule AND DutySep OR deny;

// DutySep has a higher priority then OwnerRule
DutySep OR (DutySep AND OwnerRule);

SPL defines two abstract sets called PastEvents and FutureEvents to specify history-based policies and a
restricted form of obligation policy. The type of obligation supported by SPL is a conditional form of
obligation, which is triggered by a pre-condition event:

Principal_O must do Action_O if Principal_T has done Action_T

Since the above is not enforceable, they transform it into a policy with a dependency on a future event as
shown below, which can be supported in a way similar to that of history-based policies:

Principal_T cannot do Action_T if Principal_O will not do Action_O

SPL obligations are thus additional constraints on the access control system, which can be enforced by
security monitors [Ribeiro, Zuquete et al. 2001b], and not obligations for managers or agents to execute
specific actions on the occurrence of system events, independent of the access control system.

The notion of a policy is used in SPL to group set definitions and rules together to specify security policies
that can be parameterised; policies are defined as classes that allow parameterised instantiation. Instantiation
of a policy in SPL also means activation of the policy instance, so no control over the policy life cycle is
provided. Further re-use of specifications is supported through inheritance between policies. A policy can
inherit the specifications of another policy and override certain rules or sets. Policy constructs can also be
used to model roles, in which case sets in the policy specify the users allowed to play the role and those
playing the role. Rules or other nested policies inside a role policy specify the access rights associated with
the role. SPL provides the ability to hierarchically compose policies by instantiating them inside other
policies, thus enabling the specification of libraries of common security policies that can be used as building
blocks for more complex policies. The authors claim that this hierarchical composition also helps restrict the

20/08/02 - 11 - FOR REVIEW

scope of conflicts between policies, however this is not clear, as there may be conflicts across policy
hierarchies. Note that SPL does not cater for specification of delegation of access rights between subjects,
and there is no explicit support for specifying roles. The following example from [Ribeiro, Zuquete et al.
2001a] defines an InvoiceManagement policy, which allows members of the clerks team to access objects of
type invoice. The actual policy that permits the access is specified as ACL separately and instantiated within
InvoiceManagement using the keyword new:

policy InvoiceManagement
{
 // Clerks would usually be a role but for simplicity here it is a group
 team clerks ;

 // Invoices are all object of type invoice
 collection invoices =
 AllObjects@{ .doctype = "invoice" };

 // In this simple policy clerks can perform every action on invoices
 DoInvoices: new ACL(clerks, invoices, AllActions);
 ?usingACL: DoInvoices;
}

2.3.2 XACML

XACML [OASIS 2001] is an XML specification for expressing policies for information access over the
Internet and is being defined by the Organisation for the Advancement of Structured Information Standards
(OASIS) technical committee (entirely unrelated to the Oasis work at Cambridge described in section 2.2.1).
The language permits access control rules to be defined for securely browsing XML documents that can
update individual document elements. Similar to existing policy languages, XACML is used to specify a
subject-target-action-condition oriented policy in the context of a particular XML document. The notion of
subject comprises identity, group, and role and the granularity of target objects is as fine as single elements
within the document. The language supports roles, which are the same as groups, and are defined as
collections of attributes relevant to a principal. XACML includes conditional authorisation policies, as well
as policies with external post-conditions to specify actions that must be executed prior to permitting an
access. e.g. “A physician may read any record and write any medical element for which he or she is the
designated primary care physician, provided an email notice is sent to the patient or the parent/guardian, in
case the patient is under 16”. An example of a policy specified in XACML is shown below:

<?xml version="1.0" encoding="UTF-8"?>
<applicablePolicy
xmlns="http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:rec="medico.com/record"
xmlns:saml="hhtp://www.oasis-open.org/committees/security/docs/draft-sstc-schema-assertion-22"
xsi:schemaLocation=
 "http://www.oasis-open.org/committees/accessControl/docs/draft-actc-schema-policy-08.xsd"
majorVersion="0" minorVersion="8" issuer="medico.com"
policyName="researchers may read medical elements and the patient's date of birth and gender"
issueInstant="2002-01--8">
<!-- -->
 <target
 resourceClassification="medico.com/record/medical.*"
 resourceClassificationTransform="http://www.oasis-open.org/committees/
 accessControl/docs/transforms/regularExpression">
 read
 </target>
 <target
 resourceClassification="medico.com/record/patient/patientDoB.*"
 resourceClassificationTransform="http://www.oasis-open.org/committees/
 accessControl/docs/transforms/regularExpression">
 read
 </target>
 <target
 resourceClassification="medico.com/record/patient/patient/gender.*"
 resourceClassificationTransform="http://www.oasis-open.org/committees/
 accessControl/docs/transforms/regularExpression">
 read
 </target>
 <policy>
 <equal>
 <valueRef attributeName="rec:role"/>
 <value xsi:type="string">researcher</value>
 </equal>
 </policy>
</applicablePolicy>

20/08/02 - 12 - FOR REVIEW

The above policy assumes an XML schema to describe medical records, and specifies that a researcher may
read a medical element and the patient’s date of birth and gender. The main advantage of XML is that it is a
widely adopted standard with browsers to display and edit the policy specification. Although XACML
supports a fine granularity of access control specification, the policy is rather verbose and not really aimed at
human interpretation. In addition, the language model does not include a way of grouping policies. Note that
XACML is intended to be used in conjunction with SAML (security assertion and markup language)
assertions and messages, and can thus also be applied to certificate-based authorisations. We discuss
certificate-based authorisations in the following section. The work on XACML includes an architecture for
enforcing policies which extends the IETF policy architecture described in Section 3.1

2.3.3 LaSCO

LaSCO [Hoagland, Pandey et al. 1998] is a graphical approach for specifying security constraints on
objects, in which a policy consists of two parts: the domain (assumptions about the system) and the
requirement (what is allowed assuming the domain is satisfied). Policies defined in LaSCO have the
appearance of conditional statements used to express authorisations between objects in the system and are
stated as policy graphs. A policy graph is an annotated directed graph where the annotations are domain and
requirement predicates. Nodes in the policy graph represent the sort of objects described by the associated
domain predicate. Collectively, the nodes, edges, and domain predicates form the domain of a policy graph.
The domain describes when the policy is in effect, i.e. when it applies. The other part of the policy graph is
the requirement, which consists of the requirement predicates on each of the nodes and edges. A node
requirement predicate is an expression that must be met on the object and constitutes an authorisation policy.
LaSCO cannot specify any form of obligation policies, and there is no way of composing policies or
specifying policies for groups of objects apart from those defined for classes of objects. This makes the
scope of this approach very limited to satisfy the requirements of security management. In addition graphs
are often used in conjunction with a textual version to specify details not easily expressed in the graphical
format. In LaSCO this is lacking making the language difficult to use and further restricting its
expressiveness. Note however, that a graphical approach to specifying policies is attractive for human users,
and is thus an interesting future research direction.

2.3.4 Trust Specification

Applications such as e-commerce and other Internet-enabled services require connectivity between entities
that do not know each other. In such situations, the traditional assumptions for establishing and enforcing
access control do not hold; subjects of requests can be remote, previously unknown users, making the
separation between authentication and access control difficult. A possible solution to this problem is the use
of digital certificates or credentials representing statements certified by trusted entities, which can be used to
establish properties of their holder (e.g. identity, accreditation). Access control makes the decision of
whether or not a party can execute an access based on properties that the party may have, and can prove by
presenting one or more certificates. Such an approach is often called certificate-based authorisation and is
adopted for the specification of trust. Trust management frameworks combine authentication with
authorisation [Grandison and Sloman 2000] and are used for applications such as web based labelling, signed
email, active networks and e-commerce.

In [Blaze, Feigenbaum et al. 1998; Blaze, Feigenbaum et al. 1999], two trust management applications are
presented: the PolicyMaker and its successor KeyNote. Both of these applications are used to answer signed
queries of the form “does a set of requested actions r, supported by credential set C, comply with policy P?”,
where the credentials can be public key certificates with anonymous identity. Both policies and credentials
are predicates specified as simple C-like and regular expressions. In this context a policy is a trust assertion
that is made by the local system and is unconditionally trusted by the system. Although trust management
systems provide an interesting framework for reasoning about trust between unknown parties, assigning
authorisations to keys may result in authorisations that are difficult to manage [Samarati and Vimercati
2000]. In addition, providing a common solution to both authentication and access control makes the system
more complex.

The trust policy language (TPL) by IBM [Herzberg, Mass et al. 2000] provides a clearer separation
between the authentication of subjects based on certificates and the assignment of authorisations to those
subjects which have been successfully authenticated. With TPL, the credentials result in a client being

20/08/02 - 13 - FOR REVIEW

assigned to a role which specifies what the client is permitted to do, where a role is a group of entities that
can represent specific organisational units (e.g. employees, managers, auditors). The assignment of access
rights to roles is outside the scope of TPL; the philosophy of the work on TPL is to extend role-based access
control mechanisms by mapping unknown users to well defined roles. Although the certificate is intended to
be format-independent, the current implementation of the system uses X.509v3 certificates, and defines the
language in XML, which makes the syntax rather verbose. Note that unlike KeyNote, TPL permits negative
certificates interpreted as suggestions not to trust a user or not to assign a user to a given role. The following
example is taken from [Grandison and Sloman 2000] to demonstrate the use of TPL. In summary, the policy
states that a customer of a retailer company is an employee of a department of a partner company. The first
group defined is the originating retailer. Then, it is stated that entities having partner certificates, signed by
the original retailer, are placed in the group partners. The group department is defined as any user having a
partner certificate signed by the partners group. Finally, the customer group consists of anyone that has an
employee certificate signed by a member of the departments group who has a rank greater than 3.

<POLICY>
 <GROUP NAME=”self”> </GROUP>
 <GROUP NAME=”partners”>
 <RULE>
 <INCLUSION ID=”partner” TYPE=”partner” FROM “self”></INCLUSION>
 </RULE>
 </GROUP>
 <GROUP NAME=”departments”>
 <RULE>
 <INCLUSION ID=”partner” TYPE=”partner” FROM=”partners”></INCLUSION>
 </RULE>
 </GROUP>
 <GROUP NAME=”customers”>
 <RULE>
 <INCLUSION ID=”customer” TYPE=”employee” FROM=”departments”></INCLUSION>
 <FUNCTION>
 <GT>
 <FIELD ID=”customer” NAME=”rank”></FIELD>
 <CONST>3</CONST>
 </GT>
 </FUNCTION>
 </RULE>
 </GROUP>
</POLICY>

3 Management Policy
There has been considerable recent interest in using policies for specifying dynamically adaptable
management strategies that can be easily modified to change the management approach without recoding the
management system. Most of the policy-based management approaches use condition-action rules, either
with or without event triggering, although some also use interpreted scripting languages. We describe these
various approaches in this section.

3.1 IETF/DMTF Policy Core Information Model

The area of network policy specification has recently seen a lot of attention both from the research and the
commercial communities. Network policy is the rules that define the relationship between clients using
network resources and the network elements that provide those resources. The main interest in network
policies is to manage and control the quality of service (QoS) experienced by networked applications and
users, by configuring network elements using policy rules. The most notable work in this area is the Internet
Engineering Task Force (IETF) policy model, which considers policies as rules that specify actions to be
performed in response to defined conditions:

if <condition(s)> then <action(s)>

The condition-part of the rule can be a simple or compound expression specified in either conjunctive or
disjunctive normal form. The action-part of the rule can be a set of actions that must be executed when the
conditions are true. Although this type of policy rule prescribes similar semantics to an obligation of the
form event-condition-action, there is no explicit event specification to trigger the execution of the actions.
Instead it is assumed that an implicit event such as a particular traffic flow, or a user request will trigger the
policy rule. The IETF approach does not have an explicit specification of authorisation policy, but simple
admission control policies can be specified by using an action to either allow or deny a message or request to
be forwarded if the condition of the policy rule is satisfied. The following are simple examples of the types

20/08/02 - 14 - FOR REVIEW

of rules administrators may want to specify. The first rule assures the bandwidth between two servers that
share a database, directory and other information. The second rule gives high priority to multicast traffic for
the corporate management sub-network on Monday nights from 6:00pm to 11:00pm, for important (sports)
broadcasts:

if ((sourceIPAdress = 192.168.12.17 AND destinationIPAdress = 192.168.24.8) OR
 (sourceIPAdress = 192.168.24.8 AND destinationIPAdress = 192.168.12.17)) then
 set Rate := 400Kbps

if ((sourceIPSubnet = 224.0.0.0/240.0.0.0) AND (timeOfDay = 1800-2300) AND
 (dayofweek = Monday)) then
 set Priority := 5

The IETF do not define a specific language to express network policies but rather a generic object-oriented
information model for representing policy information following the rule-based approach described above,
and early attempts at defining a language [Strassner and Ellesson 1998] have been abandoned. The policy
core information model (PCIM) [Moore, Ellesson et al. 2001] extends the common information model
(CIM) [DMTF 1999a] defined by the DMTF with classes to represent policy information. The CIM defines
generic objects such as managed system elements, logical and physical elements, systems, service, users, etc,
and provides abstractions and representations of the entities involved in a managed environment including
their properties, operation and relationships. The information model defines how to represent managed
objects and policies in a system but does not solve the problem of actually specifying policies. Apart from
the PCIM, the IETF are defining an information model to represent policies that administer, manage, and
control access to network QoS resources for integrated and differentiated services [Snir, Ramberg et al.
2001]. The philosophy of the IETF is that business policies expressed in high-level languages, combined
with the network topology and the QoS methodology to be followed, will be refined to the policy
information model, which can then be mapped to a number of different network device configurations.
Vendors following the IETF approach are using graphical tools to specify policy in a tabular format and
automate the translation to PCIM. We provide an overview of commercial tools in Section 7.

Figure 1 shows the classes defined in the PCIM and their main associations. Policy rules can be grouped into
nested policy groups to define policies that are related in any application specific way, although no
mechanism exists for parameterising rules or policy groups. Note that both the actions and conditions can be
stored separately in a policy repository and reused in many policy rules. A special type of condition is the
time-period over which the policy is valid. The PolicyTimePeriodCondition class covers a very complex
specification of time constraints.

Policy rules can be associated with a priority value to resolve conflicts between rules. This approach is not
scalable in large networks with a large number of rules specified by a number of different administrators. In
addition policy rules can be tagged with one or more roles. A role represents a functional characteristic or
capability of a resource to which policies are applied, such as backbone interface, frame relay interface,
BGP-capable router, web-server, firewall, etc. The use of role labels is essentially used as a mechanism for
associating policies with the network elements to which the policies apply.

20/08/02 - 15 - FOR REVIEW

PolicyTimePeriodCondition

PolicyCondition (ABSTRACT)

PolicyRule

PolicyAction (ABSTRACT)

PolicyGroup

VendorPolicyCondition VendorPolicyAction

Policy (ABSTRACT)
System

(from Core)

AdminDomain
(from Core)

PolicyRepository

0..1 0..1

ManagedElement
(from Core)

PolicyInSystem
*

0..1

* *

*

*

* *

*
*

*

*

Figure 1: IETF policy core information model

An advantage of the information modelling approach followed by the IETF is that the model can be easily
mapped to structured specifications such as XML, which can then be used for policy analysis as well as
distribution of policies across networks. The mapping of CIM to XML is already undertaken within the
DMTF [DMTF 1999b]. The IETF define a mapping of the PCIM to a form that can be implemented in a
directory that uses LDAP as its access protocol [Strassner, Ellesson et al. 2002].

Other approaches to network policy specification try to extend the IETF rule-based approach to specify
traffic control using a concrete language. An example is the path-based policy language (PPL) from the
Naval postgraduate school described in [Stone, Lundy et al. 2001]. The language is designed to support both
the differentiated as well as the integrated services model and is based on the idea of providing better control
over the traffic in a network by constraining the path (i.e. the links) the traffic must take. The rules of the
language have the following format:

policyID <userID> @{paths} {target} {conditions} [{action_item}]
action_item = [{condition}:] {actions}

Action_items in a PPL rule correspond to the if-condition-then-action rule of the IETF approach. The
informal semantics of the rule is: “policyID created by <userID> dictates that target class of traffic may use
paths only if {conditions} is true after action_items are performed”. The following are examples of PPL
rules from [Stone, Lundy et al. 2001]:

Policy1 <net_manager> @ {<1,2,5>} {class = {faculty}} {*} {priority := 1}
Policy2 <Betty> @ {<1,*,5>} {traffic_class = {accounting}} {day != Friday : priority := 5}

Policy1 states that the path starting at node 1, traversing to node 2, and ending at node 5 will provide high
priority for faculty users. Policy2 uses the wild-card character to specify a partial path. It states that, on all
paths from node 1 to node 5, accounting class traffic will be lowered to priority 5 unless it is a Friday. In this
policy the action_items field is used with temporal information to influence the priority of a class of traffic.

Note that the use of the userID is not needed in the specification of the rules, and unnecessarily complicates
the grammar. The ID of the creator of a policy, as well as information such as the time of the creation, or

20/08/02 - 16 - FOR REVIEW

other priority labels attached to a rule are better specified as meta-information that could be used for policy
analysis. PPL does not provide any way of composing policies in groups, and there is no use of roles.

3.2 Policy Description Language (PDL)

The policy description language (PDL) is an event-based language from Bell-Labs [Lobo, Bhatia et al.
1999] in which they use the event-condition-action rule paradigm of active databases to define a policy as a
function that maps a series of events into a set of actions. The language can be described as a real-time
specialised production rule system to define policies. The syntax of PDL is simple and policies are described
by a collection of two types of expressions: policy rules and policy defined event propositions. Policy rules
are expressions of the form:

event causes action if condition

Which reads: If the event occurs under the condition the action is executed. Policy defined event propositions
are expressions of the form:

event triggers policy-defined-event if condition

Which reads: If the event occurs under the condition, the policy-defined-event is triggered.

Events can be primitive or complex, and there are two types of primitive events: policy defined events,
which are only generated by policy defined event propositions, and system events, which are generated by
the environment. Primitive event classes can define attributes, and instances of the classes take actual values
for those attributes that can be referenced by other events, actions or conditions within the same rule.
Primitive events can be composed to form complex events that enable policies to be enforced under any of
the following situations:

• If two events e1 and e2 occur simultaneously.
• If an event e does not occur.
• If an event e2 immediately follows an event e1.
• If an event e2 occurs after an event e1.

The following example from [Kohli and Lobo 1999] makes use of some of the different features of the
language to define a policy for a service provider network which rejects call requests when there is an
excessive number of network signalling timeouts over the calls made (i.e. overload state) until the time-out
rate goes down to a reasonable number. The policy has three policy defined event propositions and one
policy rule proposition.

Events: normal_mode: policy defined event, restricted_mode : policy defined event
 call_made: system event, time_out: system event, power_on: system event

Actions: restrict_calls, accept_all_calls

Policy description:
// when the system starts the primitive event normal_mode is triggered. i.e. the
// system starts in normal mode
power_on triggers normal_mode

// when in normal_mode, a sequence of call_made or time_out events will trigger
// restrict_mode if the overload threshold is exceeded. t is the overload ratio
// of signalling timeouts over the calls made. The ^ sign denotes a sequence of
// zero or more events.
 normal_mode, ^(call_made | time_out) triggers restricted_mode

if Count(time_out) > t*Count(call_made)

 restricted_mode causes restrict_calls

// when in overlaod mode, a sequence of call_made or time_out events will
// trigger normal_mode if the normal threshold is exceeded. t’ is considered to // be a
reasonable timeout rate
 restricted_mode, ^(call_made | time_out) triggers normal_mode

 if Count(time_out) < t’*Count(call_made)

// Assumes only one callMade or timeOut event per epoch
 normal_mode causes accept_all_calls

Despite its expressiveness, PDL does not support access control policies, nor does it support the composition
of policy rules into roles, or other grouping structures. The language has clearly defined semantics and an

20/08/02 - 17 - FOR REVIEW

architecture has been specified for enforcing PDL policies. Work on conflict resolution for policies written in
PDL is described in [Chomicki, Lobo et al. 2000], and extensions to the language to specify workflows for
network management can be found in [Kohli and Lobo 1999]. The language has been used to program
Lucent switching products [Virmani, Lobo et al. 2000] and proves to be powerful in a variety of network
operations and management scenarios.

3.3 Configuration Management

Policy-based management is also applied to configuration management and builds on monitoring software to
enable automation of network and system administration through the event-condition-action paradigm;
policy-based configuration languages associate the occurrence of specified events or conditions, with
responses to be carried out by an agent. Cfengine is a language-based administration system targeted
primarily at Unix, and to a lesser extent Windows, operating systems connected via a TCP/IP network
[Burgess 1995]. Cfengine grew out of the need to replace complex shell scripts used for the automation of
administration tasks on Unix systems and allows the creation of single, central configuration files which
describe how every host on the network should be configured. It uses the idea of classes to group hosts and
dissect a distributed environment into overlapping sets. Host-classes are essentially labels which document
the attributes of different systems. The following classes are meaningful in the context of a particular host:
(i) the identity of the machine, including hostname, address, network, (ii) the operating system and
architecture of the host (iii) an abstract user-defined group to which the host belongs (iv) the result of any
proposition about the system, including the time or date. Policies are specified for classes of hosts and define
a sequence of actions regarding the configuration of a host. The following example demonstrates the use of
the language for configuration management [Burgess 2001]:

files:
 (linux|solaris).Hr12.OnTheHour.!exception_host::
 /etc/passwd mode=0644 action=fixall inform=true

The first line simply defines the name files for the action. The second line identifies the class of hosts for
which the action is to be executed, followed by the actual command. The command-line specifies that the
cfengine agent, which is always the subject of the policy, must search for all password files with an invalid
mode, fix them, and inform the administrator. The class membership expression specifies all hosts which are
of type linux or solaris, during the time interval from 12:00am to 12:59am, apart from a host labelled with
the class exception_host. The second line identifies the target of the policy, i.e. all the hosts falling within the
classification, the condition for execution of the policy, which is a time interval, and a trigger which specifies
that the action must be executed on the hour. Policies are stored in a central repository, accessible to every
host, and an active cfengine agent on each host executes the policies which apply only to that host.

Cfengine is a powerful and concise declarative scripting language, suitable for system administrators to
automates common administrative tasks on Unix systems. However, it cannot be used to specify
authorisation policies and lacks support for object oriented concepts such as inheritance and parameterised
instantiation. Its creators admit the need for extensions to enable enterprise-level policy specification
[Burgess and Sandnes 2001].

Others, focus on the specification of policies using the full power of a general purpose scripting or
interpreted language (eg. TCL or Java) which can be loaded into network components or agents to
implement policies. Such approaches are often leveraging the mechanisms in the area of active networks
[Tennenhouse, Smith et al. 1997] to enable the control of resources at a very low level. For example Bos et
al. [Bos 1999] use C-programs to specify application policies for resource management in netlets, which are
small virtual networks within a larger virtual network. In general for all of these approaches, the security
concerns are increased, and malicious or improperly tested code can potentially damage the network. In
addition, it is difficult to determine whether two computer programs specifying two different policies are
contradictory or conflict with each other in any way. A comparison of different approaches to implementing
policies as scripts can be found in [Martinez et. al. 2002].

20/08/02 - 18 - FOR REVIEW

4 Enterprise and Collaboration Policy

4.1 Open Distributed Programming Reference Model (ODP-RM)

The group working on the International Standards Organisation (ISO) Open Distributed Programming
Reference model (ODP-RM) are defining an enterprise language as part of the RM-ODP Enterprise
Viewpoint [ISO/IEC 1999], which incorporates concepts such as policies and roles within a community. A
community in RM-ODP terminology is defined as a configuration of objects formed to meet an objective.
The objective is expressed as a contract, which specifies how the objective can be met, and a configuration is
a collection of objects with defined relationships between them. The community is defined in terms of the
following elements:

• The enterprise objects comprising the community,
• The roles fulfilled by each of those objects and the relationships between them,
• The policies governing the interactions between enterprise objects fulfilling roles,
• The policies governing the creation, usage and deletion of resources,
• The policies governing the configuration of enterprise objects and assignment of roles to enterprise

objects,
• The policies relating to the environment contract governing the system.

Policies constrain the behaviour of enterprise objects that fulfil actor roles in communities and are designed
to meet the objective of the community. Policy specifications define what behaviour is allowed or not
allowed and often contain prescriptions of what to do when a rule is violated. Policies in the ODP enterprise
language thus cover the concepts of obligation, permission and prohibition.

The ODP enterprise language is really a set of abstract concepts rather than a language that can be used to
specify enterprise policies and roles. Recently, there have been a number of attempts to define precise
languages that implement the abstract concepts of the enterprise language. These approaches concentrate on
using UML to graphically depict the static structure of the enterprise viewpoint language as exemplified by
[Steen and Derrick 2000] (see Figure 2), as well as languages to express policies based on those UML
models. Steen et al. [Steen and Derrick 1999; Steen and Derrick 2000] propose a language to support the
enterprise viewpoint where policy statements are specified using the grammar shown below. Each statement
applies to a role, the subject of the policy, and represents either a permission, an obligation or a prohibition
for that role. The grammar of the language is concise, however it does not allow composition of policies or
constraints for groups of policies. Constraints cannot be specified to restrict the activation/deactivation of
roles or the assignment of users and permissions in roles. Note that the Object Constraint Language (OCL)
[OMG 1999b] is used to express the logical conditions in the before-, if- and where- clauses defined in the
grammar.

Figure 2: A UML meta-model of the enterprise viewpoint language

20/08/02 - 19 - FOR REVIEW

[R?] A <role> is (permitted obliged forbidden) to (do <action> [before <condition>]
satisfy <condition>)[, if <condition>][, where <condition>][, otherwise see <number>].

The authors specify the semantics of the policy language by translating it to Object-Z, an object-oriented
extension of the specification language Z. The following examples from [Steen and Derrick 2000]
demonstrate the use of the proposed language.

[R1] A Borrower is permitted to do Borrow(item:Item), if(fines < 5*pound).
[R2] A UGBorrower is forbidden to do Borrow(item:Item), where item.isKindOf(Periodical).
[R3] A Borrower is obliged to do Return(item:Item) before (today > dueDate),

 if (loans→exists(loan loan.item = item)),
 where (dueDate = loans→select(loan loan.item = item).dueDate),
 otherwise see R4.

Policy statements R1 and R2 specify a permission and a prohibition respectively. R1 permits a member of the
Borrower role to borrow an item if the fines of that borrower are less than 5 pounds. R2, forbids an
undergraduate student belonging to the UGBorrower role to borrow periodicals. R3 is an obligation
specifying that a borrower must return an item by the dueDate of that item. R3 is conditional upon the item
to be returned actually being on loan to the borrower, as specified by the if-clause. The where-clause
constrains the logic variable dueDate to be equal to the dueDate of the loan in question, and the before-
clause contains a condition upon which the obligation should have been fulfilled. Obligations do not contain
explicit specifications of the events upon which the actions must be executed, which make their
implementation difficult. Note that the otherwise-clause is an exception mechanism that indicates what will
happen when the obligation is violated. The actions to be executed on a violation are specified in another
policy (R4).

4.2 Law-Governed Interaction (LGI)
Another approach to defining policies for a distributed heterogeneous system is the proposal for Law-
Governed Interaction presented in [Minsky 1991]. The motivation for this work is to provide a framework
for managing the interactions between agents distributed across the network by controlling the flow of
messages between these agents. In order to define the message delivery policy rules, referred to as laws in
this approach, are specified using a simple Prolog notation. These rules are then interpreted by trusted
agents, called controllers, that act as proxies for every agent in the system.

In the LGI approach, the enforcement of the law is triggered by the occurrence of events that are specified as
part of each law. Known as controlled events, these could occur at any point in time and the system
described in the literature does not assume any a priori knowledge of how events may be generated by the
systems. A law is defined as a prescription for the behaviour of the system when it is in a given state, known
as the control-state, and a controlled-event occurs. This prescription for the behaviour of the system, referred
to as the ruling of the law, is denoted by the sequence of primitive operations that must be performed when
the law is enforced.

A law is specified with a set of rules that define the final ruling upon the occurrence of particular events in a
given state. The LGI approach specifies a do(…) operation that is used to add primitive operations to the final
ruling of the law. The following primitive operations and controlled-events are specified in the literature.

• sent(x, m, y): this event occurs when agent x, sends a message m, to agent y.
• forward(x, m, y): this operation is performed when the law being enforced by agent x rules that

message m should be sent to agent y.
• arrived(x, m, y): this event occurs when message m, sent by agent x, arrives at agent y.
• deliver(x, m, y): this operation is performed when the law being enforced by agent y rules that the

message m, sent by agent x, should be delivered to agent y.

Of course this set can be extended to suit the particular domain in which LGI is being applied. As an
example, consider a simplified token ring protocol law specification presented in [Minsky 1991]. As shown
in Figure 3 the set of primitive operations is extended to include recant(token), which causes the agent to
clear the token property from its control state; and set(token), which adds the token to the control state of
the agent. Additionally, a predicate next(D) is used which is defined to hold when D is the next agent in the
ring. Note that the @ symbol is used to indicate that the predicate is to be evaluated with respect to the
control state of the agent.

20/08/02 - 20 - FOR REVIEW

R1: sent(S,M,r) :- token@,do(forward(S,M,r)).

{To send a message to r a node must have the term token in its cState)

R2: arrived(S,M,r) :- do(deliver(t4)).

{Any message that arrives at r is delivered.}

R3: sent(S,yourTurn,D) :- token@, next(D)@,
 do(recant(token)),
 do(forward(S,yourTurn,D)).

{The owner of the token can give it up by sending the yourTurn message to the next object on the ring}

R4: arrived(S,yourTurn,D) :- do(set(token)),
 do(deliver(memo(yourTurn)).

{When the yourTurn message arrives at an object, the token is added to it, and an appropriate memo is
delivered.}

Figure 3: Law specification for a token ring protocol [Minsky 1991]

In this specification, R1 states that if the forward(…) operation is added to the ruling and the token is present
in the control state of the agent, the sent(…) event is generated. R2 is used to specify the policy that any
message that arrives at a recipient agent is delivered. R3 specifies that in order for the yourTurn message to
be sent(…), the destination D must be the next node in the ring, the current agent must have the token and the
law must prescribe that the agent recant(…) the token and forward(…) the yourTurn message. Finally, R4
specifies that the arrived(…) event is generated once the token is set(…) into the control state of the
recipient agent and the deliver(yourTurn) operation has been added to the ruling of the law.

In this approach, permissions and prohibition are specified as a set of rules that are similar to positive and
negative authorisations. Additionally, the approach supports a common global set of constraints, similar to
obligation policies, which are implemented by means of filters in every node that check that all interactions
are consistent with a global law [Minsky and Pal 1997]. There are other examples of the use of LGI systems
to specify business rules in electronic commerce applications [Ungureanu and Minsky 2000] and to support
the provision of security policies in heterogeneous systems [Ungureanu and Minsky 1998].

4.3 Event-Trigger-Rules
Work done at the University of Florida presents a specification scheme similar to the ECA rule based
approaches already discussed here, with some key differences [Su, Lam et al. 2001]. The development of
this approach, called Event-Trigger-Rule (ETR) paradigm, is motivated by the need for rule based processing
capabilities in the distributed environment of electronic commerce enterprises [Su, Lam et al. 2001].

The ETR paradigm is a generalisation of the ECA approach where the event specification and conditions and
actions of the rule are specified as separate entities. Specifying a trigger then associates the event and rule
together into a policy. This is in contrast to the ECA rule specification approach, where the event
specification, associated conditions and actions be combined into a single rule.

In the ETR approach, events can be classified into 3 types – method associated events, explicit events and
timer events. Method events are associated with a particular method invocation and can be raised either
before, after or on-commit of the method. This distinction is referred to as the coupling mode of the event.
Each of these coupling modes raises synchronous events that will cause a rule to be evaluated before
execution of the program continues. Additional coupling modes are instead-of (raises a synchronous event
that allows the rule to replace the method invocation) and decoupled (raises an asynchronous event).
Explicit events are those raised by the application during execution and timer events are those associated
with a particular time of interest. Figure 4 illustrates a method associated event specification.

 IN InventoryManager
 EVENT update_quantity_event(String item, int quantity)
 TYPE METHOD
COUPLING_MODE BEFORE
 OPERATION UpdateQuantity(String item, int quantity)

Figure 4: Specification of a method-associated event
A rule specifies some operations that should be performed if certain conditions apply. The conditional part
of an ETR rule is defined as a guarded expression, where the guard is used to control evaluation of the
conditional expression. This allows the entire rule to be skipped if any part of the guard expression
evaluated to false, thus avoiding potential exception conditions (e.g. if required variables are not initialised).
Additionally, the rule specifies an action block (cf. a ‘then’ block) and an alternative action block (cf. an
‘else’ block). The complete syntax of a rule specification is presented in Figure 5.

20/08/02 - 21 - FOR REVIEW

 RULE rule_name(parameter list)
[RETURNS return_type]
[DESCRIPTION description_text]
[TYPE DYNAMIC/STATIC]
[STATE ACTIVE/SUSPENDED]
[RULEVAR rule variable declarations]
[CONDITION guarded expression]
[ACTION operation block]
[ALTACTION operation block]
[EXCEPTION exception and handling block]

Figure 5: Syntax of the rule specification
When specifying a rule, it is possible to define local variables using the RULEVAR clause and also handle errors
using the EXCEPTION clause. The STATE clause specifies if the rule will be active or suspended after its
definition. A suspended rule will not be triggered until it is made active. The specification syntax also
provides optimisation hints to the runtime environment using the TYPE clause. A dynamic rule can be
changed at runtime whereas a static rule is less likely to be changed. This information is used when
generating the runtime representation of the rule to provide optimal performance.

The final component of the ETR approach is the trigger. Triggers are used to specify which event(s) causes
the processing of a particular rule. Figure 6 illustrates the syntax of a trigger.

 TRIGGER trigger_name(parameter list)
 TRIGGEREVENT set of event connected by OR
[EVENTHISTORY event expression]
 RULESTRUC set of rules
[RETURNS return_type: rule_in_RULESTRUC]

Figure 6: Syntax of the trigger specification
The TRIGGEREVENT clause is used to specify the set of events, combined using an OR connective, that will cause
the rule(s) specified in RULESTRUC to be evaluated. The event specification can be augmented using the
EVENTHISTORY clause to define other event expressions that need to have occurred prior to the one defined in
the TRIGGEREVENT clause. When specifying the rules to be triggered in the RULESTRUC clause, it is possible to
combine several rules using one of 4 constructs: sequential (rules are triggered one after the other), parallel
(rules are triggered concurrently), AND-synchronised (all members of a set of rules must complete evaluation
before another, specified, rule is triggered), and OR-synchronised (any two members of a set of rules must
complete evaluation before another, specified, rule is triggered).

The literature that discusses the ETR approach presents many applications of this technique. These include
the development of a knowledge management network [Lee 2000] and in a dynamic business process
management service described in [Su, Lam et al. 2001].

Based on its similarity to the ECA rule approaches like PDL, it is easy to see how the ETR approach could
be used to specify obligation policies in a distributed system. However, because of the manner in which
events are defined and the ability to associate them to method invocations, it is also possible to specify
authorisation policies, albeit less succinctly, using this notation. Additionally, by separating the event
specifications from the rules, the ETR approach allows the user to reuse the events in multiple triggers and
thus associate them with different rules as necessary. Despite the ability to specify different types of policy,
and reuse parts of the specification in multiple rules, this approach does not support other useful features like
policy extension (defining policies that inherit features from some parent policy) or policy groupings
(organising policies that relate to the same activity together).

We now describe a language that combines many of the concepts of both security and management policy
specification within a framework that supports object-oriented reuse, as well as role-based management.

20/08/02 - 22 - FOR REVIEW

5 Ponder
The Ponder language for specifying Management and Security policies [Damianou, Dulay et al. 2001]
evolved out of work on policy management at Imperial College over a period of about 10 years. Ponder is a
declarative, object-oriented language that can be used to specify both security and management policies.
Ponder authorisation policies can be implemented using various access control mechanisms for firewalls,
operating systems, databases and Java [Corradi, Montanari et al. 2000]. It supports obligation policies that
are event triggered condition-action rules for policy based management of networks and distributed systems.
Ponder can also be used for security management activities such as registration of users or logging and
auditing events for dealing with access to critical resources or security violations. Key concepts of the
language include domains to group the object to which policies apply, roles to group policies relating to a
position in an organisation [Lupu and Sloman 1997b], relationships to define interactions between roles and
management structures to define a configuration of roles and relationships pertaining to an organisational
unit such as a department.

5.1 Domains
Domains provide a means of grouping objects to which policies apply and can be used to partition the
objects in a large system according to geographical boundaries, object type, responsibility and authority or
for the convenience of human managers. Membership of a domain is explicit and not defined in terms of a
predicate on object attributes. A domain does not encapsulate the objects it contains but merely holds
references to objects. A domain is thus very similar in concept to a file system directory but may hold
references to any type of object, including a person. A domain, which is a member of another domain, is
called a sub-domain of the parent domain. A sub-domain is not a subset of the parent domain, in that an
object included in a sub-domain is not a direct member of the parent domain, but is an indirect member, c.f.,
a file in a sub-directory is not a direct member of a parent directory. An object or sub-domain may be a
member of multiple parent domains i.e. domains can overlap. An advantage of specifying policy scope in
terms of domains is that objects can be added and removed from the domains to which policies apply without
having to change the policies. Domains have been implemented as directories in an extended LDAP Service.

5.2 Ponder primitive policies
Authorisation policies define what activities a member of the subject domain can perform on the set of
objects in the target domain. These are essentially access control policies, to protect resources and services
from unauthorized access. A positive authorisation policy defines the actions that subjects are permitted to
perform on target objects. A negative authorisation policy specifies the actions that subjects are forbidden to
perform on target objects.

The language provides reuse by supporting the definition of policy types to which any policy element can be
passed as a formal parameter. Multiple instances can then be created and tailored for the specific
environment by passing actual parameters as shown in Figure 7.

type auth+ PolicyOpsT (subject s, target <PolicyT> t) {
 action load(), remove(), enable(), disable() ; }

inst auth+ switchPolicyOps=PolicyOpsT(/NetworkAdmins, Nregion/switches);
inst auth+ routersPolicyOps=PolicyOpsT(/QoSAdmins, /Nregion/routers);

The two policy instances created from a PolicyOpsT type allow members of /NetworkAdmins and /QoSAdmins
(subjects) to load, remove, enable or disable objects of type PolicyT within the /Nregion/switches and
/Nregion/routers domains (targets) respectively.

Figure 7: Example of Ponder authorisation policies
Policies can also be declared directly without using a type as shown in the negative authorisation policy in
Figure 8, which indicates the use of a time-based constraint to limit the applicability of the policy

20/08/02 - 23 - FOR REVIEW

inst auth– /negativeAuth/testRouters {
 subject /testEngineers/trainee ;
 action performance_test() ;
 target <routerT> /routers ;
 when time.between (“0900”, “1700”)
}

Trainee test engineers are forbidden to perform performance tests on routers between the hours of 0900 and
1700. The policy is stored within the /negativeAuth domain.

Figure 8: Direct policy declaration
Ponder also supports a number of other basic policies for specifying security policy: Information filtering
policy can be used to transform input or output parameters in an interaction. For example, a location service
might only permit access to detailed location information, such as a person is in a specific room, to users
within the department. External users can only determine whether a person is at work or not. Delegation
policy permits subjects to grant privileges, which they possess (due to an existing authorisation policy), to
grantees to perform an action on their behalf e.g., passing read rights to a printer spooler in order to print a
file. Refrain policies define the actions that subjects must refrain from performing (must not perform) on
target objects even though they may actually be permitted to perform the action. Refrain policies act as
restraints on the actions that subjects perform and are implemented by subjects. See [Damianou, Dulay et al.
2001] for more details and examples of these policies.

Obligation policies are event-triggered condition-action rules, similar to Lucent’s PDL, and define the
activities subjects (human or automated manager components) must perform on objects in the target domain.
Events can be simple, i.e. an internal timer event, or an external event notified by monitoring service
components e.g. a temperature exceeding a threshold or a component failing. Composite events can be
specified using event composition operators.

inst oblig loginFailure {
 on 3*loginfail(userid) ;
 subject s = /NRegion/SecAdmin ;
 target <userT> t = /NRegion/users ^ {userid} ;
 do t.disable() -> s.log(userid) ;
}

This policy is triggered by 3 consecutive loginfail events with the same userid. The NRegion security administrator
(SecAdmin) disables the user with userid in the /NRegion/users domain and then logs the failed userid by means
of a local operation performed in the SecAdmin object. The ‘->’ operator is used to separate a sequence of actions
in an obligation policy. Names are assigned to both the subject and the target. They can then be reused within the
policy. In this example we use them to prefix the actions in order to indicate whether the action is on the interface
of the target or local to the subject.

Figure 9: Example Ponder obligation policy

5.3 Ponder Composite Policies
Ponder composite policies facilitate policy management in large, complex enterprises. They provide the
ability to group policies and structure them to reflect organisational structure, preserve the natural way
system administrators operate or simply provide reusability of common definitions. This simplifies the task
of policy administrators.

Roles provide a semantic grouping of policies with a common subject, generally pertaining to a position
within an organisation. Ponder roles include most of the functionality of RBAC roles described in section
2.2, but include obligations. Specifying organizational policies for human managers in terms of manager
positions rather than persons permits the assignment of a new person to the manager position without re-
specifying the policies referring to the duties and authorizations of that position. A role can also specify the
policies that apply to an automated component acting as a subject in the system e.g. a security manager
agent. Organisational positions can be represented as domains and we consider a role to be the set of
authorisation, obligation, refrain and delegation policies with the subject domain of the role as their subject.
A role is just a group of policies in which all the policies have the same subject, which is defined implicitly,
as shown in Figure 10.

20/08/02 - 24 - FOR REVIEW

type role ServiceEngineer (CallsDB callsDb) {
 inst oblig serviceComplaint {
 on customerComplaint(mobileNo) ;
 do t.checkSubscriberInfo(mobileNo, userid) ->
 t.checkPhoneCallList(mobileNo) ->
 investigate_complaint(userId);
 target t = callsDb ; // calls register }

 inst oblig deactivateAccount { . . . }
 inst auth+ serviceActionsAuth { . . . }
 // other policies
}

The role type ServiceEngineer models a service engineer role in a mobile telecommunications service. A service
engineer is responsible for responding to customer complaints and service requests. The role type is
parameterised with the calls database, a database of subscribers in the system and their calls. The obligation
policy serviceComplaint is triggered by a customerComplaint event with the mobile number of the customer given
as an event attribute. On this event, the subject of the role must execute a sequence of actions on the calls-
database in order check the information of the subscriber whose mobile-number was passed in through the
complaint event, check the phone list and then investigate the complaint. Note that the obligation policy does not
specify a subject as all policies within the role have the same implicit subject.

Figure 10: Example role policy
Managers acting in organisational positions (roles) interact with each other. A relationship groups the
policies defining the rights and duties of roles towards each other. It can also include policies related to
resources that are shared by the roles within the relationship. It thus provides an abstraction for defining
policies that are not the roles themselves but are part of the interaction between the roles. The syntax of a
relationship is very similar to that of a role but a relationship can include definitions of the roles participating
in the relationship. However roles cannot have nested role definitions. Participating roles can also be defined
as parameters within a relationship type definition as shown below.

type rel ReportingT (ProjectManagerT pm, SecretaryT secr) {
 inst oblig reportWeekly {
 on timer.day (“monday”) ;
 subject secr ;
 target pm ;
 do mailReport() ;
 }
 // . . . other policies
}

The ReportingT relationship type is specified between a ProjectManager role type and a Secretary role type. The
obligation policy reportWeekly specifies that the subject of the SecretaryT role must mail a report to the subject of
the ProjectManagerT role every Monday. The use of roles in place of subjects and targets implicitly refers to the
subject of the corresponding role.

Figure 11: Example relationship type

Many large organisations are structured into units such as branch offices, departments, and hospital wards,
which have a similar configuration of roles and policies. Ponder supports the notion of management struc-
tures to define a configuration in terms of instances of roles, relationships and nested management structures
relating to organisational units. For example a management structure type would be used to define a branch
in a bank or a department in a university and then instantiated for particular branches or departments. A
management structure is thus a composite policy containing the definition of roles, relationships and other
nested management structures as well as instances of these composite policies, has some similarity to an
Enterprise Community mentioned in section 4.1.

Figure 12 shows a simple management structure for a software development company consisting of a project
manager, software developers and a project contact secretary. Figure 13 gives the definition of the structure.

20/08/02 - 25 - FOR REVIEW

P
supervise

report

Project
manager

Software
developers

Project
contact

Figure 12: Simple management structure

type mstruct BranchT (...) {
 inst role projectManager = ProjectManagerT(…);
 role projectContact = SecretaryT(...);
 role softDeveloper = SoftDeveloperT(...);

 inst rel supervise = SupervisionT (projectManager, softDeveloper);
 rel report = ReportingT (projectContact, projectManager);
}
inst mstruct branchA = BranchT(…);
 mstruct branchB = BranchT(…);

This declares instances of the 3 roles shown in Figure 12. Two relationships govern the interactions between
these roles. A supervise relationship between the softDeveloper and the projectManager, and a reporting
relationship between the ProjectContact and the projectManager. Two instances of the BranchT type are created
for branches within the organisation that exhibit the same role-relationship requirements.

Figure 13: Software company management structure
Ponder allows specialisation of policy types, through inheritance. When a type extends another, it inherits all
of its elements, adds new elements and overrides elements with the same name. This is particularly useful
for specialisation of composite policies. For example it would be possible to define a new type of mobile
systems project manager, from a project manager role cf. Figure 10 with additional policies.

In Ponder a person can be assigned to multiple roles but rights from one role cannot be used to perform
actions relating to another role. A person can also have policies that pertain to him/her as an individual and
have nothing to do with any roles. In RBAC inheritance is based on policy instances and all policies are
defined in terms of roles. This means RBAC requires a much more complicated role structure to separate the
policies that are inherited from those that are private.

A compiler has been implemented for the Ponder language. Various backends have also been implemented
to generate firewall rules, Windows access control templates, Java security policies [Corradi, Montanari et
al. 2000] and Java obligation policy rules for interpretation by a policy agent. We also have a system to
automatically disseminate policies to the relevant agents that will interpret them i.e. to subjects for obligation
and refrain policies and access control agents for authorisation and filter policies.

6 Analysis and Refinement

6.1 Policy Analysis
Conflicts between policies can arise due to a specification containing policies that have opposite modalities,
with the same subjects and targets, but both permit and forbid the same actions. In this situation, an agent
interpreting the policies will not be able to perform an action appropriately because one policy negates the
effect of the other. For a policy-based system to work effectively, it is important to have a means of detecting
and resolving any conflicts that arise. In this section, we discuss different types of conflicts and presents
strategies for resolving them.

A classification of policy conflicts is presented in [Lupu and Sloman 1999], which discussed both modality
conflicts and application specific conflicts. Modality conflicts can be categorised into 3 distinct types:

20/08/02 - 26 - FOR REVIEW

i) Authorisation conflicts arise when a positive and a negative authorisation policy is defined for the
overlapping subjects, targets and actions.

ii) Obligation conflicts arise when one policy obliges a subject to perform a given action whilst at the
same time another policy forbids the action from being performed. In the context of Ponder, this
situation would arise if an obligation and a refrain policy were defined on overlapping subjects and
targets with identical actions.

iii) Unauthorised obligation conflicts arises when a subject is obliged to perform an action that it does
not have the authorisation to do. In a system with a default negative authorisation policy in which
actions have to be explicitly authorised, this could occur if an obligation policy is defined without an
associated authorisation policy.

Application specific conflicts are those that arise because of constraints defined for the particular application
in which the policies are being used. For example, a system that enforces the principle of separation of
duties would define a conflict if the same person who submits an expense report is also allowed to approve
it.

[Jajodia, Samarati et al. 1997] identifies that conflicts can be either static or dynamic. The distinction is that
analysing the syntax of a policy statement can identify static conflicts. These conflicts will occur
irrespective of the state of the system enforcing the policies – this is often the case for simple modality
conflicts. Dynamic conflicts are those that occur at run-time and arise because a particular state of the
system results in a conflict. These are harder to detect in advance given that it is necessary to analyse the
system in all possible states to do so.

Jajodia et al., proposes that a conflict, once detected could be handled in one of three ways. The most
obvious and simplest one is for the system to declare an error condition whenever a conflict arises.
However, this solution is not particularly interesting since it does not allow for the system to automatically
recover from the conflicting scenario. Other solutions are to allow the positive policy to override; or to let
the negative policy override. The latter strategy is adopting an approach of ‘do no harm’, based on the
assumption that the negative policy (i.e. the one that prevents an action being performed) has a more benign
effect on the system than its conflicting counterpart. As would be expected, the positive policy override
strategy is the exact converse of the negative override approach described.

In addition to the negative and positive override strategies mentioned above, [Lupu and Sloman 1999] also
identifies some alternatives. One approach suggested is to assign explicit priorities to every policy. This
way when a conflict arises the agent enforcing the policy could simply compare the priority values and
enforce the policy that has the highest priority. However, this approach could easily lead to inconsistent
behaviour of the system if, as is common in distributed systems, multiple people are responsible for defining
policies and assigning their priorities. Other strategies suggested include giving priority to the policy that is
‘closest’ to the managed object; or using the specificity of the policy definition to determine the priority.

Work done by Chomicki and Lobo [Chomicki, Lobo et al. 2000] describes how conflicts can arise between
ECA rules and action constraints defined in the policy Description Language (PDL). Here, a policy monitor
is defined to detect conflicts between the ECA rules and any action constraints. In order to resolve the
conflict, the monitor will either choose to ignore certain events, thus preventing the ECA rule from activating
and causing the conflict; or will cancel any actions that are specified in an action constraint. The latter
scenario is an example of a negative policy override strategy.

6.2 Policy Refinement
The need for policy refinement techniques have been apparent from the outset of research into policy based
systems management. [Moffet and Sloman 1993] introduces the idea of policy hierarchies and the
application of policy refinement to derive lower-level, more specific policies from high-level ones. The
motivation to refine policies can be defined as follows:

• To determine the resources that are required to satisfy the needs of the policy.
• To translate high-level policies into operational policies that can be enforced by the system.
• To allow analysis that would verify that the set of lower level policies actually meet the requirements

of the high-level policy.

20/08/02 - 27 - FOR REVIEW

[Moffet and Sloman 1993] suggests goal refinement and arbitrary refinement of objectives as possible
approaches to policy refinement. Goal refinement is a technique that has been further developed in the area
of requirements engineering. Work done by Darimont et.al. present patterns of goal refinement that allow
high-level goals to be stated in terms of a combination of lower level ones [van Lamsweerde, Darimont et al.
1995; van Lamsweerde 1996; van Lamsweerde 1999]. In this work, by specifying goals in terms of
temporal logic rules, it is demonstrated how to derive provable refinement patterns. The approach taken for
proving a given pattern is to assume that each of the sub-goals holds and then show that it is possible to infer
the truth of the base goal from the conjunction (or disjunction) of the sub-goals.

The goals are specified using a language called KAOS, which supports both a formal and informal definition
of the system. The informal definition is specified in natural language whilst the formal definition uses the
temporal logic notation introduced by [Manna and Pnueli 1992]:

X X holds in the current state
 ο X, X will hold in the next state • X, X held in the previous state
 ◊ X, X will eventually hold ♦ X, X held at some time in the past
 □ X, X will always hold in future ■ X, X always held in the past
 YU X, Y holds until X holds YW X, Y holds unless X holds

Once a refinement pattern has been derived, it can be applied to any matching scenario without the need to
recreate the proof again. The following example of a goal refinement pattern is based on that presented in
[Darimont and van Lamsweerde 1996].

Consider a lift control system, where the upward progress of the lift requires that the car move through
consecutive floors. The goal that describes the achievement of this upward progress can be stated in KAOS
as follows:

 Goal Achieve [LiftUpwardProgress]
 FormalDef (∀ lc: LiftCar, f: Floor) [At(lc, f) ⇒ ◊ At(lc, f+1)]

An achievement goal, which states that if some condition P is true then Q must eventually be true, can be
represented in the temporal logic notation as P ⇒ ◊ Q (◊ denotes eventually). So in this example, we state
that if a lift car lc is at floor f, then eventually that lift car must be at floor f+1.

A possible refinement pattern for such a goal would be to decompose it into 3 sub-goals of the form shown
in Figure 14.

The first sub-goal requires that we identify a new condition R such that if P and R are true, then Q will
eventually be true. In this example, R could be the condition where the lift doors are closed on the current
floor. This goal can by stated in KAOS as:

 Goal Achieve [ProgressWhenDoorsClosed]
 FormalDef (∀ lc: LiftCar, f: Floor) [At(lc, f) ∧ DoorsClosed(lc) ⇒ ◊ At(lc, f+1)]

The second and third sub-goals require that if the lift car is on floor f, then eventually the doors will be in a
closed state on floor f; and finally if the lift is on floor f, then it will continue to be there unless it is
considered to be on floor f+1 (W denotes unless). This last goal captures the requirement that the motion of
the lift from one floor to another is an atomic operation.

Figure 14: Achieve goal refinement pattern

P ⇒ ◊ Q

P ∧ R ⇒ ◊ R ⇒ ◊ P P ⇒ PW Q

20/08/02 - 28 - FOR REVIEW

 Goal Achieve [DoorsClosed]
 FormalDef (∀ lc: LiftCar, f: Floor) [At(lc, f) ⇒ ◊ DoorsClosed(lc)]

 Goal Achieve [LiftWaiting]
 FormalDef (∀ lc: LiftCar, f: Floor) [At(lc, f) ⇒ At(lc, f)W At(lc, f+1)]

The formal proof for this refinement pattern, together with a library of available goal refinements is
presented in [Darimont 1995].

The underlying logic technique used in this goal refinement approach is called goal regression. Originally
developed as a means of deriving plans of action for intelligent agents, goal regression provides a way of
deriving the set of actions, that when applied to the system that is in some initial state, S0, results in the
system being in some goal state SG. This could be usefully applied in a policy refinement technique to derive
a set of actions (or policies that use those actions) that have the equivalent effect on the system state as some
other, high-level action.

As mentioned previously, the objective of policy refinement is to transform high-level policy specifications
into more specific policies that would be better suited for use in different execution environments. Most of
the above work is aimed at refining goals into implementation specifications but could be adapted to policy
refinement. Before delving into the details of how policy refinement techniques work it would be useful to
identify the desired properties of a refinement. In order to describe these properties a policy refinement is
defined as follows:

Definition: (Policy Refinement) If there exists a set of policies Prs:p1, p2, .. pn, such that the enforcement of a
combination of these policies results in a system behaving in an identical manner to a system that is
enforcing some base policy Pb, it can be said that Prs is a refinement of Pb. The set of policies Prs:p1, p2, .. pn
is referred to as the refined policy set.

Using this definition and drawing on work done to identify the properties of goal refinements [Darimont and
van Lamsweerde 1996] the following properties are proposed:

1. Correctness: a refinement is said to be correct if there exists a subset of the refined policy set such
that the conjunction of all the members of that subset is also a refinement of the base policy.

2. Consistency: refinement is said to be consistent if there are no conflicts between any of the policies
in the refined policy set.

3. Minimality: a refinement is said to be minimal if it is correct and if removing any policy from the
refined policy set causes the refinement to be incorrect.

A policy refinement can be said to complete iff all the properties defined above hold. The goal refinement
approach also specifies a fourth property, non-trivial, that requires there to be more than one element in the
refined set. However, in the policy refinement domain it may be acceptable to have a single policy that is a
refinement of some base policy, provided that the refinement uses subjects, targets and actions that map to
different physical entities.

It is also important to distinguish what is meant by a policy refinement pattern in contrast to a policy
refinement as defined above. Once again it is possible to apply the concept presented in the goal refinement
work of Darimont et al. [Darimont and van Lamsweerde 1996], and define that a policy refinement pattern is
a single level refinement that directly relates some base policy Pb to a refined policy set Prs such that Prs is a
complete refinement of Pb.

Other work on requirements refinement has concentrated on deriving goal-based specifications based on
initial, high-level requirements documents. [Antón 1996] presents a framework for deriving goal
specifications as part of the requirements engineering process. In subsequent work it is also shown how goal
specifications can be derived from UML design artefacts such as use case documentation [Antón, Dempster
et al. 2000].

There has also been work done to refine system architecture requirements from goal specifications. In
[Brandozzi and Perry 2001], a technique for mapping KAOS specifications into an architecture model is
described together with details of the Architecture Prescription Language (APL), which is used to represent
the results of the transformation.

20/08/02 - 29 - FOR REVIEW

Whilst all of this work offers some useful guidelines on how develop a policy refinement technique, they
cannot be directly applied to this problem domain. Indeed there are few examples of practical approaches
for policy refinement. One such example is described in work done by Hewlett-Packard Laboratories, which
outlines a policy-authoring environment that provides a policy wizard tool, called POWER, for refining
policies [Casassa Mont, Baldwin et al. 1999]. Here, a domain expert first develops a set of policy templates
that are then used by the authoring tools to constrain the possible refinements that a user can derive. These
templates are expressed as Prolog programs and the policy authoring tools have an integrated inference
engine that interprets these programs to guide the user through the refinement process. Finally, the POWER
system provides a policy-mapping scheme for translating the refined policies into a deployable form.

Although these tools do not provide direct support for important policy analysis features such as conflict
detection, we believe that the goal refinement approach outlined shows promise and merits further study.

7 Commercial Tools
Verma [Verma, Beigi et al. 2001] describes a QoS tool used to specify Service Level Agreements (SLAs)
and to manipulate SLA related information in a tabular format. The tool transforms high-level policy
information into device configurations, and stores them in an LDAP directory. Another tool, presented in
[Mont, Baldwin et al. 1999b], focuses solely on template-based refinement of policies from high-level goals.

Existing work within the RBAC community is limited to specifying access control configurations in terms of
roles. A centralised tool, presented in [Thomsen, O'Brien et al. 1998], translates access control configuration
from the RBAC framework to the target’s native security mechanism, which is then transported to the target.
Another web-based tool, presented in [Barkley, Kuhn et al. 1998], allows administrators to specify roles, role
hierarchies and constraints to implement RBAC for networked servers using Web protocols in order to
manage access to an organisation’s Web information.

In policy-based networking most of the tool support comes from industry and is based on the IETF policy
framework. The majority of the commercial tools are specific to quality of service management, but many
also include access control configuration. The list of vendor products is very big and space considerations
prevent us from discussing each tool in detail. However, because these tools have a significant influence on
the adoption of policy-based management solutions, we feel it is necessary to consider some of the major
commercial policy-based network management products in greater depth.

It should be noted that the information presented here is based on public-domain documentation, available at
the time of writing, from the vendors’ website and industry surveys. For the latest information, surveys of
commercial tools, together with product comparisons are available on the web (see http://www-
dse.doc.ic.ac.uk/Research/policies for more information).

7.1 Nortel Optivity
Nortel’s Optivity Policy Services (OPS) tool is a multi-platform network management solution. Designed to
provide traffic prioritisation services, the tool supports both Nortel BayRS and Cisco IOS router platforms,
and provides configuration features through a Java interface. In its initial release, policy information was
stored in an Oracle backend but the approach has been dropped in favour of an LDAP schema in the current
version. The documentation available does not specify the specification notation used to store the policies.
However, given that the policies take the form of if <condition> then <action> rules, it would be reasonable
to assume that their specification is based on the IETF-CIM specification approach.

Optivity supports the COPS-PR protocol for exchanging policy information between elements in the policy-
based management infrastructure. The policies specified can use packet information (IP addresses, VLAN
tags, protocol information etc.) together with flow rate information and scheduling to determine when a
particular action should be performed. The system uses the DiffServ approach [Blake, Black et al. 1998] to
implement traffic prioritisation so the actions performed on the network traffic are determined by the
DiffServ codepoint that is assigned to the packet at the edge of the managed network.

7.2 Orchestream Enterprise
The Orchestream Enterprise solution is a Quality of Service management tool that leverages the DiffServ
approach. Policies are specified using the IETF condition/action notation and can be stored in a LDAP

20/08/02 - 30 - FOR REVIEW

repository. In order to enhance the policy management capabilities, the Orchestream tool allows a network
administrator to organise the devices to be managed in a hierarchy. This means that all the lower level
devices will inherit policies specified below a given level.

Like the Nortel solution, Orchestream supports COPS for sharing policy information with other nodes in the
network. Additionally, devices can be configured using SNMP, HTTP and some other proprietary protocols.
Policies can be triggered based on conditions that are specified using source/destination addresses, port
numbers, IP protocol type, as well as on external events that are implemented through a custom software
API. The tool does not allow conditions to be based on higher-level protocol information such as MAC
addresses of VLAN tags. The more recent emphasis has been on network provisioning and integration with
operational support systems rather than only policy based management.

7.3 HP Openview PolicyXpert
HP’s PolicyXpert tool is a multi-platform policy based management solution, designed for integration into
the company’s Openview network management suite. In its current release, version 2.1, PolicyXpert
supports traffic management actions ranging from priority marking to DiffServ code points. Like many of
the other tools considered here, policies are defined using the if <condition> then <action> paradigm where
conditions can be based on packet information, time of day or higher-level protocol information like HTTP
URL or VLAN ID. The tool supports many of the prevalent standards, including COPS, DiffServ and
RSVP.

7.4 Cisco CiscoAssure
Cisco’s policy based management offering, CiscoAssure Policy Manager, is also aimed at QoS service
management. Although policies are specified using the condition/action approach defined by the IETF-CIM
standard, the tool policies themselves are stored in a flat-file database [Conover 1999]. The user interface
allows administrators to easily specify multiple conditions for triggering policies. Like the other tools
considered here, conditions can be specified using a combination of IP addresses (source and destination),
application ports, and the protocol being used (IP, TCP or UDP). Policy actions are applied to routers by
using the Command Line Interface (CLI) language that is supported by Cisco hardware. Multi-vendor
interoperability is provided with an implementation of COPS. In addition to supporting QoS related
management operations, this tool allows the administrator to define access control policies for the devices
being managed.

7.5 Allot Communications NetPolicy
NetPolicy aims to provide policy based management capabilities for a range of Allot Communication’s
network hardware in addition to Cisco routers. However, results of tests performed on an early version of
this tool concluded that the Cisco support was incomplete [Conover 1999]. Once again, policies are specified
using the condition/action notation, and the conditions can be defined in terms of the packet information
parameters mentioned previously. The policy repository is implemented using LDAP and policy information
is passed to target devices using either COPS or CLI. Additionally, NetPolicy supports management
operations on simple access control lists.

7.6 Computer Associates Infrastructure Management and eTrust Solutions
As part of their UniCenter solution, Computer Associates provide a number of policy based management
tools for both security and systems management operations. The eTrust Access Control module provides
strong login control that can filter login access through stringent criteria including terminal ID, network/port
address, day/time combinations. Implementations of the tool are available for both Unix and Windows
platforms. From the available product descriptions, it appears that the Computer Associates approach
specifies and stores policies using a proprietary notation.

Other than the security policy management provided by eTrust, other tools in the UniCenter suite also make
use of policies. For example, the Service Level Management tool allows the user to specify policies that
determine the conditions under which non-conformance to a SLA should be flagged and when reports should
be published.

20/08/02 - 31 - FOR REVIEW

7.7 Tivoli Management Framework – Access Manager
The systems management framework developed by Tivoli is an extensive suite of applications that provides
support for everything from configuration management to user access management. The Access Manager
tool allows the administrator to configure authorisation policy templates that will map to access control lists
in the underlying system. If managed objects are organised into a hierarchy (e.g. web server files system),
the policies defined at a given level are propagated to lower level objects. Inherited policies can be
overridden by specifying explicit policies on any given object.

Tivoli’s Access Manager tool is distributed in two variations – the eCommerce Access Manager and the
Operating System Access Manager. The eCommerce Access Manager is designed to manage authorisation
policies for web-based resources. It integrates with other Tivoli tools to provide single log-in functionality
for organisations that have multiple web applications. The Operating System Access Manager can be used to
define access control policies for a range of Unix-based operating systems (Solaris, HP-UX, Linux etc).

In addition to the tools considered here, there are products from a number of companies that provide similar
features. Lucent’s RealNet Rules, IPHighway’s Open Policy, Systor Security Administration Manager,
Access360 Enforce and Spectrum Management PBNM are some examples of these. Based on our
investigation of the different tools available, we can summarise their features as follows.

A common component of commercial tools is a graphical user interface which typically allows the
administrator to visually select a network device or other managed element from a hierarchically arranged
tree-view of policy targets, and specify the policies in the form of if <condition> then <action> rules for the
selected targets. The different products allow the specification of varying degrees of conditions in policy
rules including a number of time attributes, source or destination IP addresses, IP type service, TCP and
UDP port numbers, as well as higher-level user-defined data, and allow the user to permit or deny traffic
based on those conditions.

An important effort common to some of the solutions is work towards support of multi-vendor platforms,
which is not adequately supported by most of the currently available products. In addition, the different
standards protocols are implemented at varying degrees from the different vendors. Many of the products
support COPS as the main communication protocol for policy information between the components of their
architecture, while others support HTTP or CLI for the configuration of routers and switches. In addition, not
all vendors support LDAP for storing policies although they use directories as a major component of their
products both for storing policy rules as well as network and user information, in order to enable scalability
and third-party interoperability.

Support for security is also available in many of the commercial products, and includes access control
configuration for firewalls and routers, Unix and Windows operating systems, as well as databases or for
web-access. Some products such as Tivoli’s and Computer Associates’ are focusing on enterprise-level
management of security for e-commerce applications and support role-based management of user access
rights.

8 Research Issues
Despite significant efforts in developing different policy specification techniques, there remain a number of
issues to be addressed. In particular, since one of the objectives of using policy-based systems is to fulfil
organisational goals, the ability to refine such goals into concrete policy specifications would be useful. As
we have discussed in this paper, it is desirable to maintain the properties of correctness, consistency and
minimality when performing any refinement transformation. Of course, this is only possible if the chosen
policy specification technique provides support for checking whether these properties hold. To this end, we
are currently investigating a mapping of Ponder specifications into a more formal, logic-based
representation. In order to exploit the properties of decidability and lower computational complexity, it is
intended that the formal representation would be based on first-order stratified logic. This notation could
then be used in conjunction with a goal regression approach, similar to that used in goal-oriented
requirements refinement [Darimont and van Lamsweerde 1996], to develop a usable policy refinement
technique.

As part of solving the policy refinement problem, it will be necessary to address some of the outstanding
issues related to policy analysis and conflict detection. Unless we have a means of checking for conflicts in

20/08/02 - 32 - FOR REVIEW

a policy specification, it will be impossible to maintain the required consistency property in a given
refinement. In Ponder modality conflicts arise between positive and negative policies that apply to the same
subjects, targets and actions [Lupu and Sloman 1999]. These can be detected by syntactic analysis of the
policies as the conflict can be determined by detecting overlap of subjects, targets and actions. However, the
analysis detects only potential conflicts rather than actual conflicts since constraints may limit the
applicability of the policy to disjoint sets of circumstances e.g., different times of day. While modality
conflicts can be detected syntactically, other conflicts can only be determined by understanding the actions
being performed by the policies. For example, there will be a conflict between two policies that result in the
same packet being placed on 2 different queues. Similarly, separation of duty conflicts arise from
authorisation policies which permit the same person to approve payments and sign cheques. Generally, these
conflicts are application specific and to detect them it is necessary to specify the conditions that result in
conflict. The approach is therefore to specify constraints on the set of policies (i.e. meta-policies) using a
suitable notation and then analyse the policy set against these constraints to determine if there are any
conflicts [Lupu and Sloman 1999]. Whether conflicts occur or not may depend on run-time parameters
specified in constraints such as time or the current state of the components to which the policy apply. It is
thus rather difficult to determine all possible conflicting conditions in advance and so it is still necessary to
detect conflicts at run-time. Furthermore, when conflicting policies are detected it is not obvious how to
resolve the conflicts automatically. Explicit priority may work in some cases. In some situations, negative
authorisation policies should override positive ones, but in other situations the positive authorisation is an
exception to a more general negative authorisation. In some situations more specific policies that apply to a
department may override general policies applying to the whole organisation. We have been experimenting
with meta-policies that define application specific precedence relationships between conflicting policies.

Although some progress has been made in dealing with policy conflicts [Lupu and Sloman 1999; Verma
2001], significant challenges remain to be addressed. In particular, how can one detect conflicts when
arbitrary conditions restrict the applicability of the policies? Sometimes, it is possible to compare restrictions
placed by the constraints. For example, it is possible to detect if two time intervals overlap or if the policies
apply when subjects are in different states e.g., active or standby. However, the problem remains unsolved in
the general case. Other challenges concern the different levels of abstraction at which policy is specified.
Conflicts between organisational goals will inevitably lead to conflicts between the policies derived from
these goals. Some policies will trigger complex management procedures, which require the execution of
actions that may be specified as part of different policies. This renders the task of ensuring the consistency of
a policy specification much more complex.

Policies can be used to support adaptability at multiple levels in a network (i) within network-aware
applications, (ii) within application-aware networks, and (iii) at the hardware level to support adaptability in
the packet forwarding “fastpath” of network elements. Research is needed on defining interfaces for the
exchange of policies between these levels. For example an application specific policy may be more
efficiently interpreted within a network component or an application may need to adapt its behaviour as a
result of adaptation within the network. However it is not easy to map the semantics of the policies between
the different levels. The application may not be aware of what components exist within the network and so
how can it specify policies to be interpreted by them? A similar problem arises when there is a need to
interact and exchange policy information between multiple interacting services or administrative domains.

An interesting variation of the above is to consider a policy feedback loop where the system is monitored to
see whether it is performing according to high-level policies or to determine changes in the systems due to
faults, new applications or users appearing and hence to dynamically modify the lower level policies in order
to adapt the behaviour.

9 Conclusions
In this paper, we have presented an overview of the available specification approaches for security,
management and enterprise collaboration policies. Broadly speaking, many of the security policy
specification languages are based on logic-based approaches whereas management and enterprise
collaboration policy specification notations adopt a more informal approach. A common theme across all
these specification notations is that they are specialised towards representing either security policies or
management policies, not a combination of the two.

20/08/02 - 33 - FOR REVIEW

We present Ponder as an object-oriented, declarative policy specification language that allows both security
and management policies to be represented. Additionally, it supports policy templates that can be configured
with application specific parameters as needed and meta-policies that can be used to modify the behaviour of
a policy at run-time. Ponder also allows policies to be organised according to roles, management structures
and groups.

Conflict analysis and refinement are key areas for further investigation. We believe that it is necessary to
define a formal, logic-based representation of policies in order to support the analysis process. Additionally,
the availability of a logic-based policy notation will facilitate investigations into the use of goal regression in
developing policy refinement techniques. We are developing a mapping between Ponder and a formal,
logic-based representation of policy. It is hoped that the provision of this mapping will maintain the ease
with which policies are defined whilst allowing more complex formal analysis and refinement techniques to
be applied to the specifications.

References
ABRAMS, M. D. 1993. Renewed Understanding of Access Control Policies. 16th National Computer Security

Conference, Baltimore, Maryland, U.S.A.

AHN, G.-J. AND R. SANDHU 1999. The RSL99 Language for Role-based Separation of Duty Constraints. Fourth ACM

Workshop on Role-Based Access Control, Fairfax, Virginia, USA, ACM Press.

ALCHOURRON, C. E. 1971. Normative Systems. New York, Wien: xvii+208.

ANDERSON, R. J. 1996. A Security Policy Model for Clinical Information Systems. IEEE Symposium on Security and

Privacy, Oakland, California, U.S.A.

ANTÓN, A. I. 1996. Goal-Based Requirements Analysis. Second IEEE International Conference on Requirements

Engineering (ICRE '96), Colorado Springs, Colorado.

ANTÓN, A. I., J. H. DEMPSTER, ET AL. 2000. Deriving Goals from a Use Case Based Requirements Specification for an

Electronic Commerce System. Sixth International Workshop on Requirements Engineering: Foundation for
Software Quality (REFSQ), Stockholm, Sweden.

APT, K. R., H. A. BLAIR, ET AL. 1988. Towards a Theory of Declarative Knowledge. Foundations of Deductive

Databases. J. Minker. San Mateo, CA, Morgan Kaufmann: 89-148.

BARKER, S. 2000. Security Policy Specification in Logic. International Conference on Artificial Intelligence (ICAI00),

Las Vegas, Nevada, USA.

BARKER, S. 2001. Access Control Policies as Logic Programs. London, Imperial College of Science, Technology and

Medicine.

BARKER, S. AND A. ROSENTHAL 2001. Flexible Security Policies in SQL. Fifteenth Annual IFIP WG 11.3 Working

Conference on Database and Application Security, Niagara on the Lake, Ontario, Canada.

BARKLEY, J., R. KUHN, ET AL. 1998. Role-Based Access Control for the Web. CALS Expo International & 21st Century

Commerce 1998: Global Business Solutions for the New Millennium, Long Beach, CA, USA.

BARKLEY, J. F., K. BEZNOSOV, ET AL. 1999. Supporting Relationships in Access Control Using Role Based Access

Control. Fourth ACM Workshop on Role-Based Access Control, Fairfax, Virginia, USA.

BELL, D. E. AND L. LAPADULA 1973. Secure Computer Systems: Mathematical Foundations and Model. Bedford, MA,

MITRE Corporation.

BERTINO, E., P. BONATTI, ET AL. 2000. TRBAC: A Temporal Role-Based Access Control Model. 5th ACM Workshop

of Role-Based Access Control, Berlin, Germany.

BIBA, K. J. 1977. Integrity Constraints for Secure Computer Systems. Bedford, MA, USAF Electronic Systems

Division.

20/08/02 - 34 - FOR REVIEW

BLAKE, S., D. BLACK, ET AL. 1998. An Architecture for Differentiated Services. Network Working Group - RFC2475,
http://www.ietf.org/rfc/rfc2475.txt.

BLAZE, M., J. FEIGENBAUM, ET AL. 1999. The Role of Trust Management in Distributed Systems Security. Secure

Internet Programming: Security Issues for Mobile and Distributed Objects. New York, NY, USA, Springer-Verlag:
185 - 210.

BLAZE, M., J. FEIGENBAUM, ET AL. 1998. Keynote: Trust Management for Publc-Key Infrastructures. Security Protocls

International Workshop, Cambridge, England, Springer-Verlag LNCS.

BOS, H. 1999. Application-Specific Policies: Beyond the Domain Boundaries. Sixth IFIP/IEEE International

Symposium on Intergrated Network Management (IM'99), Boston, MA, USA.

BOSWELL, A. 1995. Specification and Validation of a Security Policy Model. IEEE Transacations on Software

Engineering 21(2).

BRANDOZZI, M. AND D. E. PERRY 2001. Transforming Goal Oriented Requirement Specifications into Architectural

Prescriptions. First International Workshop From Software Requirements to Architectures (STRAW'01), Toronto,
Canada.

BREWER, D. F. C. AND M. J. NASH 1989. The Chinese Wall Security Policy. IEEE Symposium on Research in Security

and Privacy, Oakland, California, USA, IEEE.

BURGESS, M. 1995. A Site Configuration Engine. USENIX Computing systems 8(3).

BURGESS, M. 2001. Recent Developments in CfEngine. Unix NL Conference, The Hague.

BURGESS, M. AND F. E. SANDNES 2001. Predictable Configuration Management in a Randomized scheduling

Framework. IEEE/IFIP Workshop on Distributed Systems Operations and Management (DSOM '2001), Nancy,
France.

CASASSA MONT, M., A. BALDWIN, ET AL. 1999. POWER Prototype: Towards Integrated Policy-Based Management.

Bristol, UK, HP Laboratories Bristol.

CASTANEDA, H. 1981. The Paradoxes of Deontic Logic. New Studies in Deontic Logic: Norms, Actions and the

Foundations of Ethics. Hingham, MA, Reidel Publishing Company: 37-85.

CHANDRA, A. AND D. HAREL 1985. Horn Clause Queries and Generalizations. Journal of Logic Programming 2(1): 1-5.

CHEN, F. AND R. S. SANDHU 1995. Constraints for Role-Based Access Control. First ACM/NIST Role Based Access

Control Workshop, Gaithersburg, Maryland, USA, ACM Press.

CHOLVY, L. AND F. CUPPENS 1997. Analyzing Consistency of Security Policies. IEEE Symposium on Security and

Privacy (S&P97), Oakland, CA, IEEE Press.

CHOMICKI, J., J. LOBO, ET AL. 2000. A Logic Programming Approach to Conflict Resolution in Policy Management.

Seventh International Conference on Principles of Knowledge Representation and Reasoning (KR2000),
Breckenridge, Colorado, USA, Morgan Kaufmann.

CLARK, D. D. AND D. R. WILSON 1987. A Comparison of Commercial and Military Computer Security Policies. IEEE

Symposium on Security and Privacy.

CONOVER, J. 1999. Policy-Based Network Management. Network Computing. http://www.networkcomputing.com/

1024/1024f1.html.

CORRADI, A., R. MONTANARI, ET AL. 2000. A Flexible Access Control Service for Java Mobile Code. Annual Computer

Security Applications Conference (ACSAC 2000), New Orleans, Louisiana, USA, IEEE Press.

CUPPENS, F. AND C. SAUREL 1996. Specifying a Security Policy: A Case Study. Ninth IEEE Computer Security

Foundations Workshop, Co. Kerry, Ireland, IEEE Press.

DAMIANOU, N., N. DULAY, ET AL. 2001. The Ponder Policy Specification Language. Policy 2001: Workshop on

Policies for Distributed Systems and Networks, Bristol, UK, Springer-Verlag.

20/08/02 - 35 - FOR REVIEW

DANTSIN, E., T. EITER, ET AL. 1997. Complexity and Expressive Power of Logic Programming. 12th Annual IEEE

Conference on Computational Complexity (CCC'97), Ulm, Germany, IEEE Press.

DARIMONT, R. 1995. Process Support for Requirements Elaboration. Département d'Ingénierie Informatique. Louvain-

la-Neuve, Belgium, Université catholique de Louvain.

DARIMONT, R. AND A. VAN LAMSWEERDE 1996. Formal Refinement Patterns for Goal-Driven Requirements

Elaboration. 4th ACM Symposium on the Foundations of Software Engineering (FSE4): 179-190.

DMTF 1999A. Common Information Model (CIM) Specification, version 2.2.

DMTF 1999B. Specification for the Representation of CIM in XML, version 2.0.

GLASGOW, J., G. MACEWEN, ET AL. 1992. A logic for reasoning about security. ACM Transactions on Computer

Systems (TOCS) 10(3): 226-264.

GRANDISON, T. AND M. SLOMAN 2000. A Survey of Trust in Internet Applications. IEEE Communications Surveys and

Tutorials 3(4).

HAYTON, R. J., J. M. BACON, ET AL. 1998. Access Control in an Open Distributed Environment. IEEE Symposium on

Security and Privacy, Oakland, California, U.S.A.

HERZBERG, A., Y. MASS, ET AL. 2000. Access Control Meets Public Key Infrastructure, or: Assigning Roles to

Strangers. IEEE Symposium on Security and Privacy, Oakland, California, USA.

HOAGLAND, J. A., R. PANDEY, ET AL. 1998. Security Policy Specification Using a Graphical Approach, UC Davis

Computer Science Department.

ISO/IEC 1999. Information Technology - Open Distributed Processing Reference Model - Enterprise Viewpoint.

JAGER, G. AND R. F. STARK 1993. The Defining Power of Stratified and Hierarchical Logic Programs. Journal of Logic

Programming 15(1 & 2): 55-77.

JAJODIA, S., P. SAMARATI, ET AL. 2000. Flexible Support for Multiple Access Control Policies. ACM Transactions on

Database Systems 26(2): 214-260.

JAJODIA, S., P. SAMARATI, ET AL. 1997. A Logical Language for Expressing Authorisations. IEEE Symposium on

Security and Privacy, Oakland, USA, IEEE.

JONES, A. J. I. AND M. J. SERGOT 1995. A Formal Characterisation of Institutionalised Power. Logic Journal of the

IGPL 4(3): 429-445.

KOHLI, M. AND J. LOBO 1999. Policy Based Management of Telecommunication Networks. Policy Workshop 1999, HP

Labs, Bristol, UK.

LEE, M. 2000. Event and Rule Services for Achieving a Web-based Knowledge Network. Computer and Information

Science and Engineering, University of Florida.

LOBO, J., R. BHATIA, ET AL. 1999. A Policy Description Language. AAAI, Orlando, Florida.

LUPU, E. C. AND M. S. SLOMAN 1997B. Towards a Role Based Framework for Distributed Systems Management.

Journal of Network and Systems Management 5(1): 5-30.

LUPU, E. C. AND M. S. SLOMAN 1999. Conflicts in Policy-Based Distributed Systems Management. In IEEE

Transactions on Software Engineering - Special Issue on Inconsistency Management 25(6): 852-869.

MANNA, Z. AND A. PNUELI 1992. The Temporal Logic of Reactive and Concurrent Systems, Springer-Verlag.

Martinez, P., and Brunner M., et. al. Using the Script MIB for Policy-based Configuration Management, IEEE/IFIP

Network Operations and Management (NOMS2002), Florence, April 2002.

20/08/02 - 36 - FOR REVIEW

MINSKY, N. H. 1991. The Imposition of Protocols Over Open Distributed Systems. IEEE Transactions on Software
Engineering 17(2): 183-195.

MINSKY, N. H. AND P. PAL 1997. Law-Governed Regularities in Object Systems - Part 2: A Concrete Implementation.

Theory and Practice of Object Systems (TAPOS), John Wiley. 2.

MOFFET, J. AND M. S. SLOMAN 1993. Policy Hierarchies for Distributed Systems Management. IEEE JSAC 11(9

(Special Issue on Network Management)): 1404-14.

MOFFETT, J. D. 1998. Control Principles and Role Hierarchies. Third ACM/NIST Role Based Access Control Workshop,

Fairfax, Virginia, USA, ACM Press.

MONT, M. C., A. BALDWIN, ET AL. 1999B. POWER Prototype: Towards Integrated Policy-Based Management. Bristol,

UK, Extended Enterprise Laboratory, HP Laboratories.

MOORE, B., E. ELLESSON, ET AL. 2001. Policy Core Information Model -- Version 1 Specification. Network Working

Group - RFC3060, http://www.ietf.org/rfc/rfc3060.txt.

OASIS 2001. XACML language proposal, version 0.8.

OMG 1999B. Object Constraint Language Specification, version 1.3.

ORTALO, R. 1998. A Flexible Method for Information System Security Policy Specification. 5th European Symposium

on Research in Computer Security (ESORICS 98), Louvain-la-Neuve, Belgium, Springer-Verlag.

PRAKKEN, H. AND M. J. SERGOT 1997. Dyadic Deontic Logic and Contrary-to-duty Obligations. Defeasible Deontic

Logic: Essays in Nonmonotonic Normative Reasoning. D. Nute. Boston, Kluwer Academic Publishers. Synthese
Library: 263: 223-262.

RIBEIRO, C., A. ZUQUETE, ET AL. 2001A. SPL: An access control language for security policies with complex

constraints. Network and Distributed System Security Symposium (NDSS’01), San Diego, California.

RIBEIRO, C., A. ZUQUETE, ET AL. 2001B. Enforcing Obligation with Security Monitors. Third International Conference

on Information and Communications Security (ICICS 2001), Xian, China.

SAMARATI, P. AND S. VIMERCATI 2000. Access Control: Policies, Models, and Mechanisms. Foundations of Security

Analysis and Design (Tutorial Lectures). R. Focardi and R. Gorrieri, Springer -Verlag: 137-196.

SANDHU, R., D. FERRAIOLO, ET AL. 2000. The NIST Model for Role-Based Access Control: Towards A Unified

Standard. 5th ACM Workshop on Role-Based Access Control, Berlin, Germany.

SANDHU, R. S. 1998. Role Activation Hierarchies. Third ACM/NIST Role Based Access Control Workshop, Fairfax,

Virginia, USA, ACM Press.

SANDHU, R. S., E. J. COYNE, ET AL. 1996. Role-Based Access Control Models. IEEE Computer 29(2): 38-47.

SANDHU, R. S. AND P. SAMARATI 1994. Authentication, Access Control, and Intrusion Detection. Part of the paper

appeared under the title "Access Control: Principles and Practice" in IEEE Communications 32(9): 40-48.

SERGOT, M. J., F. SADRI, ET AL. 1986. The British Nationality Act as a logic program. Communications of the

ACM(29): 370-386.

SLOMAN, M. S. 1994B. Policy Driven Management for Distributed Systems. Journal of Network and Systems

Management 2(4): 333-360.

SLOMAN, M. S. 2001. Proceedings of Policy 2001: Workshop on Policies for Distributed Systems and Networks. Policy

2001: Workshop on Policies for Distributed Systems and Networks, Bristol, UK, Springer-Verlag.

SNIR, Y., Y. RAMBERG, ET AL. 2001. Policy QoS Information Model.

SPIVEY, J. M. 1989. An Introduction to Z and Formal Specifications. IEE/BCS Software Engineering Journal 4(1): 40-

50.

20/08/02 - 37 - FOR REVIEW

STEEN, M. W. A. AND J. DERRICK 1999. Formalising ODP Enterprise Policies. 3rd International Enterprise Distributed
Object Computing Conference (EDOC '99), University of Mannheim, Germany, IEEE Publishing.

STEEN, M. W. A. AND J. DERRICK 2000. ODP Enterprise Viewpoint Specification. Computer Standards and Interfaces

22: 65-189.

STONE, G. N., B. LUNDY, ET AL. 2001. Network Policy Languages: A Survery and a New Approach. IEEE Network: 10-

20.

STRASSNER, J. AND E. ELLESSON 1998. Terminology for describing network policy and services (version 00).

STRASSNER, J., E. ELLESSON, ET AL. 2002. Policy Core LDAP Schema.

SU, S. Y. W., H. LAM, ET AL. 2001. An Information Infrastructure and E-services for Supporting Internet-based

Scalable E-business Enterprises. 5th IEEE Annual Enterprise Distributed Object Conference (EDOC2001), Seattle,
WA, IEEE Computer Society.

TENNENHOUSE, D. L., J. M. SMITH, ET AL. 1997. A Survey of Active Network Research. IEEE Communications

Magazine 35(1): 80-86.

THOMAS, R. K. 1997. Team-based Access Control (TMAC): A Primitive for Applying Role-based Access Controls in

Collaborative Environments. Second ACM/NIST Role Based Access Control Workshop, Fairfax, Virginia, USA,
ACM Press.

THOMSEN, D., D. O'BRIEN, ET AL. 1998. Role Based Access Control Framework for Network Enterprises. 14th Annual

Computer Security Applications Conference.

UNGUREANU, V. AND N. H. MINSKY 1998. Unified Support for Heterogeneous Security Policies in Distributed Systems.

7th USENIX Security Symposium, San Antonio, Texas.

UNGUREANU, V. AND N. H. MINSKY 2000. Establishing Business Rules for Inter-Enterprise Electronic Commerce. 14th

International Symposium on Distributed Computing (DISC 2000), Toledo, Spain, Springer-Verlag.

VAN GELDER, A. 1988. Negation as Failure Using Tight Derivations for General Logic Programs. Foundations of

Deductive Databases. J. Minker. San Mateo, CA, Morgan Kaufmann: 149-176.

VAN LAMSWEERDE, A. 1996. Divergent Views in Goal-Driven Requirements Engineering. ACM SIGSOFT Workshop

on Viewpoints in Software Development, San Francisco, ACM.

VAN LAMSWEERDE, A. 1999. Goal-Oriented Requirements Analysis with KAOS (Presentation). Policy Workshop 1999,

HP-Laboratories, Bristol, UK.

VAN LAMSWEERDE, A., R. DARIMONT, ET AL. 1995. Goal-Directed Elaboration of Requirements for a Meeting

Scheduler: Problems and Lessons Learnt. 2nd IEEE Symposium on Requirements Engineering (RE '95), York, UK,
IEEE Computer Society Press.

VERMA, D., M. BEIGI, ET AL. 2001. Policy Based SLA Management in Enterprise Networks. Policy Workshop 2001, HP

Labs, Bristol, UK, Springer-Verlag.

VERMA, D. C. 2001. Policy-Based Networking: Architecture and Algorithms, New Riders Publishing.

VIRMANI, A., J. LOBO, ET AL. 2000. Netmon: network management for the SARAS softswitch. 2000 IEEE/IFIP

Network Operations and Management Seminar (NOMS 2000), Hawaii.

VON WRIGHT, G. H. 1951. Deontoc Logic. Mind 60: 1-15.

WIERINGA, R. J. AND J.-J. C. MEYER 1998. Applications of Deontic Logic in Computer Science: A Concise Overview.

Practical Reasoning and Rationality (PRR 98), Brighton, UK, John Wiley & Sons.

