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                A BSTRACT  
 An overview is provided of the present population analysis 
methods and an assessment of which software packages are 
most appropriate for various PK/PD modeling problems. Four 
PK/PD example problems were solved using the programs 
NONMEM VI beta version, PDx-MCPEM, S-ADAPT, 
MONOLIX, and WinBUGS, informally assessed for reason-
able accuracy and stability in analyzing these problems. Also, 
for each program we describe their general interface, ease of 
use, and abilities. We conclude with discussing which algo-
rithms and software are most suitable for which types of PK/
PD problems. NONMEM FO method is accurate and fast 
with 2-compartment models, if intra-individual and interindi-
vidual variances are small. The NONMEM FOCE method is 
slower than FO, but gives accurate population values regard-
less of size of intra- and interindividual errors. However, if 
data are very sparse, the NONMEM FOCE method can lead 
to inaccurate values, while the Laplace method can provide 
more accurate results. The exact EM methods (performed 
using S-ADAPT, PDx-MCPEM, and MONOLIX) have 
greater stability in analyzing complex PK/PD models, and 
can provide accurate results with sparse or rich data. MCPEM 
methods perform more slowly than NONMEM FOCE for 
simple models, but perform more quickly and stably than 
NONMEM FOCE for complex models. WinBUGS provides 
accurate assessments of the population parameters, standard 
errors and 95% confi dence intervals for all examples. Like the 
MCPEM methods, WinBUGS’s effi ciency increases relative 
to NONMEM when solving the complex PK/PD models.  

   K EYWORDS:     population  ,   pharmacokinetics  ,   pharmaco-
dynamics  ,   clinical  ,   software  ,   computation methods    

   INTRODUCTION 
 The area of pharmacokinetic (PK) and pharmacodynamic 
(PD) modeling has advanced considerably over the past 
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several decades, as the desire to understand drug pharmaco-
kinetics, distribution, and their biological actions at the 
dynamic and quantitative level has increased. The advan-
tage of performing advanced PK/PD modeling is that it 
allows drug developers and clinicians to more accurately 
determine the dosing regimen that is most effi cacious and 
cost effective, and also to aid in the design of pharmaceuti-
cals with the desired properties. Providing an analysis envi-
ronment that can be robust and versatile enough to deal 
with the complex numerical methods required to implement 
the PK/PD model and account for irregular dosing regimens 
that subjects are actually given is demanding. In addition to 
characterizing the interaction of drug and body at the indi-
vidual level, one must also understand the range of PK and 
PD profi les one can expect from a population of subjects. 
Therefore, the program must also have suitable statistical 
capabilities of accounting for measurement error, and to 
account for the distribution of PK and PD parameters that 
are observed among patients. Solving the combination of 
the PK/PD structural, as well as the statistical, modeling 
demands is not straightforward, and has been among the 
greatest software challenges in the biological/medical 
fi eld. 

 A comprehensive review has been recently published on the 
history of PK/PD modeling development. 1  These authors 
cover the general principles of modeling dynamical systems 
on which much of PK/PD modeling methods are based and 
describe some of the most widely used PK/PD modeling 
paradigms, such as linear and nonlinear dose/concentration-
dependent effects, delayed effect, indirect actions, cell-
traffi cking models, feedback paradigms, and oscillatory 
phenomena. 

 Perhaps the most widely used and oldest of the population 
analysis programs available is NONMEM, developed in the 
early 1980s. 2  The historical development of statistical meth-
ods on population PK/PD analysis by Pillai et al 3  describes 
Lewis Sheiner’s contribution to introducing nonlinear 
mixed-effects modeling (NLME) to the pharmaceutical sci-
ences community. Together with Stuart Beal, he developed 
the NONMEM program, which used least squares methods 
originally developed for individual subject curve fi tting, 
and extended it to population data analysis (fi rst-order 
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method) by linearizing the otherwise daunting statistical 
problem. 

 Statistical comparisons of population methods and software 
have been explored in earlier reviews, 4-6  which covered the 
following methods: naive-pooled data analysis, 2-stage, 
global 2-stage, linearized expectation-maximization (EM) 
(iterative 2-stage), nonlinear mixed effects methods using 
fi rst-order and Gaussian-Quadrature methods, nonparamet-
ric, and semi-parametric methods. 
 In the past 10 years, a series of new tools for PK/PD mod-
eling and population analysis have become available to 
the pharmaceutical scientist. Thanks to ever-increasing 
computer power, additional population analysis methods 
have been developed for PK/PD modeling, such as the 
expectation-maximization methods that evaluate the 
problem without imposing linear approximation, address-
ing the bias sometimes introduced from the linearization 
methods in some of the traditional methods. 3  ,  7  ,  8  Often the 
results of these methods can be compared with those of 
the least-squares methods, as the objective function 
whose optimum is sought may not be identical, but may 
have a similar statistical basis. Full Bayesian techniques 
employing 3-stage hierarchical analysis are also becom-
ing easier to implement with the greater computer power 
available. The program WinBUGS 9  ,  10  uses not only a 
 different approach in analyzing the data, but also a differ-
ent statistical goal. In the WinBUGS program, not just a 
 single best-fi t population parameter set is provided, but 
rather a collection of several thousand population param-
eter sets is reported, clustered in proportion to their like-
lihood of representing the data. Descriptive statistics of 
the collection of representative parameters may then 
 easily be obtained, such as mean, variance, covariance 
between any 2 parameters, and quantile ranges (such as 
2.5%, median, 97.5% levels), and the mode could be 
extracted from a narrow range of values that occur most 
frequently, which is the parameter set with the greatest 
likelihood of representing the data. If the analysis is per-
formed with very weak initial (called prior) information, 
the parameter set representing the mode of the analysis 
(equivalent to the mean, if parameters are symmetrically 
distributed) may be compared with the optimal parameter 
set from the 2- stage hierarchical maximum likelihood 
methods. 
 NONMEM continues to be the most widely used population 
analysis software, and particularly its fi rst-order conditional 
estimation (FOCE) method is still useful as a method for 
many population analysis problems that have a high degree 
of intersubject variability or model nonlinearity. 11  
 The comparisons between methods and software that have 
been described in the literature to date involved 1- or 
2-compartment PK models or fairly simple analytical func-

tion descriptions of the data. The present paper is designed 
to provide an overview of the statistical basis of some of the 
present population analysis methods, their implementation 
in some of the software packages available, and an assess-
ment of which software packages are most appropriate for 
various PK/PD modeling problems, including fairly com-
plex ones requiring the solution of ordinary differential 
equations. We begin with the theoretical bases of the algo-
rithms typically used in these software packages. Then, 4 
PK/PD example problems are solved using the programs 
NONMEM, 12  PDx-MCPEM, 13  S-ADAPT, 14  MONOLIX, 15  
and WinBUGS, 16  informally assessed for accuracy, ease 
of use, versatility, and stability in analyzing these prob-
lems. We conclude with discussing which algorithms and 
software are most suitable for which types of PK/PD 
problems.  

  THEORETICAL BASES OF METHODS 
  The PK/PD Model 
 All of the methods presented here rely on the PK/PD model 
that is designed or selected by the user to describe the data 
as a function of time. The model function we shall designate 
as  f , and may be as simple as a single decaying exponential 
as a function of time  t , for a 1-compartment model for single 
IV bolus dose D 4  ,  17 :

   f t k V De
V

kt
( , , ) =

−
  (1)

 the result of which is to be compared against measured 
serum levels of a drug. The model parameters in this case 
are  V  (volume of distribution), and  k , the rate constant of 
elimination. The purpose of a statistical analysis is to fi nd 
the values of  V  and  k  that best represent the data. Or, the 
model may be as complex as a series of functions that are in 
turn related to a set of differential equations that represent 
biologically mechanistic-based mass transfer and elimina-
tion of compounds, and interaction of drug with a biological 
target, each function describing one of several possible data 
types and/or physiological compartments (such as serum 
level of parent compound, metabolite, peripheral compart-
ments, levels of biological markers, and so forth). The dif-
ferential equations must be numerically integrated during 
the statistical fi tting process, and can lead to long computa-
tion times. 
 Thus, we may generally describe the model as 

   f tij( ,qq)   (2)

 where vector   �   is the set of model parameters (in the simple 
example, these would be  V  and  k ) whose values are sought 
to best represent the data of a subject  i , and a specifi c func-
tion and time  t  is associated with a particular data point  j  and 
subject  i .  
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  Least Squares Methods of Estimation 
 The next step is to develop a statistical test that is small in 
value when the function f (tij, q) represents the data closely 
for a given q, and large when the function f (tij, q) represents 
the data poorly. The ordinary least squares method uses the 
following test value to compare the function f (tij, q) with 
the measured data  y ij   17 :

   
L y f tij ij

j

n

i

m i

= −
==

∑∑ ( ( , ))θ 2

11   
(3)

 called the objective function. When the set of q = q̂ is found 
so that  L  is at its smallest value, the minimum of the objec-
tive function has been achieved, and the average distance of 
the data from the model function values has been reduced to 
the minimum, that is, the function f (tij, q) at q̂ fi ts the data 
most closely among all possible values of q. 
 There is measurement or assay error in data collected, how-
ever, and some data are more precisely known than others. 
So, the distance of the function from data that are more pre-
cisely known should be given greater weight in the least 
squares function. For example, assay error often imparts a 
measurement error that is in direct proportion to the concen-
tration, so the error is greater for higher concentrations than 
lower concentrations. As an example, the residual variance 
(the square of the error) could be described therefore by 

 g f tij ij= s 2 2( , )θ  (4)

where      s        is the residual error coeffi cient. A further refi ne-
ment in the least squares objective function may thus be 
obtained by incorporating this variable uncertainty in the 
measurement error as a weighting factor:

 
L y f t gij ij ij
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==
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11  
 (5)

 Thus, distances of function values from data with lower 
variance will be given greater weight to the overall sum of 
squares. Additional sources of this residual error include 
variations in a subject’s disposition of drug throughout the 
sampling period, as well as inaccuracy of the model in 
describing the drug disposition (model mis-specifi cation).  

  Maximum Likelihood Methods of Estimation 
 With the least squares method, an intuitive desire to obtain 
parameter values that most closely fi t the data leads to the 
least squares objective function. No attention is paid to how 
the data are statistically distributed. With the maximum 
likelihood method, consideration is made about the statisti-
cal distribution of data  y ij   about the model function f (tij, q). 
For example, an assumption is often made that the mea-
sured data are normally distributed about its mean, so the 

maximum likelihood method seeks to fi nd the set of q̂ for 
which f (tij, q̂) is the mean for each  y ij  . The normal distribu-
tion of  y ij   is thus expressed as  
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 It is convenient to express this as its  – 2 times the logarithm 
form (up to a constant term): 
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 The total twice negative log-likelihood for a set of indepen-
dently distributed data among  m  subjects is expressed as the 
sum 
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 The parameter set   �   may then be varied until the objective 
function  L  is at its minimum (and thus maximum probabil-
ity). This parameter estimate   �   at which  L  is minimum thus 
represents the  “ most likely ”  fi t, that is, it fi ts the data more 
closely than all other possible   �  , so that 

 L ̂ �� ≤ L�  for all �  (9)

 Comparison with the least squares objective function shows 
that for constant     g   i  j       , their minimum would be at identical 
values of       �         17 .  

  Population Analysis 
 The above statistical methods are suitable for fi tting data for 
individual subjects or for naïve pooled analysis of data from 
a collection of individuals. An expansion of the likelihood 
method is needed to take into consideration the intersubject 
variability of parameters       �         among the subjects, in addition 
to the within-inidividual error      g   i  j         that we have already 
considered. 
 Often in PK/PD modeling analysis, the variability of the 
vector of parameters   �   among the population is also assumed 
to be normally distributed, or perhaps some simple transfor-
mation of the parameters is normally distributed (such as via 
logarithmic transformation), with population mean vector   �  , 
and population variance matrix   �  . The probability density 
of a given   q   is therefore, not including a constant term, 

 
h( | , )

| |
exp[ ( ) ( )]qq qq qq� �

�
� � �= − − ′ −−1 1

2
1  (10)

 where we shall designate     h  (    �    |    �    ,    �    )       as the parameter popula-
tion density for   �  , given   �   and   �  . Then, the joint probability 
density for some vector   �   and a set of data       y   i        for subject  i  is

 p l hi i( , | , , ) ( | , ) ( | , )y qq ss qq ss qq� � � �= y  (11)
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where 

 
l l yi

j

m

ij

i

( | , ) ( | , )y qq ss qq ss= ∏
=1

 (12)

 is the individual observed data likelihood for subject  i . For a 
particular subject, the data       y   i        is observed and therefore fi xed 
throughout the analysis, whereas the parameter vector   �   
describing the pattern in the data are unknown but imput-
able, based on the model and the observed data. It is there-
fore best to consider all possible values of   �  , taking into 
consideration the probability of occurrence of each   �   for the 
particular population in question. To do so, we integrate the 
density over all possible   �  , producing the following contri-
bution of the objective function by subject  i :

L p l h di i i= − = −
−∞

+∞

∫2 2log( ( | , , )) log( ( | , ) ( | , ) )y y� � � � � �qq qq qq

 (13)
which is the twice negative logarithm of the marginal den-
sity of the data  y   i   for subject  i , up to a constant. The twice 
negative logarithm of the joint marginal density for all  m  
subjects is then

 
L p Li

i

m

= − = =
=
∑2
1

log( ( | , , ))y � � �

 
l h di−

−∞

+∞
2 log( ( | , ) ( | , ) )y � � �qq qq qq∫∫∑

=i

m
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(14)

where  L  is now the total objective function.  

  Linearized Approximation Method of Analysis 
 To fi nd the set of mean population parameters   � ,  population 
variance   �  , and residual error coeffi cients   �   that best fi ts 
the data from  m  subjects, one maximizes the above marginal 
density of  y  with respect to   �  ,   �  , and   �  , minimizing 
the resulting  L . However, the integration steps needed to 
eval uate  L  are computationally expensive. The fi rst-order 
con ditional estimation method (FOCE, 11  ,  18 ) minimizes an 
alternative objective function:

 
L LN iN

i

m

=
=
∑
1

 (15)

where

 
LiN = -2log(p(yi, ̂�i|�,�,�)) - log|B̂j|  (16)

is the approximate individual likelihood contribution of 
individual  i , q̂i is the mode of the joint density for each 
subject  i , and B̂i is the fi rst order approximation to the con-
ditional variance matrix of the parameters over the joint 
density. Equation 16 represents the exact evaluation of 
Equation 13 only if     p  (     y   i   ,    �    |    �    ,    �    ,    �    )       with respect to   �   is a nor-
mal distribution, which occurs if the model function f (tij, �) 
is linear with respect to   q  . Thus, Equation 16 is a reasonable 

approximation to Equation 13 to the extent that the density 
     p  (    y   i   ,    �    |    �    ,    �    ,    �    )        is approximately normal in   �  . The minimiza-
tion of Equation 16 is conceptually done by a 2-step pro-
cess. First, initial values of   �  ,   � ,  and   �   are set, while the 
data from each individual are fi tted by fi nding the minimum 
of  L iN  , obtaining the parameter set q̂i at the mode (maxi-
mum) of the distribution, and obtaining B̂i by standard par-
tial derivative assessment at the mode. Once this is done for 
all subjects, the total  L N   is calculated as simply the sum of 
 L iN  , which serves as the population likelihood at that given 
  �  ,   � ,  and   �  . A quasi-Newton search routine assesses  L  at 
various   �  ,   � ,  and      �       , and performs a gradient directed 
search for the set of   �  ,   �  , and      �        that provide the optimal  L . 
Thus, individual maximum likelihood analyses are per-
formed within a larger scale maximization to fi nd   �  ,   � ,  and 
     s       . A somewhat more accurate assessment of the integral can 
by obtained if B̂i is replaced with a variance-covariance 
matrix that was derived from a second-order assessment of 
the information matrix under the individual’s conditional 
parameter distribution, as is done with the Laplace method 
in NONMEM. 11  ,  19   

  An Even More Linearized Approximation Method: FO 
 Despite the linearization reducing the complexity of the 
integration step, FOCE still requires considerable computa-
tion time, although this has improved recently with ever-
faster computers. To simplify the process further, one can 
combine the deviation of the data from the model function 
values within the individual (the residual error) with the 
deviation of the model function values between individuals 
(from the intersubject model parameter variation). This 
simplifi cation is an approximation that is reasonable if the 
intersubject variability plus residual variability are not large, 
so that one can approximate all intra and interindividual 
deviations as a fi rst order approximation. What results is an 
objective function of the form 2  ,  4  ,  12  ,  17 :

 
L f fFO i i i i i i

i

m

= − ′ − +−

=
∑[( ( , )) ( ( , )) log(det( ))]y yt C t C� �1

1
 (17)

where

 C diag gi i i i= ′ +G G� ( )  (18)

is the matrix modeling the contribution of the interindividual 
variance of the parameters and the residual variance of mea-
surement error to the total variations observed in the data,

 
G i

if= ∂
∂
( , )t �
�  

 (19)

 and
 diag(gi) (20)

is a diagonal matrix with diagonal elements  g ij  . Equation 17 
can be minimized in place of Equation 15 or Equation 14. 
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The model function  f  and residual error function  g  are always 
evaluated at the population mean position   �  , and an individ-
ual’s best fi t values are never determined during the popula-
tion analysis. Rather, the effect of that person’s deviations of 
its parameters on his data are always interpolated via the 
matrix  G . By using the above approximation, a reasonable 
sense of what portion of the deviation of the data from the 
population mean value is due to residual error and what por-
tion is due to interindividual variation can still be obtained. 
The time savings results from requiring only a minimization 
for   �   and   �  , without having to fi rst perform individual opti-
mizations within the larger optimization. Thus while FOCE 
only linearizes the deviation at the residual error level, FO 
linearizes the deviation of data at the interindividual and 
residual error level. This FO method was the original popu-
lation analysis algorithm available in the fi rst version of 
NONMEM. 20  
 If intra- plus interindividual deviations sum to be large, the 
FO can be inaccurate. 21  ,  22  A 20% residual variability has 
been sited as causing inaccurate estimation of the parame-
ters in several examples. 23  ,  24  The degree of inaccuracy that 
large intra- plus interindividual deviations cause in the 
FO method also depends on the degree of statistical non-
linearity of the model with respect to the parameters. To 
avoid all inaccuracies arising from linearizing a problem, 
exact integrations under each subject ’ s conditional density 
should be performed.  

  Return to More Exact Integration Methods 
 In recent years attempts have been made to increase the 
accuracy of integration under the individual ’ s conditional 
distribution. The Gaussian-Quadrature method, and meth-
ods similar to it, have been implemented in order to achieve 
this. 6  ,  19  ,  25  These methods tend to require greater computa-
tion times than the linearized approximations. 26  The follow-
ing section discusses combining integrations/expectations 
by Monte-Carlo methods with a straightforward method of 
maximization, and is showing promise for population anal-
ysis, especially for PK/PD problems. Monte Carlo methods 
have been found to be robust and are easy to program. 19   

  The Expectation-Maximization (EM) Algorithm with 
Monte-Carlo Integration Methods for Obtaining 
Exact Integrals 
 The EM algorithm is a means by which the exact objective 
function  L  of equation 14 may be minimized. It can be 
shown that if the parameter population density     h  (    �    |    �    ,    �    )       is 
of the form of a multivariate normal distribution with 
respect to   �   (or some transformation of   �  ), then at the mini-
mum of the objective function the following relationships 
are true 27 :

 
� =

=
∑1
1m i

i

m

qq  (21)
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=
∑1
1m i

i
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  where

 
qq qq qq qqi iz d=
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is the conditional mean   �   vector for subject  i ,
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∫ ( )( ) ( | , , , )qq qq qq qqy  (24)

is the contribution to the population variance from each 
subject  i , and
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is the conditional density of   �  , given data  y  i , and population 
parameters   �  ,   �   and   �  . An equivalent form of Equation 
24 is:

 � � �i i i i= − − ′ +( )( )qq qq B  (26)
where

 
Bi i i iz d= − − ′

−∞

∞

∫ ( )( ) ( | , , , )qq qq qq qq qq qqy � � �  (27)

is the conditional variance matrix of   �   for subject  i . 
 The above equations suggest that one may maximize 
    p  (   y   |    �    ,    W    )       with respect to the population parameters   �   and   �   
by fi rst evaluating the conditional mean q̄i by Equation 23 
and the conditional variance B̄i by Equation 27 for each sub-
ject  i , using fi xed values of   �   and   �   (the expectation step), 
followed by evaluating updates to   �   and   �   using Equations 
21, 26, and 22 (the maximization step 27 ). The EM update 
Equations 21 and 22 are specifi c for a parameter density 
    h  (    �    |    m    ,    �    )       that is multivariate normal, but are generally true 
for any data density     l  (    y   i   |    �    )      . An additional algorithm is 
required to update   �  . 8  ,  28  
 Additionally, we would like to evaluate the integrations 
given in Equations 23 and 27 more precisely while avoid-
ing complicated integration algorithms. Monte-Carlo 
integration methods allow one to randomly sample over 
the entire space of      �       , and then calculate a weighted aver-
age of the quantity of interest, converting the theoretical 
integration step into a practically evaluated summation 
step 8  ,  29 :
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Practical Evaluation
where the weight  w  depends on the parameter density      h  (     �     (  k  )    )        
(suppressing dependence on   �   and   �  ), data density,     l  (     �     (  k  )    )       
(suppressing dependence on       y   i       ) and the method of Monte-
Carlo used, for  r  randomly generated vectors of        �     (  k  )        . Alter-
natively, samples may be accepted or rejected using a 
suitable testing function that depends on  w , and the accepted 
samples would then be simply averaged. 
 Several Monte Carlo methods have been used in population 
PK/PD problems for evaluating the conditional means and 
variances, among them direct sampling, 8  ,  29  importance sam-
pling, 8  and stochastic approximation EM with importance 
sampling and Markov Chain Monte Carlo. 15  ,  30   

  Linearized Approximation EM or Iterative Two-Stage 
(ITS) Method 
 As mentioned earlier, the distribution of     q       under the indi-
vidual likelihood

 p l hi i( , | , , ) ( | , ) ( | , )y yqq qq qq� � � �σ σ=  (30)

is often non-normally distributed, the non-normality (and 
hence often statistical nonlinearity) imparted to it by the 
nonlinear PK/PD model function f. If the residual error is 
fairly small, and/or a rich collection of data are obtained for 
an individual, then the likelihood may often be approxi-
mated as a normal distribution with respect to   �  . Normal 
distributions are characterized as symmetric about the mean, 
with the mean value equivalent to the most probable value, 
or the mode of the distribution. In this case the mode of   �   
may be used in place of the more diffi cult to obtain mean of 
  �  . As the mode of the individual density is easily obtained 
by fi nding the maximum of Equation 30, a suitable linear-
ized approximation using the EM method would be to per-
form individual fi ts as is done in the FOCE method, to obtain 
q̂i and B̂i, which serve as the expectation step, followed by 
the following maximization step:

      
� =

=
∑1
1m i

m

θ̂ i (31)

 
� =

=
∑1
1m i

m

�̂  i (32)

 This method is called the iterative 2-stage method (ITS), fi rst 
suggested by Steimer et al, 31  popularized by others, 32  ,  33  and 
implemented in Kinetica/P-PHARM 28  ,  34  ,  35 , and Popkinetics. 36  

 While the expectation step of ITS is equivalent to the linear-
ized integration step of FOCE, the ITS method performs the 
simpler EM method to update   �   and   �  , rather than the 
quasi-Newton search method of FOCE. The ITS algorithm 
therefore does not lead to the minimization of  L N  , although 
it nearly minimizes it to the extent that the linearization does 
not unreasonably deviate from the true likelihood. 

 The ITS method approaches the minimum from even rather 
poor initial population parameter settings at a very rapid 
pace, and then slows down considerably in its convergence 
rate. When data are relatively rich (at least as many data 
points as there are parameters), the ITS method can yield 
results similar to NONMEM’s FOCE method. However, 
when data are sparse (such as one data point per subject, and 
fi tting a 1- or 2-parameter PK model), the ITS and FOCE 
methods yield different answers, both of which can be 
biased. 8  ,  21  ,  23  Their different answers result because of the 
different  “ maximization ”  step each method uses. We shall 
see this in example 1 below. Their bias results because both 
methods use a simplifi ed, linearized method to perform the 
expectation step when the density     p  (    y   i   ,    �    |    �    ,    �    ,    �    )       with 
respect to   �   is highly non-normal.  

  Three-Stage Hierarchical/Bayesian Method 
 The EM and NONMEM FOCE methods are called 2-stage 
hierarchical maximum likelihood methods, the fi rst stage 
being the individual likelihood of the data     l  (    y   i   |    �    ,    �    )      , given a 
set of model parameters and residual error coeffi cients   �   for 
that individual, and the second stage the likelihood of the set 
of model parameters, given some knowledge or assumptions 
of the distribution parameters among the population     h  (    �    |    �    ,    �    )      , 
parameterized by the population means   �  , and intersubject 
variance   �  . A third hierarchical stage may be introduced and 
incorporated into the total likelihood to take into consider-
ation the uncertainty of the knowledge of the parameters   �  , 
  �  , and   �  , to the population distributions. 9  ,  10  ,  17  This consider-
ation is particularly appropriate if one has empirical knowl-
edge of   m  ,   �  , and   �  , based on a previous population analysis 
which one would like to incorporate into a new analysis. 37  ,  38  

 In addition, Bayesian methods of analysis do not maxi-
mize the likelihood. Rather, a series of possible   �  ’s,   �  ’s, 
and   �  ’s are collected, with a frequency that is based on 
their likelihood of explaining the data using the following 
probability 10  ,  17 :

p( , , / , , , , )� � � �y q H W =

 p( , , , / , , , ) / ( / , , , )� � � � �y yq H W q H Wp  (33)
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where
p p( , , , / , , , ) ( / , , ) ( , , / , , , )y y� � � � � � � � � � �q H W q H W= =π

 (34)
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  So:

p p d d d( / , ) ( , , , / , )y yq H W q H W, , , ,� � � � � � � �= ∫  
(37)
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  The probability      �   (    �    ,    �    ,    �    /   q   ,   H   ,   W   ,    �    )       is the distribution of 
  �  ,   �  , and   �  , based on prior knowledge/data analysis. 
Typically, the distribution of   �   is modeled as a normal 
distribution with mean  q , and variance  H . The  q  and  H  
could be based on the population mean   �   and its standard 
error (not intersubject variance, but the uncertainty of 
knowledge of   �  ) from a previous analysis. The   �   inter-
subject variance is modeled as a Wishart distribution with 
parameters  W , and the residual variance   �   is modeled as 
a gamma distribution with parameter   �  . A poor man’s pro-
cess may be conceived of by randomly selecting a particu-
lar   �  ,   �  , and   �   from their respective distributions, then 
randomly selecting the   �  ’s based on the   �  ,   �  , and then 
evaluate     l  (    y   i   |    �    ,    s    )       based on the   �   and   �  . Many parameters 
may be randomly selected, their     l  (    y   i   |    �    ,    �    )       evaluated, and 
summed together for a given   �  ,   �  , and   �  . These sums of 
    l  (    y   i   |    �    ,    �    )       represent empirical assessments of integration 
over all possible   �  , and is therefore an empirical assess-
ment of     p  (   y   ,    �    ,    �    ,    �    /   q ,   H   ,   W   , �   )      . These subsums are then 
divided by the total sum over all randomly selected     �      ,     �      , 
and      �        where this total sum represents the empirical assess-
ment of     p  (   y   /   q ,   H   ,   W   , �   )      . What results is a collection of 
thousands of  � ,  � , and   �  , with their frequencies     p  (   y   /
   q ,   H   ,   W   , �         )      . From these, weighted averages of   �  ,   �  , and   �   
may be obtained, as well as their variances. Also, one may 
identify the maximum likelihood estimate of   �  ,   �  , and 
  �   by choosing the set with the highest frequency. In this 
sense, a complete distribution profi le of the population 
parameters is obtained, rather than a single estimate of   �  , 
  �  , and   �   at the maximum likelihood. 

 If no prior knowledge is available of the distribution of   �  , 
  �  , and   �  , say, from a previous analysis, so that their distri-
bution      �   (    �    ,    �    ,    �    /   q ,   H   ,   W   , �   )       is unknown, one can set the  H  
matrix to very large values, and   t   to a very small value, to 
represent this lack of knowledge, and to prevent a constraint 
of the analysis based on untenable preconceived notions. 
This is called an uninformative prior, and the frequency dis-
tribution of   �  ,   �  , and   �   will be completely determined by 
the observed data  y . 

 In practice, if the direct sampling Monte Carlo approach is 
used in the manner described above, millions of random 
vectors of parameters at the   �  ,   �  ,   �  , and   �   level must be 
selected in order to obtain enough samples that have suffi -
ciently high probability of explaining the data, and thereby 
provide an accurate collection of parameters. The more 
uninformative the prior, the greater the search region, and 
the more random vectors that must be selected and tried. In 
addition, if the PK/PD model consists of numerically inte-
grating differential equations, then each     l  (    y   i   |    �    ,    �    )       that must 
be evaluated is computationally expensive. 

 One approach is to increase the effi ciency of the Monte-
Carlo method used. The Markov-Chain Monte Carlo method 
(MCMC) has been shown to be a suitable approach for 
3-stage hierarchical/Bayesian methods. 39-41  The MCMC 
method can be implemented such that the conditional inte-
gration under   �   is performed in an effi cient manner as part of 
the Bayesian analysis. 10  One caveat in using this sophisti-
cated Monte Carlo technique is that because it is a condi-
tional probability method so that the random vectors selected 
are not statistically independent of each other, there is a danger 
of the algorithm to reduce its search area to a subdimensional 
space for extended series of random samples, and provide 
biased estimates. As we shall see, simple PK models can be 
executed fairly quickly. With more complex PK/PD models 
requiring integration of ordinary differential equations, the 
computation time can be much greater than that of the 
2-stage hierarchical methods. Nonetheless, advanced PK/PD 
modeling methods using ordinary differential equations have 
been implemented recently using WinBUGS. 37  ,  42  

 The 3-stage hierarchical/Bayesian approach provides a com-
prehensive analysis of the population data through the PK/PD 
model selected, and provides the ability to study the profi le of 
an entire set of likely population parameters. In this sense, it 
is typically superior to 2-stage hierarchical maximum likeli-
hood methods, but requires greater computation time.   

  SOFTWARE EVALUATION USING 4 EXAMPLES 
 For this survey, we sought to assess the general reliability of 
the estimates as well as their standard errors provided by sev-
eral population analysis programs. As only one data set was 
created for each of the problems, this was done by testing if 
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the estimated parameters differed from the reference values 
by more than 2 or 3 estimated standard errors. This test was 
selected because as a fi rst approximation the PK/PD modeler 
typically considers that the estimates have a 95% probability 
of being within 2 standard errors, or to be more conservative 
considering that the analysis is not linear, 3 standard errors, 
from the true values. This method therefore serves as an 
informal assessment of parameter estimation for a single data 
set, as would be applied in typical PK/PD modeling sessions. 
If the standard error is accurately assessed, it would represent 
the precision of the parameter estimate that one should expect, 
given the number of subjects, number of data points per sub-
ject, sampling strategy, and dosing regimen in the simulated 
data set. So that assessment of accuracy of estimated parame-
ters would not be penalized because of inaccurate assessment 
of standard errors, it was duly noted wherever the parameters 
exceeded 2 or 3 standard errors because the standard errors 
were undervalued by the program, or the estimates were 
nonetheless within 10% of the reference values. 

 These examples have not been analyzed in as exhaustive a 
manner that would be required to make more formal statisti-
cal assessments. A formal statistical analysis would require 
creating at least 30 simulated data sets for each problem, 
and performing statistical signifi cance tests on the 30 sets of 
results compared with the reference values. It is statistically 
probable that a single simulated data set could be randomly 
created such that one or more software programs yield 
results that are unusually far from the reference values. 
However, the data sets created here were made large enough 
in number of subjects and/or in amount of data per subject, 
and were suffi ciently balanced in terms of distribution of 
sampling times and/or covariate characteristics, so that the 
assessment of the parameters would be fairly unambiguous, 
and we should only occasionally expect a large deviation of 
1- or 2-parameter estimates from their reference values. 

 We were also interested in testing the general robustness of 
each program using one arbitrary initial parameter setting 
that was very poorly informed. We typically used initial val-
ues where all of the parameters had the same value, to pro-
vide as little  “ fore-knowledge ”  as possible, while still being 
numerically sensible. For all of the programs and examples, 
when alternative initial settings were tried, they reached 
similar positions as those reported in the Tables. The reason 
again is that the data sets were simulated in a fairly balanced 
manner, with suffi cient information for all of the varied 
parameters, with a resulting likelihood profi le that provided 
a single minimum. Such balance and informativeness for all 
of the parameters may not be obtainable from empirical 
data, so in practice some trial and error in selecting initial 
values and fi xing certain values is necessary. Additional 
tests such as posterior predictive checks and other bootstrap 
techniques should also be applied in practice, but these 
require more time and effort. 

 Five population analysis programs are described: NON-
MEM, PDx-MCPEM, S-ADAPT, MONOLIX, and Win-
BUGS/PK-Bugs. S-ADAPT and PDx-MCPEM provide an 
exact EM algorithm with a mature environment for advanced 
PK/PD modeling. MONOLIX provides an exact EM algo-
rithm in the MATLAB environment, but leaves it up to the 
user to provide all of the code necessary to evaluate the 
model function, so the user must supply the dose parsing 
routine, and differential equation solver, if needed for the 
model. The authors of MONOLIX plan on adding these 
essential tools for the PK/PD modeler in the future. For each 
program we describe its general interface, ease of use, abili-
ties, and how it performs on 4 simulated data sets. PK/PD 
parameters were simulated based on a log-normal distribu-
tion among subjects, and data were simulated based on a 
proportionate error model. 

 Analyses were performed on a Dell Pentium 4 3.20-Ghz 
computer, with 1 gigabyte non-ECC 400-MHz DDR2 mem-
ory, and 80-GB SATA 7200-rpm hard drive with Data Burst 
Cache. The operating system was Windows XP, and the 
NONMEM, S-ADAPT, and PDx-MCPEM software pack-
ages were compiled using Intel Fortran 9.1. 

  Simulated Data Sets for the 4 Examples 
 The fi rst data set was simulated from a 2-compartment PK 
model with 2 data points per subject, 1000 subjects, to deter-
mine parameter assessment in a sparse data sampling design. 
The model parameters consist of 
 CL: clearance 
 V1: volume of distribution of the central compartment 

 Q: distribution rate to peripheral compartment 

 V2: volume of distribution of the central compartment 

 For each subject, a parameter set was randomly selected 
from a log-normal multivariate distribution, and simulations 
were performed with an intravenous bolus dose of 100 units. 
From this random parameter set, data with residual error 
were simulated at 2 sampling times from a discrete set of 
times: 0.1, 0.2, 0.4, 0.7, 1, 2, 4, 7, 10, 20, 40, and 70 times 
units. All possible pairs of times were equally represented 
among the subjects. As there are (12 × 11)/2=66 combina-
tions, there were 1000/66=15 subjects for each sample time 
combination. This method of distributing sample times pro-
vided a balanced data set, providing suffi cient information 
to obtain estimates of interindividual variability among 
parameters as well as a residual error coeffi cient of varia-
tion, despite the sparse amount of data per subject. 

 A second problem is the same 2-compartment model, but 
the population means of CL and V1 are modeled to be 
dependent on each subject’s sex and age: 
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 If male:

 CL CL agei m
CL

i
m age= _ exp( )h   (39)

 V V agei m
V

i
m age1 1 1= _ exp( )h   (40)

  If female:

 CL CL agei i
CL

i
f age= _ exp( )h   (41)

 
V Vi f

v
iage

f age1 1 1= _ exp( )h
 (42)

  The data set consisted of 200 male and 200 female subjects, 
each subject simulated with an intravenous bolus dose of 
100 units. Each subject had data simulated at 5 time points, 
using 1 of the 3 combinations: (0.1, 0.4, 0.7, 4, 20); (0.2, 1, 
4, 7, 40); or (0.4, 2, 10, 40, 70) time units. This problem was 
designed to assess the program’s ability to perform covari-
ate estimation. 
 A third problem is a single bolus 2-compartment PK model 
with an E-max PD model, requiring 8 total parameters to 
describe the model. Only analytical functions are used to 
describe the model, as follows:
  C t Ae Bet t( ) = +− −a b  (43)
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where: 
 D = intravenous bolus dose (500 units); V c , k 10 , k 12 , and k 21  
are PK parameters to a 2-compartment model; k eo  is the link 
effect parameter; E max , C e50 , and  g  are PD parameters to the 

Emax model; C(t) is the concentration of the drug in plasma; 
C e (t) is the concentration of drug in the effect compartment; 
E(t) is the effect as it changes with time. For each of 500 
subjects, data were simulated at 3 or 4 PK data points, and 
3 or 4 PD data points, with 1 of 3 combinations of time 
points: (0.03, 1, 20, 65), (0.1, 3, 35), or (0.3, 10, 50) time 
units, and the same time points were used for both PK and 
PD sampling in each subject. Residual error coeffi cients 
were fi xed to their known values. PK and PD data were ana-
lyzed simultaneously in the population analysis. This prob-
lem is designed to test the ability of programs to effi ciently 
analyze a population problem with many parameters. An 
earlier comparison of NONMEM V FOCE with S-ADAPT 
was made using this problem. 8  
 The fourth problem is a 1-compartment PK kinetic model 
with fi rst-order elimination and saturable elimination, plus 
an indirect response PD model, requiring numerical integra-
tion of a set of differential equations:

 
dX

dt
k X V X X X KM M

1
10 1 1 2 1= − − +* * /( )

 
(53)

 
dX

dt
V X X X K XM M

2
1 2 1 20 2 02= − + − +/( ) k k

 
(54) 

 This problem is designed to test the ability of programs to 
effi ciently analyze a population problem for a model requir-
ing numerical integration. Each of 25 subjects received an 
intravenous bolus of 100 units, followed by an infusion of 
1000 dose units over 1 time unit at time 7. For each subject 
a rich set of data were simulated, with PK and PD times at 
0.05, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 5, 7, 7.125, 7.25, 8, 10, 12, 
14, 16, 18, 20, 22, 26, and 28 units. PK and PD data were 
analyzed simultaneously in the population analysis. 
 These 4 problems represent several of the types of chal-
lenges facing today’s population PK/PD modelers.   

  NONMEM 
 NONMEM, distributed by ICON/Globomax (Ellicott, 
MD), 12  is open-source and written in Fortran 77, and 
requires a minimum yearly fee for support. The user com-
piles the source code using a compiler suitable for the 
operating system and hardware that the user would obtain 
separately (free Fortran compilers from the Web are avail-
able). The program uses the most basic terminal and fi le 
input and output features provided by Fortran compilers, 
and is therefore very portable. It is thus not interactive, but 
the NMTRAN pre-processor program allows the user to 
create a control stream fi le, with instructions given by the 
user on how to read the data fi le, what model to use, and 
what type of analysis to perform. The program is then com-
piled and linked, and is executed in batch mode. Users 
may select from predefi ned models, or write their own by 
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inserting Fortran-type code in the control stream fi le. The 
code may describe analytical model functions, or differential 
equations, which NONMEM then presents to its numerical 
integration routine. Furthermore, the population parameters 
may be modeled as a function of covariates such as gender, 
age, creatinine clearance, and so forth, using a syntax that 
represents the statistical basis of the model. The NONMEM 
program provides one of the most versatile modeling envi-
ronments available for population PK/PD. Another advan-
tage to this noninteractive method is that the entire problem 
is documentable, and therefore reproducible. By merely 
storing the control stream fi le and data fi le, the entire prob-
lem can be run again, and identical results will be obtained. 
Once the control stream fi le is written, the fi le may be modi-
fi ed and various versions may be created and executed. 
 A graphical user interface called PDx-POP is available that 
allows user-friendly set-up and data and parameter input. 
From this interface, the user may defi ne the model, and 
enter initial model parameters. The PDx-POP program cre-
ates an NMTRAN control stream fi le based on these inputs, 
and runs NONMEM in the background. Various statistical 
diagnostic and result plots may be created as well to allow 
easy checking of data set integrity, residual error analysis, 
and other goodness-of-fi t assessments. Additional features 
that may be helpful for the advanced user include conve-
nient set-ups for multiple problem processing, simulations, 
and model checking. Furthermore, interfacing of input and 
output fi les with popular data processing programs such as 
Excel and S-Plus are also included. 
 The NONMEM FO method results for example 1 are listed 
in  Table 1 , and was completed in approximately 1 minute. 
The CL, V1, Q, and V2 values were more than 2 to 3 stan-
dard errors from the reference values, although CL and V1 
were within 10% of the reference values. Log-transforming 
the data and using a homoscedastic residual error model 
did not improve the model values. The NONMEM FOCE 
analysis was completed in approximately 3 minutes, pro-
viding population results but not standard errors due to the 
R matrix being non-positive defi nite. Because there were a 
large number of subjects (1000), the standard errors were 
evaluated from the S Matrix instead, with the off-diagonal 
intersubject variances set to 0, which was allowable since 
this was the way the data were simulated. Most of the pop-
ulation parameters for the FOCE method were within 2 
standard errors of the reference values. The CL parameter 
was approximately 5 standard errors from the reference, 
and V1 was 3 standard errors from the reference. However, 
the estimates of CL and V1 differ from the reference values 
by less than 10%, the estimation facilitated by the large 
number of subjects in the data set. The Laplace conditional 
method in NONMEM provides a second-order approxima-
tion to the individual integration step, so this method was 
tried. The Laplace method failed to complete when the ini-

tial values were far from the true values, so the analysis 
was begun at the FOCE result values. The analysis com-
pleted, but standard errors could not be obtained even with 
the S matrix method. Nonetheless, the fi nal population val-
ues from the Laplace method were closer to the reference 
values than those of the FOCE method.

    In the second example, 5 data points per subject were sam-
pled, and the residual errors were small ( Table 2 ). Thus, as 
expected, the FOCE method, with its linearized approxi-
mation of the residual error, yielded population values that 
were within 2 standard errors of the reference value, and 
completed the problem in approximately 3 minutes. The 
Laplace method required an additional 17 minutes starting 
near the FOCE derived parameter estimates, and provided 
similar results, but without standard errors. Because the 
intersubject variances were also small (~10%), the NON-
MEM FO method also yielded reasonable results, particu-
larly when data were log-transformed and residual error 
was modeled homoscedastically.    

In the third example, a linear kinetic 2-compartment PK 
model and sigmoidal E-max PD model were used to fi t PK 
and PD data. The NONMEM FOCE method executed for 
approximately 20 minutes, beginning at poor initial values, 
and then terminated abnormally. The outputted values were 
used as new initial parameters for an additional run for 10 
minutes, and the analysis completed successfully. How-
ever, the standard errors could not be evaluated because of 
lack of positive-defi niteness in the information matrix, even 
when using the S matrix. The data were simulated with 
intersubject correlations between parameters, so they could 
not be set to 0 to facilitate the standard error evaluation. 
Nonetheless, the resulting values were similar to the refer-
ence values ( Table 3 ), with only the Ce50, Gamma, and its 
variance being somewhat undervalued. The Laplace method 
required an additional 18 minutes starting near the FOCE-
derived parameter estimates, and provided similar results, 
but without standard errors. The NONMEM FO method 
could not perform the problem unless a constant error 
model was used on log-transformed data, and also required 
2 restarts, and the total analysis was completed in 7 minutes. 
The FO results were very inaccurate for k10, and the PD 
parameters Ce50, Emax, and Gamma. Starting the analysis 
near the reference values did not improve the fi nal results.

    For the fourth example, NONMEM’s ability to perform an 
analysis expressed in the form of differential equations was 
assessed. The PK model was a highly nonlinear 1-compartment 
model with parallel fi rst-order and Michaelis-Menten elimi-
nation, coupled with an indirect response PD model. Each 
subject was richly represented in data regarding the PK and 
PD components. The NONMEM FOCE method was able 
to advance the analysis considerably beginning at poor initial 
values, but terminated with round-off errors after 6 hours. 
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A resumption of the analysis moved the objective function 
an additional 0.1 unit, required 2 hours, and completed with 
a success statement. Standard errors were not determined 
because the R matrix was not positive defi nite, but the fi nal 
parameters were similar to the reference values ( Table 4 ). 
The S matrix version could not be used because there were 
few subjects for this data set. Attempts with NONMEM 
Laplace method were unsuccessful. NONMEM FO com-
pleted much more quickly, within 3 minutes (including 1 
restart), but the resulting parameters were several-fold in 
error from the reference values. Even log-transforming the 
data so that a constant residual error model could be used 
did not improve the answers. Starting the analysis near the 
reference values did not improve the fi nal results.    

  PDX-MCPEM 
 PDx-MCPEM is a program written by Serge Guzy and dis-
tributed by ICON/Globomax (Ellicott, MD) 13  that provides 
population analysis using direct and importance sampling 
Monte-Carlo Expectation-Maximization methods. A user-
friendly interface is provided that is similar to PDx-POP for 
NONMEM, from which the user may select predefi ned PK 
and PD models. In the next version, the user may create his 
own PK/PD models. While a Fortran compiler is not needed 

for the predefi ned models, the user-defi ned Fortran model 
fi le must be compiled by Intel Fortran, Compaq Fortran, or 
gfortran, a freeware compiler supplied with PDx-MCPEM. 
With the user-defi ned feature, the versatility of the types of 
PK and PD models one can build in PDx-MCPEM is 
extended considerably over its fi rst version, including mod-
els defi ned by differential equations. Diagnostic goodness-
of-fi t plots may be easily obtained, and the progress of the 
analysis can be monitored by a running plot of the objective 
function versus iteration number. The intersubject variance 
may be defi ned as a normal or log-normal distribution. 
 For example 1, importance sampling was performed with 1000 
random samples evaluated per subject for the expectation step 
for 100 iterations for a total of 5 minutes. The fi nal results 
were within 2 standard errors of the reference values ( Table 1 ). 
 For example 2, fi rst PDx-MCPEM was used assuming all 
parameters have both a fi xed and a random effect. Impor-
tance sampling was performed with 1000 random deviates 
per subject during the expectation step, and 100 iterations 
led to reasonable estimates of the fi xed effects. The covari-
ate regression coeffi cients were then entered as fi xed in the 
second step procedure where only the parameters exhibiting 
both fi xed and random effects were estimates. All parame-
ters were within 2 standard errors of the reference values, 

 Table 1.    Results of Example 1. Data Simulated by NONMEM  

Parameter Ref    erence
Initial 
Values

NONMEM 
FO

NONMEM 
FO 

Loc(c)
NONMEM 

FOCE
NONMEM 

Laplace

CL 4.96 2 4.50†‡ 
(0.0786)

5.66† 
(0.0998)

5.30†‡ 
(0.0873)

4.90

V1 5.06 2 5.52†‡ 
(0.123)

5.41*‡ 
(0.127)

5.53†‡ 
(0.116)

4.98

Q 1.99 2 2.20* 
(0.0911)

2.45† 
(0.108)

2.03 
(0.0761)

2.01

V2  9.83 2 14.7† 
(0.422)

10.9* 
(0.374)

10.1 
(0.300)

9.58

Var(CL) 0.163 0.8 0.208* 
(0.0160)

0.195* 
(0.0154)

0.190* 
(0.011)

0.189*

Var(V1) 0.154 0.8 0.155 
(0.0251)

0.108 
(0.0247)

0.175 
(0.0188)

0.137

Var(Q) 0.154 0.8 0.242 
(0.0682)

0.348* 
(0.0934)

0.230* 
(0.0368)

0.156

Var(V2) 0.147 0.8 0.153 
(0.0561)

0.277* 
(0.0530)

0.124 
(0.0179)

0.191

Sigma 0.25 0.25 0.273 
(.0190)

0.278 
(0.0209)

0.205† 
(0.00937)

0.221*

–2LL –300.347 1021.656 –2630.7 –2603.832
Computation 
 Time

1 min 1 min 3 min 6 min
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except for V1m, due to the standard error being underval-
ued. If the standard error from one of the other programs is 
used, the V1 is within 2 standard errors of the reference 
value. The total cpu time was 20 minutes. 

 For example 3, 1000 random samples were evaluated per 
subject for 100 iterations. For this analysis, the importance 
sampling method was facilitated by imposing user-defi ned 
constraints on the conditional variance of the proposal den-
sity. The fi nal results were also within 2 standard errors of 
the reference values except for the parameter gamma ( Table 
3 ). The total cpu time was 40 minutes. 

 For example 4, 1000 random samples were evaluated per 
subject for the expectation step for 300 iterations for a total 

of 30 minutes. The importance sampling method was facil-
itated by imposing user-defi ned constraints on the con-
ditional variance of the proposal density. PDx-MC-PEM 
computes the standard errors using a fi rst-order lineariza-
tion approach and therefore could not estimate reliable stan-
dard errors for the variance components since the sample 
size was only 25. However, all of the parameters were close 
to the reference values ( Table 4 ).  

  S-ADAPT 
 S-ADAPT is a Fortran 95 open-source, free program 14  
distributed by the University of Southern California, 

S-ADAPT 
ITS

S-ADAPT 
ITS-

Laplace
S-ADAPT 
MCPEM 

PDx-
MCPEM MONOLIX WinBUGS 

4.94 
(0.0849)

5.00 
(0.0848)

4.90 
(0.0829)

4.91 
(0.078)

4.89 
(0.0766)

4.90 
(0.0853)

5.04 
(0.116)

5.22 
(0.118)

5.16 
(0.120)

5.13 
(0.12)

5.14 
(0.0957)

5.16 
(0.123)

1.58† 
(0.0822)

1.55† 
(0.0783)

1.97 
(0.0857)

1.94 
(0.082)

1.96 
(0.0478)

1.97 
(0.0922)

8.36† 
(0.343)

8.29† 
(0.336)

9.50 
(0.321)

9.45 
(0.22)

9.42 
(0.183)§ 

9.50 
(0.336)

0.181 
(0.0126)

0.187 
(0.0121)

0.184 
(0.0128)

0.18 
(0.012)

0.183 
(0.0102)

0.185 
(0.0127)

0.225† 
(0.0214)

0.228† 
(0.0209)

0.138 
(0.0129)

0.144 
(0.025)

0.137 
(0.0112)

0.141 
(0.0197)

0.373† 
(0.0726)

0.222 
(0.0609)

0.173 
(0.0481)

0.158 
(0.052)

0.179 
(0.0156)

0.167 
(0.0497)

0.240 
(0.0523)

0.193 
(0.0478)

0.146 
(0.0269)

0.142 
(0.035)

0.128 
(0.0109)

0.139 
(0.0325)

0.173† 
(0.00277)

0.182† 
(0.00293)

0.243 
(0.0120)

0.237 0.244 
(0.00691)

0.246 
(0.0129)

–2530.6 –2451.6 –2729.5 –2719.2 –2716.97
2 h 2 h 14 min 10 min 11 min 41 min

   Standard errors could not be obtained for NONMEM Laplace method, so those of WinBUGS were used for assessing the relative deviation from 
reference. The standard errors for NONMEM FOCE could only be obtained by fi xing the intersubject covariances to 0, and selecting the S matrix 
feature. 
 *Estimated value more than 2 SE from reference. 
   †  Estimated value more than 3 SE from reference. 
   ‡  Estimated value less than 10% different from reference value, despite being 2 or 3 SEs from reference. 
  § Estimated value is more than 2 SE from reference, but this is due to standard error being under-valued. Using standard error from Winbugs would 
make this value within 2 SE of reference. 
 Values in () are standard errors of the reported means.   
In the second example, 5 data points per subject were sampled, and the residual errors were small (Table 2). Thus, as expected, the FOCE method, 
with its linearized approximation of the residual error, yielded population values that were within 2 standard errors of the reference value, and 
completed the problem in approximately 3 minutes. The Laplace method required an additional 17 minutes starting near the FOCE derived parameter 
estimates, and provided similar results, but without standard errors. Because the intersubject variances were also small (~10%), the NONMEM FO 
method also yielded reasonable results, particularly when data were log-transformed and residual error was modeled homoscedastically.

 Table 1.    Continued  
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 Biomedical Simulations Resource department (USC, 
BMSR). The S-ADAPT program was developed by R. 
Bauer as an extension of the ADAPT II PK/PD modeling 
software 43  provided by USC, BMSR, and has been suc-
cessfully used to analyze clinical data for Raptiva, consist-
ing of 6 differential equations and 16 model parameters. 44  
The S-ADAPT program is designed for the advanced PK/
PD modeler who likes to have an interface with complete 
access to all variables and actions at run-time. It also has 
extensive simulation tools. 
 The program provides several interface types: interactive 
command line, interactive menu, and script-controlled 

interface. Because it uses advanced interactive input/out-
put features, the program is heavily operating system and 
hardware dependent, and does not have the portability of 
NONMEM. The open-source code may be compiled by 
Intel Visual Fortran compiler or Compaq Visual Fortran 
compiler running under the Windows 98 or higher operat-
ing system on an Intel-based computer. A free g95 com-
piler is also provided, which creates a program with a 
 console window environment, so that purchasing a Fortran 
compiler is not necessary. However, an S-ADAPT program 
compiled by Intel Fortran provides the fastest computing 
environment. 

 Table 2.    Results of Example 2. Data Simulated by S-ADAPT  

Parameter Reference
Initial 
values

NONMEM 
FO

NONMEM 
FO Log(c)

NONMEM 
FOCE

CLm 26.9 2 27.0 
(0.901)

27.5 
(0.897)

27.3 
(0.890)

Clm_age –.609 2 –0.611 
(0.00960)

–0.613 
(0.00951)

–0.612 
(0.00952)

CLf 25.4 2 25.1 
(1.65)

25.9 
(0.745)

26.0 
(0.745)

CLf_age –.204 2 –0.205 
(0.0197)

–0.205 
(0.00836)

–0.208 
(0.00831)

V1m 1.98 2 2.18* 
(0.0789)

2.12 
(0.0804)

2.09 
(0.0816)

V1m_age 0.352 2 0.326*‡ 
(0.0109)

0.333 
(0.0110)

0.336 
(0.0113)

V1f 3.02 2 3.23 
(0.137)

3.21 
(0.117)

3.13 
(0.112)

V1f_age 0.201 2 0.190 
(0.0381)

0.188 
(0.0105)

0.192 
(0.0104)

Q 1.99 2 1.89*‡ 
(0.0381)

2.03 
(0.0215)

2.00 
(0.0209)

V2 9.93 5 10.5†‡ 
(0.103)

10.1 
(0.0878)

9.99 
(0.0856)

Var(CL) 0.0106 0.2 0.010 
(0.000933)

0.0103 
(0.000986)

0.0103 
(0.000968)

Var(V1) 0.00941 0.2 0.00645* 
(0.00146)

0.00783 
(0.00145)

0.00795 
(0.00138)

Var(Q) 0.00972 0.2 0.0136 
(0.00414)

0.0102 
(0.00131)

0.0100 
(0.00305)

Var(V2) 0.00881 0.2 0.00689 
(0.00140)

0.0102 
(0.00147)

0.00967 
(0.00193)

Sigma 0.10 0.3 0.116† 
(0.00340)

0.103 
(0.00313)

0.100 
(0.00283)

–2LL –9976.137 –4635.410 –10772.107
Computation 
 time

1 min, 
could not be 
started at poor 
initial values

1min 3 min 
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NONMEM 
Laplace

S-ADAPT 
ITS

S-ADAPT-
MCPEM

PDx-
MCPEM MONOLIX WinBUGS

27.1 27.2 
(1.04)

27.1 
(0.891)

27.1 
(0.22)

27.1 
(0.857)

27.1 
(0.902)

–0.612 –0.611 
(0.0111)

–0.612 
(0.00958)

–0.612 
(0.0369)

–0.612 
(0.0092)

–0.612 
(0.00963)

25.9 26.0 
(0.748)

25.9 
(0.746)

25.3 
(0.18)

26.0 
(0.70)

25.9 
(0.756)

–0.208 –0.208 
(0.00841)

–0.209 
(0.00835)

–0.201 
(0.044)

–0.209 
(0.00794)

–0.209 
(0.00835)

2.08 2.08 
(0.102)

2.09 
(0.0843)

2.03 
(0.014)§

2.08 
(0.0724)

2.08 
(0.0847)

0.335 0.337
(0.0136)

0.335
(0.0117)

0.342
(0.1)

0.336
(0.0101)

0.335
(0.0117)

3.12 3.12 
(0.129)

3.13 
(0.114)

3.11 
(0.075)

3.13 
(0.0933)

3.13 
(0.114)

0.192 0.191 
(0.0119)

0.191 
(0.0105)

0.192 
(0.08)

0.191 
(0.00876)

0.191 
(0.0105)

1.99 2.00 
(0.0218)

2.00 
(0.0208)

1.99 
(0.014)

2.00 
(0.0128)

1.99 
(0.0233)

9.96 9.97 
(0.0913)

9.97 
(0.0850)

9.95 
(0.075)

9.96 
(0.0618)

9.95 
(0.0947)

0.0102 0.0105 
(0.00103)

0.0105 
(0.000965)

0.0102 
(0.003)

0.00984 
(0.000778)

0.0103 
(0.000933)

0.00802 0.00825 
(0.00150)

0.00830 
(0.00140)

0.0087 
(0.0022)

0.00774 
(0.000941)

0.00838 
(0.00136)

0.00939 0.0127 
(0.00294)

0.0123 
(0.00252)

0.0103 
(0.0022)

0.00657 
(0.000867)§

0.00868 
(0.00253)

0.00937 0.0111 
(0.00207)

0.0109 
(0.00176)

0.00937 
(0.0039)

0.00867 
(0.000834)

0.00945 
(0.00171)

0.100 0.0989 
(0.00163)

0.0989 
(0.00262)

0.100 0.102 
(0.0107)

0.101 
(0.00274)

–10772.157 –10770.1 –10780 –10772 –10777.2
17 min 
started near 
FOCE result)

6.8 min 6 min 20 min 21 min 22 min

   Standard errors could not be obtained for NONMEM Laplace method, so those of WinBUGS were used for assessing the relative deviation from reference. 
 *Estimated value more than 2 SE from reference. 
   †  Estimated value more than 3 SE from reference. 
   ‡  Estimated value less than 10% different from reference value, despite being 2 or 3 SE’s from reference. 
  § Estimated value is more than 3 SE from reference, but this is due to standard error being under-valued. Using standard error from Winbugs would 
make this value within 2 SE of reference. 
 Values in () are standard errors of the reported means.   
In the third example, a linear kinetic 2-compartment PK model and sigmoidal E-max PD model were used to fi t PK and PD data. The 
NONMEM FOCE method executed for approximately 20 minutes, beginning at poor initial values, and then terminated abnormally. The 
outputted values were used as new initial parameters for an additional run for 10 minutes, and the analysis completed successfully. However, 
the standard errors could not be evaluated because of lack of positive-defi niteness in the information matrix, even when using the S matrix. The 
data were simulated with intersubject correlations between parameters, so they could not be set to 0 to facilitate the standard error evaluation. 
Nonetheless, the resulting values were similar to the reference values (Table 3), with only the Ce50, Gamma, and its variance being somewhat 
undervalued. The Laplace method required an additional 18 minutes starting near the FOCE-derived parameter estimates, and provided similar 
results, but without standard errors. The NONMEM FO method could not perform the problem unless a constant error model was used on log-
transformed data, and also required 2 restarts, and the total analysis was completed in 7 minutes. The FO results were very inaccurate for k10, 
and the PD parameters Ce50, Emax, and Gamma. Starting the analysis near the reference values did not improve the fi nal results.

 Table 2.    Continued  



E74

The AAPS Journal 2007; 9 (1) Article 7 (http://www.aapsj.org).

 Table 3.    Results of Example 3. Data simulated by S-ADAPT  

Parameter Reference
Initial 
Values

NONMEM 
FO (log(C)

NONMEM 
FOCE

VC 50.0 1.1 53.5*‡ 
(1.59)

53.3*‡

K12 0.956 1.1 1.03 
(0.0486)

0.977

K21 0.319 1.1 0.348*‡ 
(0.0129)

0.320

K10 1.39 1.1 1.64† 
(0.0654)

1.37

Ke0 0.100 1.1 0.124* 
(0.00838)

0.0991

Ce50 0.0205 1.1 0.581† 
(0.0314)

0.0175†

Emax 12.4 1.1 35.7† 
(5.20)

12.4

Gamma 1.59 1.1 0.387† 
(0.0324)

1.19†

Var(VC) 0.234 3 0.249 
(0.0279)

0.253

Var(K12) 0.0822 3 0.114 
(0.0405)

0.0653

Var(K21) 0.309 3 0.314 
(0.0406)

0.286

Var(K10) 0.528 3 0.491 
(0.0642)

0.566

Var(Ke0) 0.421 3 2.02† 
(0.512)

0.426

Var(Ce50) 0.563 3 290* 
(114)

0.624

Var(Emax) 0.571 3 13.1* 
(4.25)

0.560

Var(Gamma) 0.493 3 4.37† 
(0.945)

0.260†

–2LL 9452.240 –5699.472
Computation time 7 min, required 

2 restarts
30 min, 
 1 restart

 Standard errors could not be obtained for NONMEM Laplace and NONMEM FOCE methods, so those of WinBUGS were used for assesing the 
relative deviation from reference. 
 *Estimated value more than 2 SE from reference. 
   †  Estimated value more than 3 SE from reference. 
   ‡  Estimated value less than 10% different from reference value, despite being 2 or 3 SE’s from reference. 

 S-ADAPT adds to the modeling environment provided 
by ADAPT II. The user fi lls out a Fortran model fi le from a 
template, providing the code necessary to describe the PK 
and PD model functions, residual error functions, parameter 
transformations, covariate models for the population param-
eters, and differential equations (which are evaluated at run-

time by the ADAPT II numerical integration solver), as 
needed. A series of model fi les are available, named after 
the various Advan/Trans models of NONMEM, so that the 
user may use any of these models as a starting template on 
which to add complexity, or to simply use them as is. Thus, 
fi lling out an S-ADAPT template fi le is no more  complicated 
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NONMEM 
Laplace

S-ADAPT 
ITS

S-ADAPT-
MCPEM

PDx-
MCPEM WinBUGS

54.3*‡ 52.6 
(1.52)

51.2 
(1.43)

51.4 
(1.1)

51.4 
(1.48)

0.975 0.907 
(0.0382)

0.941 
(0.0347)

0.914 
(0.037)

0.948 
(0.0366)

0.322 0.310 
(0.00913)

0.316 
(0.00895)

0.311 
(0.0093) 

0.317 
(0.00903)

1.33 1.38 
(0.0534)

1.36 
(0.0505)

1.36 
(0.041)

1.36 
(0.0511)

0.103 0.0915†‡ 
(0.00283)

0.0978 
(0.00330)

0.0976 
(0.0049)

0.0994 
(0.00351)

0.0181* 0.0217 
(0.00106)

0.0210 
(0.00103)

0.0193 
(0.0032)

0.0198 
(0.000996)

12.5 11.9 
(0.422)

12.6 
(0.437)

12.3 
(0.524)

12.5 
(0.436)

1.22† 1.99† 
(0.124)

1.36† 
(0.0735)

1.42† 
(0.03)

1.37* 
(0.0788)

0.233 0.235 
(0.0250)

0.245 
(0.0237)

0.212 
(0.03)

0.266 
(0.0236)

0.0651 0.0786 
(0.0345)

0.0635 
(0.0258)

0.048 
(0.051)

0.135* 
(0.0240)

0.290 0.282 
(0.0260)

0.291 
(0.0230)

0.247 
(0.033)

0.314 
(0.0238)

0.520 0.528 
(0.0437)

0.544 
(0.0424)

0.498 
(0.028)

0.546 
(0.0427)

0.468 0.279† 
(0.0266)

0.422 
(0.0377)

0.4046 
(0.038)

0.440 
(0.0400)

0.601 0.434* 
(0.0508)

0.544 
(0.0535)

0.613 
(0.032)

0.584 
(0.0609)

0.491* 0.573 
(0.0420)

0.565 
(0.0373)

0.57 
(0.066)

0.568 
(0.0383)

0.217† 0.345§ 
(0.0602)

0.549 
(0.0721)

0.343 
(0.078)

0.426 
(0.0723)

–5596.874 –5555.8 –5784 –5652
18 min, started 
from FOCE 
position

15.5 min 22 min 40 min 31 min

 

§Estimated value is more than 2 SE from reference., but this is due to standard error being under-valued. Using standard error from Winbugs would 
make this value within 2 SE of reference.
Values in () are standard errors of the reported means.
For the fourth example, NONMEM’s ability to perform an analysis expressed in the form of differential equations was assessed. The PK model was a 
highly nonlinear 1-compartment model with parallel fi rst-order and Michaelis-Menten elimination, coupled with an indirect response PD model. Each 
subject was richly represented in data regarding the PK and PD components. The NONMEM FOCE method was able to advance the analysis 
considerably beginning at poor initial values, but terminated with round-off errors after 6 hours. A resumption of the analysis moved the objective 
function an additional 0.1 unit, required 2 hours, and completed with a success statement. Standard errors were not determined because the R matrix 
was not positive defi nite, but the fi nal parameters were similar to the reference values (Table 4). The S matrix version could not be used because there 
were few subjects for this data set. Attempts with NONMEM Laplace method were unsuccessful. NONMEM FO completed much more quickly, 
within 3 minutes (including 1 restart), but the resulting parameters were several-fold in error from the reference values. Even log-transforming the 
data so that a constant residual error model could be used did not improve the answers. Starting the analysis near the reference values did not improve 
the fi nal results.

 Table 3.    Continued  
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Table 4. Results of Example 4. Data Simulated by NONMEM

Parameter Reference
Initial 
Values

NONMEM 
FO

NONMEM 
FO Log(c)

Vc 47.7 2 260.0†
110†

K10 0.0943 2 0.00299†
0.0468†

Vm 9.40 2 49.4†
6.91†

Kmc 1.12 2 9.96†
1.16

K02 37.9 2 59.3†
57.8†

K20 0.507 2 0.693†
0.504

SigmaPK 0.1 0.3 0.104
0.817†

SigmaPD 0.15 0.3 0.261†
0.314†

Var(VC) 0.101 2 38.5†
0.667†

Var(K10) 0.0795 2 28100†
4.49†

Var(Vm) 0.133 2 6830†
0.0748

Var(Kmc) 0.0725 2 8050†
0.841†

Var(K02) 0.130 2 141†
0.414†

Var(K20) 0.0932 2 348†
0.119

–2LL –1278.644 –96.732
Computation time 3 min,1 restart 3 min,1 restart

than developing a NONMEM control fi le. Once this model 
fi le is completed, the user builds the program, and then exe-
cutes it. When the program is loaded, a command window 
is displayed. The user then enters various commands in this 
window, providing initial values, inputting data fi les, and 
commands to begin the population analysis. Alternatively, 
these initial value settings and commands may be written 
into a script fi le, and then executed at run-time. Once the 
script fi le has completed, control returns to the program’s 
command window, awaiting additional commands. By 
using a script fi le, S-ADAPT could be run completely in 
batch mode and controlled by other programs. Whereas in 
NONMEM a single control stream fi le provides a complete 
instruction set for creating the model, inputting data, and 
actions to take, in S-ADAPT the Fortran model fi le provides 
the mathematical model description, while a separate run-

time script fi le provides the instructions for execution at 
run-time. If S-ADAPT is used in this way, then the Fortran 
model fi le, the script fi le, and the data fi le form the com-
plete, documented, and therefore reproducible, analysis. 
 Alternatively, the user may activate a menu, which guides the 
user through the most often used series of actions needed to 
perform a complete population analysis. The menu system is 
helpful particularly for beginning users, but is not as user-
friendly and graphical as PDx-POP or PDx-MCPEM. For 
example, the menu items lead you to enter an analysis name, 
input a data fi le, enter initial parameters, set analysis switches, 
and fi nally, the command to begin the population analysis 
itself. While the menu items are sorted in the logical order 
suitable for a straightforward analysis, the user may repeat 
any of the actions in the menu at will, in any order. For exam-
ple, one may enter new initial parameters, and then jump 
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right to repeating the analysis, without having to reenter anal-
ysis conditions. Various forms are also available to assist the 
user to enter parameter values, plotting variables, population 
analysis conditions, and so forth. Once the population anal-
ysis is completed, additional menu items are available for 
performing standard error analyses, post-hoc analyses, and 
graphical viewing of post-hoc results. All results are stored in 
S-ADAPT tables, the contents of which may be exported to 
comma delimited fi les that can be read by most programs. 
Other than post-hoc graphs, however, additional post-analysis 
statistical and graphical diagnostic tools are not easily avail-

able in S-ADAPT, so the user must typically export the results 
to programs such as S-Plus, SAS, or Matlab. 

 For example 1, the importance sampling method was used, 
with 100 random samples evaluated per subject for the 
expectation step for 150 iterations, and 1000 random sam-
ples for 20 iterations, for a total of 14 minutes. The fi nal 
results were well within 2 standard errors of the reference 
values. 

 For example 2, 300 random samples were evaluated per 
subject for the expectation step for 20 iterations, followed 

NONMEM 
FOCE

S-ADAPT 
ITS

S-ADAPT- 
MCPEM

PDx-
MCPEM WinBUGS

47.8 
47.4 
(3.41)

47.9 
(2.99)

47.7 
(1.3)

47.8 
(3.44)

0.0955
0.0959 

(0.00583)
0.0943 

(0.00543)
0.997 

(0.006)
0.0960 

(0.00666)

9.30
9.28 

(0.699)
9.33 

(0.689)
9.2 

(0.88) 
9.21 

(0.757)

1.10
1.09 

(0.0698)
1.11 

(0.0647)
1.10 

(0.10)
1.09 

(0.0765)

37.8
37.7 
(2.81)

38.1 
(2.67)

37.5 
(3.1)

37.6 
(2.80)

0.510
0.507 

(0.0341)
0.513 

(0.0311)
0.505 

(1.2)
0.506 

(0.0335)

0.0957
0.0940 

(0.00356)
0.0956 

(0.0363) 0.096
0.0964 

(0.00359)

0.147
0.148 

(0.00490)
0.147 

(0.00449) 0.147
0.147 

(0.00452)

0.0924
0.0970 

(0.126)
0.0963 

(0.0271) 0.096
0.127 

(0.0393)

0.0758
0.0798 

(0.286)
0.0774 

(0.0227) 0.071
0.118 

(0.0367)

0.122
0.129 

(0.325)
0.131 

(0.0380) 0.122
0.166 

(0.0526)

0.0710
0.0756 

(0.0973)
0.0721 

(0.0231) 0.070
0.112 

(0.0371)

0.109
0.116 

(0.466)
0.118 

(0.0339) 0.103
0.137 

(0.0426)

0.0808
0.0829 

(0.366)
0.0845 

(0.0251) 0.080
0.107 

(0.0334)
–4028.374 –4027.4 –4027.1 –4013
8 hr, 1 restart 5.5 min 12 min 30 min 9.8 h

     Standard errors could not be obtained for NONMEM FO and NONMEM FOCE methods, so those of WinBUGs were used for assessing the 
relative deviation from reference. 
 * Estimated value more than 2 SE from reference.
  † Estimated value more than 3 SE from reference.
   ‡ Estimated value less than 10% different from reference value, despite being 2 or 3 SE’s from reference.
  Values in () are standard errors of the reported means. 

 Table 4.    Continued  
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by 1000 random samples for 10 iterations, before para  me-
ters were visually assessed to no longer change in a 
directional manner, for a total time of 6 minutes. For this 
particular problem, the fi rst 20 iterations were performed 
most effi ciently by using the maximum a priori estima-
tion method (MAP) to obtain an improved importance 
sampling  proposal density for each iteration, which was 
then used for Monte-Carlo sampling. The fi nal results were 
well within 2 standard errors of the reference values. 
 For example 3, 300 random samples were evaluated per 
subject for the expectation step for 30 iterations, and 1000 
random samples for 70 iterations, before parameters were 
visually assessed to no longer change in a directional  manner, 
for a total of 22 minutes. The fi rst 30 iterations were per-
formed most effi ciently by using the MAP estimation method 
to obtain an improved importance sampling proposal density 
for each iteration, which was used for Monte-Carlo sam-
pling. The fi nal results were well within 2 standard errors of 
the reference values, except for gamma, which was a little 
larger than 3 standard errors of the reference value. 

 For example 4, 1000 random samples were evaluated per 
subject for the expectation step for 20 iterations, for a total 
of 12 minutes. The fi nal results were well within 2 standard 
errors of the reference values. For this problem also, the 
analysis was performed most effi ciently by using the MAP 
estimation method to obtain an improved importance sam-
pling proposal density for each iteration, which was then 
used for Monte-Carlo sampling.  

  MONOLIX 
 MONOLIX Version 1.1. is an open-source free program 
developed for population analysis using nonlinear mixed 
effect models. The current version is prototype software 
implemented in the Matlab environment, and distributed by 
the MONOLIX Group, directed by France Mentre (INSERM 
and University Paris) and Marc Lavielle (University René 
Descartes and University Paris-Sud). 15  MONOLIX imple-
ments an algorithm that combined the stochastic approxi-
mation EM (SAEM) with a Markov Chain Monte Carlo 
procedure for maximum likelihood estimation of the PK/
PD parameters in nonlinear mixed effect models without 
any linearization techniques. The stochastic EM method 
generates 1 to 5 random samples per subject per iteration to 
allow for an effi cient and rapid convergence toward the 
solution, which is called the burn in period, requiring typi-
cally 200 iterations. Thereafter, the program accumulates 
random sample results among the next 300 iterations, to 
obtain a more precise estimate of the population means and 
intersubject variances. 
 In the MONOLIX program, the user supplies a user-defi ned 
PK/PD model and data fi le for analysis. Because the current 

version of MONOLIX is implemented in the Matlab envi-
ronment, the user defi nes the PK/PD model using a Matlab 
programming language. A user-friendly interface is pro-
vided to link the user-defi ned PK/PD model and data fi le for 
the data analysis. 
 For example 1, the best results were obtained after 1000 
iterations to obtain the parameter estimates, and ran for a 
total of 11 minutes. Most of the population parameters 
were within 2 standard errors of the references values. 
The population mean value for V2 was greater than 2 
standard errors from the reference value, but this is 
because of a slight under-valuing of the standard error for 
this parameter. 
 For example 2, a new transformed covariate (cov_S) and 
the following reparameterization for CL needed for the 
MONOLIX program: 

 cov_S = Gender * log(age)
 log(CLi) = log(CLm) + q1 * Gender + 
 CLm_age * log(age) + q2 * cov_S + hi

where (55)
log(CLf) = log(CLm) + q1 * Gender

 CLf_age = CLm_age + q2  
 The same approach was used for the V1. The standard errors 
for the CLf, CLf_age, V1f, and V1f_age were obtained from 
the variance-covariance matrix using the principle of propa-
gation of errors. The results with 2000 iterations, requiring 
21 minutes, are presented in  Table 2 . Most of the population 
mean parameters were within 2 standard errors of the refer-
ence values. 
 The estimated value for the intersubject variance of Q was 
more than 3 SE from reference, but this is because of the 
standard error being under-valued. Using the standard error 
results from one of the other programs would make this 
value within 2 SE of reference. 
 The current version of MONOLIX only supports single-dose 
studies with 1 output function, therefore, example 3 with 
simultaneous PK/PD analysis cannot be done using MONO-
LIX without modifi cation of the source code. Furthermore, 
the program did not have the ordinary differential equation 
solver that supports PKPD analysis using differential equa-
tions, and hence, no results were reported for example 4 for 
MONOLIX. The next version of MONOLIX (version 2.1) 
will support different PKPD libraries, multiple-dose studies, 
model differential equations, and NONMEM data format. 

  Iterative 2-Stage Method 
 S-ADAPT’s iterative 2-stage mode was used. The results 
from these analyses are listed in  Tables 1 ,  2 ,  3 , and  4 . 
S-ADAPT’s ITS analyses were generally quite  satisfactory 



E79

The AAPS Journal 2007; 9 (1) Article 7 (http://www.aapsj.org).

for problems 2 to 4. For the sparse data problem 1, the 
values were farther from the reference values compared 
with the MCPEM method, as expected for a linearized 
EM method. Using a second-order evaluation of the 
expectation step (ITS-Laplace) did not improve the 
values.   

  WINBUGS 
 WinBUGS is a general software for performing any type of 
multistage hierarchical problem using various types of dis-
tributions, not just univariate or multi-normal. 9  ,  10  It is enjoy-
ing increasing popularity in the PK/PD population analysis 
fi eld. 37  ,  38  ,  42  ,  45  ,  46  The program is downloadable from the 
Web, and is at present free of charge. The user creates a 
document window, or imports an already existing model fi le 
into the document window, and enters his model in Modulo-2 
language, and has at his disposal the use of a handful of 
mathematical functions, and distributions. Following this, 
the user enters data and initial values for the problem into a 
document window. Again, data may be imported from a 
preexisting data fi le. Once all of the information is available 
in one or more document windows within WinBUGS, The 
user selects a series of commands from the menus, such as 
 “ check model ”  for syntax errors,  “ load data, ”   “ compile 
model, ”  each step returning a success/failure diagnostic. 
The cursor must be pointed at the beginning of the model 
text when selecting  “ check model, ”  and at the beginning of 
the data listing when  “ load data ”  is selected. Thus, one is 
committed to point-and-clicking quite a bit before analysis 
can begin. The output of WinBUGS can be extensive, con-
sisting of thousands of individual sample values of popula-
tion parameters and individual parameters, and provides a 
statistical summary, which can be summarized in the form 
of mean, standard deviation (equivalent to standard error in 
2-stage methods), and quantile values. WinBUGS also pro-
vides graphical outputs for these results. Alternatively, the 
individual sample values can be exported for further statis-
tical exploration in other programs. 

 An interface called PKBUGS that operates within Win-
BUGS has been created for 1-, 2-, or 3-compartment PK 
models, to automate creating the model text, entering basic 
covariate relationships, and constructing the data struc-
tures. 10  However, to perform more complex models, the 
user must create his own model, either by modifying the 
model fi le and data structures created by PKBUGS, or cre-
ating one from scratch. Furthermore, for the program to run 
more effi ciently, the user should use the BlackBox Pascal 
compiler component, also downloadable from the Web, 
free of charge at present. This requires writing the most 
computationally intense part of the model in Pascal, and 
compiling it in Pascal, in addition to the main WinBUGS 
Model fi le written in Modulo-2 code. Fortunately, Win-

BUG’s integration into the BlackBox environment is very 
straightforward. 

 Example 1 was simple enough to allow the PKBUGS inter-
face to perform the analysis, using an available precompiled 
Pascal module called pk.model. The analysis was run for 
40 000 iterations, requiring 10 minutes to complete. All 
values were well within 2 standard errors of the reference 
values ( Table 1 ). With this and the other examples, statistics 
on the last 10 000 values of population parameters were per-
formed to obtain their mean and standard error. 

 Example 2 was set up using the PKBUGS interface, and 
the covariate equations were further modifi ed to match the 
manner in which the data were simulated. The analysis was 
allowed to run for 20 000 iterations, requiring 22 minutes to 
complete. All parameters were within 2 standard errors of 
the reference values ( Table 2 ). 

 Example 3 was a PK/PD model that could not be evaluated 
with PKBUGS’s pk.model routine; therefore, the equations 
were programmed in the WinBUGS Modulo-2 language. 
When this was done, the analysis required 8 hours to perform 
10000 iterations, often with fl oating point errors occurring, 
requiring frequent re-starts. As this was very ineffi cient, 
another version of the model was created, with the majority 
of the PK/PD equations programmed in Component Pascal 
in the BlackBox environment, and then compiled, using 
modules made available by the WBDev package, which 
can be downloaded at present free of charge. In addition, 
the equations were constructed in such a way as to avoid 
fl oating point overfl ow. With this version of the program, 
analysis required 30 000 iterations to come to steady-state, 
executed in 31 minutes. Most parameters were within 2 
standard errors of the reference, and all were within 3 stan-
dard errors. 
 Example 4 required the integration of differential equations, 
a computationally expensive process, so a Pascal compo-
nent BlackBox module was created, which in turn used 
ordinary differential equation (ODE) modules available in 
the WBDiff package, an additional, free-of-charge, compo-
nent of WinBUGS. While the parameters were close to steady 
state by approximately 30 000 iterations, another 40 000 iter-
ations were required to be satisfi ed that there was no persis-
tent drifting of all parameters. Thus, the program required 
9.8 hours for 70 000 iterations, although the results after 4.2 
hours were acceptable. All parameter estimates were within 
2 standard errors of the reference values.  

  GENERAL CONCLUSIONS AND 
RECOMMENDATIONS 
 The 4 examples used above offer a good representation of 
the types of problems that are often considered in  population 
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PK/PD modeling. Selected population PK/PD programs 
that are available to the public and have or are expected to 
have a mature PK/PD modeling environment were tested in 
their ability to analyze the data with reasonable accuracy 
(within 2 or 3 SE of the reference values), the approximate 
amount of time, and with the degree of intervention required 
once the analysis run was started. 
 Certain types of population problems have not been investi-
gated here, such as working with ordinal or some other non-
normally distributed data, 26  and population mixture models. 
In this regard, the latest or soon-to-be-released versions of 
NONMEM, S-ADAPT, and PDx-MCPEM include ways to 
perform population mixture modeling, and allow the user to 
defi ne his or her own individual likelihood function, so that 
non-normally distributed data can be modeled. While initial 
tests using the EM software show reasonable results, a full 
assessment of bias and precision for these types of problems 
has not been performed. 

 Among the 2-stage hierarchical methods, NONMEM FO 
method, which is the simplest methodology, performed very 
well in terms of speed and accuracy with a straightforward 
2-compartment model (example 2), if the residual and inter-
individual variances were small (~10%). Accuracy was 
improved when the data were log transformed so that the 
residual error could be modeled homoscedastically. In con-
trast, when residual errors or interindividual errors were 
large, the FO method was very inaccurate, even for a 
simple 2-compartment model, as shown in example 1. The 
NONMEM FOCE method requires more computation time 
than FO, but generally gives accurate population values 
regardless of size of interindividual errors. The NONMEM 
FOCE, version VI, can complete the problem with reason-
able effi ciency if the PK/PD model is described in closed 
form, a great improvement over NONMEM FOCE V’s per-
formance. 8  On occasion, even with NONMEM VI, the 
problem terminates prematurely, and may need to be 
restarted at renewed initial values, but much fewer restarts 
are required than with NOMMEM FOCE V, and far fewer 
searches for the  “ right ”  new initial values are required. 
However, if data are very sparse (fewer than  p  data points 
per subject, where  p  is the number of PK/PD model param-
eters), the NONMEM FOCE method can lead to inaccurate 
values, in which case the Laplace method can at times pro-
vide more accurate results. Because the Laplace method 
uses a more complicated analysis method, however, it is not 
very robust, and one should progress to this method after 
employing the FOCE method. Also, NONMEM VI’s differ-
ential equation solver in combination with the optimization 
search algorithm is still ineffi cient, and can lead to exten-
sive computation times for such problems, as demonstrated 
with example 4. It is therefore recommended that the NON-
MEM FOCE method be used when the data are reasonably 
rich, the PK/PD problem can be described in analytical 

form, and when extensive covariate modeling and hypothe-
sis testing needs to be performed. The NONMEM FO 
method at one time served a useful purpose when comput-
ers were slower, but with the improved speed of computers, 
and the increased effi ciency of NONMEM FOCE in version 
VI, NONMEM FOCE should now always be used for future 
analyses, and NONMEM FO should NEVER be used for 
fi nal analysis. 
 The constraint of making the intersubject variance matrix to 
be diagonal to improve stability in NONMEM should no 
longer be necessary, except if there are diffi culties estimat-
ing the standard errors. In such cases, the full intersubject 
variance derived from the result may be analyzed for pat-
terns of block diagonal correlations, and these constraints 
can then be imposed in order to evaluate the standard errors. 
In this regard, the failure by NONMEM to provide estimates 
of standard errors is seen as a positive feature by many stat-
isticians in big Pharma. This failure usually signals some 
problem with the parameter surface at the apparent mini-
mum and this should be taken into consideration when one 
is trying to develop a parsimonious and stable model. One 
of the more frequent causes of the failure of the Covariance 
Step in NONMEM is the user attempting to estimate inter-
subject covariances that are either very small or very large. 
Restructuring the intersubject variance-covariance matrix 
can often obviate this problem. All of the examples in this 
review were executed with full intersubject variance-cova-
riance matrix assessment unless otherwise stated for pur-
poses of standard error assessment, although the tables only 
list the diagonal variances for simplicity. 
 The exact EM methods have the advantage of greater sta-
bility in population analyzing complex PK/PD models, 
and additionally have reduced bias in assessing sparse or 
rich data. 47  For simple 2-compartment PK models with 
fairly rich individual data, and for complex covariate 
assessment, NONMEM FOCE performs more quickly 
and is suffi ciently stable. Surprisingly, when PK/PD mod-
els are more complex, such as 2-compartment PK with 
Emax sigmoidal PD, or when requiring numerical inte-
gration of differential equations, the exact EM methods 
perform more quickly and stably than NONMEM FOCE. 8  
This has been demonstrated again here. The computa-
tional expense of using Monte Carlo methods to obtain 
the results is more than offset by this increased stability, 
when the number of model parameters is 8 or greater. The 
MCPEM methodologies provided accurate assessments 
of the parameters, except for one parameter in example 3, 
which was a little over 3 standard errors deviant from the 
reference value. Furthermore, the MCPEM methods can 
always provide standard error assessments, even when 
modeling full intersubject variances. Because of this, the 
signifi cance of an intersubject covariance between 2 
parameters should be carefully assessed based on the 
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 relative size of its standard error, since the algorithm is 
not likely to provide a failure signal as would occur in 
NONMEM. The S-ADAPT standard error assessment 
was found to be most consistent with the sampled stan-
dard error of WinBUGS. Also, both S-ADAPT and the 
second version of PDx-MCPEM, to be issued soon, pro-
vide mature user-defi nable PK/PD modeling environ-
ments. Both programs also have effi cient differential 
equation solvers for nonclosed form PK/PD problems. 
S-ADAPT has the added advantage of incorporating 
ADAPT II’s Nelder-Mead search algorithm along with 
Monte Carlo integration during the fi rst several iterations 
to quickly move the population means toward the answer. 
Hence, S-ADAPT was particularly effi cient in solving 
problem 4. MONOLIX is also expected to have a mature 
PK/PD modeling environment in its next version. While 
S-ADAPT is capable of modeling elaborate covariate 
models, the coding of modeling the PK/PD parameters to 
covariate data are not as straightforward as in NONMEM. 
Also, for MCPEM methods in general, a  “ trick ”  is needed 
to fi t fi xed effects that are shared among individuals with 
no intersubject variances associated with them. 

 WinBUGS, which uses a 3-hierarchical stage method for 
population analysis, provided accurate assessments of most 
of the population parameters. WinBUGS provided standard 
errors as well 95% quantile values (not reported here). Win-
BUGS uses the Gibbs sampling and Metropolis-Hastings 
methods, 9  ,  10  and is the most sophisticated of the analysis 
methods among the programs tested. Therefore, it took typi-
cally twice as long as S-ADAPT, and 4 to 5 times as long as 
NONMEM FOCE, for the fi rst 2 examples. However, like 
the MCPEM methods, it quickly caught up in effi ciency 
when solving example 3, the closed form complex PK/PD 
model, and took no longer than NONMEM FOCE. Because 
WinBUGS provides a sampling distribution of values for 
the population parameters, more complete statistical analy-
sis is provided than with any other program. However, like 
NONMEM FOCE, PK/PD problems modeled using differ-
ential equations such as example 4 took many hours, com-
pared with the MCPEM methods that required 30 minutes 
or less. As mentioned earlier, WinBUGS is not ready made 
for PK/PD modeling, lacking in modules that would per-
form general packaging of dosing information and data that 
can then be submitted to any user-defi ned model. Further-
more, to obtain reasonable computation times, the user-
defi ned model must be coded in Component Pascal, by the 
program BlackBox, which is an extra step in the model-
development process. While the entire modeling environ-
ment together is free, 4 program components from separate 
Web pages had to be downloaded and installed (WinBUGS 
1.41, BlackBox, WBDiff, and WBDev). The module 
PKBUGS makes available only 1-, 2-, or 3-compartment 
ready-made PK models, and no PD models. At this stage, 

WinBUGS does not have an extended interface available 
for the casual PK/PD modeler. However, an important 
improvement in Version 1.4 is the addition of a scripting 
language, allowing the user to automate the importing 
of data fi les and execution of steps, saving of results, 
even to the point of executing the WinBUGS (actually 
BlackBox) program completely as a batch process from the 
operating system command line, with subsequent program 
termination. 

 Because the 3-stage hierarchical Bayesian analysis is much 
more computationally expensive than 2-stage maximum 
likelihood methods, it is not practical to use the computing 
time to have WinBUGS fi nd the answer from poor initial 
values, although it is capable of doing so. We found most 
effi cient use by performing a population analysis in 
S-ADAPT, and then had the results and data exported into 
WinBUGS readable data fi les by a specially created module 
that is hooked into S-ADAPT. We also created template 
WinBUGS model fi les that would unpackage the dosing 
information from these data fi les, so that one could focus on 
developing the model equations themselves. Typically, hav-
ing 20000 WinBUGS iterations performed around the 
S-ADAPT answer yielded very satisfactory steady-state 
results, without wasting WinBUGS iterations to move the 
answer to the proper location. In the not too distant future, 
we expect that population analysis would be typically per-
formed in this way: fi rst working out the model and per-
forming a 2-stage heirarchichal analysis, followed by export 
into WinBUGS aided by data packaging routines, providing 
a fi nal 3-stage hierarchical Bayesian analysis.  
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