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Abstract

 

Many factors have contributed to the birth and continued growth of mobile 
computing, including recent advances in hardware and communications technolo-
gy. With this new paradigm however come new challenges in computer operating 
systems development. These challenges include heretofore relatively unusual items 
such as frequent network disconnections, communications bandwidth limitations, 
resource restrictions, and power limitations. It is the last of these challenges that we 
shall explore in this paper—that is the question of what techniques can be employed 
in mobile computer operating systems that can reduce the power consumption of to-
day’s mobile computing devices.

 

1. Introduction

 

Batteries are typically the largest single source of weight in mobile computing devices. While 
reduction of the physical dimensions of batteries is certainly a possibility, such efforts alone will 
reduce the amount of charge retained by the batteries. This will in turn reduce the amount of time 
a user can use the computing device before being forced to re-charge the batteries. Such restrictions 
tend to undermine the notion of mobile computing. However if we can succeed in reducing the ba-
sic consumption of individual components of mobile computing devices, we have the luxury of ei-
ther reducing the battery dimensions while retaining the original charge characteristics, or 
increasing the battery charge time while retaining the original battery dimensions, or some combi-
nation of both.

Many physical components are responsible for ongoing power consumption in a mobile com-
puting device. For example, Table 1 below lists the top power-consuming components of the Sharp 
PC 6785 as presented by Forman et al. [1]. This data is indicative of most of today’s mobile com-
puting devices, and highlights the areas requiring attention for power reduction.

Immediately we notice that the top three items are simply the base CPU and memory, operating 
at three different clock rates. The backlight for the LCD screen is the next largest consumer, and 
the hard drive motor follows the backlight. While it is certainly reasonable to expect that a mobile 
operating system might manage the intensity of an LCD screen backlight, we choose in this paper 
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to survey only various power management techniques aimed at controlling the power consumption 
of the CPU and the hard drive.

 

1.1 CPU Power Consumption

 

In general, the power consumed by the CPU and memory is related to the clock rate, the supply 
voltage, and the capacitance of the devices being switched (e.g. the transistors). The reduction in 
CPU and memory power consumption as the clock rate decreases (cf. Table 1) is a result of the 
switching characteristics of the logic gates in today’s typically CMOS

 

*

 

 VLSI circuits. When a 
complementary transistor pair in such VLSI circuits switches states, a brief short-circuit between 
the power supply and ground occurs, resulting in wasted energy. Unfortunately, most of the gates 
in a CMOS CPU will switch states on 

 

every

 

 clock cycle. Thus the higher the CPU clock rate, the 
more frequently the gates are switching, and the more energy or power is wasted.

In addition, the wasted power is related to the operating voltage of the components—the volt-
age appearing across each complementary transistor pair. The power wasted by logic gates during 
the brief short-circuit switching transitions is equal to the supply voltage squared divided by the 
resistance of the short-circuit path, i.e. . Because the switching resistance is generally 
fixed, the wasted power is proportional to the square of the operating voltage. 

 

* 

 

Complementary Metal Oxide Semiconductor circuits typically consist of logic gates that employ pairs of N
and P-type transistors connected in series between the power supply and ground in a complementary fashion.

 

Table 1: Power consumption of various components of the 
Sharp PC 6785 shown in order of decreasing power from top to 

bottom. (Data courtesy of Forman et al. [1].)

 

Component Power (Watts)

base system (2MB, 25 MHz CPU) 3.650

base system (2MB, 10 MHz CPU) 3.150

base system (2MB, 5 MHz CPU) 2.800

screen backlight 1.425

hard drive motor 1.100

math co-processor 0.650

floppy drive 0.500

external keyboard 0.490

LCD screen 0.315

P V2 R⁄=
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Furthermore, in order to accomplish useful work, transistors are typically connected together 
to form “chains” of logic, with each transistor or pair driving the gates of succeeding transistors. 
The larger the gate capacitance of the succeeding transistors, the more energy required to charge 
them during a transition. Thus the switching power is also proportional to the gate capacitance of 
any driven transistors.

The total power required by the CPU and memory is therefore proportional to  where 

 

C

 

 
is the total capacitance of the wires and transistor gates, 

 

V

 

 is the supply voltage, and 

 

F

 

 is the clock 
frequency. While 

 

C

 

 can only be affected during chip design, newer chips are beginning to make it 
possible to vary 

 

F

 

 and 

 

V

 

 at run-time, in order to achieve linear and quadratic (respectively) savings 
in power. Thus a mobile operating system can adjust these parameters in cooperation with sched-
uling policies to reduce the CPU’s consumption of energy. This is the topic of the first paper we 
will look at in section 2, “Scheduling for Reduced CPU Energy” by Weiser et al.

 

1.2 Hard Drive Power Consumption

 

The power consumption of a hard drive in a mobile computing device can also be controlled 
by judicious scheduling of drive “spindown” events

 

*

 

. Such control is becoming more and more im-
portant as other components of mobile computing devices reduce their power consumption. These 
other reductions are resulting in overall drops in power consumption, with the result being that the 
relative amount of power consumed by disks has increased from 9% to 31% in some cases [5]. Disk 
drive power management is the topic of the two papers we will explore in section 3, “A Quantita-
tive Analysis of Disk Drive Power Management in Portable Computers” by Li et al., and “Thwart-
ing the Power-Hungry Disk” by Douglis et al.

 

1.3 Power and Wireless Communication

 

As somewhat of a supplement to secondary storage, periodic wireless broadcasts can some-
times be used to simultaneously disseminate information, e.g. a large common database, to a large 
number of mobile computing devices. While this technique can in a sense provide some of the 
functionality of a local hard drive, the organization of and access to broadcast data is very different 
from that of a hard drive. In section 4 we will examine “Energy Efficient Indexing on Air”, where 
the authors present and evaluate two methods for organizing and accessing such broadcast data.

 

2. “Scheduling for Reduced CPU Energy” [3]

 

As was discussed in the introduction of this survey, the power consumed by the CPU in a mo-
bile computing device is significant. In fact, if the CPU clock frequency and supply voltage can be 
controlled, linear and quadratic savings in power can be realized (see section 1.1). This is the main 
motivation for the work presented by Weiser et al. in their paper on “Scheduling for Reduced CPU 
Energy”. In particular, because lowering the supply voltage results in a quadratic power savings, 
this is the authors’ preferred method for power reduction. As the authors note however, the supply 

 

* 

 

Transitions from a drive’s 

 

idle

 

 state to its 

 

sleep

 

 or 

 

off

 

 state where it consumes no energy [4].
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voltage cannot be lowered (dynamically) without also reducing the clock speed. Therefore the au-
thors consider the CPU clock rate to be linearly adjusted with the supply voltage. Incidentally, it is 
the authors’ assumption throughout their paper that such dynamic adjustments to the supply volt-
age and clock rate are indeed possible. As this hardware technique is becoming more popular, this 
is not an unreasonable assumption.

In this paper, the authors present and evaluate three algorithms for adjusting the CPU clock 
speed under the control of the operating system. The evaluation of the algorithms was accom-
plished through trace-driven simulations. The trace data was collected from a number of UNIX 
workstations over several working days, under otherwise normal conditions. During the trace col-
lection, the workstations were used for a variety of applications such as e-mail, simulations, word-
processing, etc. The collected traces were then used in off-line simulations of the three algorithms, 
allowing for flexible but consistent comparisons.

The basic approach of the algorithms is to balance CPU usage between periodic bursts of high 
CPU utilization and the remaining periods of idle time. For example, assume we have a task that 
normally results in a 50 millisecond (ms) burst of CPU usage at the full clock rate, followed by a 
50 ms idle period. If that task can be replaced by a 100 ms period of CPU usage at half the normal 
clock rate, without affecting the user adversely, then such a scheme can be used to conserve power. 
This can be accomplished by dynamically adjusting (slowing) the CPU speed, effectively “stretch-
ing” activities from busy periods into subsequent adjacent idle periods.

The CPU speed adjustment decisions made in the simulations were based on the measured 
amounts of run time and idle time in various segments of the traces. In particular, all three algo-
rithms rely on the assumption that the operating system 

 

sleep

 

 events that normally result in CPU 
idle time can be classified into two categories, “hard” and “soft” sleep events. Hard sleep events 
result in idle time during which the CPU speed cannot be reduced. For example, in the case of a 
disk wait, the sleep is typically issued from within the kernel’s biowait() routine. On the other hand, 
soft sleep events result in idle time during which the CPU speed can be reduced. For example, it 
should be possible to slow and therefore delay completion of a sleep event that occurs while wait-
ing for the next user keypress. The reason for such classifications was to be “fair” about assess-
ments of which idle times were candidates for use in balancing periods of high and low activity.

Although CPU speed adjustments during small windows might affect job ordering, the authors 
did not explicitly reorder trace data events in the simulations to “correct” for any such occurrence. 
Their justification for this was twofold. First, significant reordering will generally only occur if un-
usually high (unreasonable) loads are offered to the CPU. Second, in their simulations a slowed 
CPU is ramped back up to full speed with increasing loads, thus restoring the original full speed 
conditions of the traces during periods of high demand.

The three algorithms presented are named OPT, FUTURE, and PAST. The three algorithms 
are similar in spirit to those typically used in (evaluating) page replacement policies for virtual 
memory systems. OPT is an impractical and undesirable algorithm. It is completely optimistic (and 
impractical) in the sense that it assumes complete knowledge of the future work to be done in an 
interval. It is undesirable because it adjusts the CPU rate over an 

 

entire

 

 trace, severely impacting 
the run times of user jobs and ignoring the relative importance of events such as keystroke response 
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or network communications. OPT is however useful as a benchmark for performance. The FU-
TURE algorithm is similar to OPT in that it peers into the future, but it does so for only short win-
dows of time, and optimizes over only those windows. Like OPT, FUTURE is unrealistic because 
it peers into the future. Unlike OPT, it is practical because it only optimizes over short windows, 
hence the impact on time-critical work is minimized. The PAST algorithm is a realistic (practical) 
version of FUTURE. It is realistic because instead of peering into the future, it looks to a short win-
dow in the past for information about CPU usage. It is desirable because like FUTURE it only mon-
itors activity over a short window of the trace. It is less reliable because it assumes the activity in 
the next (future) window will be like that in the current (past) window. If the adjustments were op-
timistic (the activity level was higher than expected) and a window ended with work left to be done, 
that work was added to the work in the following window. The amount of such “carry-over” work 
was used as a measure of penalty incurred with different window lengths under this scheme.

The authors conclude that it is indeed more profitable (in terms of power savings) to spread out 
work when possible over periods of slower CPU clock rates, rather than contending with bursts of 
high-speed activity followed by wasted idle time. They conclude that in their simulations a PAST 
implementation with a 50 ms window would have saved up to 50% of the power in a 3.3 volt CPU, 
and up to 70% in a more aggressive (in terms of power savings) 2.2 volt CPU. They note that the 
energy savings are dependent on the window length, and also the minimum CPU clock rate used. 
Specifically, the interval between adjustments must not be too small or CPU usage becomes 
“bursty”, and the minimum clock rate used must not be too slow or the assumptions about the fu-
ture windows become less reliable resulting in higher penalties from excess or carry-over work. On 
the other hand, windows must not be too large or the interactive response of the system will be im-
pacted. As a compromise between power savings and response time, the authors suggest a shorter 
20 or 30 ms window.

 

3. Disk Drive Power Management

 

A common scheme for reducing the power consumed by hard drives in mobile computers is to 
“spindown” or turn off drives during extended periods of non-use. The papers discussed in the fol-
lowing two subsections evaluate schemes for determining when to perform a spindown.

 

3.1 “A Quantitative Analysis of Disk Drive Power Management in Portable 
Computers” [4]

 

It is common for manufacturers of hard disk drives for mobile computers to recommend a fixed 
time threshold for spinning-down the hard drives, where the threshold is generally on the order of 
3-5 minutes. In this paper, the authors perform a quantitative analysis of the pros & cons of hard 
drive spindown as a power reduction technique. The basic premise of this work is that a fine-
grained approach to spinning-down the hard drive is more appropriate than the coarse-grained ap-
proach pursued by manufacturers, given what has found to be normally very scattered usage pat-
terns

 

*

 

.

Like the work done by Weiser et al. described in section 2, the authors of this work used a large 
collection of operating system traces for their evaluations. For this work (paper) the authors col-
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lected traces from both Microsoft DOS machines (which the authors claim to be representative of 
portable machines today), and from the Sprite file system for Unix-like activity. The traces were 
collected over a series of months, and lasted from one to four hours in an attempt to be representa-
tive of mobile computer usage.

With the trace data in hand, the authors proceeded to analyze various spindown thresholds. For 
example, when simulating various spindown delays (time waited for further disk activity before 
spinning-down) they found that there was minimal consumption with a delay of approximately two 
seconds. This is interesting in light of the 2-3 minutes recommended by most manufacturers. They 
noticed (as seems intuitive) large consumption with a zero delay, as the drive would have to repeat-
edly spin-up. There was also a steady increase as the period was extended beyond two seconds. 
They found that with a two second spindown, users would have conserved 90% of the power oth-
erwise used in the traces with 

 

no

 

 spindown. When compared to the 3-5 minute recommendations 
of most manufacturers they realized a factor of four in savings.

The authors also looked at some further optimizations, to see if the savings of their simple two 
second threshold could be improved upon by more intelligent methods. In particular, they per-
formed some simulations using a prescient spindown policy, an optimal policy that uses fore-
knowledge of disk usage to determine when to perform a spindown. Using previous results, they 
determined that (for their simulated hard drive) 6.2 seconds of idle spinning was equal to a spinup 
in terms of power consumption. Therefore they used six seconds as the optimal threshold—if any 
future events would occur within the six seconds, 

 

no

 

 spindown was performed. If the next disk 
event was more than six seconds away, then a spindown 

 

was

 

 performed. Even under these optimal 
(unrealistic) circumstances, they found only an additional 3% savings in power.

In trying to explain the apparent optimality two second threshold, the authors identified two 
points concerned with management of the hard drive. The first is how 

 

often

 

 a drive gets to sleep, 
the second is how 

 

long

 

 it sleeps when it does. The frequency of sleeping is directly related to what 
is considered a “cluster” of disk activity. At the one extreme with a zero delay, every disk event is 
treated as its own cluster of activity and sleep is “induced” after every activity, thus requiring a 
spinup at every activity. At the other extreme with a very large (or infinite) delay, all disk events 
end up belonging to the same cluster, and hence the disk never sleeps but idles during many periods 
of inactivity. Their data sheds light on the second point also—with shorter delays, the disk slept 
for longer periods of time, saving more energy.

Of course the more frequent spindown introduces more user delay as each initial post-sleep ac-
tivity requires that the user wait for a drive spinup. The authors analyzed the trade-off between en-
ergy consumption and user delay and found that (in their traces) a two second spindown delay 
would have resulted in 8-15 times per hour that the user would have had to wait for a spinup. With 
a two second spinup time, this translates to 15-30 seconds of user delay per hour. The authors ex-
pressed their opinion that this was not unreasonable when balanced against the potential power sav-
ings.

 

* 

 

A fine-grained approach implies control on the order of seconds, as opposed to minutes for a coarse-grained
approach.
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The authors also examined some related interests and concerns. They simulated the use of a 
disk cache, and found (unsuspectedly) that there was little effect on the power consumption. They 
also examined the effect of frequent spinups on the life of today’s hard drives, and found that their 
two second delay would tend to shorten the lives of today’s disks. However, they pointed out that 
manufacturers are implementing new technologies & methods that will offer approximately 25 
times as many spinups in a disk’s lifetime or approximately 4 1/2 years of continuous use. Finally 
they also examined the use of a name-attribute cache and found that it would have helped to some 
extent in terms of power consumption reduction, but was more valuable in terms of performance.

The optimal two second delay findings of Li et al. were further reinforced by the work of Doug-
lis et al. in the next paper we will look at.

 

3.2 “Thwarting the Power-Hungry Disk” [5]

 

In work similar to that by Li et al., Douglis et al. studied the effects of hard drive spindown and 
spinup strategies on power consumption. By using similar trace driven simulation techniques, the 
authors of this paper arrived at conclusions very similar to those of Li et al. These authors however 
consider the read spinup delays (writes were considered to be performed asynchronously) to have 
a more serious impact than Li et al. did. In a slight twist on the subject, these authors classified disk 
management policies into two groups: off-line policies and on-line policies. Off-line policies are 
those that assume knowledge of future use, thus being unrealistic but optimal in that times of op-
timal spinup and spindown can be precisely determined. Such off-line policies are useful for gen-
eration of benchmarks. On-line policies on the other hand rely only on past knowledge, and are 
thus realistic (implementable) but not optimal.

The authors list a taxonomy of six hard drive spindown/spinup policies The naming of the pol-
icies indicates both the spinup and spindown policy. For example, the OPTIMAL_OPTIMAL al-
gorithm can uses future knowledge to know precisely when to spindown the drive for maximum 
efficiency, and when to spinup the drive to be ready for the next operation. Such an algorithm is 
certainly a member of the off-line class. Demand-based spinup policies are included. For example, 
one of the six algorithms uses the THRESHOLD_DEMAND policy we have already seen in the 
previous paper. In this algorithm, the spindown is performed after a fixed time period (threshold) 
passes with no disk activity, and the spinup is performed only when the next disk operation “de-
mands” it (thus generally introducing user delay). Unlike the previous authors, these authors also 
consider predictive algorithms, e.g. PREDICTIVE_PREDICTIVE, where spinup and spindown 
times are predicted in the hopes of maximizing sleep time (after spindowns) and minimizing the 
user-delay impact normally associated with a demand spinup. Such a predictive policy was sug-
gested by John Wilkes at Hewlett-Packard Labs [6]. Wilkes proposed using a weighted average of 
past activity durations to predict both spindown and spinup delays. Douglis et al. experimented 
with such algorithms, but expressed disappointment with the results.

Not unlike Li et al., these authors concluded that significant savings (up to 85% of the savings 
resulting from the manufacturer’s suggested delays) could be achieved by using the practical 
THRESHOLD_DEMAND algorithm, with a threshold of between one and ten seconds. And while 
they express concern at the user delay resulting from short thresholds, they also point out that in 
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many drives (such as one of their simulated drives) the sleep-to-active times are shrinking contin-
ually, with some existing drives at one second. As this situation improves, the user-delay impact 
will be further minimized.

 

4. “Energy Efficient Indexing on Air” [7]

 

The periodic broadcast of data over wireless communication channels can be considered in a 
sense a supplement to a mobile user’s secondary storage. While accessing local hard drives con-
sumes significant power, the reception of wireless broadcast data is a relatively low-power opera-
tion. When appropriate, periodic data broadcasts can be used to disseminate large volumes of data, 
e.g. a large common database, to an easily scalable population of listeners. However, even though 
wireless reception is a low-power operation when compared to hard drive access, it is not “free”. 
In addition, because the data arrives at the mobile computer in a unique fashion, the schemes to 
organize and access the data must be unique. In this final paper, the authors introduce and evaluate 
two very interesting approaches for organizing and accessing data that is broadcast periodically 
over wireless communication channels.

The motivation behind searching for and exploiting unique organization and access methods 
stems from the potential savings in power resulting from being able to wait for expected incoming 
data while in a “doze” mode [2]. When the mobile computer is receiving, it (its CPU) must be in 
the “active” mode. As was argued in section 1.1, the power consumed by the CPU and memory (in 
active mode) is not trivial. As pointed out by Imielinski et. al, the ratio of power consumption in 
active mode to that in doze mode is on the order of 5000 for the Hobbit chip from AT&T [7]. The 
question is how to organize the data to be broadcast so that it can be accessed by a mobile receiver 
in a manner that provides for optimal switching between active and doze modes.

Due to the dynamic nature of mobile computing in terms of wireless communication cell mi-
gration, changing information content, and the multiplexing of many different files over the same 
communication channels, the authors propose broadcasting the directory of a broadcasted data file 
along with the data file in the form of an index. Without an index, the client would have to filter 
(listen to) the entire broadcast in the worst case, or half the broadcast on average. This is undesir-
able because such filtering requires the mobile unit to be in its active mode, consuming power un-
necessarily. Therefore every broadcast (channel) contains all of the information needed—the file 
and the index. Again, the question is how to organize the data to be broadcast for optimal access 
by a mobile receiver.

For use in evaluating potential methods of organization and access, the authors introduce the 
two parameters 

 

access time

 

 and 

 

tuning time

 

. The access time is the average time between identifi-
cation of desired data in the index portion of the broadcast, and download of the data in the data 
file portion of the broadcast. The tuning time is the amount of time spent by a mobile client actually 
listening to a broadcast channel. The goal of the authors was to find algorithms for allocating the 
index together with the data on a broadcast channel, and to do so in a means that struck a balance 
between the optimal 

 

access time

 

 algorithm and the optimal 

 

tuning time

 

 algorithm.

The first organization method, called “(1,

 

m

 

) Indexing”, broadcasts the entire index 

 

m

 

 times 
(equally spaced) during the broadcast of one version of the data file. In other words, the entire in-
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dex is broadcast every 1/

 

m

 

 fraction of the data file. In the second method, “Distributed Indexing”, 
the (1,

 

m

 

) method is improved upon by eliminating much of the redundancy in the 

 

m

 

 broadcasts of 
the data file index. Their key observation is that only certain portions of the index tree are necessary 
between broadcasts of particular segments of the data file. Specifically, the periodically broadcast-
ed index segments need only index the data file segment that follows it. By using fixed-sized 
“buckets” of data (both index and file data) the two methods allow the mobile client to “doze” for 
deterministic amounts of time, only to awake just prior to the next necessary listening event, what 
the authors call a “probe”.

In their evaluations, the authors found that both schemes achieve tuning times that are almost 
as good as that of an algorithm that had optimal tuning time. In terms of access time, both algo-
rithms exhibit a savings that is a respectable compromise between the two extremes of an algorithm 
with optimal access time and an algorithm with optimal tuning time. The Distributed Indexing 
scheme is always better than the (1,

 

m

 

) scheme.

In examples of practical implementations, the authors again compare their algorithms to the ex-
treme cases of an optimal tuning time algorithm, and an optimal access time algorithm. In one ex-
ample for the (1,

 

m

 

) algorithm, they show a per query reduction of power by a factor of 120 over 
the optimal access algorithm, but a 45% increase in access time. For the same (1,

 

m

 

) example, they 
found that the power consumption was very similar to that of the optimal tuning algorithm, but that 
the access time had improved to 70% of that in the optimal tuning algorithm.

In looking at an example of the distributed indexing scheme, they found a per query power re-
duction of 100 times smaller than that of an optimal access algorithm, while the access time in-
creased by only 10%. Again when compared to an optimal tuning algorithm, they found similar 
power consumption, but again improved access time of 53% of that for an optimal tuning algo-
rithm.

The conclusion of the authors is that by using their distributed indexing scheme in periodic 
broadcasts, a savings of 100 times less energy can be realized. The fruits of this savings can of 
course be used for other purposes such as extended battery life, or extra queries.

 

5. Conclusion

 

The advent of mobile computing has introduced new challenges for the designers of computers 
and computer operating systems. One such significant challenge is to reduce power consumption 
in ways that adversely affect the user the least. Savings in power consumption can be “spent” by 
extending battery life, and (or) reducing the physical size of batteries thus reducing the physical 
size of mobile computing devices.

We have briefly surveyed several proposed power conservation techniques. These techniques 
together focus on what are typically the main culprits in terms of power consumption in mobile 
computing: CPU/memory devices, secondary storage devices such as hard drives, and wireless 
communication devices used to supplement secondary storage where appropriate. While hardware 
advances have and will likely continue to reduce the power consumption of these devices, we have 
seen that efficient operating system techniques can significantly reduce power consumption with-
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out considerably affecting the perceived performance.
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