
Marquette University Marquette University

e-Publications@Marquette e-Publications@Marquette

Electrical and Computer Engineering Faculty
Research and Publications

Electrical and Computer Engineering,
Department of

5-1-2019

A Survey of Prediction and Classification Techniques in Multicore A Survey of Prediction and Classification Techniques in Multicore

Processor Systems Processor Systems

Cristinel Ababei

Milad Ghorbani Moghaddam

Follow this and additional works at: https://epublications.marquette.edu/electric_fac

 Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons

https://epublications.marquette.edu/
https://epublications.marquette.edu/electric_fac
https://epublications.marquette.edu/electric_fac
https://epublications.marquette.edu/electric
https://epublications.marquette.edu/electric
https://epublications.marquette.edu/electric_fac?utm_source=epublications.marquette.edu%2Felectric_fac%2F617&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=epublications.marquette.edu%2Felectric_fac%2F617&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=epublications.marquette.edu%2Felectric_fac%2F617&utm_medium=PDF&utm_campaign=PDFCoverPages

Marquette University

e-Publications@Marquette

Electrical and Computer Engineering Faculty Research and

Publications/College of Arts and Sciences

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The

published version may be accessed by following the link in the citation below.

IEEE Transactions on Parallel and Distributed Systems, Vol. 30, No. 5 (May 1, 2019) : 1184-1200. DOI.

This article is © Institute of Electrical and Electronic Engineers (IEEE) and permission has been granted

for this version to appear in e-Publications@Marquette. Institute of Electrical and Electronic Engineers

(IEEE) does not grant permission for this article to be further copied/distributed or hosted elsewhere

without the express permission from Institute of Electrical and Electronic Engineers (IEEE).

A Survey of Prediction and Classification
Techniques in Multicore Processor Systems

Cristinel Ababei
Department of Electrical and Computer Engineering, Marquette University, Milwaukee, WI

Milad Ghorbani Moghaddam
Department of Electrical and Computer Engineering, Marquette University, Milwaukee, WI

Abstract:
In multicore processor systems, being able to accurately predict the future provides new optimization

opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain

application's behavior running on a smart phone could direct the power manager to switch to

appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of

desired performance while saving energy consumption and thereby prolonging battery life. Using

predictions enables systems to become proactive rather than continue to operate in a reactive

manner. This prediction-based proactive approach has become increasingly popular in the design and

optimization of integrated circuits and of multicore processor systems. Prediction transforms from

simple forecasting to sophisticated machine learning based prediction and classification that learns

https://ieeexplore.ieee.org/document/8514815
http://epublications.marquette.edu/

from existing data, employs data mining, and predicts future behavior. This can be exploited by novel

optimization techniques that can span across all layers of the computing stack. In this survey paper, we

present a discussion of the most popular techniques on prediction and classification in the general

context of computing systems with emphasis on multicore processors. The paper is far from

comprehensive, but, it will help the reader interested in employing prediction in optimization of

multicore processor systems.

SECTION 1 Introduction
Generally speaking, in modeling and in solving engineering problems we always do prediction in

various ways. Models themselves (e.g., often embodied into simulation tools such as Wattch [1],

McPAT [2], and HotSpot [3]) abstract away details of the physical system that is modeled and provide

means to capture present and future behavior. Often times, solving problems implies making

estimations about different figures of merit or attributes of the modeled system, such as performance

or power consumption in the current state as well as in future states. Typically, optimization decisions

then are made based on such estimations or predictions. When these decisions are made based on the

current state estimations, the optimization approach is called 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒, because the system is

designed to react to certain changes in system’s behavior. On the other hand, when optimization

decisions are made based on predicted future values of the attributes of interest, the approach

becomes 𝑝𝑟𝑜𝑎𝑐𝑡𝑖𝑣𝑒, because measures are taken early on based on forecast values, thereby

potentially achieving better optimizations. It is the proactive type of optimization approaches that we

are particularly interested in the discussion presented in this paper, because such approaches usually

employ explicit forms of 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒𝑠−as the primary focus of this paper, in the general

context of computing systems with emphasis on multicore processors−and because the reactive type

encompasses the vast majority of all other works, which is too large to be discussed in a paper such

this. We use the general term 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔 𝑠𝑦𝑠𝑡𝑒𝑚 to refer to processors themselves, systems that are

built using processors (e.g., servers and smart phones or other mobile devices) but also systems of

such systems (e.g., datacenters). Thus, we include in our discussion bus based and network-on-chip

(NoC) based multicore processors (or chip multiprocessors, CMPs), laptops, servers, smart phones, and

datacenters (DCs) or warehouse scale computers (WSCs). In addition, our objective is to emphasize an

important trend: that of using predictions based on increasingly large data sets and where we believe

the research community is headed to with such prediction based methods.

We build our discussion by considering the following: 1) the complexity of the technique as basic or

advanced (i.e., machine learning based), 2) the particular component of the system to which the

prediction technique is applied, such as bus, NoC, cores, and datacenters, 3) the particular figure of

merit or design attribute that is the subject of prediction, and 4) the abstraction layer or layers, if cross-

layer, where the technique of interest is implemented. The well known computing stack model

generalized to also include the datacenter as the top most abstraction layer is shown in Fig. 1. The

presented techniques are described with just enough details and diagrams to make the reading

coherent and easy to follow without the need to interrupt and read from additional references. To aid

in following the presentation, Fig. 2 presents a tree diagram that includes all the techniques discussed

in this paper. Finally, this survey paper is far from being comprehensive. However, we hope it helps to

create a good enough picture of what has been and especially what appears to be the most promising

prediction techniques. It should serve as a good starting point for the reader interested in employing

some form of prediction to be used in optimization solutions across layers in multicore processor

systems.

Fig. 1. Layered computing stack model generalized to include the warehouse scale computer as the top most

abstraction layer. Note that the stack corresponding to a server node also applies to a mobile device such as a

smart phone.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/8685251/8514815/ababe1-2878699-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/8685251/8514815/ababe1-2878699-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/8685251/8514815/ababe1-2878699-large.gif

Fig. 2. Techniques discussed in this paper.

SECTION 2 Basic Prediction Techniques
In the discussion in this section, we present several prediction techniques from simple to more

complex ones, while emphasizing one common underlying theme: each of these techniques exploits in

one way or another the past history of the variable of interest. Most of these techniques have been

employed at the lower layers from Fig. 1.

2.1 Exponential Averaging
One of the simplest methods for prediction is the exponential averaging. The exponential average

predictor uses the following formula to estimate the current value of a variable of interest 𝑦 at

time 𝑡, 𝑦
^

𝑡:

𝑦
^

𝑡 = 𝛼𝑦𝑡−1 + (1 − 𝛼)𝑦
^

𝑡−1, (1)

where 𝑦𝑡−1 is the measured value of the variable at time 𝑡 − 1. 𝛼 is a user defined weighting

factor 0 ≤ 𝛼 ≤ 1. Because the prediction at the current time t involves just the value from the

previous step, 𝑡 − 1, the history window is of width two only. While this makes this technique easy to

implement, its error margin increases considerably when predicting several steps ahead.

Due to its error margin issue, we did not find this prediction technique being used in any approach.

Rather, it was used only as a basis for comparison when evaluating more sophisticated prediction

techniques. It is included here for the sake of completeness.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/8685251/8514815/ababe2-2878699-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/8685251/8514815/ababe2-2878699-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/8685251/8514815/ababe2-2878699-large.gif

2.2 History Predictor
This prediction technique uses a simple formula. The formula employs the previously predicted

value 𝑦
^

𝑝𝑎𝑠𝑡 and the average value 𝑦𝑐𝑢𝑟𝑟 that is computed based on 𝑊 samples over a pre-specified

history window of length 𝑊. It is expressed as follows:

𝑦
^

𝑛𝑒𝑥𝑡 =
𝑊×𝑦𝑐𝑢𝑟𝑟+𝑦

^
𝑝𝑎𝑠𝑡

𝑊+1
, (2)

where 𝑦
^

𝑛𝑒𝑥𝑡 is the predicted average value of 𝑦 for the next window.

The primary advantage of the history predictor model is simplicity. Therefore, it is easy to implement in

hardware, which is generally more efficient than software implementations. In the context of NoCs, for

example, this technique can be used to predict congestion occurrence via proxies like buffer and link

utilization. These predictions are then used to decide when to do proactive frequency throttling of

selected NoC routers in order to lower the packet transmission rate between different routers, thereby

reducing power consumption [4], [5]. In this way, one can develop dynamic voltage and frequency

scaling (DVFS) schemes whose objective is to reduce energy consumption with minimal performance

degradation. At higher levels of abstraction in the computing stack, history based prediction was

employed in [6] to predict workload in a nine node cluster in order to design DVFS based power

management schemes. An enhanced form of this prediction technique was proposed in [7], where the

authors used a linear formula involving the previous 𝑁 values of the temperature (as a band limited

signal) of a multicore processor to predict the temperature in the near future at time 𝑡 + 𝛿𝑡.

A global branch predictor is similar to the history predictor. It is constructed mainly with a shift

register, whose depth is the length of the recorded history, to store the last observed values [8]. The

content of the register indexes a history table that holds previously observed patterns (e.g., thermal

patterns if temperature is the predicted variable), with their corresponding next value predictions.

Such a predictor was used by [9] to predict power phases in a laptop with a Pentium-M processor.

Similar to the exponential averaging, the history predictor also suffers from increasing errors with

horizon. It has been used in several approaches though due to its simplicity and reasonably good

results. It also has the advantage of being easily implemented in 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 (Fig. 1).

2.3 Autoregressive Moving Average (ARMA) Model
These models capture autocorrelation in a time series that is assumed to be a stationary

process [10], [11]. 𝐴𝑅𝑀𝐴(𝑝, 𝑞) denotes a model with 𝑝 autoregressive terms and 𝑞 moving-average

terms. It is described by the following equation:

𝑦𝑡 + ∑ 𝑎𝑖𝑦𝑡−𝑖
𝑝
𝑖=1 = 𝑒𝑡 + ∑ 𝑐𝑖𝑒𝑡−𝑖

𝑞
𝑖=1 , (3)

where, 𝑦𝑡 is the value at time 𝑡. 𝑒𝑡 is the noise or residual, which is assumed to be random and

normally distributed. The autoregressive (AR) and moving average (MA) coefficients are 𝑎𝑖 and 𝑐𝑖. An

ARMA model is constructed in two phases: 1) identification and estimation and 2) model checking. The

model parameters 𝑝 and 𝑞 are selected as small as possible to still fit training data reasonably well. The

identification and estimation step requires a training data set used to compute the coefficients of the

model. Coefficients can be computed by fitting the model using least squares regression in order to

identify the parameters which result in minimum errors. In the second step, the model is checked to

verify that the model residuals are random. This check can be done using the autocorrelation function.

Once an ARMA model is constructed, equation (3) can be used for forecasting the value of 𝑦 into the

future, 𝑦
^

𝑡+𝑙, 𝑙 = 1,2, . .. being the lead time, as a combination of past values.

The ARMA model described above was used by [11] for thermal management in multiprocessor

systems-on-chip (SoCs). The authors showed that ARMA based models can be used to construct

temperature predictors that were better than those constructed with exponential averaging, history

predictors, or recursive least squares based prediction methods. The proposed technique predicted

temperature five steps ahead (the equivalent of 500 ms in realtime) with satisfactory results. The

temperature predictions then were used by the thread scheduler to assign threads to different cores in

a way that balanced the thermal profile of the chip. Because this solution was implemented mostly in

software, it resides in the 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 abstraction layer from Fig. 1. A similar ARMA model based

predictor for temperature was used by [12] to develop a user activity aware thermal management

technique in smartphones. The work in [13] used a modified ARMA model to also predict temperature

in heterogeneous mobile platforms and reported accuracy of 3 percent. Another example where this

model was applied at the datacenter layer is the study in [14] for the purpose of predicting resource

demand. The predictions were used to develop a stochastic load balancing scheme with probabilistic

guarantees against resource overloading with virtual machine migration.

This model has better prediction accuracy (compared to the previously two discussed techniques) for

longer horizons ahead. It can be implemented all in software, which makes it easy to be deployed in

existing products. It suffers though from the need for (re)training.

2.4 Kalman Filters
The brief description here is adapted mainly from [15], [16]. The Kalman filter is an adaptive filter

applied to predict the state 𝑥 of a discrete-time controlled process. It uses a set of recursive equations

and employs a feedback control mechanism in a way that minimizes the variance of the estimation

error [15]. A Kalman filter is constructed in two phases. The first phase is called the 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑝ℎ𝑎𝑠𝑒 and

also called the time update phase. Here, the state 𝑥 is predicted a priori as 𝑥
^

𝑛
−. The second phase is

called the 𝑢𝑝𝑑𝑎𝑡𝑒 𝑝ℎ𝑎𝑠𝑒 and also called the measurement update phase. This is where the

predicted 𝑥
^

𝑛
− is updated a posteriori as 𝑥

^

𝑛.

In the predict phase, the filter uses the previous state 𝑥
^

𝑛−1 and the input 𝑢𝑛−1 to project the state. It

also uses the error covariance of the a posteriori error 𝑃𝑛−1 and the process noise covariance 𝑄 to

project the error covariance 𝑃𝑛
− for the a priori error. The two equations used in this phase are:

𝑥
^

𝑛
− = 𝐴𝑥

^

𝑛−1 + 𝐵𝑢𝑛−1
 (4)

𝑃𝑛
− = 𝐴𝑃𝑛−1𝐴𝑇 + 𝑄, (5)

where 𝐴 is the state transition model of the system. 𝐵 relates the state 𝑥 to the optional control

input 𝑢.

https://ieeexplore.ieee.org/document/#deqn3

The update phase begins after the predict phase with the measurement of the actual state value at

time 𝑛. It first computes the Kalman gain 𝐾𝑛. 𝐾𝑛 is chosen to maximize 𝑃𝑛. Then, the current state

matrix 𝑥
^

𝑛 and 𝑃𝑛 are updated. The three equations utilized in this phase are:

𝐾𝑛 = 𝑃𝑛
−𝐻𝑇(𝐻𝑃𝑛

−𝐻𝑇 + 𝑅)−1 (6)

𝑥
^

𝑛 = 𝑥
^

𝑛
− + 𝐾𝑛(𝑧𝑛 − 𝐻𝑥

^

𝑛
−) (7)

𝑃𝑛 = (1 − 𝐾𝑛𝐻)𝑃𝑛
−, (8)

where 𝑅 is the measurement noise covariance. 𝐻 relates the observation or measurement 𝑧 to the

state 𝑥.

In the context of dynamic voltage scaling (DVS) for MPEG applications, the study in [16] proposed an

extended Kalman filter to estimate the processing time of workloads. In our recent study in [17], we

used a similar Kalman filtering approach to estimate the average cycles per instruction and the

instruction count for the next control period inside a method for dynamic energy management for NoC

based chip multiprocessors with 16 and 64 core architectures. We found that the Kalman filtering

based predictions are very accurate and allow the proposed energy reduction heuristic to provide

consistent energy savings under a given performance constraint for all benchmarks that we

investigated. Also in the context of high performance processors, the authors of [18] proposed a sparse

Kalman filter to estimate the states of a dynamical network system. They then applied their solution to

the thermal model network of many-core processors to solve the problem of finding the minimum

number of in-situ sensors that can be used for both thermal profile estimation and tracking of hotspots

in dynamic thermal management solutions.

Kalman filtering is a time-tested technique that was used in numerous application domains due to its

high accuracy. Many studies reported achieving the best results with Kalman filtering based

approaches. Implementation is straightforward and versions such as the Sparse Kalman

filter [18] eliminate the need even to compute the estimation error covariance or the Kalman gains in

real-time, which makes it even more efficient.

SECTION 3 Advanced Prediction Via Classification Techniques
The description of various machine learning techniques presented here is based on information from

several textbooks [19], [20], [21], [22], [23], [24] and other online resources [25]. In some cases, brief

descriptions are adapted from other previous papers; when that is the case, the respective papers are

cited appropriately.

Recently, there has been a resurgence of machine learning (ML). ML encompasses algorithms that can

make predictions or classifications on new data after having constructed models based on training

data [19]. It includes primarily three categories. The first type is called the 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒/

𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 approach because it learns a mapping from inputs to outputs, when it is given a

set of labeled input-output pairs called the training set. When the output is a categorical variable (from

a set of classes), the problem is called 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛/𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛. When the output is a

real valued variable, the problem is called 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛. The 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑣𝑒/𝑢𝑛𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 is

the second category. In this case, only the inputs data are given and the goal is to discover patterns,

reason for which this approach is also called 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦. This is more challenging because

it is unknown what patterns to search for [20]. As a third

category, 𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 constructs algorithms to learn how to act in setups with

rewards/penalties.

It should be noted that technically most of the machine learning techniques discussed in this section

are classification techniques. However, they are used for making predictions indirectly about various

figures of merit in the immediate future. For example, classification of the workload of a multicore

processor as low predicts that the power dissipation will be low. Similarly, classification of the lifetime

reliability of a multicore processor as short predicts higher temperatures. In mobile devices,

classification of the operation mode into one of several states translates into prediction of the need for

data and location interface configurations, which in turn can be used for proactive measures to save

energy. Finally, this is not a comprehensive treatment of these topics and for details on the vast

number of machine learning algorithms, the reader should take a look at reference texts such

as [19], [20], [23].

An interesting observation is that these techniques have been employed at the higher levels from Fig.

1. That is in part due to the need for training of the models. This requires storage and computational

runtime spent during training. Thus, optimization solutions using these techniques are easier to

implement for example at the 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 layer in Fig. 1. Their cost is easier to justify for larger systems

composed of multiple compute nodes, such as datacenters, which takes us to the 𝐶𝑙𝑜𝑢𝑑 layer in Fig. 1.

Nevertheless, optimization solutions using techniques discussed in this section can be used at lower

levels of abstraction as well, but at the design time (i.e., statically). For example, the study in [47] uses

mining and support vector machine based techniques to predict routability of integrated circuits from

placement data.

3.1 Linear Regression (LR)
The description presented here is mainly based on information from [19], [24], [26]. LR is a simple

supervised learning approach. It models the relation between one or more independent

variables 𝑥 and the dependent variable 𝑦. Relationships are modeled using linear predictor functions.

For example, a linear combination of fixed nonlinear functions of the following form can be utilized for

multiple LR.

𝑦 = 𝑤1𝑓1(𝑥) + 𝑤2𝑓2(𝑥) + ⋯ + 𝑤𝑛𝑓𝑛(𝑥), (9)

where, 𝑥 is the input vector, 𝑓𝑖, 𝑖 = 1, … , 𝑛 are known basis functions (e.g., square polynomials),

and 𝑤𝑖, 𝑖 = 1, … , 𝑛 are unknown parameters that must be estimated from the data. For prediction

purposes, LR is employed to fit a predictive model to the set of training observations (𝑥, 𝑦). Then, the

fitted model is used to make predictions of 𝑦 for new instances of 𝑥 [26].

In situations when data are not available all at once but arrive sequentially, it is useful not to restart

from scratch the model estimation but simply to update the model on the basis of the newly collected

data. This problem is solved by the so called recursive least squares (RLS) estimation. This technique

works with a fixed history window and uses data from the window for retraining purposes. Its idea is

still to use a polynomial whose coefficients are calculated using least squares estimation. In this way, to

maintain good prediction accuracy, the RLS method updates the coefficients repeatedly as new data

arrive.

The technique described above was used by [27] for temperature prediction of multicore processors.

These predictions served as the basis for a predictive dynamic thermal management algorithm. The

algorithm uses core temperatures and their application-specific variation to estimate the thermal

profile/behavior. Then, it intervenes through appropriate measures that help to avert thermal

emergencies. The study in [98] used recursive least squares to estimate and update a system model

parameter matrix. These estimates are used then for DVFS in chip multiprocessors. A multivariate

linear regression approach is used in [28] to obtain the coefficients of a linear model that is used to

predict execution time of parallel applications MPI tasks executed on clusters of up to 320 nodes. The

study [29] uses a constrained-posynomial function (learned through curve fitting) to approximate the

power consumption of a many core processor, which generally, is a monotonically increasing function

of the frequency. [30] proposed a regression model for the maximum temperature in 3D integrated

chip multiprocessors. The temperature was predicted as a linear function of leakage power values. The

predictions were used then in a design optimization technique whose objective was to increase the

thermal yield.

Regression was applied in the study from [31] to train the popular McPAT power calculator for single-

core processors. The paper presented a methodology to calibrate McPAT for a precise power model

targeting post-silicon processors. The authors conducted experiments on McPAT against a Cortex-A15

within a Samsung Exynos 5422 SoC and reported mean percentage errors of 2 percent. At

the Cloud layer, the study in [32] studied regression models to predict energy consumption in cloud

datacenters. The authors reported that regression methods performed better than other techniques

including so-called linear and cubic models; they reported 95 percent prediction accuracy.

LR is a rather simple technique at the 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 layers. Like all other techniques discussed in this

section, it requires (re)training to update its coefficients. The linear espression from Equation (9) is

efficient, which makes this technique easy to be used in realtime.

3.2 Linear Discriminant Analysis (LDA)
The description presented here is mainly based on information from [24]. LDA is a classification

method. It does classification by assigning a new observation 𝑋 = 𝑥 to one of 𝐾 classes. It is a Bayesian

approach in the sense that the assignment is done to the class for which the following posterior

probability is the largest.

𝑝𝑘(𝑥) = 𝑃(𝑌 = 𝑘|𝑋 = 𝑥)

=
𝑃(𝑋=𝑥|𝑌=𝑘)𝑃(𝑌=𝑘)

𝑃(𝑋=𝑥)
=

𝑓𝑘(𝑥)𝜋𝑘

𝑃(𝑋=𝑥)
,
 (10)

where, instead of computing directly 𝜋𝑘 and 𝑓𝑘(𝑥), they are estimated, thereby effectively developing

an approximator of a Bayes classifier. This estimation is done under certain assumptions however

about the form of 𝑓𝑘(𝑥). Usually, the assumption is that 𝑓𝑘(𝑥) is Gaussian; that is, the data in each

class are normally distributed. In addition, it is assumed that the variance 𝜎2 is the same for all classes.

In that case, it can be shown that to approximate 𝑝𝑘(𝑥) one can use the so called discriminant

function [24]:

https://ieeexplore.ieee.org/document/#deqn9

𝛿𝑘(𝑥) = 𝑥
𝜇𝑘

𝜎2
−

𝜇𝑘
2

2𝜎2
+ 𝑙𝑜𝑔(𝜋𝑘), (11)

where 𝜇𝑘 is the mean for the 𝑘th class. Finally, once, 𝜇𝑘, 𝜎2, and 𝜋𝑘 are estimated as 𝜇
^

𝑘, 𝜎
^ 2,

and 𝜋
^

𝑘 based on the training data, then, the LDA classifier operates according to the following

expression:

arg 𝑚𝑎𝑥
𝐾

 𝛿
^

𝑘(𝑥). (12)

The above LDA classification approach was employed in [33]. The authors provided a comparison of

several machine learning algorithms, including LDA, to predict mobile device location interface and

data configurations that reduce energy consumption. Based on three target variables

(𝐹𝑖𝑛𝑒 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑, 𝐶𝑜𝑎𝑟𝑠𝑒 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑, 𝐷𝑎𝑡𝑎 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑), they partitioned the

location interface and data configurations into eight classes. The idea then was to efficiently predict

one of these eight classes using device context, spatial, and temporal input variables and, thus, to

know when to shut down location and wireless radios to be able to save energy.

LDA is fast and relatively easy to implement in practice. It has been popular especially in situations with

more than two classes. Sometimes it can provide results as good as more complex models.

3.3 Multinomial Logistic Regression Model
Multinomial or multi-class logistic regression generalizes logistic regression to cases with more than

two outcomes [26]. For example, we can think of predicting the type of workload of a processor, say

(low, medium, high), based on the given outcomes of several observations. In this case, the dependent

variable that we want to predict is the workload. The independent variables or features can be

observations such as instruction and activity counters, cache misses, etc.

In other words, multinomial logistic regression is a discriminative classifier applied to a multinomial

variable. It predicts the probability distribution over a set of classes from a sample input to learn a

direct mapping from the input sample to the output class. The logistic regression based classification is

composed of two steps: 1) modeling to estimate the probability distribution of the different classes for

a given input, and 2) parameter fitting to estimate the parameters of the logistic regression model.

Following the brief description and notation in [34], in the first step, the multinomial logistic regression

model works with the assumption that the value of the variable of interest, 𝑦 ∈ [1,2, … , 𝐾], is

predicted based on the N values of the input feature set, which are identified as 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑁] ∈

ℝ1×𝑁. The model is represented by the hypothesis ℎ𝛽, with parameter 𝛽 ∈ ℝ(𝐾−1)×𝑁. Then, it can be

shown that for a given input feature set 𝑋, the logistic regression model outputs ℎ𝛽(𝑋) is given by:

ℎ𝛽(𝑋) = [

𝑝1

𝑝2

⋮
𝑝𝐾−1

] = [
𝑒𝛽1

𝑇⋅𝑋

∑ 𝐾
𝑗=1 𝑒

𝛽𝑗
𝑇⋅𝑋

…
𝑒𝛽𝐾−1

𝑇 ⋅𝑋

∑ 𝐾
𝑗=1 𝑒

𝛽𝑗
𝑇⋅𝑋

]

𝑇

. (13)

Equation (13) is used to select the output of the overall model as the class 𝑦 given by the expression:

arg 𝑚𝑎𝑥
𝑘

{ 𝑝𝑘 ∣∣ ∀𝑘 ∈ [1,2, … , 𝐾] } , (14)

https://ieeexplore.ieee.org/document/#deqn13

where 𝑝𝑘 is the probability 𝑝𝑘 = 𝑃𝑟(𝑦 = 𝑘), 𝑘 ∈ [1,2, … , 𝐾].

The second step of the multinomial logistic regression model is the estimation of the parameters 𝛽.

That is done using a training set of 𝑀 samples generated independently and identically. For each of

these samples, the input feature 𝑋 and the output class yare known a priori and the input-output pairs

are identified as (𝑋𝑖, 𝑦𝑖), ∀𝑖 ∈ [1,2, … , 𝑀]. The parameters 𝛽 are calculated using maximum a

posteriori estimation. Usually, the solution to the problem described by equation (14) is found by

gradient-based optimization algorithms.

The study in [34] proposed such a multinomial logistic regression-based classification technique that

classifies the workload (i.e., CPU cycles) at runtime into a fixed set of 𝐾 classes. The variable of

interest 𝑦 is the workload while 𝑋 specifies the workloads of the previous 𝑁 video frames, where 𝑥𝑖 is

the workload of the ith previous frame. In other words, the class of the next video frame is predicted

based on the workloads of the 𝑁 previous frames. Each workload class corresponds to a frequency that

is predetermined using training data. At runtime, the classified frequencies are applied to the

processing cores within an DVFS algorithm. Results obtained on an embedded multicore system

running standard multimedia applications demonstrated an average of 20 percent reduction in energy

consumption.

A multinominal logistic regression classifier was developed by [35], [36] based on data collected from

performance counters during offline workload characterization. The classifier is used then during

applictaion runtime to predict the workload and to select the frequency and thread packing such that

performance is maximized under a given power cap. The study in [33] also presented a multinominal

logistic regression or linear logistic regression based solution to make predictions about the states of

mobile devices. It was found that this solution was outperformed by neural networks and K-nearest

neighbor based solutions.

These models tend to have better performance than a series of binary logistic regressions as they can

model synergistic relationships. However, they are somewhat complex and sensitive to outliers.

3.4 K-Nearest Neighbor (KNN)
The short description here is adapted mainly from [24], [37]. As a non-parametric supervised approach,

the k-nearest neighbor (KNN) algorithm is commonly used for classification or regression problems. In

the training phase, feature vectors and class labels are simply paired using 𝑘 labels, where 𝑘 is a user

defined constant. The output of the algorithm depends on if KNN is used for classification or

regression. In the former case, the output is a class membership. The classification of a new sample or

object is done by placing it in the class that is shared by the largest number of 𝑘 closest neighbors. To

quantify closeness, the KNN algorithm employs a distance measure, such as the popular euclidean

distance or Hamming distance.

One of the techniques studied in [33] used a KNN model, where the number of attributes defining the

input feature space was 19 (including attributes such as day of week, device moving, and battery level)

and the number of classes was 8. These eight classes corresponded to eight different combinations of

three variables (𝐹𝑖𝑛𝑒 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑, 𝐶𝑜𝑎𝑟𝑠𝑒 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑, 𝐷𝑎𝑡𝑎 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑). However,

the KNN model was outperformed by other models including support vector machines.

https://ieeexplore.ieee.org/document/#deqn14

Despite its simplicity, the KNN algorithm can build classifiers that are very close in performance to the

Bayes classifier. One of its limitations though is that it is sensitive to the local structure of the data,

which makes the selection of 𝑘 difficult. There have been however, various heuristics proposed to

select a good 𝑘. Also, it can be computationally slow.

3.5 Bayes Classifiers
The brief description here is adapted mainly from [38], [39]. The Bayesian classifier is a supervised

learning model. It uses a learning agent that builds a probabilistic model of the features that is then

employed to predict the classification of new features or examples. The naive Bayes classifier assumes

that the input features are conditionally independent. It is constructed by combining a naive Bayes

probability model with a decision rule. For a new instance to be classified, denoted as 𝐱 = (𝑥1, … , 𝑥𝑛)

representing the n features, the naive Bayes probability model assigns probabilities 𝑝(𝐶𝑘|𝑥1, … , 𝑥𝑛) to

this problem instance. This assignment is done for each of the 𝐾 classes 𝐶𝑘. It can be shown that the

conditional distribution over the class variable can be expressed as:

𝑝(𝐶𝑘|𝑥1, … , 𝑥𝑛) =
1

𝑍
𝑝(𝐶𝑘) ∏ 𝑝(𝑥𝑖|𝐶𝑘)

𝑛

𝑖=1
, (15)

where 𝑍 = 𝑝(𝐱) is a constant scaling factor that depends on (𝑥1, … , 𝑥𝑛). The classifier can then be

constructed as the function that assigns a class label 𝑦
^

= 𝐶𝑘 according to the following equation:

𝑦
^

= argmax
𝑘∈{1,...,𝐾}

∏ 𝑝(𝑥𝑖|𝐶𝑘)
𝑛

𝑖=1
. (16)

The study in [40] proposed a Bayesian classifier for energy management. Only information about the

occupancy state of the global service queue is used for learning to predict the system performance.

The predicted performance is then used to select the frequency from a pre-computed policy table. The

authors reported that this classifier was more efficient than other methods.

While it was proven to provide good results, this model has not been very popular so far. We include it

here again for the sake of completeness.

3.6 Support Vector Machines (SVMs)
An SVM is a model employed by supervised learning methods used in classification and

regression [23], [24]. Typical models comprise linear combinations of fixed basis functions, which need

to be adapted to the data in order to be able to apply these models to large scale problems [19]. To do

that, the SVM model defines basis functions centered on the training data and later during training

selects just a subset of them. In the case of the two-class classification problem, the following linear

model is used:

𝑦(𝐱) = 𝐰𝑇𝜙(𝐱) + 𝑏, (17)

where 𝜙(𝐱) represents a transformation in the feature space. 𝐰 is a parameter vector and 𝑏 is a bias.

The classification of a new input 𝐱 is done by the sign of 𝑦(𝐱). The training data is a set of pairs of input

vectors 𝐱1, 𝐱2, … , 𝐱𝑀 and their targets 𝑡1, 𝑡2, … , 𝑡𝑀, 𝑡𝑛 ∈ {−1,1}. Under the assumption that training

data are linearly separable in the feature space, then, there are multiple values of 𝐰 and 𝑏 for which

Equation (17) gives 𝑦(𝐱) < 0for pairs with 𝑡𝑛 = +1 and 𝑦(𝐱) > 0 for pairs with 𝑡𝑛 = −1. The SVM

https://ieeexplore.ieee.org/document/#deqn17

model chooses those parameter values that maximize the so called margin, which is the smallest

distance between the decision boundary, Equation (17), and any training sample. In this way, the SVM

training algorithm constructs a line for binary classification or a hyperplane for higher dimensionality. If

the earlier assumption on separability is not valid, the SVM model can use nonlinear kernel functions

to map the original space to a higher-dimensional space, where separation can be made linear.

In the context of increasingly popular heterogeneous platforms with multiple CPUs and GPUs, the

study in [41] presented an efficient OpenCL task scheduling algorithm to schedule multiple kernels

from multiple programs. The scheduler is based on a model constructed with an SVM classifier that

predicts speedup of a kernel based on its static code structure. Results were reported on two different

systems, Intel Core i7 4-core CPU + NVIDIA GeForce GTX 590 GPU and AMD HD 7970 GPU. This SVM

based prediction approach was improved upon by the work in [42], who also tested their scheduler on

a real system, the Intel Haswell Core i7-4790K CPU-GPU processor. At the datacenter layer, the authors

in [43] developed an SVM model for temperature prediction in datacenters. The study

in [33] investigated SVMs for energy optimization in smart phones. SVMs were found to provide the

best prediction accuracy together with neural network models. The study in [44] applied several

machine learning techniques, including SVMs and decision trees, to energy-efficient context sensing for

mobile devices. The proposed models learn relations among different classes of sensors (e.g., 𝑙𝑖𝑔ℎ𝑡 −

𝑑𝑢𝑡𝑦 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 that are energy-efficient, implemented in software, and ℎ𝑒𝑎𝑣𝑦 − 𝑑𝑢𝑡𝑦 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 that

consume high energy and are implemented in hardware) and then, exploit those relationships to infer

the status of high-energy-consuming sensors. If this inference says that the sensor is stable, then, the

sensor is not triggered and the latest sensor value is utilized instead as the estimation, thereby saving

the energy that the sensor would have consumed.

The study in [45] used an SVM based approach to predict aging induced delay in integrated circuits,

including the Leon3 and OpenRISC processors. Their solution consisted of a runtime monitoring

infrastructure that exploited space and time sampling of a reduced number of latches. Training was

performed offline using support-vector regression and the prediction model was implemented in

software. Other previous studies used SVM to predict embedded memory timing failures during the

floorplanning stage [46], routability of integrated circuit placements [47], latency in networks-on-

chip [48], network-on-chip configuration links [49].

The SVM model is very effective practically, and therefore, it has become very popular in modern

machine learning. On the downside, the number of basis functions can increase with the size of the

training data set [19] and the parameter selection is data dependent.

3.7 Reinforcement Learning (RL)
The description here was adapted primarily from [50], [51], [52]. In the RL approach, an agent operates

in the environment with the goal to maximize the total accumulated reward. The RL model can be

described with the help of Fig. 3. The agent gets an observation 𝑌(𝑡) and a reward 𝑅(𝑡) at each

discrete time step 𝑡. Next, the agent selects an action 𝐴(𝑡 + 1), from the set of actions 𝐀. The selected

action is sent back to the environment. The environment, in turn, transitions to the new state 𝑋(𝑡 +

1). At the same time, the reward 𝑅(𝑡 + 1) corresponding to the transition (𝑆(𝑡), 𝐴(𝑡), 𝑋(𝑡 + 1)) is

calculated; where 𝑆(𝑡) is the agent state at time t from the set of possible states 𝐒.

https://ieeexplore.ieee.org/document/#deqn17

Fig. 3. Model of reinforcement learning problem adapted from [50].

Both the environment and the agent are modeled as stochastic finite state machines. The agent

receives observations and rewards as inputs. The outputs from the agent represent actions sent back

to the environment. The policy function is 𝐴(𝑡) = 𝜋(𝑆(𝑡)) and the state transition function is 𝑆(𝑡) =

𝑓(𝑆(𝑡 − 1), 𝑌(𝑡), 𝑅(𝑡), 𝐴(𝑡)). The goal of the agent is to accumulate as much reward as possible. That

can be done with a policy and agent state-update function that maximizes the expected value of the

summation of rewards:

𝐸[𝑅(0) + 𝛾𝑅(1) + 𝛾2𝑅(2) + ⋯] = 𝐸[∑ 𝛾𝑡𝑅(𝑡)
∞

𝑡=0
], (18)

where 0 ≤ 𝛾 ≤ 1 represents the discount factor. This factor signifies that immediate reward is worth

more than future reward [20].

Reinforcement learning has been very popular especially in developing energy and thermal

management solutions for processors. Because these solutions were developed mostly in software,

they are located on the 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 layer in Fig. 1. For example, the study in [53] presents a

reinforcement learning solution to the problem of adaptive thermal management in multicore systems

with the goal to improve lifetime reliability. Q-Learning was used as the algorithm to learn the relation

between the clock frequencies and temperatures of the cores and the mapping of threads to cores. In

Q-Learning, a learning agent maintains a Q-Table with entries called Q-values that correspond state-

action pairs. These entries are referred to also as Q-values. Based on readings from thermal sensors

and performance counters, the operating system calculates the thermal stress and aging. The values

of stress and 𝑎𝑔𝑖𝑛𝑔 represent the Q-Table states. In RL terminology, they model

the 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 basically. Actions are taken as dynamic changes of cores frequency that override OS

thread mapping decisions. In this way, peak and average temperatures are controlled such that

lifetime is improved.

Reinforcement learning based on Q-learning was used by the authors of [54] to develop an online

power management technique for multicores. Their technique achieved autonomous management by

dynamically adapting to the environment without prior information about the workload. Another Q-

learning based dynamic voltage and frequency scaling algorithm is presented in [55]. Other studies,

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/8685251/8514815/ababe3-2878699-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/8685251/8514815/ababe3-2878699-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/8685251/8514815/ababe3-2878699-large.gif

used various reinforcement learning based approaches to learn the optimal control policy of the VF

pairs in many core processors for power optimization [56], user behavior with respect to the use of

embedded network-on-chip platforms [57]. A Q-learning based I/O management was proposed

in [58] to adaptively adjust the I/O output-voltage swing in 2.5D integrated many core microprocessors

and memories, under communication power and bit error rate constraints. The authors

of [59] presented a reinforcement learning based runtime manager for energy-efficient thermal

management of embedded systems. The approach addressed thermal cycling and average and peak

temperatures simultaneously. An online DVFS control strategy based on core-level modular

reinforcement learning to adaptively select appropriate operating frequencies for each individual core

was proposed in [60]. An Q-learning based algorithm was proposed in [61] to identify V/F pairs for

predicted workloads and given application performance requirements. The study in [62] investigated

imitation learning and reported higher quality policies in the context of dynamic VFI control in many

core systems with different applications running concurrently.

Note that RL based solutions do not make direct predictions of metrics like temperature, power, etc.

Instead, predictions are made for the 𝑠𝑡𝑎𝑡𝑒 in which the system is or will be and then 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 are

taken such that the system is geared towards desired states, which are characterized by desired values

of the metrics of interest such as performance and lifetime reliability. Nevertheless, we are still dealing

with prediction here.

Q-learning has been very popular because it is simple and robust to noise. On the limitations side, it

may not be able to identify the optimal policy if the environment is not a Markov decision process.

3.8 Online Machine Learning
Online or sequential learning is used when data are provided sequentially (i.e., streaming data) [19]. It

involves a sequence of consecutive steps to develop a mapping between data and corresponding

labels. In each step, the learning agent is asked a question that is answered by employing a prediction

technique. This prediction technique, also called a hypothesis, represents a mapping between

questions and acceptable answers. The learning agent receives the correct answer after each predicted

answer. A loss function is utilized to quantify the discrepancy between prediction and the correct

answer. In this way, the total accumulated loss after a set of question answer rounds measures the

performance of the online learning algorithm. In achieving the goal of minimizing this total loss, the

agent can dynamically update the hypothesis in order to improve its chances of giving the correct

answer in future steps.

Online learning was employed by the techniques proposed in [63], [64], [65] to select the most

appropriate frequency for the processing cores based on the workload characteristic of a given

application. For example, the study in [63] introduces a DVFS technique for a multi-tasking framework.

The authors proposed a control algorithm to characterize the behavior of a given task and to select the

best voltage-frequency (VF) pair setting. The characterization employs runtime statistics such as IPC

and cache hit/miss ratio. The chosen or predicted VF pair is expected to minimize both the energy

consumption and performance delay. Implemented as a software technique, this policy is lightweight

and has negligible overhead.

The study in [66] proposed an online learning temperature management technique for multicore

systems. The objective of the technique is to reduce the adverse effects of temperature variations and

hotspots. It achieves that by employing online learning, based on switching experts [67], to choose the

best policy from among a given set of expert policies for the current workload characteristics. This

online learning solution facilitates realtime adaptation to react to the changing workload. This

adaptation consists of the selection of the policy with the desired trade-off between thermal profile

and performance.

Due to its inherent architecture, this approach can offer good accuracies. Thanks to its realtime

adaptation ability, it can naturally estimate workloads that were not encountered before.

3.9 Neural Network (NN) Models
A popular machine learning approach is the neural network or multi-layered perceptron model.

Because NNs are very good at identifying trends and discovering patterns in complex data, they have

been utilized in numerous applications (e.g., pattern recognition and data classification). An NN model

is essentially formed by connecting a number of neurons (also called processing elements), typically

organized on several layers. For example, the block diagram of a two-layer neural network is shown

in Fig. 4. In this model, each layer implements the transfer function:

𝐲 = 𝑓(𝐖𝐱 + 𝐛), (19)

where 𝐱 and 𝐲 are the input and output vectors of a given layer. 𝐖 is the matrix of weights of

size 𝑚 × 𝑛 with 𝑛 being the number of inputs and 𝑚 being the number of neurons in the layer. 𝑏 is the

bias vector of size 𝑚 × 1. Examples of layer transfer functions include 𝑡𝑎𝑛𝑠𝑖𝑔 and 𝑝𝑢𝑟𝑒𝑙𝑖𝑛. For

example, the former one is given by: 𝑓(𝑢) = 2/(1 + 𝑒−2𝑢) − 1.

Fig. 4. Architecture of a two-layer neural network model.

An NN model must always be trained first. Training requires a set of known input and output data

pairs, which sometimes is difficult to obtain. It is done by an algorithm that uses the training data to

estimate numerical values for weights and biases. Once trained, the NN model can be utilized to

provide estimations on new data of interest. Such estimations are usually more accurate when the

training is done with sufficiently large training data sets.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/8685251/8514815/ababe4-2878699-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/8685251/8514815/ababe4-2878699-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/8685251/8514815/ababe4-2878699-large.gif

NN models have been used to predict temperature [68], [69] in chip multiprocessors (CMPs) to

construct thermal management strategies. The study in [70] uses a similar NN model to predict the

lifetime reliability of CMPs. The reliability predictions are applied to dynamic reliability management.

The neural network oracle can utilize as inputs the current temperatures, supply voltages, and clock

frequencies of each tile as well as their variation trends. These studies used NN models with two layers

similar to the example from Fig. 4. The authors of [71] develop an Artificial Neural Network (ANN)

based mechanism for network-on-chip (called uncore) power management. The offline training of the

ANN is augmented with a simple proportional integral (PI) controller as a second classifier. The ANN is

used to predict the NoC utility (defined as the performance sensitivity to the NoC), which is then used

to make DVFS decisions that lead to improvements in the energy-delay product. ANNs have been used

also in branch prediction techniques [72] as well as to predict congestion hotspots in networks-on-

chip [73]. In [75], NN models were used to estimate power and thermal profile in NoCs based on the

utilization of NoC nodes and links. These predictions were then used to configure the global optimal

NoC, which was considered a reconfigurable communication resource. An NN model was used to

predict core temperatures in supercomputers in the study from [76]. The predictions were used to

develop a preemptive fan control mechanism and a thermal-aware load balancing algorithm.

Experiments were reported on an IBM cluster with POWER8 processors, each node in the cluster with

2 sockets, and each socket with 10 physical cores. Results reported that peak fan power can be

reduced by 61%. Another application of NN models was reported in [77]. The authors used measured

performance and power data from real GPU hardware to train an NN model and to capture how

applications scale as the GPU’s configuration is changed. The model was then used to estimate the

performance and power of new applications at different GPU configurations and was reported to offer

within 15 percent accuracy.

An NN based model with eight outputs for different interface configurations of a mobile device was

presented in [33] to do classification. Such classification is used as the basis for setting the mobile

device into that configuration state with the goal of reducing energy consumption. It was reported that

the NN model provides together with the SVM model the best prediction accuracy. Other studies have

used NN models for matching (i.e., predicting the best microarchitecture) processor microarchitecture

in energy harvesting systems to dynamically adjust the microarchitecture to achieve the maximum

forward progress [74].

Main advantages of the NN model include: it can model intricate nonlinear relationships and can

capture useful meaning even from imprecise data. However, NN models usually suffer from long

computational runtimes required for training. Also, model overfitting can become an issue.

3.10 Deep Neural Networks (DNNs)
The description here was adapted primarily from [20], [22], [78]. Structurally, a DNN model is a multi-

layer perceptron (MLP), which is just a feedforward Artificial Neural Network with many hidden layers.

The main difference compared to traditional NNs is that DNNs have more hidden layers. That helps

DNNs to capture more complex nonlinear relationships [79]. A turning point in the world of deep

learning took place in 2006, when Hinton and colleagues [80], [81] showed that deep belief networks

(DBNs) can serve as the basis for DNNs pretraining. They showed that one can effectively pretrain a

DNN one layer at a time. That can be done by handling individual layers as unsupervised restricted

Boltzmann machines (RBM) separately. Then, the entire stack of layers can be fine-tuned using

supervised backpropagation. Moreover, the pretraining can also be followed by other discriminative

learning techniques to further fine-tune the weights. During this process, a final layer is added to the

DNN [82] as shown in Fig. 5. The variables on this final layer are the desired outputs from the training

data. These outputs of the final layer will be used directly for classification purposes.

Fig. 5. Block diagram of the DNN model formed by a stack of restricted Boltzmann machines. The number of

units in layers are for illustration purposes.

These developments were crucial to the advent of deep learning, which received a lot of attention

recently. For example, the successful application of DNN models in speech recognition at an industry

scale provided recognition rates that improved with 30 percent compared to the Gaussian mixture

model (GMM) based traditional methods. Such improvement was considered as “the most dramatic

change in accuracy since 1979” [83]. As another example, DNNs were used for traffic sign classification

and achieved a better-than-human recognition rate of 99.46 percent [84]. These developments

represented a remarkable moment that triggered the resurrection of DNNs, which have been shown to

lead to some of the best results in several different application domains [85].

While very popular in other application domains, DNN models have been used less so far in multicore

processors systems. Nevertheless, at the highest level in Fig. 1, in the context of datacenters−where

huge amounts of data points are generated continuously by large numbers of sensors−recently, the

study in [86] proposed a DNN model to model plant performance and to predict power usage

effectiveness (PUE) with very good accuracy. Their DNN model was constructed with five hidden layers

and fifty nodes per hidden layer. The training data set contained 19 input variables (which included the

number of running cooling towers, the total server IT load, the outdoor wind speed, and others) and

one output variable as the PUE. All these variables represented about two years of operational data

collected as 184,435 time samples at 5 minute steps. Testing and validation at Google’s datacenters,

the DNN model was shown to be an effective approach to exploit existing sensor data to model

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/8685251/8514815/ababe5-2878699-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/8685251/8514815/ababe5-2878699-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/8685251/8514815/ababe5-2878699-large.gif

datacenter performance and to identify operational parameters that improve energy efficiency and

reduce the PUE [86].

DNNs have a high modeling power because they use hidden layers with many neurons. However, that

comes with the price of increased computational complexity during training. This may be one of the

reasons why it has not been very popular especially at lower levels in the computing stack from Fig. 1.

In addition, sometimes, the performance achieved with DNNs is not as good as that of some

probabilistic models.

3.11 Additional Machine Learning Approaches
In this section, we briefly discuss other predictions and classification approaches that could not be fit in

any of the categories discussed earlier. Machine learning techniques for performance and power

modeling of single-core processors were discussed in [87]. More specifically, to predict the

performance of a workload on a target platform, the study in [88] introduced a statistical learning

approach. The model was verified for the ARM CPU model (five-stage in-order) and the authors

reported an average accuracy of 90 percent. Decision tree learning—a predictive model that

represents observations as branches leading to conclusions, i.e., leaves, about the attribute’s value -

was used to construct a temperature prediction model for black-box IPs in [89]. Another type of

machine learning technique, belief rule based expert systems (BRBES), was used in [90]to predict

energy efficiency in datacenters. Consisting of two components, knowledge-base and inference engine,

the BRBES model was reported to perform better than ANNs. The study in [91] used ridge regression to

predict the number of packets to be injected into routers of NoCs built with photonic interconnects in

heterogeneous multicore CPU + GPU processors. The predictions were used to develop a proactive

method to determine the amount of laser power needed in a specified reservation window at each

router.

The extreme learning machine algorithm proposed in [92] exploited history of signal quality and

strength to predict location of mobile devices. The authors found that their approach outperformed

KNN based solutions. Also in the context of mobile device, a supervised learning based prediction

model was proposed in [93] to predict spatial context. A nonparametric predictive modeling scheme

implemented using boosted regression trees was proposed in [94]. The objective was to capture the

correlation between processor configurations, workloads, and execution phases and exploit that

toward improving various performance metrics including the architectural vulnerability factor. A recent

research trend is in compositional structures in social dynamics. The focus is on data generated by

social media applications. For example, the study in [95] proposed a new probabilistic model called

recursive convolutional Bayesian model to model signatures of social dynamics. They explored the

potential of their model for supervised learning in social applications. As such, they reported

predictions made for the users count of a hashtag on a Twitter dataset and for the average number of

checkins on a daily basis for a business on Yelp for a year. This class of prediction approaches are

located on the top most abstraction layer, 𝐶𝑙𝑜𝑢𝑑 in Fig. 1, because they operate in the cloud by

working with data generated by datacenter level applications. Similarly, most of the recommender

systems (e.g., Netflix, Amazon, etc.), where the users’ preferences are predicted, operate at

the 𝐶𝑙𝑜𝑢𝑑 layer in Fig. 1. We do not review these approaches in this paper due to lack of space.

SECTION 4 Other Prediction Approaches

4.1 Model Predictive Control (MPC) Techniques
MPC is a special approach to prediction, which is not explicit as in most other cases. It is an optimal

control technique for linear dynamic systems [96]. Its objective is to maximize a certain performance

metric. It is called predictive because the problem is formulated over a period of a certain number of

steps with the start point being the current time. The solution to the problem provides the sequence of

future feedback control actions (e.g., frequency settings for the cores of a multicore processor). These

actions can be derived by numerical solvers embedded directly in the control algorithm. Alternatively,

the actions can be precomputed statically, at design time, stored in a look-up table, which is then

referenced during realtime operation.

The model predictive control was used for thermal management to achieve smooth control with

minimal performance loss in [97]. An optimal control theory based algorithm was proposed in [98] for

the chip-level power control of a multicore processor with the objective that the temperature of each

core be maintained below a specified threshold. Another example is the study in [99], where the

authors developed thermal management policies for chip multiprocessors. Using DVFS as a control

mechanism, these policies manipulate the time-varying workloads and thermal profile in a way that

improves the thermal balancing of the CMP die. A workload aware approach is proposed in [100] based

on control theoretic principles. At the datacenter layer, the study in [101] presented ThermoRing, a

model-predictive control based scheduling strategy to reduce cooling costs in data centers.

While not a straightforward prediction/classification technique, MPC was successfully used to develop

closed-loop control approaches for thermal management in multicore processors. This technique is a

good example of a cross-layer technique at both 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒 and 𝑆𝑜𝑓𝑡𝑤𝑎𝑟𝑒 layers.

4.2 Others
Here, we discuss several prediction techniques that we could not fit in any of the categories discussed

in this paper. Exploiting a cause-effect rationale, the study in [102] developed an NoC traffic prediction

method by looking at the application cache coherence behavior. Implemented in 𝐻𝑎𝑟𝑑𝑤𝑎𝑟𝑒, the

technique achieved 87 percent accuracy. Similarly, but in the context of cloud datacenters, the study

in [103] introduced a so-called heat imbalance model that is used to predict future temperature

trends. These predictions are then used to develop a proactive thermal-aware virtual machine (VM)

allocation algorithm that minimizes energy consumption for computation. Using information about the

current temperature and power, the study in [104] proposed a low overhead future temperature

predictor in heterogeneous multiprocessor systems-on-chip (MPSoC). The proposed technique is based

on a compact thermal model of the chip, which captures the temperature dynamics and the relation

between the temperature, cores power consumption, and thermal characteristics of the system via a

non-homogeneous system of differential equations. The predictor was used to develop temperature

aware scheduling techniques that can avoid proactively power states that could leading to future

thermal emergencies.

SECTION 5 Discussion
A summary of the predicted variables or attributes of interest in the reviewed literature is presented

in Table 1. In addition, we are making the following observations.

TABLE 1 Summary of Discussed Prediction Techniques

 Power
Energy

Workloa
d

Perf. Utiliz.
IPC

Temp.
CMP’s

NoC
buffe
r/link
utiliz.

NoC
Congest.
hostspot

s

NoC
Utility

Latency

Reliab.
CMP’s

Aging VF
Setting

Memor
y timing

Routabilit
y

Others

Exponential
averaging

 [11]

History
predictor

[9]
(powe
r
phase
)

[6]
(cluster)

 [4], [5]

ARMA [11] [11] [18] (thermal
state)

Kalman
filtering

 [16] [17] [18]

Linear
regression

[30],
[30]

 [28] (exe.
time)

[27] [98] (model
param.)

LDA [33] (mobile
config.)

Multinomial
logistic regr.

 [34],
[35],
[36]

 [33] (mobile
config.)

KNN [33] (mobile
config.)

Bayes
classifier

 [40] (perf.
state)

SVM [48]
(latency)

 [45] [46] [47] [49] (NoC
config.)

Reinforcem
ent

 [53], [55], [56]
(DVFS policy)

learning [57] (user beh.)

Online
learning

 [63],
[64],
[65]

 [66] (policy)
[67] (expert)

Neural
Networks

[68],
[69]

 [73] [71]
(utility)

[70] [74] (uarch)

DNN [86] (PUE)

Others [106],
–
[111]
(ener
gy via
user
beh.)

 [91] (num.
packets) [98]
(pred. ctrl.)
[111] (psych.
traits)

• We observe that as we move to higher levels of abstraction in the computing stack model

from Fig. 1, we find that increasingly complex or sophisticated prediction methods are

employed. While for example at the NoC router level simple history predictors would be good

enough, at the datacenter level already deep neural network (DNN) models are able to capture

the relationship between and the impact of 19 different normalized input variables on the

power usage effectiveness. Noteworthy is that such increasingly sophisticated models require

usually large training datasets and long training times too. Large training datasets in turn means

storage too, which is not something that we could afford for (realtime) prediction methods at

lower levels in the computing stack.

• Therefore, a question that is interesting to ask is how far down in the computing stack can we

go with DNN models such that we could benefit from their power of modeling intricate

relationships across long histories of operation while keeping the model size (complexity and

required storage) small enough to justify the benefits from using such models? While there

have been previous studies that used neural network (not deep) models, it is still unclear what

the answer to the above question is.

• At lower levels in the computing stack, Kalman filtering technique, as a time tested solution,

does a very good job at predicting the near future based on a relatively short recent history. It

can easily be implemented in software and hardware. This technique is a very good

compromise between effectiveness and computational and storage complexity.

• Support vector machine (SVM) models have been employed by many previous studies. This is a

very popular technique that has been used for predicting many different figures of merit

(see Table 1). While this technique does require training data and static (i.e., design time)

model construction and optimization, we attribute its popularity to its practical effectiveness. It

does a good job for the practical applications for which it has been used.

• While simpler prediction techniques (such as those discussed in the first part of this paper) will

continue to be utilized in rather simple design optimizations at the lower levels in the

computing stack, we project that more complex techniques (like those discussed in the second

part of this paper) will be increasingly employed, especially as we move more and more

towards datacenter/warehouse scale computer or even exascale computing. At such ”cloud

computing” levels of abstraction, a lot of data is usually collected and stored anyway. So, it is

natural that DNN models and data mining are looked at because of their ability to capture

relationships and predict behavior that was not possible before. Such improved models and

prediction techniques can be utilized to provide optimization opportunities not seen before.

Along this line, we see already substantial work done on the topic of recommender systems,

where the users’ preferences are predicted. Similarly, opinion and sentiment analysis has

received a lot of attention [105].

• A different class of optimizations is that where the human user takes a central role. These user

centric techniques have been advocated especially for mobile embedded computing

platforms [106], [107], [108], [109], [110], [111]. These techniques model and then predict the

user behavior to identify optimization opportunities for reducing energy consumption without

degrading user-perceived performance. Here, we note that the distinction between user

behavior and workload behavior is rather vague. That is because the way a certain computing

system, such as a smart phone, is exercised with workload reflects the user behavior too. So,

one can argue that workload behavior captures the user implicitly. There is however another

user-related variable−that of psychology of users−which can be exploited towards further

energy savings. For example, the study in [111] exploits psychological changes during the low

battery phase of mobile devices of different users to design a quality of experience (QoE) aware

frequency governor. The role of the governor is to dynamically change the processor frequency

in order to operate at the best QoE at for different users in different environments during low

battery phases. We expect more work along this line will emerge to benefit from optimization

opportunities from angles not fully exploited yet.

Furthermore, we present Table 2 to indicate the usage of the various prediction/classification

techniques across different layers of the computing stack. Thus, in this table, the columns represent

the layers from Fig. 1 and the rows represent the techniques discussed throughout this paper. Layers

from Fig. 1 are grouped within the columns in order to keep the table compact and because the

implementation of the prediction techniques tends to span across these layers. An entry in this table

indicates what attribute(s) of interest the prediction technique (i.e., row) was employed for

prediction/classification at the layer(s) indicated by column. Note that, techniques appearing in the

column OS/Compiler, Apps that involve DVFS or some form of system (re)configuration generally

require support at the Hardware level too. In other words, these techniques are usually spanning

multiple layers in the computing stack. However, we included entries in the Dig. Logic,

Microarch. column where the cross-layer aspect was clearly stated in the surveyed prior works. In

addition, note that for a given layer, we do not specify what technique is the best in terms of accuracy

or impact on design optimization because most often than not these techniques are used to

predict/classify different attributes—and this makes such comparison difficult.

TABLE 2 Prediction Techniques were Applied at Different Abstraction Layers

Technique Physics,
Layout

Dig. Logic, Microarch. OS/Compiler, Apps Datacenter

Exponential
averaging

 Temp. CMPs

History predictor NoC buffer/link util. Workload, Temp., Power
phase

ARMA Perf. utiliz. IPC Temp. CMPs Resource
demand

Kalman filtering CPI, Instr. count
System states, Temp.
CMPs Perf. utiliz. IPC

CPI, Instr. count
Processing time

Linear regression Temp., Model param.
Power consump.

Temp., Exe. time Power
consump.

Exe. time
Energy

LDA Device config. Device config.

Multinomial
logistic regr.

 Workload
Device config.

KNN Device config.

Bayes classifier System perf.

SVM Routability
of IC

Aging induced delay
NoC latency

Device config., Sensor
status, NoC
latency
Aging induced delay,
Mem. timing err.
NoC config. links

Temp.

Reinforcement
learning

 Stress/Aging-Clock freq.,
Power-Clock
freq.
Error rate-I/O voltage
swing
Energy/Power-DVFS,
Thermal profile-
DVFS

Online learning Workload-Clock freq.
Temp./Hotspots-
Workload policy

Neural Temp., Lifetime
reliability

Temp., Lifetime reliability,
Branch pred.

Temp.

Networks NoC utility, NoC
congestion

NoC utility, Device config.

DNN PUE

Model Pred.
Control

 Power, Temp. Workload, Thermal profile Power,
Temp.

An entry indicates predicted attributes.

Instead, we present Table 3 as a quick look-up table that summarizes the pluses and minuses of each

major technique that we discussed in this paper. In addition, in Fig. 6, we summarize what we

observed as being the most popular prediction techniques. The popularity of the techniques in this

figure was qualitatively measured in terms of 1) the number of attributes predicted/classified by these

techniques (seen as number of columns with example references in the corresponding rows in Table

1), 2) the number of different layers in the computing stack where these techniques were employed,

and 3) the overall number of previous studies that seemed to prefer these techniques.

TABLE 3 Summary of Pros and Cons of the Surveyed Prediction Techniques

Technique Pros Cons

Exponential
averaging

Simple, easy to implement Error margin increases with horizon

History predictor Easy to implement Error margin increases with horizon

ARMA Can be implemented all in SW
Good accuracy for a few steps
ahead

Identification and estimation require
training

Kalman filtering Very good accuracy Somewhat complex to implement

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/8685251/8514815/ababe.t2-2878699-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/8685251/8514815/ababe.t2-2878699-large.gif

One of the best accuracy-cost
points

Linear regression

Good prediction accuracy Requires training
May need to update coefficients repeatedly
as new
data arrive

LDA

Fast, relatively easy to implement
Can provide results as good as
more complex
models

Requires training

Multinomial
logistic regr.

Good performance performance
Can model synergistic
relationships

Requires training
Somewhat complex, sensitive to outliers

KNN

Simple, great accuracy Sensitive to the local structure of the data
Can be computationally slow

Bayes classifier Good accuracy, efficient Requires training

SVM

Effective practically, very popular Number of basis functions can increase
with size of training data
Parameter selection is data dependent

Reinforcement
learning

Simple and robust to noise,
popular

May not be able to identify optimal policy if
environment is not a Markov decision
process

Online
learning

Relatively simple, good prediction
accuracy
Good realtime adaptation

Medium complexity of implementation

Neural
Networks

Can model intricate nonlinear
relationships, popular
Can capture useful meaning even
from imprecise
data

Long computational runtimes required for
training
Model overfitting can become an issue

DNN

High modeling power Increased computational complexity during
training
Network topology design can be tricky

Model Pred.
Control

Good accuracy over several steps
ahead

Not an explicit prediction technique

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/8685251/8514815/ababe6-2878699-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/71/8685251/8514815/ababe6-2878699-large.gif

Fig. 6. Summary of the most popular prediction techniques that we identified in this paper. The more complex

techniques are applicable at higher levels in the computing stack.

SECTION 6 Conclusion
We presented a survey of some of the most popular prediction and classification for prediction

techniques employed across multiple levels of the computing stack. These prediction techniques have

been employed from predicting simple attributes of interest such as buffer utilization in networks-on-

chip to predicting complex relationship affecting the power usage effectiveness in datacenters. Aside

from discussing some of the most popular prediction techniques and emphasizing some of their

advantages and disadvantages, our objective was to also identify trends in the way prediction

techniques are used most recently. We see increasingly complex and sophisticated models such as

deep neural networks being employed at higher levels, such as datacenters. User behavior and

psychology is another direction that has been looked at recently in search for additional optimization

opportunities that have not been explored before. If support vector machine models have been

probably the best so far, it is likely in our opinion that deep neural networks to become the new norm

at least at higher levels of abstraction, i.e., cloud computing type of applications and the supporting

hardware infrastructure. It is hoped that this survey will provide useful initial guidance to the reader

that may be interested in employing prediction/classification techniques in optimization solutions

across layers in multicore processor systems.

ACKNOWLEDGMENTS
This work was supported by the Dept. of Electrical and Computer Engineering at Marquette University.

We thank Richard J. Povinelli for feedback on an earlier draft of this paper as well to the anonymous

reviewers whose feedback helped to significantly improve the quality of this presentation. Finally, this

survey paper is far from being comprehensive. However, we hope it helps to create a good enough

picture of what has been, and especially what appears to be, the most promising prediction

techniques. It should serve as a good starting point for the reader interested in employing some form

of prediction to be used in optimization solutions across layers in multicore processor systems.

References
1. D. Brooks, V. Tiwari, M. Martonosi, "Wattch: A framework for architectural-level power analysis and

optimizations", Proc. 27th Int. Symp. Comput. Archit., pp. 83-94, 2000.

2. S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, N. P. Jouppi, "McPAT: An integrated power

area timing modeling framework for multicore and many core architectures", Proc. 42nd

Annu.ACM/IEEE Int. Symp. Microarchitecture, pp. 469-480, 2009.

3. W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K. Skadron, M. R. Stan, "HotSpot: A compact

thermal modeling method for CMOS VLSI systems", IEEE Trans. Very Large Scale Integr. Syst.,

vol. 14, no. 5, pp. 501-513, May 2006.

4. L. Shang, L.-S. Peh, N. K. Jha, "Dynamic voltage scaling with links for power optimization of

interconnection networks", Proc. 9th Int. Symp. Int. Symp. High-Perform. Comput. Archit., pp.

91-102, 2003.

5. C. Ababei, N. Mastronarde, "Benefits and costs of prediction based DVFS for NoCs at router

level", Proc. 27th IEEE Int. System-on-Chip Conf., pp. 255-260, 2014.

6. R. Ge, X. Feng, W.-C. Feng, K. W. Cameron, "CPU MISER: A performance-directed run-time system for

power-aware clusters", Proc. Int. Conf. Parallel Process., pp. 18-18, 2007.

7. R. Z. Ayoub, T. Simunic Rosing, "Predict and act: Dynamic thermal management for multi-core

processors", Proc. ACM/IEEE Int. Symp. Low Power Electron. Des., pp. 99-104, 2009.

8. D. A. Patterson, J. L. Hennessy, Computer Organization and Design The Hardware/Software

Interface, San Mateo, CA, USA:Morgan Kaufmann, 2013.

9. C. Isci, G. Contreras, M. Martonosi, "Live runtime phase monitoring and prediction on real systems

with application to dynamic power management", Proc. 39th Annu. IEEE/ACM Int. Symp.

Microarchitecture, pp. 359-370, 2006.

10. 2017, [online] Available: https://en.wikipedia.org/wiki/Autoregressive%E2%80%93moving-

average_model.

11. A. K. Coskun, T. S. Rosing, K. Gross, "Utilizing predictors for efficient thermal management in

multiprocessor SoCs", IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 28, no. 10, pp.

1503-1516, Oct. 2009.

12. Y. Kim, F. Paterna, S. Tilak, T. S. Rosing, "Smartphone analysis and optimization based on user

activity recognition", Proc. Int. Conf. Comput. Aided Des., pp. 605-612, 2015.

13. G. Bhat, G. Singla, A. K. Unver, U. Y. Ogras, "Algorithmic optimization of thermal and power

management for heterogeneous mobile platforms", IEEE Trans. Very Large Scale Integr. Syst.,

vol. 26, no. 3, pp. 544-557, Mar. 2018.

14. L. Yu, L. Chen, Z. Cai, H. Shen, Y. Liang, Y. Pan, "Stochastic load balancing for virtual resource

management in datacenters", IEEE Trans. Cloud Comput., Feb. 2016.

15. G. Welch, G. Bishop, "An introduction to the Kalman filter", 2001, [online] Available:

http://www.cs.unc.edu/\;tracker/media/pdf/SIGGRAPH2001_CoursePack_08.pdf.

16. S.-Y. Bang, K. Bang, S. Yoon, E.-Y. Chung, "Run-time adaptive workload estimation for dynamic

voltage scaling", IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 28, no. 9, pp. 1334-

1347, Aug. 2009.

17. M. G. Moghaddam, C. Ababei, "Dynamic energy management for chip multiprocessors under

performance constraints", Elsevier Microprocessors Microsyst., vol. 54, pp. 1-13, 2017.

18. S. Sarma, N. Dutt, "Minimal sparse observability of complex networks: application to MPSoC sensor

placement and run-time thermal estimation & tracking", Proc. Conf. Des. Autom. Test Eur.,

2014.

19. C. M. Bishop, Pattern Recognition and Machine Learning, New York, NY, USA:Springer, 2006.

20. K. P. Murphy, Machine Learning: A Probabilistic Perspective, Cambridge, MA, USA:MIT Press, 2012.

21. M. Mohri, A. Rostamizadeh, A. Talwalkar, Foundations of Machine Learning, MIT Press, 2012.

22. S. Theodoridis, Machine Learning: A Bayesian and Optimization Perspective, New York, NY,

USA:Academic, 2015.

23. Ethem Alpaydin, Introduction to Machine Learning, Cambridge, MA, USA:MIT Press, 2010.

24. G. James, D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical Learning: with

Applications in R, New York, NY, USA:Springer, 2013.

25. 2017, [online] Available: https://en.wikipedia.org/wiki/Machine_learning.

26. 2017, [online] Available: https://en.wikipedia.org/wiki/Multinomial_logistic_regression.

27. I. Yeo, C. C. Liu, E. J. Kim, "Predictive dynamic thermal management for multicore

systems", ACM/IEEE Des. Autom. Conf., pp. 734-739, 2008.

28. D. Li, B. R. de Supinski, M. Schulz, D. S. Nikolopoulos, K. W. Cameron, "Strategies for energy-

efficient resource management of hybrid programming models", IEEE Trans. Parallel Distrib.

Syst., vol. 24, no. 1, pp. 144-157, Jan. 2013.

29. E. Cai, D. C. Juan, S. Garg, J. Park, D. Marculescu, "Learning-based power/performance optimization

for many-core systems with extended-range voltage/frequency scaling", IEEE Trans. Comput.-

Aided Des. Integr. Circuits Syst., vol. 35, no. 8, pp. 1318-1331, Aug. 2016.

30. D.-C. Juan, S. Garg, D. Marculescu, "Statistical peak temperature prediction and thermal yield

improvement for 3D chip-multiprocessors", ACM Trans. Des. Autom. Electron. Syst., vol. 19, no.

4, Aug. 2014.

31. W. Lee, Y. Kim, J.H. Ryoo, D. Sunwoo, A. Gerstlauer, L.K. John, "PowerTrain: A learning-based

calibration of McPAT power models", IEEE Int. Symposium on Low Power Electronics and Design

(ISLPED), pp. 189-194, 2015.

32. Z. Zhou, J.H. Abawajy, F. Li, Z. Hu, M.U. Chowdhury, A. Alelaiwi, K. Li, "Fine-grained energy

consumption model of servers based on task characteristics in cloud data center", IEEE Access,

vol. 6, pp. 27080-27090, Aug. 2018.

33. B. Donohoo, C. Ohlsen, S. Pasricha, C. Anderson, Y. Xiang, "Context-aware energy enhancements

for smart mobile devices", IEEE Trans. Mobile Comput., vol. 13, no. 8, pp. 1720-1732, Aug. 2014.

34. A. Das, A. Kumar, B. Veeravalli, R. A. Shafik, G. V. Merrett, B. M. Al-Hashimi, "Workload uncertainty

characterization and adaptive frequency scaling for energy minimization of embedded

systems", Proc. Des. Autom. Test Eur. Conf. Exhibition, pp. 43-48, 2015.

35. R. Cochran, C. Hankendi, A. K. Coskun, S. Reda, "Pack & Cap: Adaptive DVFS and thread packing

under power caps", Proc. 44th Annu. IEEE/ACM Int. Symp. Microarchitecture, pp. 175-185,

2011.

36. R. Cochran, C. Hankendi, A. K. Coskun, S. Reda, "Identifying the optimal energy-efficient operating

points of parallel workloads", Proc. Int. Conf. Comput.-Aided Des., pp. 608-615, 2011.

37. 2017, [online] Available: https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm.

38. 2017, [online] Available: https://en.wikipedia.org/wiki/Naive_Bayes_classifier.

39. D. Poole, A. Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge,

U.K.:Cambridge Univ. Press, 2010, [online] Available: http://artint.info/index.html.

40. H. Jung, M. Pedram, "Supervised learning based power management for multicore

processors", IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 29, no. 9, pp. 1395-1408,

Sep. 2010.

41. Y. Wen, Z. Wang, M. F. P. O’Boyle, "Smart multi-task scheduling for OpenCL programs on CPU/GPU

heterogeneous platforms", Proc. 21st Int. Conf. High Perform. Comput., pp. 1-10, 2014.

42. K. Dev, S. Reda, "Scheduling challenges and opportunities in integrated CPU+GPU processors", Proc.

ACM/IEEE Symp. Embedded Syst. Real-Time Multimedia, pp. 1-6, 2016.

43. Z. Wu, X. Li, P. Garraghan, X. Jiang, K. Ye, A. Y. Zomaya, "Virtual machine level temperature profiling

and prediction in cloud datacenters", Proc. IEEE 36th Int. Conf. Distrib. Comput. Syst., pp. 735-

736, 2016.

44. X. Li, H. Cao, E. Chen, J. Tian, "Learning to infer the status of heavy-duty sensors for energy-efficient

context-sensing", ACM Trans. Intell. Syst. Technol., vol. 3, no. 2, Feb. 2012.

45. A. Vijayan, A. Koneru, S. Kiamehr, K. Chakrabarty, M. B. Tahoori, "Fine-grained aging-induced delay

prediction based on the monitoring of run-time stress", IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst. (TCAD), vol. 37, no. 5, pp. 1064-1074, May 2018.

46. W.-T. J. Chan et al., "Learning-based prediction of embedded memory timing failures during initial

floorplan design", Asia South Pacific Des. Autom. Conf., pp. 178-185, 2016.

47. W.-T. J. Chan, Y. Du, A. B. Kahng, S. Nath, K. Samadi, "BEOL stack-aware routability prediction from

placement using data mining techniques", IEEE Int. Conf. Comput. Des., pp. 41-48, 2016.

48. Z. Qian, D.-C. Juan, P. Bogdan, C.-Y. Tsui, D. Marculescu, R. Marculescu, "SVR-NoC: A performance

analysis tool for network-on-chips using learning-based support vector regression model", Proc.

Des. Autom. Test Eur. Conf. Exhib., pp. 354-357, 2013.

49. S. Das, J. R. Doppa, D. H. Kim, P. P. Pande, K. Chakrabarty, "Optimizing 3D NoC design for energy

efficiency: A machine learning approach", Proc. ACM/IEEE Int. Conf. Comput.-Aided Des, pp.

705-712, 2015.

50. K. Murphy, "A brief introduction to reinforcement learning", 1998, [online] Available:

http://www.cs.ubc.ca/\;murphyk/Bayes/pomdp.html.

51. R. Sutton, A. S. Barto, Reinforcement Learning: An Introduction, Cambridge, MA, USA:MIT Press,

1998.

52. 2017, [online] Available: https://en.wikipedia.org/wiki/Reinforcement_learning.

53. A. Das, R. A. Shafik, G. V. Merrett, B. M. Al-Hashimi, A. Kumar, B. Veeravalli, "Reinforcement

learning-based inter- and intra-application thermal optimization for lifetime improvement of

multicore systems", Proc. 51st ACM/EDAC/IEEE Des. Autom. Conf., pp. 1-6, 2014.

54. H. Shen, Y. Tan, J. Lu, Q. Wu, Q. Qiu, "Achieving autonomous power management using

reinforcement learning", ACM Trans. Des. Autom. Electron. Syst., vol. 18, 2013.

55. Y.-G. Chen, W.-Y. Wen, T. Wang, Y. Shi, S.-C. Chang, "Q-Learning based dynamic voltage scaling for

designs with graceful degradation", Proc. Symp. Int. Symp. Phys. Des., pp. 41-48, 2015.

56. Z. Chen, D. Marculescu, "Distributed reinforcement learning for power limited many-core system

performance optimization", Proc. Des. Autom. Test Eur. Conf. Exhib., pp. 1521-1526, 2015.

57. C.-L. Chou, R. Marculescu, "Designing heterogeneous embedded network-on-chip platforms with

users in mind", IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 29, no. 9, pp. 1301-

1314, Sep. 2010.

58. S. Manoj P, H. Yu, H. Huang, D. Xu, "A Q-learning based self-adaptive I/O communication for 2.5D

integrated many-core microprocessor and memory", IEEE Trans. Comput., vol. 65, no. 4, pp.

1185-1196, Apr. 2016.

59. A. Das, B. M. Al-Hashimi, G. V. Merrett, "Adaptive and hierarchical runtime manager for energy-

aware thermal management of embedded systems", ACM Trans. Embedded Comput. Syst., vol.

15, no. 2, pp. 1-25, Jan. 2016.

60. Z. Wang, Z. Tian, J. Xu, R. Maeda, H. Li, "Modular reinforcement learning for self-adaptive energy

efficiency optimization in multicore system", ACM/IEEE Asia South Pacific Des. Autom. Conf.,

pp. 684-689, 2017.

61. D. Biswas, V. Balagopal, R. Shafik, B. Al-Hashimi, G. Merrett, "Machine learning for run-time energy

optimization in many-core systems", Proc. ACM/IEEE Des. Autom. Test Eur. Conf. Exhib., pp.

1588-1592, 2017.

62. R. G. Kim, W. Choi, Z. Chen, J. R. Doppa, P. P. Pande, D. Marculescu, R. Marculescu, "Imitation

learning for dynamic VFI control in large-scale manycore systems", IEEE Trans. VLSI Syst., vol.

24, no. 9, pp. 2488-2501, Sep. 2017.

63. G. Dhiman, T. S. Rosing, "Dynamic voltage frequency scaling for multitasking systems using online

learning", Proc. Int. Symp. Low Power Electron. Design., pp. 207-212, 2007.

64. H. Shen, J. Lu, Q. Qiu, "Learning based DVFS for simultaneous temperature performance and

energy management", Proc. 13th Int. Symp. Quality Electron. Des., pp. 747-754, 2012.

65. R. Ye, Q. Xu, "Learning-based power management for multicore processors via idle period

manipulation", IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., pp. 1043-1055, 2014.

66. A. K. Coskun, T. S. Rosing, K. C. Grosss, "Temperature management in multiprocessor SOCs using

online learning", Proc. 45th Annu. Des. Autom. Conf., pp. 890-893, 2008.

67. Y. Freund, R. E. Schapire, Y. Singer, M. K. Warmuth, "Using and combining predictors that

specialize", Proc. 29th Annu. ACM Symp. Theory Comput., pp. 334-343, 1997.

68. R. Jayaseelan, T. Mitra, "Dynamic thermal management via architectural adaptation", Proc.

ACM/IEEE Des. Autom. Conf., pp. 484-489, 2009.

69. Y. Ge, Q. Qiu, Q. Wu, "A multi-agent framework for thermal aware task migration in many-core

systems", IEEE Trans. Very Large Scale Integr. Syst., vol. 20, no. 10, pp. 1758-1771, Oct. 2012.

70. A. Y. Yamamoto, C. Ababei, "Unified reliability estimation and management of NoC based chip

multiprocessors", Microprocessors Microsyst., vol. 38, no. 1, pp. 53-63, Feb. 2014.

71. J. Y. Won, X. Chen, P. Gratz, J. Hu, V. Soteriou, "Up by their bootstraps: Online learning in Artificial

Neural Networks for CMP uncore power management", Proc. IEEE 20th Int. Symp. High

Perform. Comput. Archit., pp. 308-319, 2014.

72. G. Steven, R. Anguera, C. Egan, F. Steven, L. Vintan, "Dynamic branch prediction using neural

networks", Proc. Euromicro Symp. Digit. Syst. Des., pp. 178-185, 2001.

73. E. Kakoulli, V. Soteriou, T. Theocharides, "Intelligent hotspot prediction for network-on-chip-based

multicore systems", IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 31, no. 3, pp. 418-

431, Mar. 2012.

74. K. Ma, X. Li, Y. Liu, J. Sampson, Y. Xie, V. Narayanan, "Dynamic machine learning based matching of

nonvolatile processor microarchitecture to harvested energy profile", Proc. ACM/IEEE Int. Conf.

Comput.-Aided Des., pp. 670-675, 2015.

75. M. F. Reza, T. T. Le, B. De, M. Bayoumi, D. Zhao, "Neuro-NoC: Energy optimization in

heterogeneous many-core NoC using neural networks in dark silicon era", Proc. IEEE Int. Symp.

Circuits Syst., pp. 1-5, 2018.

76. B. Acun, E. K. Lee, Y. Park, L. V. Kale, "Neural network-based task scheduling with preemptive fan

control", Proc. 4th Int. Workshop Energy Efficient Supercomputing, pp. 77-84, 2016.

77. G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, D. Chiou, "GPGPU performance and power

estimation using machine learning", Proc. IEEE 21st Int. Symp. High Perform. Comput. Archit.,

pp. 564-576, 2015.

78. 2017, [online] Available: https://en.wikipedia.org/wiki/Deep_learning.

79. Y. LeCun, "Learning invariant feature hierarchies", Proc. Eur. Conf. Comput. Vis., pp. 496-505, 2012.

80. G. Hinton, S. Osindero, Y. Teh, "A fast learning algorithm for deep belief nets", Neural Comput., vol.

18, pp. 1527-1554, Jul. 2006.

81. G. Hinton, R. Salakhutdinov, "Reducing the dimensionality of data with neural networks", Sci., vol.

313, no. 5786, pp. 504-507, Jul. 2006.

82. Li Deng, Dong Yu, "Deep learning: Methods and applications", NOW Found. Trends Signal Process.,

vol. 7, no. 3/4, Jun. 2014.

83. J. Markoff, "Scientists see promise in deep-learning programs", New York Times, (2012, Nov.).

84. D. Ciresan, U. Meier, J. Masci, J. Schmidhuber, "Multi-column deep neural network for traffic sign

classification", Neural Netw., vol. 32, pp. 333-338, 2012.

85. Y. LeCun, Y. Bengio, G.E. Hinton, "Deep learning", Nature, vol. 521, pp. 436-444, May 2015.

86. J. Gao, "Machine learning applications for data center optimization", Google White Paper, 2014,

[online] Available:

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42542.pd

f.

87. L.K. John, "Machine learning for performance and power modeling/prediction", Proc. IEEE Int.

Symp. Perform. Anal. Syst. Softw., pp. 1-2, 2017.

88. X. Zheng, P. Ravikumar, L. K. John, A. Gerstlauer, "Learning-based analytical cross-platform

performance prediction", Proc. IEEE Int. Conf. Embedded Comput. Syst.: Archit. Model. Simul.,

pp. 52-59, 2015.

89. D. Lee, T. Kim, K. Han, Y. Hoskote, L. K. John, A. Gerstlauer, "Learning-based power modeling of

system-level black-box IPs", Proc. IEEE/ACM Int. Conf. Comput.-Aided Des., pp. 847-853, 2015.

90. M. S. Hossain, S. Rahaman, A.-L. Kor, K. Andersson, C. Pattinson, "A belief rule based expert system

for datacenter PUE prediction under uncertainty", IEEE Trans. Sustainable Comput., vol. 2, no. 2,

pp. 140-153, Apr.-Jun. 2017.

91. S. Van Winkle, A. K. Kodi, R. C. Bunescu, A. Louri, "Extending the power-efficiency and performance

of photonic interconnects for heterogeneous multicores with machine learning", Proc. IEEE Int.

Symp. High Perform. Comput. Archit., pp. 480-491, 2018.

92. T. Mantoro, A. Olowolayemo, S.O. Olatunji, "Mobile user location determination using extreme

learning machine", Proc. 3rd Int. Conf. Inf. Commun. Technol. Moslem World, pp. D25-D30,

2011.

93. T. Anagnostopoulos, C. Anagnostopoulos, S. Hadjiefthymiades, M. Kyriakakos, A. Kalousis,

"Predicting the location of mobile users: A machine learning approach", Proc. Int. Conf.

Pervasive Serv., pp. 65-72, 2009.

94. B. Li, L. Duan, L. Peng, "Efficient microarchitectural vulnerabilities prediction using boosted

regression trees and patient rule inductions", IEEE Trans. Comput., vol. 59, no. 5, pp. 593-607,

May 2010.

95. H.-K. Peng, R. Marculescu, "Multi-scale compositionality: identifying the compositional structures

of social dynamics using deep learning", PLOS, Apr. 2014, [online] Available:

http://dx.doi.org/10.1371/journal.pone.0118309.

96. Jan Maciejowski, Predictive Control with Constraints, Englewood Cliffs, NJ, USA:Prentice Hall, 2000.

97. F. Zanini, D. Atienza, L. Benini, G. De Micheli, "Multicore thermal management with model

predictive control", Proc. Eur. Conf. Circuit Theory Des., pp. 711-714, 2009.

98. X. Wang, K. Ma, Y. Wang, "Adaptive power control with online model estimation for chip

multiprocessors", IEEE Trans. Parallel Distrib. Syst., vol. 22, no. 10, pp. 1681-1696, Oct. 2011.

99. A. Bartolini, M. Cacciari, A. Tilli, L. Benini, "Thermal and energy management of high-performance

multicores: Distributed and self-calibrating model-predictive controller", IEEE Trans. Parallel

Distrib. Syst., vol. 24, no. 1, pp. 170-183, Jan. 2013.

100. P. Mercati, A. Bartolini, F. Paterna, T. S. Rosing, L. Benini, "Workload and user experience-aware

dynamic reliability management in multicore processors", Proc. 50th Annu. Des. Autom. Conf.,

2013.

101. X. Zhao, T. Peng, X. Qin, Q. Hu, L. Ding, Z. Fang, "Feedback control scheduling in energy-efficient

and thermal-aware data centers", IEEE Trans. Syst. Man Cybern.: Syst., vol. 46, no. 1, pp. 48-60,

Jan. 2016.

102. R. Hesse, N. D. E. Jerger, "Improving DVFS in NoCs with coherence prediction", Proc. 9th Int. Symp.

Netw.-on-Chip, 2015.

103. E. K. Lee, H. Viswanathan, D. Pompili, "Proactive thermal-aware resource management in

virtualized HPC cloud datacenters", IEEE Trans. Cloud Comput., vol. 5, no. 2, pp. 34-248, Apr.-

Jun. 2017.

104. S. Sharifi, D. Krishnaswamy, T. S. Rosing, "PROMETHEUS: A proactive method for thermal

management of heterogeneous MPSoCs", IEEE Trans. CAD Integr. Circuits Syst., vol. 32, no. 7,

pp. 1110-1123, Jun. 2013.

105. B. Pang, L. Lee, "Opinion mining and sentiment analysis", NOW Found. Trends Inf. Retrieval, vol. 2,

no. 1/2, pp. 1-135, 2008.

106. A. Mallik, B. Lin, G. Memik, P. A. Dinda, R. P. Dick, "User-driven frequency scaling", Comput. Archit.

Lett., vol. 5, no. 2, pp. 16-16, 2006.

107. B. Lin, A. Mallik, P. A. Dinda, G. Memik, R. P. Dick, "User- and process-driven dynamic voltage and

frequency scaling", Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw., pp. 11-22, 2009.

108. C.-L. Chou, R. Marculescu, "Run-time task allocation considering user behavior in embedded

multiprocessor networks-on-chip", IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 29,

no. 1, pp. 78-91, 2010.

109. S. Pasricha, B. K. Donohoo, C. Ohlsen, "A middleware framework for application-aware and user-

specific energy optimization in smart mobile devices", Pervasive Mobile Comput., vol. 20, pp.

47-63, Jul. 2015.

110. A. Shye, Y. Pan, B. Scholbrock, J. S. Miller, G. Memik, P. Dinda, R. Dick, "Power to the people:

Leveraging human physiological traits to control microprocessor frequency", ACM/IEEE Int.

Symp. Microarchitecture, pp. 188-199, 2008.

111. K. Yan, X. Zhang, X. Fu, "Characterizing modeling and improving the QoE of mobile devices with

low battery level", Proc. ACM/IEEE Int. Symp. Microarchitecture, pp. 713-724, 2015.

	A Survey of Prediction and Classification Techniques in Multicore Processor Systems
	tmp.1587479824.pdf.TipCU

