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1 INTRODUCTION

Mobile devices such as smartphones, tablets, and wearables are provided with several sensors
that are able to acquire a vast amount of personal information in different forms and for dif-
ferent purposes. This aspect, in combination with the significant advancements of the compu-
tational and communication capabilities of mobile devices over the last years, has shown the
high potential of mobile devices in many application fields [69, 114, 165]. The large availabil-
ity of personal data generated on mobile devices, in combination with their ubiquity (with
3.9 billion smartphones globally in 2016, estimated to rise to 6.8 billion by 2022 [81]) and their
always-on nature, has turned this technology into a potential source of major invasion of personal
privacy.

The European Union has provided the General Data Protection Regulation (GDPR), defin-
ing personal data as any information related to an identified or identifiable natural person [2].
Moreover, the GDPR also defines sensitive data as a subset of personal information that includes
(1) personal data revealing racial or ethnic origin, political opinions, and religious or philosophical
beliefs; (2) trade-union membership; (3) genetic data, biometric data processed solely to identify a
human being; (4) health-related data; and (5) data concerning a person’s sex life or sexual orien-
tation [2]. Automated processing of user data, also known as user profiling [2], can easily reveal
such attributes from data acquired through mobile user interaction by requesting irrelevant per-
missions, lax definition of permissions, or misuse of permissions, combined with the aggregation
of highly personalized data, reducing the privacy and security experience of the final users [26, 36].
Consequently, many works in the literature have focused on preventing potential misuse. This is
the motivation of recent EU-funded Innovative Training Networks (ITNs) such as PriMa [5]
and TReSPAsS [6].

In this context, we distinguish between privacy protection and sensitive data protection. They
both aim to de-identify the user data and avoid re-identification [76] of direct identifiers, such as
names, social security numbers, addresses, and so forth [3], and indirect identifiers. The latter are
not capable of identifying a particular individual but can be used in conjunction with other in-
formation to identify data subjects [58]. However, privacy protection refers to the security of the
personal data and it borrows terminology, definitions, and methods from cybersecurity, whereas
sensitive data protection focuses on data modification techniques that account for the sensitive
data while maximizing the residual data utility for analysis. The idea of selective sensitive data
protection was conceived with the development of the first large databases [23]. Early works in
this field led to the concept of data sanitization [34], as a database transformation before its release
to a third party, and to the concept of Privacy Preserving Data Mining (PPDM) [24], as the de-
velopment of models about aggregated data without access to precise information in individual
data records. Furthermore, the term de-identification was coined to define the operation of Per-

sonal Identifiable Information (PPI)1 removal from data collected, used, archived, and shared
by organizations [76].

Privacy is a multifaceted concept that has received a plethora of formulations and definitions [35,
43, 133, 174]. A profound discussion of the concept of privacy is, however, not in the scope of the
present work. We will adopt the perspective of Article 21 of the GDPR, which states that the subject
shall have the right to object, on grounds relating to his or her particular situation, at any time to
processing of personal data concerning him or her. From this perspective, the main contributions
of the present article are:

1PII is defined as information sufficient to distinguish or trace an individual’s identity. This information may be used on
its own or in conjunction with other information relating to an individual [103].
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• An overview of the sensors and the raw data commonly available in modern mobile devices,
paying special attention to the background sensors as they may be considered innocuous by
the end users
• A description of the typical application scenarios and purposes of collected data for mobile

scenarios
• An in-depth analysis of the personal and sensitive data extracted from mobile background

sensors and the corresponding automated methods, focusing on demographics, activity and
behavior, health parameters and body features, mood and emotion, location tracking, and
keystroke logging
• A summary of the metrics proposed in the literature for privacy quantification from the

perspective of sensitive data, including also a review of the methods to achieve sensitive
data protection

For completeness, we would like to highlight other recent surveys in the field focusing on other
privacy aspects. In [80], the authors focused on privacy protection in the context of authentication.
In [78], a broad survey was presented about privacy leakage in mobile computing with special
interest in mobile applications, advertising libraries, and connectivity. A comprehensive overview
is provided, but without a specific focus on the sensitive data. Finally, an analysis of privacy in
the context of soft biometrics2 is considered in [59], focusing on the extraction of demographic
information such as gender from image and video data, not from mobile background sensors
as in the present survey. Similarly, privacy was studied in the context of audio data in [73]. In
contrast to previous work, we pay special attention to sensitive data and provide, to the best of
our knowledge, the first survey that focuses directly on sensitive data and their privacy protection
metrics and methods.

The rest of this survey is organized as follows. We first provide in Section 2 an overview of
the sensors and the raw data commonly available in modern mobile devices. In Section 3 the typi-
cal application scenarios and purposes of collected data are described. Sensitive user information
extraction is addressed in Section 4. In addition, the methods used to achieve the goal of extract-
ing information are systematically discussed. Section 5 focuses on metrics, whereas Section 6 fo-
cuses on methods for privacy protection techniques from the perspective of the sensitive data. In
Section 7, the general conclusions of the present study are drawn and some open research ques-
tions that have emerged through the present survey are outlined for further investigation.

2 MOBILE ACQUISITION OF SENSITIVE DATA

Mobile devices offer a rich ground for data collection and processing. Smartphones, to begin with,
are in fact distinguished from previous-generation cellular phones by their stronger hardware ca-
pabilities (e.g., equipped with multi-core processors, GPUs, hardware acceleration units, and giga-
bytes of memory) and powerful mobile operating systems, which facilitate wider sensing, software,
internet, and multimedia functionalities, alongside core phone functions.

Mobile device built-in sensors, known as background sensors, are capable of providing frequent
measures of physical quantities in an unobtrusive and transparent way. However, these data can
be easily utilized to extract sensitive information of the user such as gender, age, emotion, ethnic
group, and so forth.

This is also the case of other popular wearable devices such as smartwatches. Wearables might
be considered under the broad definition of Internet of Things (IoT) devices since they are

2Soft biometrics is defined as the characteristics that provide some information about the individual but lack the distinc-
tiveness and permanence to sufficiently differentiate any two individuals [89].
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connected to the internet to collect and exchange data to perform automated decision making [61].
Their popularity among consumer electronics is rapidly increasing and they are progressively
becoming capable of more specialized measurements and analyses [91]. In general, wearable
manufacturers often provide users with mobile applications to install on their smartphones for
communication and computing purposes, together with a more complete user interface. For exam-
ple, smartwatches or fitness tracker bracelets can provide measurements of walked or run distances
(based on data from motion sensors and Global Positioning System (GPS)) but also physiolog-
ical parameters such as heart rate, Electrocardiogram (ECG), stress, sleep quality, and so on.

Table 1 provides a description of the sensors and the raw data commonly available in modern
mobile devices, grouped according to their sensing domain. In general, sensors can be classified
into two categories based on the process adopted to produce the output signal: (1) hardware sen-
sors, on one hand, are physically installed components that perform a transduction of the physical
quantity they measure to an electrical signal, which is converted into the digital domain for fur-
ther processing, and (2) software sensors, on the other hand, rely on data already made available
by hardware sensors and/or calculate them to produce a measurement.

Motion sensors are responsible for measuring the acceleration and rotational forces in the three
axes of the device. Hardware-based motion sensors will register continuous quantities as in the
case of acceleration or angular velocity, whereas, when software based, their output could be either
continuous or event driven, as in the case of a step detector. Position sensors range from measur-
ing changes in the earth’s magnetic field for orientation in space to proximity sensors, whereas
environmental sensors are generally triggered by an event and return a single scalar value mea-
surement. When designed to return continuous measurements, the sampling rate of these sensors
can reach up to around 200Hz. Nevertheless, their power consumption is low [17].

Specific physiological/biological parameter measurements are also available on many mobile
devices thanks to dedicated health sensors. For example, most smartphones and smartwatches
include built-in optical sensors to capture changes in blood volume in the arteries under the skin,
from which heart-related as well as polysomnographic parameters can be obtained [54, 161].

Touchscreen data can be in the form of keystrokes acquired from the keyboard [122] or in
the form of touch data acquired throughout the user interaction [166]. In the former case, the
virtual keys pressed are logged together with pressure and timestamps for each key press and
release. From these raw data, it is possible to extract more complex features, such as the hold time,
inter-press time, inter-release time, and so forth [18]. In addition to keystroke, touchscreen panels
significantly enlarged the input data space including touch data. In fact, it is possible to track the
touch position in terms of X and Y coordinates in the screen reference system, but also pressure
information and complex multi-touch gestures such as swipe, pinch, tap, and scroll. Other complex
features that can be extracted from touch data are velocity, acceleration, angle, and trajectory [167].

Connectivity is yet another fundamental aspect of mobile devices. Their usefulness and ubiquity
stem from the vast spectrum of functionalities they support thanks to many installed network
protocols. Network connection data retains information about users’ routine patterns; therefore,
it can be used for behavioral profiling and sensitive information extraction [108]. With the fifth-
generation standard for cellular networks (5G) being commercialized and the sixth generation (6G)
in development, significant improvement in terms of bit rates and latency will allow for extensive
machine-to-machine communications, thus increasing the vast spectrum of functionalities already
supported by mobile devices [60].

3 SENSOR APPLICATION SCENARIOS

In 2008, the two most common mobile operative systems, Android and iOS, had less than
500 apps available for download. To date, Android users are able to download over 2.87 million apps,
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Table 1. Description of the Sensors and the Raw Data Commonly Available in Modern Mobile Devices

Sensor Type Sensor/Data Source Measured/Logged Quantity Scope/Purpose Sensor Type

Motion

Accelerometer/
Linear Accelerometer

Acceleration Force Device Translation Hardware

Gyroscope Angular Velocity Device Rotation Hardware

Rotation Vector Angle Device Orientation
Hardware,
Software

Gravity Magnitude of Gravity Device Orientation
Hardware,
Software

Significant Motion Change of User Movement Walking or Riding Vehicle Software
Step Counter Number of Steps Physical Activity Tracking Software
Step Detector Step Physical Activity Tracking Software

Position

Geomagnetic Field Earth’s Magnetic Field Device Orientation Hardware
Proximity Distance Device Distance from Surface Hardware
Magnetometer Earth’s Magnetic Field Device Orientation Hardware
Geomagnetic Rotation
Vector

Earth’s Magnetic Field Device Orientation
Hardware,
Software

Game Rotation Vector Angle Device Rotation
Hardware,
Software

Environmental

Light Illuminance Screen Luminosity Regulation Hardware
Pressure Ambient Pressure Contextual Information Hardware
Temperature Ambient Temperature Contextual Information Hardware
Humidity Ambient Humidity Contextual information Hardware

Health

BPM Number of Beats
Physical Activity
Monitoring

Hardware

ECG Sinus Rhythm Graph
Physical Activity
Monitoring

Hardware

SpO2
Arterial Blood Oxygen
Saturation Percentage Level

Physical Activity
Monitoring

Hardware

Blood Pressure
Systolic and Diastolic
Average Pressure

Physical Activity
Monitoring

Software

Stress
Percentage Based on
Heart Beat Variability

Physical Activity
Monitoring

Software

Sleep/Wake Amount Time
Physical Activity
Monitoring

Hardware,
Software

Sleep Phase Transitions Time
Physical Activity
Monitoring

Hardware,
Software

Caloric Consumption Step Counter
Physical Activity
Monitoring

Software

Touchscreen
Keystroke Keys Presses and Releases Key Input Hardware

Touch Data
Screen Coordinates,
Pressure of Touch

Complex Touch Gestures Hardware

Network, Location
and Application

Wi-Fi
SSID, RSSI, Encryption Protocol,
Frequency, Channel

Connectivity Hardware

Bluetooth
SSID, RSSI, Encryption Protocol,
Frequency, Channel

Connectivity Hardware

Cell Tower ID Connectivity Hardware

GPS
Latitude, Longitude, Altitude,
Bearing, Accuracy

Navigation Hardware

App Usage Name and Time of Used Apps System Log Software

BPM - Beats Per Minute, ECG - Electrocardiogram, SpO2 - Saturation of Peripheral Oxygen, GPS - Global Positioning
System, SSID - Service Set Identifier, RSSI - Receiver Signal Strength Indicator.

followed by the Apple App Store, with almost 1.96 million apps [7]. The possible application scenar-
ios are wide ranging. Here we describe some popular application scenarios using mobile sensors.

3.1 User Authentication

In traditional authentication schemes, the legitimate user is expected to have knowledge of a
secret such as a PIN code, a password, or a pattern to gain access (authentication based on “what
you know”) or an object such as a card reader (authentication based on “what you have”), whereas
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recent authentication schemes largely deployed on mobile devices are based on the “what you are”
paradigm: some traits of the user are acquired and processed in order to verify their identity [131].
With regard to mobile user authentication, a common approach is based on biometrics (both phys-
iological and behavioral) [90], as in the case of entry-point fingerprint or face-based identification.
A severe limitation of these processes consists in the fact that once the device is unlocked, as long
as it remains active, an intruder would have unlimited time at their disposal. To provide prolonged
protection, several studies have investigated and proved the feasibility of continuous authentica-
tion schemes for mobile devices based on behavioral biometrics [170]. In this case, biometric data
would be continuously acquired in a passive way throughout normal device usage to constantly
verify the user’s traits. Different aspects such as modality, scenarios, or environment, among oth-
ers, can lead to alterations in the performance of mobile biometric systems [39]. Often combined,
background sensors [10, 176], touchscreen [150], and network information [108] are among the
most frequent modalities explored to develop behavioral biometric continuous authentication
systems.

3.2 Healthcare and Fitness

Healthcare is a major field of study for mobile applications. The term “mHealth” was coined to indi-
cate a sub-set of eHealth that includes medical and public health practice supported by mobile de-
vices. Mobile apps help improve healthcare delivery processes, and patients could benefit in terms
of monitoring and treatment of diseases and chronic conditions, among many other healthcare
purposes [130]. Examples of mobile apps include those that provide measurements of postures,
report on mental disorders [77], and assess symptoms of conditions such as Parkinson disease,
stress, dementia, and so on [71, 143]. Moreover, mobile health apps can be essential in sustaining a
healthy lifestyle among people by monitoring and recommending behavior corrections. From this
perspective, mobile devices such as smartwatches are largely used for fitness tracking. Physical
exercise monitoring takes place by acquiring and processing background and GPS sensor data in
an explicit and transparent way for the user [30, 31, 98].

3.3 Location-based Services

GPS and geolocation data are used by applications to present information related to the environ-
ment and the position of the users, for purposes such as targeted advertising, navigation, and
recommendations [78]. These location-aware applications are under the context awareness para-
digm [147]. Additionally, besides their native scope of communication, short-range protocols such
as Bluetooth and Wi-Fi allow mobile devices to exploit the information of nearby devices for pur-
poses similar to the ones described. This concept can be particularly useful in defining a semantic
context of immediate surroundings, especially in the case of indoor environments. For example, in
[113], the authors explored the feasibility of creating virtual tours in museums or expositions to
deliver information about the items in the proximity of the users, who can receive this information
on their mobile devices.

3.4 Other Applications

Traditionally, background sensors contribute to improving the mobile device user experience in
several ways. For instance, position sensors are useful for recognizing the orientation of the device
in order to switch from portrait to landscape modality, and vice versa. Light sensor information
about the illuminance is used to automatically adjust the screen brightness. The proximity sensor
will lock the screen and activate a different speaker when the user is placing a call. Mobile device
background sensors are also widely employed for Augmented Reality (AR) applications in
several fields, such as education, entertainment, commerce, and navigation, among others [100].
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AR-based apps heavily rely on the information provided by the background sensors to deliver
information.

In addition, the sophisticated sensing capabilities of mobile devices, combined with their vast
diffusion, have led to the idea of accomplishing large-scale sensing through them, known in the
literature as mobile participatory sensing [42]. Individuals with sensing and computing devices
volunteer to collectively share data to measure and map phenomena of common interest, in a
crowd-sourced fashion [78]. Applications where mobile participatory sensing has been used in-
clude noise pollution monitoring, litter monitoring, and monitoring of traffic and road conditions,
among others [117].

4 PRIVACY-SENSITIVE DATA

The automated processing of user data acquired by mobile device sensors can reveal a significant
amount of personal and sensitive information. In particular, while sensors such as cameras, GPS,
and microphone are privacy sensitive and require explicit user permission, many other sources
such as accelerometer, touchscreen, and network connection logs are less protected in terms of
privacy. However, these data can also become crucial in obtaining private user information, since
they can be processed to ascertain attributes that allow re-identifying a person and extracting
demographic information or data related to their activity and health, among others.

Processing data from which it is possible to extract personal and sensitive information can lead
to problems arising from the nature of these data. A common characteristic of sensitive data is in
fact its uniqueness for each individual and its strict association to their owner. These implications
are particularly relevant with regard to biometric data. In the biometric scenario, additional risk
factors include the modalities used to store personal data, the owner of the system, the used
recognition modality (authentication or identification in a biometric database), and the durability
and class of the used traits, depending on which the severity of the consequences can vary [107].
An outline of the different sensitive aspects of mobile device users that can be extracted from the
different mobile device sensors, with some of the most important work in each field, is shown
in Table 2. In the remainder of this section, examples of the personal and sensitive information
extracted from the mobile device sensor data are presented, grouped in several categories depend-
ing on the nature of the extracted information and arranged by the particular data acquisition
sensor.

4.1 Demographics

Probably the largest share of personal and sensitive information extracted from mobile user inter-
action data consists of attributes such as age, gender, and ethnicity, which can all be ascribed to
the category of demographics.

4.1.1 Motion Sensors. In [67] the user age range was extracted from the accelerometer data
while performing a task based on tapping on a predetermined series of different spots appearing on
the device screen. The authors exploited the k-Nearest Neighbors (k-NN) algorithm, obtaining
an accuracy of 85.3%. Similarly, Nguyen et al. [129] developed a method to distinguish an adult
from a child exploiting the behavioral differences captured by the motion sensors. Based on the
hypothesis that children, with smaller hands, will tend to be shakier, they achieved an accuracy
of 96% using the Random Forest (RF) method. In [12], the gender of the users was determined
from their walking patterns acquired by smartphone motion sensors. The authors achieved an
accuracy of 76.8% by processing with Support Vector Machines (SVMs) and bagging algorithms.
Meena and Saeawadekar [116] presented an approach for gender recognition based on the gait data
extracted from smartphone sensors. The authors achieved an accuracy of 96.3% using the bagged
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Table 2. Comparison of Different State-of-the-art Sensitive Data Acquisition Approaches

Sensitive Data Sensors Study Classifier
Best

Performance

Demographics

Motion

Jain and Kanhangad [2016] [12] SVM Acc. = 76.83%
Davarci et al. [2017] [67] k-NN Acc. = 85.3%
Nguyen et al. [2019] [129] RF Acc. = 96%
Singh et al. [2019] [144] 4 Classifiers Acc. = 80%
Sabir et al. [2019] [145] LSTM + Leave One Out Acc. = 94.11%
Ngo et al. [2019] [160] HMM ERR = 5.39%
Meena and Sarawadekar [2020] [116] Ensemble Boosted Tree Acc. = 96.3%

Touchscreen

Miguel-Hurtado et al. [2016] [119] Decision Tree Acc. = 78%
Acien et al. [2019] [9] AUD Acc. = 97%
Nguyen et al. [2019] [129] RF Acc. = 99%
Jain and Kanhangad [2019] [88] k-NN Acc. = 93.65%

Network, Location, and
Application

Riederer et al. [2015] [141] Logistic Regresion Acc. = 72%
Neal and Woodard [2018] [127] RF + Naïve Bayes Acc. = 91.8%
Wu et al. [2019] [180] XGBoost Acc. = 80%

Activity and Behavior

Motion

Sun et al. [2010] [105] SVM Acc. = 93.2%
Anjum and Ilyas [2013] [29] Decision Tree AUROC = 99%
Thomaz et al. [2015] [164] DBSCAN Acc. = 76.1%
Arnold et al. [2015] [33] RF Acc. = 70%
Chang et al. [2018] [104] k-NN Acc. = 71%

Network, Location, and
Application

Wan and Lin [2016] [177] Fuzzy Classification Acc. = 96%
Chen et al. [2018] [55] CNN Acc. = 97.7%
Ma et al. [2021] [182] 2D CNN + RNN Acc. = 83%

Health Parameters and
Body Features

Motion
Yao et al. [2020] [183] CNN+ LSTM Acc. = 94.8%
Hussain et al. [2021] [84] Naïve Bayes Acc. = 71%

Touchscreen Arroyo-Gallego et al. [2017] [158] SVM AUROC = 88%
Network, Location, and
Application

Palmius et al. [2016] [124] Linear Regression Acc. = 85%

Mood and Emotion

Motion
Quiroz et al. [2018] [138] RF AUROC > 81%
Neal and Canavan [2020] [159] RF F1-Score > 95%

Touchscreen
Gao et al. [2012] [74] SVM Acc. = 69%
Shah et al. [2015] [153] Lienar Regressin Acc. 90.47%

Network, Location, and
Application

Zhang et al. [2018] [188] Factor Graph Acc. = 62.9%

Location Tracking
Motion

Hua et al. [2017] [87]
Naïve Bayes
+ Decision Tree

Acc. = 92%

Nguyen et al. [2019] [93] DTW KL-Score = 0.057%
Network, Location, and
Application

Singh et al. [2018] [156] RF Acc. = 85.7%

Keystroke Logging and
Text Inferring

Motion
Cain and Chen [2011] [45] Gaussian Distribution Acc. = 70%
Aviv et al. [2012] [11] HMM Acc. = 73%
Owusu et al. [2012] [68] Hierarchical Classifier Acc. = 93%

k-NN - k-Nearest Neighbors, RF - Random Forest, SVM - Support Vector Machines, LSTM - Long-Short Term Memory,
HMM - Hidden Markov Model, AUD - Active User Detection, DBSCAN - Density-based Spatial Clustering of
Applications, CNN - Convolutional Neural Network, RNN - Recurrent Neural Network, DTW - Dynamic Time
Warping, Acc - Accuracy, ERR - Equal Error Rate, AUROC - Area Under the Receiver Operating Characteristic,
KL-Score - Kullback-Leibler Score.

tree classifier. The authors in [144] also focused on gender recognition from the data extracted by
the accelerometer and gyroscope, obtaining an accuracy of 80% through Principal Component

Analysis (PCA). Ngo et al. [160] focused on extracting gender and age with Hidden Markov

Models (HMMs). The authors organized a competition based on accelerometer and gyroscope
data acquired by wearable devices, which led to a percentage error rate of 24.23% for gender and
5.39% for age. With the development of deep learning techniques, it has been possible to achieve
enhanced results, as in the case of Sabir et al. [145], who obtained an accuracy of 94.11% analyzing
gait for gender classification by the means of Long Short-Term Memory (LSTM) Recurrent

Neural Networks (RNNs), a class of deep learning models particularly apt to capture temporal
dependencies underlying in the data.
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4.1.2 Touchscreen. In [9], the authors performed an analysis to identify whether the user using
the device was a child or an adult based on swipe and tap gestures. For this purpose, an Active

User Detection (AUD) algorithm has been used, achieving 97% accuracy. In [165], a new database
of children’s mobile interaction was presented. The authors used touch interaction information
to classify children into three groups aged 18 months to 8 years old. The authors used an SVM
algorithm, achieving an accuracy of 90.45%. Nguyen et al. [129] also conducted a study using
RF on tap gestures to distinguish between an adult and a child, achieving an accuracy of 99%.
Touchscreen data has also been used to extract a person’s gender. Miguel-Hurtado et al. [119]
focused their work on the prediction of soft biometrics from swipe gesture data. They achieved a
78% accuracy rate using a decision voting scheme from four classifiers: Decision Tree (DT), Naïve

Bayes (NB), SVM, and Logistic Regression (LR). In [88], behavioral data from a smartphone’s
accelerometer, gyroscope, and orientation sensors were used while the user interacted with the
device. The authors used gestural attributes in which the k-NN classifier recognizes the gender of
the user, providing a classification accuracy of 93.65%.

4.1.3 Network, Location, and Application. Studies have shown a strong correlation between a
user’s geolocation and usage patterns and their demographics. For instance, in [27], the authors
highlight the value of mobile device data as a means of demographic modeling and measurement,
without having to deal with the logistics of traditional censuses and surveys, which limit the speed
for which policies can be designed and evaluated. In [186], based on three indicators of travel be-
havior (radius, eccentricity, and entropy), the authors focus on understanding how usage of mobile
phones correlates with individual travel behavior, exploring indicator correlations between mobile
phone call frequencies and evaluating factors such as age, gender, social temporal orders, and char-
acteristics of the built environment. Similarly, in [151], an unsupervised, data-driven approach is
proposed to identify different user types based on high-resolution human movement data collected
from a smartphone navigation app. In [141], the authors showed how demographic information
can be inferred from geo-tagged photos on social networks. Specifically, they performed an anal-
ysis of how a person’s ethnicity can be extracted from their location patterns based on spatial
segregation in two metropolitan areas. They distinguished between people belonging to three dif-
ferent ethnicity groups with an accuracy of 72% using LR. Also, Wu et al. [180] studied location
data to obtain information on marital status and state of residence. They extracted spatio-temporal
features from human mobility patterns and used them in conjunction with semantic features based
on geographical context, which provided information about the places the subjects were visiting,
such as residences, parks, hospitals, schools, and shopping malls. On this ground, they were able to
achieve an accuracy of 80% based on an XGBoost algorithm. In [127], starting from gender-related
behavioral patterns found in applications, Bluetooth, and Wi-Fi, the authors were able to estimate
the user gender with an accuracy of 91.8% using RF and multinomial NB. From the network con-
nection logs, the total frequency of every event data record is computed. After sorting the events
by frequency of occurrence, an evaluation of temporal patterns is carried out on the 1,000 most
frequent events. Such contextual behavioral information is employed in a variety of user services,
such as in personalizing ads and customizing home screens.

4.2 Activity and Behavior

It has been shown that a broad variety of users’ behavior or activities can be inferred from mobile
device sensor data [52].

4.2.1 Motion Sensors. In [105], the authors were able to detect whether the person was
stationary, walking, running, bicycling, climbing stairs, going downstairs, or driving using only
the accelerometer information. Their proposed approach, based on SVM, was able to achieve an
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accuracy of 93.2%. Using accelerometer and gyroscope data, Anjum and Ilyas [29] developed an
application to track the user activities while the mobile device was kept in their hand, trouser
pocket, breast pocket, or handbag. Using a DT classifier, they achieved an average Area Under

the Receiver Operating Characteristic (AUROC) curve of over 99.0%. In [164], the movements
made by a user while eating were recognized by the accelerometer on a smartwatch. In [149],
the authors, based on smartphone accelerometer data, classified drinking behavior of young
adults using nightlife physical motion. The Density-based Spatial Clustering of Applications

(DBSCAN) algorithm was used, achieving an accuracy of 76.1%. Even the amount of alcohol
taken by users can also be extracted from the accelerometer data. In [33], the authors detected
if a subject is sober, tipsy, or drunk based on the accelerometer data and users’ self-reporting
of consumption. Their system achieved an accuracy of 70% using an RF algorithm. Motion
sensors have also been used to extract information related to sleep such as sleep posture and
habits. In [104], accelerometer, gyroscope, and orientation data from a smartwatch was used to
detect the sleep posture (supine, left lateral, right lateral, prone) achieving an accuracy of over
95% with the Euclidean distance of the input values, and also to detect the hand position while
sleeping (placed on the abdomen, chest, or head), achieving an accuracy over 88% with the k-NN
algorithm.

4.2.2 Network, Location, and Application. From GPS data, the authors in [177] determined
whether the user was standing, walking, or using other transportation with a fuzzy classifier
monitoring the speed and angle of the person obtaining a matching rate of 96% at a 5-second
interval. Also, Wi-Fi transmitters and receivers can reveal a significant amount of information
about users’ activity. In [55], the Wi-Fi Received Signal Strength Indicator (RSSI) was used on
a smartphone to determine what activity users were doing, among lying down, falling, walking,
running, sitting down, and standing up. For that purpose, different features of each activity were
studied, obtaining an accuracy rate of 97.7% with a Convolutional Neural Network (CNN). In
[182], the authors used three neural networks on Channel State Information (CSI) measured
by the Wi-Fi module, being able to discriminate whether a person is sitting, standing, or walking
with an accuracy of 83%.

4.3 Health Parameters and Body Features

4.3.1 Motion Sensors. The Body Mass Index (BMI) is a mathematical ratio that associates
the mass and height of an individual. The usual way to calculate it is by using the parameters
of a person’s height and weight. In turn, human gait is based on the interaction between hun-
dreds of muscles and joints in the body, and motion sensors can pick them up and translate them
into characteristic patterns linked to the traits of the subjects, such as BMI. Yao et al. [183] used
a hybrid model with a CNN-LSTM architecture to estimate the continuous BMI value from the
accelerometer and the gyroscope data with a maximum accuracy of 94.8%. From the BMI, many
health attributes can be inferred [25, 63]. Another parameter that can be measured from the ac-
celerometer is stress. Garcia-Ceja et al. [75] achieved 71% accuracy using similar user models and
the Naïve Bayes algorithm.

4.3.2 Touchscreen. It is possible to identify whether a person has Parkinson disease by analyz-
ing their keystroke writing pattern independently of the written content. In [158], the authors
used an SVM algorithm achieving an AUROC of 0.88 on this problem. In [47], different types of
features extracted from handwriting were studied as biometrics for Parkinson disease, achieving
very promising results. In [37], the authors showed how people with longer thumbs perform swipe
gestures in less time.
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4.3.3 Network, Location, and Application. In [124], the authors aimed at identifying periods of
depression using geolocation patterns acquired from mobile phones of individuals with bipolar

disorder (BD). While the subjects’ depressive symptomatology was monitored through a weekly
questionnaire, the authors used a linear regression algorithm and a quadratic discriminant analy-
sis algorithm, achieving an 85% accuracy. GPS can also determine sleep disorders, showing a good
ability to detect sleep-wake stages and sleep-disordered breathing disorders (SRBD) such as
Obstructive Sleep Apnea (OSA) with an accuracy up to 92.3% using SVM algorithms [15, 85].
StayActive3 is an application that detects stress by analyzing the behavior of the users via
smartphone, using the data from the Wi-Fi, step counter, location, and battery level, among others.
In [132], the authors used a combination of simple relaxation scores based on the information
extracted from the sleeping pattern of the users (largest time interval that the user did not touch
his or her screen), their social interaction, and their physical activity to determine the stress
level.

4.4 Mood and Emotion

The user efficiency or motivation when performing a task changes in accordance to their mood.
Thus, it can be inferred from different sensors.

4.4.1 Motion Sensors. In [159], Neal and Canavan studied how mood can have a significant
impact on the recognition performance of a mobile biometric system. In their study, the authors
observed that the subjects with the least accurate identification (<70%) were those with the fewest
mood changes using an RF classifier. The walk pattern data obtained from a smartwatch accelerom-
eter and gyroscope can be used to determine a person’s mood (happy, sad, or neutral). The authors
in [138] determined the mood with an RF algorithm, achieving a mean AUROC of 81%.

4.4.2 Touchscreen. Numerous studies have shown how, from the way a user interacts with the
screen of his or her mobile device, it is possible to extract his or her mood. In [46], the authors
investigated the manifestations of psychiatric diseases unobtrusively and in the setting of patients’
daily lives, exploring the possible connections between bipolar affective disorder and mobile phone
usage. Based on keystroke metadata and accelerometer data, they reported a 90.31% prediction
accuracy on the depression score. In [83], in order to provide people with preventive treatments
before subjects reach clinical depression, the authors exploited a mobile app to capture emotional
states by means of call logs and usage of apps, with a predictive accuracy for negative emotions
of around 86%. Gao et al. [74] demonstrated how finger-stroke features during gameplay could
automatically discriminate between four emotional states (excited, relaxed, frustrated, bored). By
means of an SVM algorithm, they obtained an accuracy of 69%. In [153], finger strokes were studied.
These strokes were assumed to be indirect indications to the user’s emotional state. The authors
predicted the emotional state of a person into one of the three states: positive, negative, or neutral.
They achieved an accuracy of 90.47% using a linear regression.

4.4.3 Network, Location, and Application. MoodExplorer4 is an app that collects data from mo-
bile sensors such as GPS, accelerometer, and Wi-Fi, among others. From them, the authors in [188]
demonstrated how self-reported emotional states have high correlation with smartphone usage
patterns and sensing data. The authors recognized the composite emotions (happiness, sadness,
anger, surprise, fear, disgust) of users through a proposed model called Graph Factor with a per-
formance metric called exact match of 62.9% on average.

3StayActive App: http://www.aal-europe.eu/projects/stayactive/.
4MoodExplorer App: https://play.google.com/store/apps/details?id=com.examsuniverse.moodexplorer.
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4.5 Location Tracking

Mobile devices usually come with built-in GPS modules for the purpose of location tracking. How-
ever, even when GPS coordinates are not available explicitly, position can be inferred by other
sensors.

4.5.1 Motion Sensors. Several studies have shown how the position of a person can be inferred
from the accelerometer, gyroscope, and magnetometer while he or she is walking, driving, or using
public transport. In [93], the authors compared the pre-established routes with those taken by users
while using different transport modes such as walking, train, bus, or taxi. They compared both
routes with a Dynamic Time Warping (DTW) algorithm obtaining a Kullback-Leibler distance
of 0.00057 in the case of a taxi journey. In [87], it was demonstrated how, when a person uses the
subway, it is possible to track them from the accelerometer data. They achieved an accuracy of 92%
when the passenger traveled through six stations using boosted NB and DT algorithms. In [86], the
authors were able to determine the location of an individual driving in a vehicle based solely on
motion sensor measurements. The approach adopted was based on deriving first an approximate
motion trajectory given acceleration measurements, then on correlating such trajectory with map
information to infer the location. In this way, they were able to locate a device owner to within a
200-meter radius of the true location.

4.5.2 Network, Location, and Application. From the different Wi-Fi networks to which a user
connects, it is also possible to determine the position of an individual. In [156], the location was
determined in real time in indoor places. The authors achieved an accuracy of 85.7% using an RF
algorithm.

4.6 Keystroke Logging and Text Inferring

4.6.1 Motion Sensors. Touchlogger [45] was an application created to determine the region of
the phone touchscreen touched by the user, based on the device micro-movements captured by
the accelerometer and the gyroscope. The screen was divided into 10 regions, and with the help of
a probability density function for a Gaussian distribution, an accuracy of 70% was obtained. Based
on this result, it could be possible to identify the text that the user is writing. In this task, Owusu
et al. [68] obtained an accuracy of 93% using a hierarchical classification scheme. Similarly, in [11],
with a controlled environment, the authors were able to identify the PIN entered 43% of the times
and the pattern 73% of the time by means of LR and HMM.

5 PRIVACY METRICS FOR SENSITIVE DATA

All privacy protection methods work by modifying the original data in order to deprive it of user-
sensitive information. For instance, the modified data should only reveal allowed attributes (e.g.,
gender) in order to maintain some data utility, in terms of available information, while other at-
tributes (e.g., ethnicity) are suppressed. The degree of privacy achieved is typically related to the
extent of data modification; however, the utility of the resulting dataset can be significantly im-
pacted [76].

In order to evaluate the effectiveness of privacy protection approaches, the degree of privacy
protection achieved, as well as the residual data utility after data modification, should be quan-
tified. The former task can be achieved through specific privacy metrics, whereas the latter can
be expressed in terms of reduction of traditional performance metrics such as accuracy or Equal

Error Rate (EER).
User-sensitive data acquired through mobile interaction is very heterogeneous and can be

structured, as in the case of high-level health data, network, location, and application data, or
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Table 3. Some of the Most Common Privacy Metrics Grouped by the Property Measured

Property Metric Input Data

Anonymity

k-Anonymity [106] PAR
m-Invariance [181] PAR
(α , k)-Anonymity [179] PAR
�-Diversity [13] PAR
t-Closeness [123] PAR, TO
Stochastic t-closeness [64] PAR, TO
(c, t)-Isolation [51] ADE, PAR, TO
(k, e)-Anonymity [187] PAR

Differential Privacy

(d-χ )-Privacy [49] PAR, TO
Joint Differential Privacy [97] PAR, TO
Geo-indistinguishability [28] PAR, TO
Computational Differential Privacy [120] ADE, ADR, PAR, TO
Information Privacy [65] ADE, PAR

Entropy

Entropy [154] ADE
Cross-Entropy [118] ADE, TO
Cumulative Entropy [92] ADE
Inherent Privacy [22] ADE, TO
Mutual Information [110] ADE, TO
Conditional Privacy Loss [22] ADE, TO

Success Probability

Privacy Breach [70] ADE, TO
(d-γ )-Privacy [139] ADE, TO
(δ )-Presence [128] ADE, TO
Hiding Failure [8] ADE, TO

Error Euclidean Distance [155] ADE, TO

Accuracy

Confidence Interval Width [24] ADE, PAR
(t-δ )-Privacy Violation [95] ADE, PAR, PK, TO
Size of Uncertainty Region [56] ADE
Customisable Accuracy [32] PAR

Time
Maximum Tracking Time [148] ADE
Mean Time to Confusion [82] ADE, PAR

ADE - Adversary’s Estimate: generally a posterior probability distribution. ADR - Adversary’s
Resources: computational power, time, etc. PAR - Parameters: for configuring privacy metrics. PK - Prior
Knowledge: generally a prior probability distribution. TO - True Outcome: also known as ground truth,
it can be used to evaluate the ADE.

unstructured, i.e., motion, position, environmental, touchscreen, and low-level health data. Con-
sequently, different metrics are required depending on the specific application scenario. In this
context, we will consider data after having undergone modifications in order to suppress or alter
specific sensitive attributes, while retaining utility for analysis and extraction of non-sensitive
information.

In our discussion, privacy metrics will be classified based on their output; in other words, they
depend on the characteristics of the data that are measured with a specific metric. There is no
specific metric that can be applied to every characteristic, so many studies use their own metrics.
Table 3 shows the metrics considered in our discussion and input data needed for the specific
metric computation, grouped by the property measured. According to this criterion, some of the
most relevant privacy metrics in the context of data acquired through mobile interaction can be
grouped as follows [175]:

Anonymity-based Metrics. These metrics stem from the idea of k-Anonymity [106], defined
as the property of a dataset ensuring that in case of release, based on an individual’s disclosed
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information, it is not possible to distinguish that individual from at least k − 1 individuals whose
information has also been disclosed. This is achieved by grouping subject data into equivalence
classes with at least k individuals, indistinguishable with respect to their sensitive attributes.
k-Anonymity is independent of the information extraction technique and it quantifies the degree
of privacy exclusively considering the disclosed data. It is useful to express the degree of similarity
between datasets, namely the original one and the sanitized one, or it can be applied to samples
within a single dataset. However, several studies have reported some limitations of k-anonymity,
which have led to the development of new metrics based on the original, aiming to overcome
some of its issues by imposing additional requirements. For instance, m-invariance [181] modifies
k-anonymity to allow for multiple, different releases of the same dataset. (α , k)-Anonymity [179]
imposes a predetermined maximum occurrence frequency for sensitive attributes within a class to
protect against attribute disclosure. �-Diversity [13] was developed to prevent linkage attacks by
specifying the minimum diversity within an equivalence class of sensitive information, namely at
least � well-represented different sensitive values. For a skewed distribution of sensitive attributes,
t-closeness [123] and stochastic t-closeness [64] were introduced, starting from the idea that the
distribution of sensitive values in any equivalence class must be close to their distribution in the en-
tire dataset. Consequently, knowledge of the original distribution is needed to compute this metric.
Similarly, starting from the original data distribution, (c, t)-isolation [51] indicates the number of
data samples present in the proximity of a sample predicted from the transformed data. Depending
on the semantic distance between sensitive user records, such as in the case of numerical values, (k,

e)-anonymity [187] requires the range of sensitive attributes in any equivalence class to be greater
than a predetermined safe value. Despite the highlighted shortcomings, k-anonymity and the
derived metrics are still largely employed today in a broad variety of different privacy contexts, but
mainly for low-dimensional structured data [21]. It has in fact been shown that k-anonymity-based
properties do not guarantee a high degree of protection in case of high-dimensional data.

Differential Privacy-based metrics. Differential privacy is a definition that has become popular
thanks to its strong privacy statement according to which the data subject will not be affected,
adversely or otherwise, by allowing their data to be used in any study or analysis, no matter what
other studies, datasets, or information sources are available [43]. As discussed in Section 6, dif-
ferential privacy is generally achieved by adding noise to the original data. Therefore, in order to
quantify differential privacy as a property of the data indicating the degree of privacy, it is a re-
quirement to have knowledge of the original data. Differential privacy was defined in the context
of databases to achieve indistinguishability between query outcomes, but thanks to its generality it
has found application in different contexts for low-dimensional data, including biometrics and ma-
chine learning systems. It is in fact based on the requirement that independently of the presence of
a particular data subject, the probability of the occurrence of any particular sequence of responses
to queries is provided by a parameter, ϵ , which can be chosen after balancing the privacy-accuracy
tradeoff inherent to the system. For a given computational task and a given value of ϵ , there can be
several differentially private algorithms, which might have different accuracy performances. As in
the case of k-anonymity, many metrics were originated from the initial definition of differential
privacy, including approximate differential privacy, which has less strict privacy guarantees but
is able to retain a higher utility [66]. d-χ -Privacy [49] allows different measures for the distance
between datasets than the Hamming distance used in the definition of differential privacy. Joint
differential privacy [97] applies to systems where a data subject can be granted access to their
own private data but not to others’. In the context of location privacy, geo-indistinguishability
[28] is achieved by adding differential privacy-compliant noise to a geographical location within
a determined distance. In contrast to previously described metrics based on differential privacy,

ACM Computing Surveys, Vol. 54, No. 11s, Article 224. Publication date: September 2022.



A Survey of Privacy Vulnerabilities of Mobile Device Sensors 224:15

computational differential privacy [120] adopts a weaker adversary model, favoring accuracy. In
order to adopt computational differential privacy, it is necessary to have knowledge of the poste-
rior data distribution reconstructed from the transformed data. Similarly, information privacy [65]
is met if the probability distribution of inferring sensitive data does not change due to any query
output.

Entropy-based Metrics. In the field of information theory, entropy describes the degree of uncer-
tainty associated to the outcome of a random variable [154]. Metrics based on entropy are gener-
ally computed from the estimated distribution of real data obtained from the sanitized data, even
though additional information can be needed for a particular metric, such as the original data or
some of the data transformation parameters. When attempting to estimate sensitive information
from protected user data, high uncertainty generally correlates with high privacy. Nonetheless, a
correct guess based on uncertain information can still occur. In [118], the degree of privacy protec-
tion is quantified by cross-entropy (also referred to as likelihood) of the estimated and the true data
distribution in the case of clustered data derived from the original data. A cumulative formulation
of entropy was defined in [92] in the context of location privacy to measure how much entropy
can be gathered on a route through a series of independent zones. Inherent privacy [22] repre-
sents another example of metric derived from the definition of entropy, considering the number
of possible different outcomes given a number of binary guesses. Mutual information and condi-
tional privacy loss [22, 110] are also metrics based on entropy. The former provides a measure of
the quantity of information common to two random variables and it can be computed as the dif-
ference between entropy and conditional entropy, also known as equivocation, which is useful to
compute the amount of information needed to describe a random variable, assuming knowledge
of another variable belonging to the same dataset. The latter property is built on similar premises,
but it considers the ratio between true data distribution and the amount of information provided
by another variable revealed.

Success Probability-based Metrics. Metrics in this category do not take into account properties
of the data but only the outcome of sensitive information extraction attempts, as low success
probabilities indicate high privacy. However, even if this trend is observable considering the entire
dataset, single users’ private data could still be compromised. In [70], based on the original and
estimated data, a privacy breach is defined as the event of the reconstructed probability of an
attribute, given its true probability, being higher than a fixed threshold, whereas in [139], this idea
was extended by (d, γ )-privacy, in which additional bounds are introduced for the ratio between
the true and reconstructed probabilities. In contrast, δ -presence [128] evaluates the probability of
inferring that an individual is part of some published data, assuming that an external database
containing all individuals in the published data is available. Hiding Failure (HF) [8] is a data
similarity metric used to detect sensitive patterns. This metric is computed as the ratio between
the sensitive patterns found in the sanitized dataset and those found in the original dataset. If HF
is equal to zero, it means all the patterns are well hidden.

Error-based Metrics. These metrics measure the effectiveness of the sensitive information extrac-
tion process, for example, using the distance between the original data and the estimate. A lack
of privacy generally takes place in case of small estimate errors. In location privacy, the expected
estimation error measures the inference correctness by computing the expected distance between
the true location and the estimated location using a distance metric, such as the Euclidean distance
[155]. Furthermore, with particular regard to high-dimensional, unstructured data such as the ones
acquired by mobile background sensors or images, a simple but common approach to quantify pri-
vacy consists in comparing the traditional performance metrics of sensitive attribute extraction
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methods (i.e. accuracy) before and after the data modification process. A significant performance
drop is a valid indicator of the effectiveness of a data modification technique.

Accuracy-based Metrics. These metrics quantify the accuracy of the inference mechanism, as
inaccurate estimates typically show higher privacy. The confidence interval width indicates the
amount of privacy given the estimated interval in which the true outcome lies [24]. It is expressed
in percentage terms for a certain confidence level. (t, δ ) privacy violation [95] provides information
whether the release of a classifier for public data is a privacy threat, depending on how many train-
ing samples are available to the adversary algorithm. Training samples link public data to sensitive
data for some individuals, and privacy is violated when it is possible to infer sensitive information
from public data for individuals who are not in the training samples. In location privacy, the size
of the uncertainty region denotes the minimal size of the region to which it is possible to narrow
down the position of a target user, while the coverage of sensitive region evaluates how a user’s
sensitive regions overlap with the uncertainty region [56]. A different approach was proposed in
[32]. In this work, data subjects are given the possibility to customize the accuracy of the region
they are in when submitting it to an internet service. The accuracy of the obfuscated region can
therefore be seen as an indicator of privacy.

Time-based Metrics. Time-based metrics measure the time that elapses before sensitive informa-
tion can be extracted. For instance, in location tracking, to evaluate a given privacy protection
method, it can be useful to measure for how long it is possible to breach privacy by successfully
tracking the user, by computing the maximum tracking time [148] or the mean time to confusion
[82].

6 PRIVACY PROTECTION METHODS FOR SENSITIVE DATA

Given the amount of personal and sensitive information that can be extracted from mobile device
sensors, it is necessary to apply a series of techniques to protect the data, as specified in the GDPR.
The data should be used for its primary purpose, consented to by the user, and it should not be
possible to obtain additional information from the re-purposed data. Privacy protection methods
aim to decrease the effectiveness of information extraction tools by transforming data with regard
to specific sensitive attributes, while preserving the utility of the data for the original application
scenario. In the remainder of this section, the discussed methods are grouped according to the type
of input data they work on: (1) traditional data modification techniques work well with structured
data, as most of them were developed for the purpose of disclosing sanitized datasets and their
application fulfills the requirements of some of the properties discussed above, thus guaranteeing
a certain degree of privacy, and (2) machine-learning-based data modification techniques, which are
more apt in the case of complex unstructured data, as the relationship between privacy gains and
information loss changes completely for high-dimensional, highly correlated unstructured data
like images, audio signals, and time sequence signals provided by background sensors in mobile
devices [125, 178]. An overview of the different privacy protection methods can be found in
Table 4.

6.1 Traditional Data Modification Methods

Traditional data modification techniques have proven to work well with structured data. According
to [173], these methods can be divided into the following groups:

6.1.1 Data Perturbation. It is accomplished by the alteration of an attribute value by a new
value. Among traditional data perturbation approaches, randomization techniques are based on the
use of noise to mask the values of the data [20]. By incorporating sufficiently large noise, individual
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Table 4. Comparison of Different State-of-the-art Privacy Protection Methods for Sensitive Data

Traditional Methods

Method/Classifier Field Sensitive Data Protected Study Best Performance Database

Data Perturbation
Fingerprint
Faces Images

Demographics
Sadhya and Singh
[2016] [146]

0.45% probability of success
@ FAR = 10%

VC2002-DB1 Database
AR Face Database

Location Data Location Tracking
Yang et al.
[2018] [184]

TASR ≈ 80%
SimpleGeo
Places Database
Yelp Database

Data Blocking Weather Parameters Health Parameters
Parmar et al.
[2011] [134]

HF = 0/3 attribute disclosure
UCI Repository:
Weather Dataset

Data Aggregation
or Merging

Physiologic Signals Health Parameters
Ren et al.
[2013] [140]

-
MIT-BIH
Polysomnographic
Database

Data Swapping Personal Attributes Health Parameters
Hasan et al.
[2016] [79]

l-Diversity = 0 attribute disclosure
UCI Repository:
Synthetic Dataset
Adult Dataset

Data Sampling Personal Attributes Health Parameters
Liu et al.
[2019] [111]

l-Diversity ≈ 0.15 error
UCI Repository:
Adult Dataset

Machine-learning-based Methods

Method/Classifier Field Sensitive Data Protected Study Best Performance Database

Data Level Methods

Differential Privacy-based
AE

Activity Signals,
Biomarkers,
Biometric Measures

Health Parameters
Phan et al.
[2016] [136]

Acc. Privacy ≈ 85% Own Database

SGD sanitation Language Modeling Text Inferring
McMahan et al.
[2018] [115]

−0.13% in accuracy with
(4.6e10−9)-differential privacy

Reddit Dataset

Siamese CNN
Face Images Identity Osia et al.

[2019] [142]

EER before ≈ 1%
EER after ≈ 28%

IMDB-Wiki +
LFW Datasets

Activity Signals Demographics
EER before ≈ 22%
EER after ≈ 36%

MotionSense Dataset

Siamese CNN Activity Signals Demographics
Garofalo et al.
[2019] [72]

F1-score SA before = 72.58%
F1-score SA after = 52.99%

OU-ISIR Database

GAN Activity Signals Demographics
Ngueveu et al.
[2020] [44]

Acc. SA before = 98.5%
Acc. SA after = 61.0%
Acc. SA before = 98.5%
Acc. SA after = 57.0%

MotionSense Dataset
MobiAct Dataset

SAN
Face Images Demographics

Mirjalili et al.
[2018] [171]

Error Rate SA before = 19.7%
Error Rate SA after = 39.3 %
Error Rate SA before = 8.0%
Error Rate SA after = 39.2 %
Error Rate SA before = 33.4%
Error Rate SA after = 72.5 %
Error Rate SA before = 16.9%
Error Rate SA after = 53.8%

CelebA Dataset
MORPH Dataset
MUCT Dataset
RaFC Dataset

Face Images Demographics
Mirjalili et al.
[2020] [172]

EER SA before ≈1%
EER SA after = 20%
EER SA after = 20%
EER SA after = 10%
EER SA after = 10%

CelebA Dataset
UTK-face Dataset
MORPH Dataset
MUCT Dataset

AE Activity Signals Demographics
Delgado-Santos et al.
[2021] [62]

AUROC SA before = 99.00%
AUROC SA after = 57.2%

MotionSense + MobiAct Databases

Feature-level Methods

Decision Tree Ensemble Face Images Demographics
Terhorst et al.
[2019] [163]

COCR before = 94.7%
COCR after = 64.7%

FERET Database

AE Face Images Demographics
Bortolato et al.
[2020] [40]

EER SA before = 1.8%
EER SA after = 41.9%
EER SA before = 4.9%
EER SA after = 41.4%
EER SA before = 14.5%
EER SA after = 50.2%

CelebA Dataset

LFW Dataset

Adience Dataset

Sensitivity Detector +
Triplet Loss

Face Images Demographics
Morales et al.
[2020] [14]

Acc. SA before = 95.1%
Acc. SA after = 54.6%

DiveFace Database

AE - Autoencoder, SGD - Stochastic Gradient Descent, CNN - Convolutional Neural Network, GAN - Generative
Adversarial Network, SAN - Semi-Adversarial Network, FAR - False Acceptance Rate, TASR - Task Assignment
Success Rate, HF - Hiding Failure, Acc - Accuracy, SA - Sensitive Attribute, AUROC - Area Under the Receiver
Operating Characteristic, AD - Attribute Disclosure, IVE - Incremental Variable Eliminator, COCR - Correct Overall
Classification Rate, LFW - Labeled Faces in the Wild.

data can in fact no longer be recovered, while the probability distribution of the aggregate data
can be recovered and used safely from a privacy protection standpoint. Noise can be added to the
original values in a number of ways:

• Additive noise, which works by adding a stochastic value to confidential quantitative at-
tributes [41, 121]
• Multiplicative noise, in which protected numerical attributes are multiplied by a stochastic

value [99]
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• Geometric perturbation, in which a mix of additive and multiplicative perturbations are used
through a rotation matrix [94]
• Nonlinear transformation, applying a sigmoid distortion for mapping the data to a different

space but preserving the statistical properties of the data [4, 38]
• Data condensation, in which the data is transformed into a new distribution where the new

data include the correlations among the different dimension [19]
• A combination of the above techniques [48]

Differential privacy has been widely used in several applications. For instance, in [146], differ-
ential privacy was used in a privacy-preserving framework for a recognition system based on soft
biometrics, such as age, gender, height, and weight extracted from fingerprints and face images.
In the context of mobile devices, differential privacy has also been applied for providing rigorous
protection of worker locations in a company-centralized server crowdsensing application [184].

6.1.2 Data Blocking. It consists in hiding a certain set of sensitive attributes by replacing the
original attribute values. An existing attribute value can be replaced with a predetermined value
to indicate the data suppression (it could be “?”, “0”, or “x” in the case of one-character values).
A new sanitized dataset is generated in which the classification rules of the sensitive data can no
longer be extracted [96, 134].

6.1.3 Data Aggregation or Merging. It is the combination of values in a coarser category [109]
or the processing by a compression algorithm to reduce the number of embedded bits used to
store the sensitive data. The compression algorithm is used to reduce sensitive embedded data to
alleviate the effect of data masking on the quality of ordinary data. At the same time, data merging
lowers the processing power consumption [140].

6.1.4 Data Swapping. It refers to interchanging values of individual records decreasing the risk
of attribute disclosure. This technique obtains new data with no valid information, making it im-
possible for the adversary to access the real data. In addition, the data swapping method ensures
that the published data satisfies l-diversity and guarantees that the adversary cannot violate indi-
vidual privacy [79].

6.1.5 Data Sampling. It consists in the releasing data of a sample of the population. This
technique is based on the conditional probability distribution of the data. However, values that
appear with little recurrence in a dataset may give rise to privacy problems. Therefore, it is
important to choose a sample from the set that is representative and has the same shape as the
original dataset, thus achieving good results in terms of (d-γ )-privacy [50, 111].

Such strategies have found a large number of different implementations for structured data and
are often adopted by governmental or statistical agencies. Many are available in libraries under
open-source license, like ARX5 or the R-package sdcMicro [162, 178]. However, a critical aspect of
these modification techniques is often scalability; i.e., there is a significant performance drop as the
number of the dimensions of the dataset increases; in addition, the computational overhead will
increase exponentially with respect to the number of attributes and number of instances. These
limitations of the traditional data modification methods are commonly grouped under the label of
“curse of dimensionality” [102].

5Available at https://arx.deidentifier.org.

ACM Computing Surveys, Vol. 54, No. 11s, Article 224. Publication date: September 2022.

https://arx.deidentifier.org


A Survey of Privacy Vulnerabilities of Mobile Device Sensors 224:19

6.2 Machine-learning-based Data Modification Methods

In addition to the goal of information extraction as discussed in Section 4, considering its potential
in big data processing [137], machine learning approaches have in turn been investigated for the
purpose of perturbing the data in the attempt to overcome the limitations of traditional modifica-
tion techniques. Within these algorithms, a subdivision into two groups can be made of those that
operate at the (1) data level and (2) feature level, depending on the input data. In this section we
present a brief summary of the most competitive techniques of the two groups according to [40].

6.2.1 Data-level Methods. Algorithms that operate at the data level have raw data as input.
Within the algorithm itself, they are processed and the output is a transformed dataset containing
the protected sensitive data.

Among privacy protection solutions adopted to protect sensitive data in the context of machine
learning models, differential-privacy-based mechanisms are popular in the literature. In [136], a
differentially private model implementation based on perturbing the objective functions was pro-
posed for deep Autoencoders (AEs) for human behavior prediction in a health social network.
Such method can be applied to each layer of the network. Similarly, the idea of sanitizing the gra-
dient in Stochastic Gradient Descent (SGD) was introduced in [16] for CNN, and for complex
sequence models for next-word prediction in [115]. Differential privacy has also been implemented
in dedicated Tensorflow6 and PyTorch7 libraries. Generally, however, at a modest privacy budget
differentially private mechanisms come with a cost in software complexity, training efficiency, and
model quality [168].

Using a convolutional architecture, another possibility is offered by the Siamese architecture,
which has two different input vectors while maintaining equal weights in the two halves of the
network to acquire comparable output vectors. Osia et al. [142] used this architecture both in the
field of facial images, to protect the identity of the person, and in the field of activity recognition,
to protect the gender of the user. The authors in [72] also used a Siamese CNN. In this case their
work focused solely on activity recognition while protecting demographic information.

Also, Generative Adversarial Networks (GANs) are among the most popular techniques con-
sidered for this purpose in the literature. GANs are unsupervised methods that exploit two adver-
sarial subnetworks (the generator and the discriminator) and are able to learn well, in a competitive
manner, the statistical structure of high-dimensional signals. A GAN-based approach called DySan
was developed in [44] for data sanitization, in the context of a mobile application for physical ac-
tivity monitoring through the accelerometer and the gyroscope data. Before sending the data to a
server hosted on the cloud, gender inferences are prevented by distorting the data while limiting
the loss of accuracy on physical activity monitoring.

A similar approach for privacy protection is based on Semi-Adversarial Networks (SANs).
SANs are different from typical GANs in the fact that, in addition to the generator subnetwork, they
include two independent discriminator classifiers rather than one. A semi-adversarial configura-
tion was proposed by Mirjalili et al. [171] for the purpose of image data perturbation. Based on the
feedback of two classifiers, where one acts as an adversary of the other, this model was able to pri-
vatize gender while maintaining the same accuracy in face recognition. The authors extended their
work in [172] by including, among other things, the possibility of choosing to obfuscate specific at-
tributes (e.g., age and race) while allowing for other types of attributes to be extracted (e.g., gender).

Delgado-Santos et al. [62] proposed GaitPrivacyON, an autoencoder trained in an unsupervised
way. The authors were able to create new transformed data that achieved significant improvements

6Available at https://github.com/tensorflow/privacy.
7Available at https://github.com/pytorch/opacus.
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in protection in the gait verification task while sensitive information reminded private (e.g., activity
and gender).

6.2.2 Feature-level Methods. There is a second set of methods that, instead of using raw data as
input, apply on the embedding representation of the data. Therefore, a pre-trained model used as a
features extractor is needed. After that, this set of features will be the input of the privacy method.
Finally, a transformed dataset that keeps the sensitive data privatized will be the output. Terhöst
et al. [163] proposed an Incremental Variable Eliminations (IVE) algorithm. The authors, by
training a set of decision trees, obtain a measure of the importance of the variables that predict
the sensitive attributes to be reduced.

An AE was also used by Bortolato et al. [40]. The authors introduced the Privacy-Enhancing

Face-Representation learning Network (PFRNet), a neural-network-based model that works
at the level of face representations (templates) from images, aiming to achieve distinct encodings
for both identity and gender in the feature space. The model showed how training a loss function
for gender suppression (where the distributions of male and female subjects were similar) for the
identity feature space was an effective way to preserve privacy.

Morales et al. [14] aimed to leave out sensitive information in the decision-making process in
an image-based face recognition system without a significant drop in performance by focusing on
the feature space. Developed for the purpose of ensuring fairness and transparency, their systems
inherently improve the privacy of the data. It works as an independent, decoupled module on top
of a pre-trained model and takes as input the embeddings generated by the model. By defining and
minimizing its own triplet-loss function, SensitiveNets generates new representations agnostic of
gender and ethnicity information, which, however, still retain information useful for extraction of
other attributes.

6.3 Other Perspectives

Finally, it is important to highlight that in order to protect users’ privacy while handling their
private data, besides data modification methods, other important perspectives to be considered to
comply with secure data management practices in relation to privacy include:

6.3.1 Template Protection. It is an important field of research in the area of biometrics. Tem-
plates are compact representations of users’ biometric data for the purpose of storage. They
are transformed into protected biometric references for security purposes. Template protection
schemes should provide the following properties [126]:

• Irreversibility: It should be computationally difficult8 to compute the original template from
a subject’s protected biometric reference.
• Revocability: It should be computationally difficult to compute the original biometric tem-

plate from multiple instances of protected biometric reference derived from the same biomet-
ric trait of an individual. Biometric data is permanently associated with the data subject and
it cannot be revoked and reissued if compromised, contrarily to credit cards or passwords.
However, through revocable and irreversible transformations, templates can be cancelable,
thus mitigating the risks associated with biometric template theft [135].
• Unlinkability: It should be computationally difficult to determine whether two or more in-

stances of protected biometric reference were obtained from the same biometric trait of a
user. Unlinkability prevents cross-matching across databases.

8A problem is defined computationally difficult if it cannot be solved using a polynomial-time algorithm.
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6.3.2 Data Outsourcing. Usually mobile applications exploit cloud resources for model training
and inference. Therefore, users’ personal data containing sensitive information may be on the in-
ternet. If stored on the cloud, data subject privacy undergoes greater risks than being stored locally
in the device [157]. Performing the training and inference tasks locally is among alternative solu-
tions investigated. However, the computational resource constraints are much stricter [53, 152].

A different approach could be federated learning, a machine learning strategy according to
which models are trained on datasets distributed across multiple devices, thus preventing data
leakage [101, 112]. However, recent attacks demonstrate that simply maintaining data locality dur-
ing training processes does not provide sufficient privacy guarantees as intermediate results, if
exposed, could still cause some information leakage [185]. Possible solutions to this problem are
given by differential privacy mechanisms and Secure Multiparty Computation (SMC) schemes,
or a combination of the two [169].

Finally, it should be pointed out that the considered techniques should be complemented by
widely deployed encryption protocols that would guarantee data security, such as hash functions
and secret-key and public-key cryptography, among others [57, 80].

7 CONCLUSIONS AND OPEN RESEARCH QUESTIONS

7.1 Conclusions

As demonstrated, seemingly innocuous user data can reveal personal and sensitive information
about the user, which must be protected in compliance with the GDPR. We have provided a state-
of-the-art review of the different kinds of sensitive data that can be extracted by the mobile device
sensor data. A survey of the metrics that allow a comparison of different aspects and quantify the
effectiveness of the privacy protection methods was carried out for the purpose of identifying the
most suitable metric for each specific application. Some of the most popular privacy protection
data modification methods were also discussed, aiming to offer useful guidelines for managing
the tradeoff between protecting the sensitive attributes while disclosing the allowed attributes,
inherent to the privacy problem.

7.2 Open Research Questions

Many paths of development remain to be investigated. The most relevant ones are discussed below.

7.2.1 Protection of the Privacy of User Sensitive Data.

Correlation between Sensitive Attributes. It is important to observe the correlation between the
different sensitive attributes, in order to identify from which sensitive attributes it is possible to
extract others. For example, the user location obtained from the mobile device Wi-Fi data can also
reveal information about the activity a user is involved in.

Data Modification Algorithms for Privacy Protection. As shown in Section 4, inferrable attributes
can assume very diverse sets of values, in terms of size and number of attributes per subject. For
instance, the presence of a disease or the gender of a data subject are unique to each subject and
can assume a binary or limited set of values. A different scenario is given by attributes such as the
age (unique attribute, but wider set of possible values) or the activity the user is involved in or their
location (several possible attributes per subject, but one at a time). Depending on the formulation of
the attribute output categories, at the cost of increased system complexity, it is possible to achieve
a finer granularity in terms of information about the data subject, which typically relates to a
higher extent of privacy invasion. Therefore, from the perspective of sensitive data protection, a
possible step toward the protection of the privacy of sensitive data could be developing a system
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that would modify the data so that the possible sensitive attribute recognizable output categories
would be fewer and coarser.

Ethical Implications. The digitalization of data storage and communications, combined with
the ever-growing capacity of computers to automatically process data, has made it possible to
mine structures and relationships lying in the data to extract information in unprecedented ways.
Among other things, the GDPR provides a definition of personal and sensitive information to safe-
guard the right to privacy in the digital domain, thus laying the cornerstone of an ethical usage
of user data. Nonetheless, even if the sensitive information is suppressed, it would be beneficial to
assess the side effects of automated processing, with regard to sensitive attributes, paying special
attention to the ethical consequences this might entail. Therefore, even if data is collected and pro-
cessed for a legitimate purpose, the results yielded might be influenced by personal and sensitive
information that the models are covertly recognizing and exploiting. For instance, in 2018, Ama-
zon withheld their machine learning engine in charge of selecting the most suitable job applicant
profiles as it was discovered that it was biased against women, downgrading resumes that included
the word “women’s,” as in “women’s chess club captain” and graduates of all-women universities.
This was due to the fact that the models utilized were trained with resumes submitted to the com-
pany over a 10-year period, which came mostly from men [1]. Such risks are exacerbated by the
fact that, in the case of deep learning models, it is often difficult to ascertain how such information
is encoded in the intermediate layers, and that the sensitive and legitimate attributes might be
entangled within their representation instances. Fairness in AI is a novel yet very active field of
investigation, deeply connected with the protection of the privacy of user-sensitive data.

7.2.2 Performance of the Algorithms.

Robustness. Given the ubiquity of mobile devices, the data are captured by the built-in sensors
in a variety of different scenarios. Therefore, a typical requirement of mobile device computing
is robustness. For instance, with regard to the recognition of sensitive information, the property
of position invariance would grant a negligible impact in the performance of an algorithm due to
changes in the position of the mobile device with respect to the user who is carrying it. In other
words, the algorithm should be able to recognize the predetermined user attributes regardless of
whether the mobile device is in the front pocket, in the hand, or in the backpack or whether it is
performing a specific activity such as answering a call or typing.

Reliability of Labels. It is important to identify whether the subjects themselves are in charge of
the task of labeling the sensitive attribute. In this case it is important to ensure that a subject is
able to do it in an objective way, in the case of mood recognition, for instance. Additionally, with
particular regard to 3D motion sensor data in the time domain, labeling is often not straightforward
and it can be expensive and time-consuming. Improving or overcoming the labeling process is an
interesting open problem for further investigation. A solution could be adopting self-supervised

learning (SSL), a paradigm according to which the training of the feature extraction algorithms
can take place in an unsupervised manner.

Impact of Hardware Differences. After performing a study of the different mobile device sensors,
it would be interesting to evaluate how innate sensor characteristics affect the processes of sensi-
tive data extraction and protection. This is due to the fact that not all smart device sensors have
the same characteristics, i.e., full-scale values, resolution, sampling frequencies, and so forth.

Computation Time. With regard to mobile devices, time constraints are often crucial for real-
time applications, and a seamless user experience is among the main user concerns. Therefore,
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incorporating in the processing chain additional steps aiming to protect the privacy of the sensitive
data should not impact the computation time significantly.

Storage of the Algorithms. Finally, a significant aspect is related to the storage of the algorithms.
The captured user raw data may then be sent to the cloud, for training the models, as more powerful
hardware resources are typically available remotely. In such a way, the raw data might be exposed
to greater risks related to being transmitted and stored in a server. It is therefore necessary to
develop systems that achieve the desired degree of sensitive data protection, without impacting
the performance of the models. Among the solutions proposed for such goals is federated learning,
in combination with algorithms that would guarantee differential privacy and SMC.

7.2.3 General Metric Framework. With regard to the protection of the privacy of sensitive data,
it would be desirable to create a general metric framework that can be applied to any set of pro-
tected data and indicate with certainty the degree of protection through a score, encompassing
which attributes are being protected and how many classes are being used to differentiate an at-
tribute. Based on this, a standardized set of limit values should be established in order to indicate
the point at which sensitive data is considered fully protected. In such way, protected data could
be freely processed for extraction of information without putting at stake the privacy of users’
sensitive data.
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