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Abstract. Queueing network models have been extensively used to represent and analyze

resource sharing systems, such as production, communication and information systems.

Queueing networks with blocking are used to represent systems with finite capacity

resources and with resource constraints. Different blocking mechanisms have been

defined and analyzed in the literature to represent distinct behaviors of real systems with

limited resources. Exact product form solutions of queueing networks with blocking have

been derived, under special constraints, for different blocking mechanisms. In this paper

we present a survey of product form solutions of queueing networks with blocking and

equivalence properties among different blocking network models. By using such

equivalences we can extend product form solution to queueing network models with

different blocking mechanisms. The equivalence properties include relationships between

open and closed product form queueing networks with different blocking mechanisms.
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1. Introduction

Queueing networks are used to represent and to analyze resource sharing systems,

such as production, telecommunication and information systems, and they have proved to

be a powerful tool for performance evaluation and prediction [23, 28]. Queueing networks

have been analyzed and solved under different assumptions and constraints. Various

classes of queueing networks have been shown to have product form solutions, and

efficient algorithms to exactly evaluate their performance have been developed [9, 28].

Most of the product form queueing network models require infinite capacity queues.

Queueing network models with finite capacity queues have been introduced in order to

represent real systems with finite capacity resources. In these models, when a queue

reaches its maximum capacity, the flow of customers entering the service center is stopped,

both from other service centers and from external sources in case of open networks. This

phenomenon is referrred to as blocking.

Queueing networks with blocking can be applied to telecommunication systems

and computer systems with limited shared resources, such as interconnecting links or store

and forward buffers, as well as in production systems with the finite storage buffers.

Different blocking mechanisms representing distinct behaviors of real systems

with limited resources have been defined and analyzed in the literature. Some of the

reported blocking mechanisms have been recently named and classified by Akyildiz and

Perros [5] and by Onvural [31], whereas other blocking types, which are most common in

communication systems, have been analyzed and compared by Van Dijk [38, 39]. Each

blocking mechanism defines the service center blocking time, the behaviors of arriving

customers to full capacity service center and the servers' activity in the network. Blocking

types have been compared and equivalence properties derived for open queueing networks

[32, 38, 39], for tandem networks [6, 11] and for closed queueing networks [8, 38].

Exact product form solutions for the steady-state joint queue length probability

distribution of queueing networks with blocking have been derived in the literature under

special constraints, for different blocking mechanisms [1-4, 14, 15, 17, 19-21, 22, 26, 27,

30, 33, 36, 39, 40-43]. Several approximate solutions have been proposed for queueing

networks with blocking. A survey of exact and approximate methods for closed  queueing

networks with blocking has been recently presented by Onvural in [31]. Open queueing

networks with blocking and a bibliography on networks with finite capacity queues have

been presented by Perros [34, 35].

In this paper, we present a survey of product form solutions of open and closed

queueing networks with blocking and of equivalence properties among different blocking
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product form network models. The equivalence properties include relationships between

open and closed product form queueing networks with different blocking mechanisms.

Equivalence properties between networks with different blocking types are defined

in terms of exact state space transformation functions. By using such equivalence

relationships between steady-state queue length distributions, it is possible both to extend

product form solution and solution methods defined for a given blocking type model to

the corresponding blocking type network model and to extend or to relate insensitivity

properties for queueing networks with different blocking mechanisms.

A consequence of the results of equivalence is an extension of the class of product

form networks with blocking which includes models in which different nodes work under

different blocking mechanisms. These queueing networks can be used to represent

complex systems, for example models of integrated computer-communication systems

whose components have different blocking models (e.g., network links, controllers, and

computer I/O subsystems with different types of blocking).

The paper is organized as follows. Section 2 introduces the queueing network

model and the different blocking types. Section 3 surveys and classifies product-form

networks with blocking and presents equivalence properties between product form

networks with different blocking types. Finally, Section 4 presents the conclusions.

2. The model

We consider queueing networks with both single and multiple types of customers.

W e  f i r s t  introduce model  assumptions a n d  notations f o r  t h e  general  case .  Consider a

queueing network with blocking formed by M service centers (or nodes) and with C

classes of customers. The set of job classes can be partitioned into R disjoint sets

E1,…,ER called chains. Each chain can be either open or closed. The queueing network is

open or closed if it is formed only by open or closed chains, respectively. The network is

mixed if it consists of both open and closed chains.

If chain r is closed then Nr denotes the number of customers in the network in chain r,

1≤r≤R, and N= S1≤r≤R Nr the total network population. If chain r is open, we assume

Poisson exogenous arrival processes at node i, 1≤i≤M, 1≤r≤R. Poisson arrival rate can be

either load independent or load dependent, respectively denoted as g and g a(n), n≥0, rates

depending on the total number of customers in the entire network, or, for multichain

networks, depending on the total network population mr in each chain r, denoted by ar(m)
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and m=(m1,…, mR), mr≥0, for each chain r, 1≤r≤R. Functions a and ar are arbitrary and

non negative, 1≤r≤R.

An exogenous arrival tries to enter node i in class s of chain r with probability p0(i,s),

1≤i≤M, 1≤s≤C, sŒEr, 1≤r≤R. In other words, the Poisson arrival process at node i in class

s of chain r has parameter g p0(i,s) for load independent arrivals, and g a(n) p0(i,s) or g

ar(m) p0(i,s), for load dependent arrivals, according to the arrival function definition.

Customers' behavior between service centers of the network is described by the

routing matrix P = ||p(i,s)(j,t) ||, 1≤i,j≤M, 1≤s,t≤C, where p(i,s)(j,t) denotes the probability

that a job leaving class s at node i tries to enter node j in class t, t,sŒEr, 1≤r≤R. If chain r is

open then p(i,s)0 , 1≤i≤M, 1≤s≤C, denotes the probability that a job leaving class s in node

i leaves the network. By definition, the following relation holds, for 1≤i≤M,1≤s≤C:
M

∑
j = 1

C

∑
t = 1

p
(i,s)(j,t)

+p
(i,s)0

= 1

Let us introduce vector x  with components xis ,1≤i≤M, 1≤s≤C, sŒEr, 1≤r≤R,

which can be obtained by solving the following linear system for each chain :

x is= g p0(i,s)
+

M

∑
j = 1

M

∑
t Œ Er

x jt p (j,t)(i,s)

(1)

Note that for each closed chain r, by definition, p0(i,s) = p(i,s)0 = 0 for sŒEr, 1≤r≤R,

1≤i≤M. Hence for each closed chain r, linear system (1) is homogeneous and it does not

provide a unique solution. For queueing networks without blocking component xis

represents the throughput of node i and class s of chain r, for open chains, whereas it

represents the relative throughput or mean number of visits of customers at node i class s

of chain r if the chain is closed, sŒEr, 1≤r≤R, 1≤i≤M [23,28]. For queueing network with

blocking this meaning is not generally true.
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Network routing matrix P is said to be reversible if  xis p(i,s)(j,t)= xjt p(j,t)(i,s),  and

g p0(i,s) = xis p(i,s)0  , 1≤i,j≤M, 1≤s,t≤C [21].

Service center i, 1≤i≤M, is described by the number of servers, the service time

distribution and the service discipline. Let Si denote the state of node i, from which one

can derive vector ni = (n(i,1),n(i,2),…,n(i,C))  where component n(i,s) denotes the number of

jobs in node i and in class s, 1≤s≤C. Node i state Si can include other components

according to the node type (service discipline and service time distribution) and the

blocking type.  Let ni and nir denote the total number of jobs in node i and node i chain r,

1≤i≤M, 1≤r≤R, respectively.

The service time distribution of jobs at node i, class s is denoted by Fis(t), t≥0,

1≤i≤M, 1≤s≤C, with mean value 1/µis, if it is load independent. Node i service rate for

jobs of class s in chain r can be defined as dependent on the number of customers either in

the whole node i, ni, or in node i and chain r, nir, and is denoted by µisfi(ni) and µisfir(nir) ,

respectively, ni, nir ≥0, where fi and fir are arbitrary non negative functions, 1≤i≤M, sŒEr,

1≤r≤R.

Service time distributions Fis(t), t≥0, "s, "i, are assumed to be finite mixtures of Erlang

distributions [9, 23, 28]. Let ris(s) denote the probability that a job in node i and class s

has a residual service requirement of s exponential phases up to complete its service, s≥1.

The detailed definition of state Si includes pairs (kip,sip), 1≤p≤ni , 1≤i≤M, where kip

denotes the class of the job in position p of the queue, and sip its residual service

requirement .

Service disciplines are assumed to be defined as follows [12, 13, 21]. Let p denote

a job position in node i queue, when there are ni  jobs, 1≤p≤ni,1≤i≤M. Let d(p,ni+1)

denote the probability that an arriving job is placed in position p when there are ni jobs in

the queue, 1≤p≤ni+1, and let ji(p,ni) denote the fraction of service destined to the job in

position p, 1≤p≤ni, ni≥0, 1≤i≤M. By definition, the following relationship holds :

n i + 1

∑
p = 1

d (p, n i) =

n i

∑
p = 1

j (p, n i) = 1 1≤p≤n i + 1, n i ≥ 0, 1≤i≤M

According to this definition a service discipline is said symmetric [21] or station balancing

[12] if it satisfies the following condition

d(p,ni) = ji(p,ni+1)      "p,"ni (2)

The set of service disciplines which can be defined by using this scheme includes several

scheduling policies such as First Come First Service (FCFS), Last Come First Service

preemptive resume (LCFS), Processor Sharing (PS) and Random service. FCFS and

Random disciplines are not symmetric, while LCFS and PS are symmetric policies.
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Examples of service disciplines which cannot be represented by the above definition are

any scheduling policies dependent on service time or on job priority.

In queueing networks with blocking additional constraints on the number of

customers are included to represent different types of resource constraints in real systems,

which correspond to definitions of different parameters.

In the first case, let Bi denote the maximum queue length admitted at node i (i.e.,

the maximum buffer size), 1≤i≤M. Then the total number of jobs in node i, ni, is assumed

to satisfy the constraint ni≤Bi, 1≤i≤M. In multichain and multiclass networks (C>1 classes

and R>1 chains of customers) one can also define a chain r dependent maximum queue

length at node i, Bir, 1≤i≤M, 1≤r≤R, or a class s dependent maximum queue length at node

i, B(i,s), 1≤i≤M, 1≤s≤C.

In the second case, let BW denote the maximum population admitted in a

subnetwork W of the whole network. In certain cases, in order to represent particular

system behaviors, a minimum population value LW for subnetwork W it is also

introduced. In other words, the total population in subnetwork W, nW = SiŒW ni, is

assumed to satisfy constraints  LW≤ nW ≤ BW.

2.1 Blocking mechanisms

Various blocking mechanisms or types that describe different behaviors of

customer arrivals at a full capacity node and the servers' activity in the network have been

defined in the literature. We now introduce the most commonly used five blocking

mechanisms [5, 31, 38, 39].

The first three blocking types, Blocking After Service, Blocking Before Service and

Repetitive Service Blocking, have been named and classified in [5, 31]. They arise because

of the finite capacity of each service center of the network or maximum queue length for

each chain r [5, 30, 31].

Let bis(ni) denote the blocking function, i.e., the probability that a class s job arriving at

node i, class s is accepted when ni is the state of the node, 1≤i≤M, 1≤s≤C. The blocking

function can, for example, be defined which may only depend on the total number of jobs

in the node (ni), the number of class s jobs or in the chain.

An example of a simple blocking function for single class queueing networks which

allows to define the maximum queue length Bi for each node i, 1≤i≤M, is defined as

follows [19] :
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bi (ni) = 1 for 0≤ni<Bi, bi(Bi) = 0 1≤i≤M

More generally, one can define

0 < bi(ni) ≤ 1 for  0≤ni<Bi ,  bi (Bi) = 0 1≤i≤M

as an arbitrary non negative load-dependent function which can be used to represent a flow

control mechanism of node i input traffic.

A blocking function bis(ni) for multiclass multichain queueing networks has been defined

[3] which depends on the total job number in node i (ni), node i chain r (nir), or node i and

class s (n(i,s)), as follows:

bis (ni) =hi(ni) hir(nir) h(i,s)(n(i,s)) 1≤i≤M, 1≤s≤C, 1≤r≤R,

where functions hi, hir, h(i,s) are arbitrary, except the following constraint : if hi(l)=0 then

hi(k)=0 "k≥l, and similarly for functions hir and h(i,s).

Remark. Note that, by using blocking functions, the actual routing probabilities of the

queueing network can be interpreted as state dependent probabilities, and they are obtained

by combining the routing probability matrix P with blocking functions bis(ni). Indeed, the

actual probability that a job leaving node i and class s is accepted by node j in class t, when

nj is the state of node j, is given by p(i,s)(j,t) bjt(nj), 1≤i,j≤M, 1≤s,t≤C, "nj.

It is worth noting that also some queueing networks with state dependent routing, such as

the model proposed in [37] and extended to multiclass networks in [25,41], can be

included in this model definition, by appropriately defining the state dependent routing

probabilities defined in terms of a constant factor and blocking functions.  

The last two blocking mechanisms, Stop and Recirculate Blocking, which are very

common in communication systems, have been named and compared in [38,39]. They

arise because of the maximum queue length constraint for either a subnetwork or the total

queueing network population .

Blocking After Service (BAS) (classical, transfer, manufacturing, production blocking,

[1, 5, 7, 8, 11, 19, 18, 29, 30-35]): if a job attempts to enter a full capacity queue j upon

completion of a service at node i, it is forced to wait in node i server, until the destination

node j can be entered. The server of source node i stops processing jobs (it is blocked)

until destination node j releases a job. In other words, node i service will be resumed as

soon as a departure occurs from node j. At that time the job waiting in node i immediately

moves to node j.

If more than one node is blocked by the same node j, then a scheduling discipline must be

considered to define the unblocking order of the blocked nodes when a departure occurs
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from node j. First Blocked First Unblocked is a possible discipline [7,31] which states that

the first node to be unblocked is the one which was first blocked.

This blocking mechanism has been used to model production systems and disk I/O

subsystems.

Blocking Before Service (BBS) (service, immediate blocking, [6, 8, 10, 11, 16, 17  30-

35]): when a destination node j becomes full, it blocks the service in each of its possible

sending nodes i (i.e., "i such that for some classes s and t  p(i,s)(j,t)>0, 1≤i≤M, 1≤s,t,≤C),

provided that node i is servicing a job whose destination node is j. Services will be

resumed as soon as a departure occurs from node j. The destination node of a blocked

customer does not change, and it is declared before it starts receiving service.

Two different subcategories can be introduced [31] depending on whether the server can

be used as service center buffer when the node is blocked:

BBS-SNO (server is not occupied) when the server of the blocked node cannot be

used to hold a customer.

BBS-SO (server occupied) when the server of the blocked node is used to hold a

customer.

A variant of the BBS type has been considered [8, 17, 24] when the overall set of sending

nodes is blocked, and it is defined as follows :

 BBS-O (Overall Blocking Before Service, type 4) : when a destination node j

becomes full, it blocks the service in each of its possible sending nodes i, regardless of the

destination of the currently processed job. Services will be resumed as soon as a departure

occurs from node j. The destination node of a blocked customer does not change.

This blocking mechanism has been used to model production, telecommunication, and

computer systems.

Repetitive Service Blocking (RS) (rejection, retransmission, repeat protocol [2, 3, 4, 8,

11, 14, 15, 19, 20, 22, 30-35, 36, 38, 41, 42]): a job upon completion of its service at queue

i attempts to enter destination queue j. If node j is full, the job is looped back into the

sending queue i, where it receives a new independent service according to the service

discipline.

Two different sub-categories have been introduced depending on whether the job, after

receiving a new service, chooses a new destination node independently of the one that it

had selected the previously:

RS-RD (random destination) if a job destination is randomly chosen at the end of

each new service, independent of the previous choices.
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RS-FD (fixed destination) if a job destination is determined after the first service

and can not be modified.

This blocking type has been used to model telecommunication systems.

For the following two blocking types the population either of a subnetwork or of the total

network is assumed to be in the range [L,U], where L and U are the minimum and

maximum populations admitted, respectively. This constraint can be represented by an

appropriate definition of both the load dependent arrival rate functions a(n), n≥0 and of the

(network) blocking function d(n), n≥0. For multichain networks arrival and blocking

functions can also be defined for each chain r, dependent on the total network population

mr in chain r, ar(m) and  dr(m), m=(m1,…, mR) ≥0, 1≤r≤R.

STOP Blocking  (interruption [38, 39]): the service rate of each node is delayed by a

factor d(n)≥1, where n≥0 is the total network population. In other words, the actual job

service rate of each node depends on the state of the entire network according to the

function d(n). When d(n) = 0 then the service at each node in the network is stopped.

Services will be resumed at each node as soon as an exogenous arrival occurs.

This blocking mechanism has been used to model communication systems.

RECIRCULATE Blocking (triggering protocol [26, 27, 38]): a job upon completion of

its service at queue i in class s actually leaves the network with probability p(i,s)0 d(n),

when n is the total network population, whereas it is forced to stay in the network with

probability p(i,s)0 [1-d(n)], according to routing probabilities. Consequently, a job

completing the service at node i class s actually enters node j in class t with state dependent

routing probability  

p(i,s)(j,t) +  p(i,s)0 [1-d(n)] p0(j,t) 1≤i,j≤M, 1≤s,t≤C, n≥0.

This blocking type has been used to model communication systems.

Queueing networks with blocking can deadlock, depending on the blocking type

definition. If a deadlock occurs then either prevention techniques or detection and

resolving techniques must be applied. Deadlock prevention for some types of blocking has

been discussed [31].

Hereafter we shall consider deadlock-free queueing networks in steady-state conditions.
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2.2 Product form solution

The state of a queueing network can be represented by an M-vector S=(S1,…,SM),

where Si is the state of node i, 1≤i≤M. The state space E of the network is the set of all

feasible states. Queueing network evolution can be represented by a continuous time

ergodic Markov chain with discrete state space E. Under the hypothesis of irreducible

routing matrix P, there exists a unique steady-state queue length probability distribution π

= {π(S), SŒE}, which can be obtained by solving the following homogeneous linear

system [23] :

π Q = 0 (3)

subject to the normalizing condition SSŒE π(S) =1 and where Q is the process transition

rate matrix.

Even if the joint queue length distribution π of queuing networks with blocking can

be obtained by formula (3), and other performance measures can be derived from π, the

solution of the linear system (3) becomes infeasible as the state space E dimension grows,

proportionally to the parameters of the model including the number of customers, nodes

and chains.

Under certain constraints, depending both on the network definition and the

blocking mechanism used, π has a product form solution [1-4, 14, 15, 17, 19-21, 22, 26,

27, 30, 33, 36, 39, 40-43]. We consider open, closed and mixed queueing networks

analyzed in steady-state conditions.

For single class open or closed queueing networks with blocking, product form solutions

can be defined as follows :

π(S ) = 1
G
V(n)

M

P
i = 1

g
i
(n i ) (4)

where G is a normalizing constant, n is the total network population, and the functions V

and gi ,1≤i≤M, are defined in terms of network parameters, depending on the blocking

type and additional constraints.

Similarly, for multichain open, closed or mixed queueing networks with blocking, formed

by M nodes and R chains, product form solutions can be defined as follows:

π (S ) = 1
G

R

P
r = 1

Vr (m r )

M

P
i = 1

g
i
(n i ) (5)

where G is a normalizing constant, mr is the total network population in chain r, 1≤r≤R,

and the functions Vr , 1≤r≤R, and gi, 1≤i≤M, are defined in terms of network parameters,

depending on the blocking type and additional constraints.

The complete definition of funtions V, Vr and gi  in the different cases of product form

networks with blocking will be given in detail in the next Section.
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Other performance indices of interest such as throughput, mean queue length and

utilization, can be calculated from π. Let Li, Ui, Li and Ti denote the mean queue length,

node utilization, throughput and mean response time of node i, 1≤i≤M, respectively.

3. Equivalence properties in product-form blocking queueing networks

In this Section, we survey product form solutions and equivalence properties of

blocking networks reported in the literature.

For each network topology defined we present a theorem called "PF" (Product

Form) to summarize the product form results and a theorem called "EP" (Equivalence

Property) to summarize the equivalence properties between product form queueing

networks with blocking. Note that in EP theorems, only the equivalencies which can be

used to extend the class of product form solutions are reported.

The results presented in PF theorems hold for homogeneous networks, that is, all nodes

work under the same blocking mechanism. Moreover the corollaries present product form

solutions for non-homogeneous networks, which are deduced from PF and EP theorems.

In order to present the equivalence properties among different blocking models in

terms of steady-state joint queue length distribution, we shall first introduce two basic

relationships, defined both between two closed networks and between two open networks.

First, we consider queueing networks with maximum queue length constraints either at

node i, Bi, or at node i, chain r, Bir, 1≤i≤M, 1≤r≤R.

Consider two networks with identical parameters (M, C, R, g, ar(m), Nr, P, fi(ni),

mis, "m, "ni , ≤i≤M, 1≤r≤R, 1≤s≤C), with buffer sizes Bi and Bi', or Bir and Bir', 1≤i≤M,

1≤r≤R, respectively, and different blocking mechanisms X and Y, respectively, where  X,Y

Œ BM, where BM  is the set of all blocking mechanisms defined in Section 2.

Note that, if the two networks are closed then g = ar(m) = 0, 1≤r≤R,"m.

Let E and E' be the state spaces of two networks and let pX={pX(S), SŒE} and

pY={pY(S'), S'ŒE'} denote the corresponding steady-state probability distributions.

We introduce the following relations between the two blocking types X and Y:

• identity:  blocking types X and Y are said to be identical, if  Bi=Bi' or Bir=Bir', 1≤i≤M,

1≤r≤R, and if E=E', and pX=pY.

• reducibility:  blocking type X is said to be reducible to blocking type Y under one of the

two following conditions:
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(i) if Bi=Bi' or Bir=Bir', 1≤i≤M, 1≤r≤R, and if there exists a function f so that

pX=f(pY);

(ii) if there exist functions gi or gir such that  Bi=gi(Bi') or  Bir=gir(Bir'), 1≤i≤M,

1≤r≤R, and if there exists a bijective function f between the network state spaces E

and E' so that steady-state probability is identical for corresponding states, i.e.,

pX(S)=pY(f(S)), "SŒE  and  f(S)ŒE'.

We shall first present product form solution and equivalence properties for two

node networks. Then we will consider some special topologies of closed networks, i.e.,

cyclic and central server topology networks. A more general class of networks is

represented by the case of reversible routing. Finally, we discuss networks with arbitrary

topologies.

3.1 Two node cyclic networks

In this Section we present product form results and equivalences for two node

cyclic networks with blocking (see Fig. 2, with M=2). First we observe that, since each

node has only one destination node, by definition, we have :

• RS-RD and RS-FD blocking are identical,

• BBS-SO and BBS-O blocking are identical.

For single class of jobs and FCFS exponential service centers, product form

solution of the joint queue length equilibrium distribution has been proved under BBS-SO

blocking in [17], under RS blocking in [19, 22, 36] and under BAS blocking in [1].

Cohen [14] proved that networks with multiple job classes and general service time

distributions with processor sharing discipline and load dependent service rates have

product form solutions under RS blocking. For networks with multiple job classes,

general service time distribution at nodes with symmetric scheduling disciplines, product

form solution has been proved by van Dijk and Tijms in [40] under RS blocking. The

authors also proved an insensitivity property of the distribution of jobs which shows that

the solution depends only on the mean of the service time distribution.

A similar product form result for multiclass networks with BCMP type nodes [9],

and class independent buffer capacities Bi, 1≤i≤M, has been proved by Onvural [30].

The following theorem summarizes product form results for homogeneous

networks.

Theorem PF1
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A homogeneous two-node closed cyclic queueing network with multiple classes of

jobs, class independent buffer capacities Bi, i=1, 2, and BCMP type nodes has the

following product form solution of the joint queue length equilibrium distribution under

BAS, BBS-SO, and RS blocking:

product form (5) with

(pf1)

Vr (mr) = 1 1≤r≤R, "mr

g
i
(n i ) = g i (n i )

R

P
r=1

g
ir
(n ir )

C

P
s=1

g
(i,s)

(n (i,s)) "ni  , 1≤i≤M

where,

g
i
(n i ) =

n i

P
l=1

r i k i l
(s i l)

f i(l)

gir (nir ) = 1

g
(i,s)
(n (i,s)) = ( x i s / µ i s)

n (i,s)

The proof is based on the underlying Markov processes of the queueing networks

which are reversible. In the theorem's proof, Onvural [30] shows that the product form

solution of the equilibrium distribution under either BBS-SO or RS blocking is identical,

up to a normalizing constant, to the product form equilibrium distribution of the same

network with infinite buffer capacity queues, and it can be obtained by truncating the state

space so that, at most, Bi jobs are allowed at node i, 1≤i≤M. Indeed, the Markov process

of the blocking network is obtained by truncating the Markov process of the network with

infinite buffer capacities. Hence, product form solution immediately follows from the

theorem for truncated Markov processes of reversible Markov processes which states that

the truncated process shows the same equilibrium distribution as the whole process

normalized on the truncated sub-space [21].

A similar proof is given, in terms of joint queue length distribution, between a two

node cyclic closed network under BAS blocking and the corresponding network with

infinite buffer capacity queues [30]. In this case the state space of the underlying Markov

process of the network with blocking is obtained by truncating the state space of the

network without blocking, by assuming that at most Bi+1 jobs are admitted in node i,

1≤i≤M. According to the notation introduced in Section 2, let (n1, n2) denote the state of

the network. Let ni
bs denote node i state, when node i is blocked and the job in service is

of class s, i=1, 2, 1≤s≤C, and let es denote the C-vector with all zero components except
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for the s-th equal to 1. Then the following theorem, which has been proved [30], states the

equivalence properties which hold between blocking types RS, BBS-SNO and BBS-SO.

Theorem EP1

In a two node closed cyclic queueing network with multiple classes of jobs, class

independent buffer capacities Bi, i=1, 2, and BCMP type nodes the following equivalence

properties hold:

i)  BBS-SO and RS blocking mechanisms are identical,

ii)  BBS-SO and BBS-SNO blocking mechanisms are identical if N ≤ B1+B2-2,

iii)  if service rates are load independent  BAS blocking is reducible to BBS-SO

blocking when Bi
BBS-SO=Bi

BAS+1 and the following function holds

πBAS(n
1
, n

2
) = πBBS-SO(n

1
, n

2
)

 

"  (n
1
,n

2
) : 

R

∑
r = 1

n ir ≤ B ir
BAS

   

i = 1,2

πBAS(n
1
, n

2
bs) = πBBS-SO(n

1
+e

s
, n

2
-e

s
)

 

"  (n
1
,n

2
) : 

R

∑
r = 1

n1r ≤ B1r
BAS

πBAS(n
1
bs,  n

2
)  =  πBBS-SO(n

1
-e

s
,  n

2
+e

s
)

 

"   (n
1
,n

2
)  :

R

∑
r = 1

n2r ≤ B2r
BAS

By combining theorems FP1 and EP1 one can immediately derive the following

result for non homogeneous networks.

Corollary 1

A non-homogeneous two node closed cyclic queueing network with multiple

classes of jobs, class independent buffer capacities Bi, i=1, 2, and BCMP type nodes

shows the product form solution (pf1) of the joint queue length equilibrium distribution

under BAS, BBS-SO and RS blocking.

The same networks with multiple job classes in which no class changes are

allowed, and with class dependent buffer capacities Bir , 1≤i≤M, 1≤r≤R, (see Fig.1) have

been considered by Onvural in [30], where a product form solution has been proved under

particular constraints as follows.

Theorem PF2

A homogeneous two node closed cyclic queueing network, with multiple job

classes and with class dependent buffer capacities Bir, i=1, 2 and r=1, 2, ..., R, with
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BCMP nodes, except for processor sharing (PS) service discipline, shows a product

form solution of the joint queue length equilibrium distribution under BBS-SO, BBS-SNO

or RS blocking. When nodes with PS discipline are included, the blocking network shows

the product form solution (pf1) if the service rate depends on the total number of jobs at

that node, including both blocked and non-blocked jobs, as if there was no blocking.

Hence one can immediately derive the following equivalences between BBS-SO,

BBS-SNO and RS blocking types, both for homogeneous and for non-homogeneous

networks, as stated by the following theorem and corollary.

2R

2

21

12

1R

1

B

.

.

.

1R

B

11
B

22

B

.

.

.
B

B

- Fig. 1 - A two-node closed queueing network with multiple job classes

and class dependent buffer capacities -

Theorem EP2

In a two node closed cyclic queueing network with multiple job classes and with

class dependent buffer capacities Bir, i=1, 2 and r=1, 2, ..., R, and with BCMP nodes

where the service rate at the nodes with PS discipline depends on the total number of jobs

in the node, both blocked and non-blocked, BBS-SO, and RS blocking mechanisms are

identical,.The resultt holds for  BBS-SNO if N ≤ B1+B2-2 .

Corollary 2

A non-homogeneous two node closed cyclic queueing network with multiple job

classes and with class dependent buffer capacities Bir, i=1, 2 and 1≤r≤R, and with

BCMP nodes where the service rate at the nodes with PS discipline depends on the total

number of jobs in the node, both blocked and non-blocked, shows the product form

solution (pf1) under BBS-SO and RS blocking, and if N ≤ B1+B2-2 under BBS-SNO,

too..
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Equivalence properties for exponential two nodes networks with a single job class

and load independent service rates have been proved in [8], by including equivalences in

terms not only of joint queue length distribution but also of other mean performance

indices, as given by the following theorem. For networks under BAS blocking, ni
b denotes

that node i is blocked when there are ni jobs in it, i=1,2, "ni.

Theorem EP3

For an exponential two node closed cyclic queueing network with single class of

jobs and  load independent service rates, the following equivalence properties hold:

i)  BBS-SO and RS blocking mechanisms are identical. Moreover, these blocking

mechanisms yield the same performance indices (Ui, Li, Li, Ti, i=1,2)..

ii)  BAS blocking is reducible to RS blocking, and the following function holds

pBAS(n1, n2) = Const pRS(n1, n2) ni ≤ Bi i=1,2

pBAS(B1, (N-B1)b) = Const pRS(B1, N-B1) m2/m1

pBAS((N-B2)b, B2) = Const pRS(N-B2, B2) m1/m2

where Const is a normalizing constant.

Moreover, these blocking mechanisms yield the same performance in terms of

node utilizations and throughputs, while having different mean queue lenghts and

mean response times.

3.2 Cyclic networks

In this Section, we present product form results and equivalences for M-nodes

closed cyclic networks with blocking (see Fig. 2). Similar to the two node networks, each

node in M-node closed cyclic networks has only one destination node. Hence,

• RS-RD and RS-FD blocking are identical,

• BBS-SO and BBS-O blocking are identical.

1 M

- Fig. 2 - M-node closed cyclic network -

Similarly, tandem networks under RS blocking were analyzed by Caseau and

Pujolle in [11] with FCFS exponential service centers, intermediate arrivals and load

dependent service rates. The authors showed that RS and BBS-SO blocking types are
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identical, and BAS and BBS-SNO are reducible when Bi
BBS-SNO=Bi

BAS+1, 1≤i≤M. A

similar result has been derived for closed cyclic networks, as reported by the following

theorem EP4.

Closed cyclic networks with a single job class and FCFS exponential service

centers with load independent service rates was first studied under BBS-SO blocking by

Gordon and Newell in [17], and then under RS blocking by Hordijk and Van Dijk in [19].

Product form solution of the joint queue length distribution has been derived under the

condition that no node can be empty. Product form results are sumarized in the following

theorem PF3.

Equivalence properties among product form networks with blocking types BBS-SO,

BBS-SNO, RS and BAS have been proved in [8] and in [31], and are sumarized in

theorem EP4.

Theorem PF3

A homogeneous closed cyclic queueing network with a single job class,

exponential service centers, load independent service rates, and with

N ≥
M
∑
i=1
Bi - min{Bj , j=1, . . . , M}

shows the following product form solution under BBS-SO or RS blocking mechanisms:

product form (4) with

(pf2)

V(n) = 1 " n

gi (ni ) = 1 / ei 
ni " ni  , 1≤i≤M

where e = (e1, ..., eM) is obtained by solving system e = e P' where P'= || p'ij || ,

1≤i,j≤M, p'ij = mj pji  for i≠ j, and p'ii = 1-∑
j≠i

 p'ij .

Theorem EP4

In a closed cyclic queueing network with a single job class, exponential service

centers, load independent service rates, the following equivalence properties hold:

i)  BBS-SO and RS blocking mechanisms are identical . Moreover, these blocking

mechanisms yield the same mean performance indices (Ui, Li, Li, Ti , 1≤i≤M).

ii)  BBS-SO and BBS-SNO blocking mechanisms are identical if

N ≤ min{Bi+Bj  with pij>0, i,j=1, ..., M} -1

Then, these blocking mechanisms yield the same performance indices (Ui, Li, Li,

Ti , 1≤i≤M).
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iii)  BBS-SNO and BAS blocking are reducible when Bi
BBS-SNO=Bi

BAS+1,

1≤i≤M, and the bijective function between the equilibrium distributions pBAS and

pBBS-SNO is defined as follows :

pBAS(n1,…,nM) = pBBS-SNO(n1, ... ,nM) ni ≤ Bi , 1≤i≤M

      pBAS(n1,...,ni
b,B(i+1)mod M,...,nM) = pBBS-SNO(n1,...,ni-1,B(i+1)mod M +1,...,nM)

      1≤i≤M

By combining the product form and the equivalence theorems PF3 and EP4 one

can derive the following corollary which summarizes the product form results for non-

homogeneous cyclic networks.

Corollary 4

A non-homogeneous closed cyclic queueing network with a single job class,

exponential service centers, load independent service rates, and with

N ≥

M

∑
i=1

B i - min{B j, j=1, .. . , M}, shows the product form solution (pf2) under BBS-SO

and RS blocking mechanisms.

3.3 Central server networks

The central server model, shown in Fig. 3, is a reversible routing queueing network

and we refer to the following Section for the product form solutions proved for the class

of reversible routing networks. In this Section we survey results specifically proved only

for central server networks.

1

M

2

.

.

.

- Fig. 3 - A central server queueing network -
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First note that, for this network topology, each node except the central node has

only one destination node, as for M-node cyclic networks. By definition, the following

identities hold when only the central node has finite capacity queue:

• RS-RD and RS-FD blocking are identical,

• BBS-SO and BBS-O blocking are identical.

Central server networks have been studied under RS-RD blocking. A first product

form equilibrium distribution was proved by Dallery and Yao in [15] for a single job class

and general service time distribution at nodes with symmetric scheduling discipline. On

the other hand, Towsley [37] proved a product form solution for a class of networks

which includes the central server model with single job class, state-dependent routing and

general service time distribution at nodes with symmetric scheduling discipline. However,

as pointed out in Section 2, and as discussed and extended by Krzesinski [25] and by Yao

and Buzacott to multiple job classes [41], there exists a relationship between state

dependent routing and blocking functions. Therefore, such product form solution for

networks with state dependent routing can be interpreted as blocking networks. The

following theorem presents a generalization of these results obtained by combining state

dependent routing and finite capacity queues derived by Akyildiz and von Brand [2]. Let 1

denote the central node.

Theorem PF4

Closed central server networks with

•  multiple job classes, but with the class type of a job fixed in the system,    i.e.,

with C=R;

•  state-dependent routing depending on the class type s defined as follows

p(1,s)(j,s) (S) = wjs(n(j,s)) ws(Ns-n(1,s)) "S

p(1,s)(j,s)  = 1  2 ≤ j ≤ M, 1 ≤ s ≤ C

• blocking functions for node i and class s

  bis(ni ) = hi (ni ) his (n(i,s) )   "ni   , 1 ≤ j ≤ M, 1 ≤ s ≤ C

•  general service time distribution at nodes with symmetric scheduling 

discipline and exponential service times distributions, equal for each class

at the same node, when the scheduling is arbitrary

shows the following product form equilibrium distribution

 

under RS-RD blocking:

product form (5) with

(pf3)

Vr (Nr) = Vs(N(s)) =

N(s)-n(1, s)
P
l=1

ws(l-1)
M
P
j=2

n(j, s)
P
l=1

wjs(l-1)

C=R, 1 ≤ s ≤ C
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gi(n i ) = gi(ni )
C
P
s=1

g(i, s)(n(i, s)) "n i , 1≤i≤M

with

g i(n i) =

n i

P
l=1

h i(l-1)

f i(l)
r i k i l

(s i l)

g
(i,s)
(n (i,s)) =

n (i,s)

P
l=1

h (i,s)(l-1)

m
i s

with n(i,s)  jobs of class s in node i, 1≤i≤M, and N(s) = S1≤s≤C n(i,s)  the total number of

jobs of class s in the network, 1≤s≤C.

The following equivalence property is an application to the central server network

of the more general theorem EP7 presented in Section 3.5. Moreover, note that these

results can easily be extended to the multiclass case.

Theorem EP5

RS-RD and BBS-SO blocking mechanisms are identical when applied to central

server networks with a single job class and where only the central node has finite

capacity queue.

Moreover, these blocking mechanisms yield the same mean performance indices (Ui, Li,

Li, Ti, 1≤i≤M).

By combining theorems PF4 and EP5, a case of product form solution holds for

central server networks with BBS-SO, as proved in [8].

Corollary 5

•  An exponential central server network with a single job class and where only

the central node has a finite buffer, shows product form solution (pf3) under BBS-SO

blocking.

•  A non-homogeneous exponential central server network with a single job class,

where each node has BBS-SO blocking except the central one which has RS blocking,

shows product form solution (pf3).
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3.4 Reversible routing networks

Queueing networks with reversible routing have been studied under RS-RD and

STOP blocking. First, a product form solution has been proved for closed reversible

networks with single class of jobs, FCFS exponential service centers and RS-RD blocking

in [19, 22]. Pittel [36] extended the product form solution to exponential closed queueing

networks formed by nodes with PS discipline, with reversible routing and with multiple

job classes but without class change and RS-RD blocking. Product form solution has

been extended to multiclass mixed queueing networks with class independent buffer

capacities and arbitrary service time distributions when the scheduling of the queue is

symmetric [30, 42, 43], for RS-RD blocking. For similar networks, but with single job

class, product form solution has been derived [38] for RS-RD and STOP blockings.

Recently, this class of product form queueing networks with RS-RD blocking has been

extended [3] to include more general blocking functions which can depend both on the

total population, class population and routing chain population at the node. The following

theorem summarizes such product form results for reversible routing networks.

Theorem PF5

A homogeneous open, closed or mixed network with

•  reversible routing,

•  multiple job classes,

•  arbitrary service time distributions when the scheduling is symmetric and 

exponential service time distributions, equal for each class at the same 

node, when the scheduling is not symmetric

• blocking functions for node i and class s

bis (ni) =hi(ni) hir(nir) h(i,s)(ni,s))   "ni  

when there are a total of ni jobs in node i, of which n(i,s) are in class s and 

nir are in chain r, 1≤i≤M, 1≤r≤R, 1≤s≤C,

shows the following product form solution under RS-RD blocking:

product form (5) with

(pf4)

Vr(mr) = 1 " mr ≥0, 1≤r≤R

g
i
(n i) = g i(n i)

R

P
r=1

g
ir
(n ir )

C

P
s=1

g
(i,s)
(n (i,s))

where
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g
i
(n i) =

n i

P
l=1

h i (l-1)

f i (l)
r i k i l

(s i l)

g
ir
(n ir) =

n ir

P
l=1

h ir(l-1)

g
(i,s)
(n (i,s)) =

n (i,s)

P
l=1

x i sh (i,s)(l-1)

m
i s

The same network but with single job class, shows the following product form

solution under STOP blocking:

product form (4) with

V(n) = 1 " n

g
i
(n i) = ( x i / µ i)

n i
" ni ≥0 , 1≤i≤M

Note that in [38] a different state notation is considered, with one component for each job

in the system, which denotes the node at which the job is present.

The following equivalence result between RS-RD and STOP blocking

mechanisms has been proved in [38].

Theorem EP6

In a closed or open network with

•  reversible routing,

•  single job class,

•  arbitrary service time distributions when the scheduling discipline is 

symmetric and exponential service time distributions, equal for each class 

at the same node, when the scheduling is not symmetric,

RS-RD and STOP blocking mechanisms are identical.

From theorems PF5 and EP6 one can immediately derive the following product

form solution for non-homogeneous networks.

Corollary 6

A non-homogeneous mixed network with

•  reversible routing,

•  single job class,
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•  arbitrary service tims distributions when the scheduling discipline is 

symmetric and exponential service times distributions, equal for each

class at the same node, when the scheduling is arbitrary,

shows product form  (pf5) solution under RS-RD and STOP blocking.

A more general network model has been considered in [4]. The authors consider

networks of parallel queues with multiple job classes and reversible routing, where general

interdependent blocking functions and general interdependent service functions are

allowed. Formally, each service center i contains a set of queues and a job entering node i

requires service at queue q(i, s) depending on its present class s, 1≤i≤M, 1≤s≤C. This

request is accepted with probability Ai(q(i, s) | ni), when ni is the state of node i, that is,

the blocking probability depends not only on the total number of class s jobs, but also on

the number of jobs of the other classes. The rate at which queue q provides service is

given by fi(q(i, s) | ni), that is, the rate out of one queue depends on the number of jobs in

the entire node, including the other queues; the mean service rate of a job of class s at

queue q is denoted by miq. The network under RS-RD blocking shows a product form

solution if both the reversible routing and an invariance condition hold. Informally, such

an invariance condition requires that function Pi(ni), defined as follows

P i(n i) =

n i

P
k=1

Ai ( )q(i, sk) | n i(k-1)

f i ( )q(i, sk) | n i(k)
"n i , 1≤i≤M

  
where ni(k) is state ni with k jobs in node i, 1≤i≤M, is invariant to the arriving order of

jobs at node i, with respect to their class. See [4] for further details.

Theorem PF6

A homogeneous closed network with stations having parallel queues and

•  reversible routing,

•  multiple job classes,

•   arbitrary service t imes distributions when the  scheduling i s  symmetric and

exponential service times distributions, equal for each class at the same node,

when the scheduling is arbitrary

•  interdependent blocking probability and service rate

shows the following product form solution under RS-RD blocking if the interdependent

blocking and servicing satisfy  the invariant condition :
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product form (5) with

(pf6)

Vr(mr) = 1 " mr ≥0, 1≤r≤R

g
i
(n i) = P i(n i )

C

P
s=1

x
i s

n (i,s)P
qœS( )1m iq

miq
P

s:q(i,s)�ŒS
( )1m
i s

n ( )i ,s

where S is the set of symmetric queues, miq is the number of jobs at node i in queue q,

"q, 1≤i≤M.

3.5 Arbitrary topology networks

In this Section, we survey product form blocking networks without restrictions as

to the topology, i.e., with arbitrary topologies.

The first result was obtained by Hordijk and Van Dijk in [19] for closed networks

with a single job class, FCFS exponential service centers with load independent service

rates and with RS-RD blocking, by assuming that the number of customers in the network

is such that a node cannot be empty.

Theorem PF7

A homogeneous closed queueing network with a single job class, FCFS

exponential service centers, load independent service rates and with

N >
M

∑
i=1

B i - min{B j , j=1, .. . , M} (6)

has the product form solution (pf2) under RS-RD blocking.

An equivalence property between RS-RD and BBS-SO blocking models for

arbitrary topology exponential networks with single class of jobs has been proved in [8].

The extension to multiclass networks can easily be proved.

Theorem EP7

RS-RD and BBS-SO blocking mechanisms are identical when applied to closed

exponential queueing networks with single job class, where each node i with finite buffer

(Bi < N) satisfies the following condition:

if  pji > 0  then pji = 1,     1 ≤ j ≤ M (7)

In other words, condition (7) requires that each node with finite capacity is the only

destination node for each upstream node.
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From such an equivalence property and from theorem PF7 the following product

form solution for non-homogeneous networks with arbitrary topology can easily be

proved.

Corollary 7

A non-homogeneous closed queueing network with a single job class, FCFS

exponential service centers, load independent service rates and where each node with

finite buffer satisfies condition (6), has the  product form solution (pf2) under RS-RD and

BBS-SO blocking mechanisms, if nodes with BBS-SO blocking satisfy condition (7).

Multiclass networks with FCFS exponential nodes under BAS blocking have been

considered by Onvural and Perros in [33]. For these networks, a product form solution

has been proved when the population is kept under an upper bound.

Theorem PF8

A homogeneous closed network with multiple job classes, class independent

buffer capacities Bi, 1≤i≤M, and FCFS exponential centers, shows the following product

form solution of the joint queue length equilibrium distribution under BAS blocking, if

∑
rŒR i

N r=min { }B i , 1 ≤ i ≤ M +1

where Ri  is the set of routing chains that visit node i, 1≤i≤M :

product form (5) with

(pf7)

Vr(mr) = 1 " mr , 1≤r≤R

g
i
(n i) =

C

P
s=1

( )x is
m
is

n(i,s)

To our knowledge, no equivalence property has been proved between arbitrary

topology networks with BAS blocking and other blocking mechanisms, and consequently

no extensions of the product form solution to non-homogeneous networks can be

derived.

RECIRCULATE blocking mechanism has been considered for arbitrary topology

open networks with FCFS exponential nodes and Poisson arrivals [26, 27]. Jackson

derived a product form solution for this blocking mechanism under a minimal population

constraint. Lam extended this product form solution to multiclass networks with class

interdependent blocking.
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STOP and RECIRCULATE blocking models have been analyzed and compared [39].

Van Dijk considers Jackson queueing networks with multiple job class having the job

class-type fixed throughout its residence in the system, i.e., with C=R. The network

population is kept within a range defined by a lower and an upper bound.

Both a product form solution and an equivalence property between STOP and

RECIRCULATE blocking have been derived [39] as stated by the following theorems.

Note that the product form solution proved for IS nodes can be easily extended to other

service disciplines such as PS, LCFS and FCFS, as discussed in [39].

Theorem PF9

A homogeneous Jackson open network with multiple job classes and with the job

class-type fixed throughout its residence in the system (R=C), has the following product

form solution under both STOP and RECIRCULATE blocking mechanisms:

product form (5) with

(pf8)

g = 1

Vr (m r) =

mr-1

P
l=0

ar (l)    " mr ≥0, 1≤r≤R

g
i
(n i ) =

R

P
r=1

1
n ir ! ( )x ir

m
ir

n ir

      

" ni ≥0, 1≤i≤M

Theorem EP8

In a Jackson open network with multiple job classes but with the class-type of a

job fixed throughout its residence in the system, STOP and RECIRCULATE blocking

mechanisms are identical.

Note that from the definitions of STOP and RECIRCULATE blocking

mechanisms, defining a non-homogeneous network and then extending product form

results  it is not immediate.

Let us now consider an open Jackson network with a population constraint for

lower and upper bounds. It is known that any open queueing network with finite queues

and Poisson arrivals, can be exactly analyzed as a closed queueing network [31]. This

closed queueing network will be called the “anologue” closed network of the open
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network . In the following we define an open Jackson network and its analogue closed

one.

Let us consider an open Jackson network with parameters (M, g, a(n), P, Bi, mi,

1≤i≤M) with g=1 and the following contraint on the network population n : L ≤ n ≤ U, L,

U≥0, and with Bi≥U, 1≤i≤M. Let P=|| pij || 0≤i,j≤M be the (M+1)x(M+1) routing matrix

where pij is the probability that upon service completion at node i a job routes to station j,

1≤i,j≤M, while pi0 is the probability that upon service completion at node i a job leaves the

system and p0i is the probability that an arriving job is routed to node i, with 1≤i≤M, and

p00=0.

The arrival rate function a(n) and the departure blocking function d(n), when n jobs are

present in the entire network, satisfy the following contraints [39]:

a(U)=0 if U<∞ and a(n)>0, for L≤n<U,

d(L)=0 if L >0 and d(n) =1, for L<n≤U.

Let us now define a closed network with parameters (M’, N’, P’, Bi’, mi’, 0≤i≤M).

In order to define the closed analogue to the open Jackson network, assume that

M’=M+1, N’=U, Bi’=Bi, mi’=mi , 1≤i≤M, B0’=U-L, P’=P is the M’xM’ routing matrix,

and each node i, 1≤i≤M, has the same service discipline (FCFS) and service time

distribution (exponential) as the open network. Node 0 represents the external population

of the open network, and it can be defined as a service center with FCFS discipline and

load dependent service rate m0(n0)=a(n), 0≤n0≤B0’=U-L, where n0=U-n, and n is the total

population of the subnetwork {1,2,…,M} : n=S1≤i≤M ni, L≤n≤U.  

If node 0 works under BBS-O blocking and if the node 0 blocking function is defined as

follows : b0(n0)=d(n), where n0=U-n, L≤n≤U, then, from the blocking type definition, one

can immediately derive that the closed network behaves like the open Jackson network

under STOP mechanism. Therefore, it is the analogue closed network of the open one.

Fig. 4 shows the open Jackson network and its closed analogue.

The following theorem states that there exists an equivalence property between

STOP and BBS-O blocking mechanisms. From this result it is possible to derive a new

product form solution for a BBS-0 blocking network, as given by the following corollary.

Note that, to our knowledge, this is the only product form network with BBS-O blocking

type.
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- Fig. 4 - An open Jackson network and its analogue closed network -

Theorem EP9

A Jackson network with M nodes, under STOP blocking and with the total

network population which satisfies L≤n≤U, n =
M

∑
i=1

n
i
, is reducible to its analogue closed

network with M+1 nodes where node 0 works under BBS-O blocking with:  B0 = U-L,

m0(n0)=a(n), b0(n0)=d(n), n0=U-n, 0≤n0≤B0. The bijective function between the two joint

queue length distributions pSTOP and pBBS-O is given by :

pSTOP(n1, n2 ... nM)=pBBS-O(n0, n1, n2 ... nM) "(n1, n2 ... nM), n0=U-n.

Corollary 8

A closed network analogue to an open Jackson network shows the following

product form solution under BBS-O:
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p(n0, n1, . . . , nM) =
1

G
V(n)

M

P
i=1

g i(n i) "(n1, n2 ... nM), n0=U-n.

(pf9)

where

V(n) =

n-1

P
l=L

a(l)

      

" n ≥0

with    a(l) > 0   L≤l<U,    a(U) = 0

            g (ni ) =  ( xi / µi ) 
ni " ni ≥0, 1≤i≤M

Note that the product form solution (pf9) can be derived by applying formula (pf8) to the

single class network, where nodes have FCFS service discipline.

A different case of queueing networks with arbitrary topology and a set of

population constraints for subnetworks (or clusters) has been analyzed [39]. Van Dijk

considers a closed single-class FCFS-exponential queueing network whose nodes are

partitioned into Z disjoint subnetworks denoted by CW, 1≤W≤Z. Then we consider these

population constraints in each subnetwork W, i.e., the total subnetwork population, nW =

SiŒCW
 ni, is assumed to satisfy the constraint nW ≤ BW, 1≤W≤Z. In other words, BW is

the maximum population admitted to subnetwork W. We assume that the routing

probabilities between nodes of the networks are defined as follows [39] :

pij = {
p
i j
W i, j Œ CW 1≤W≤Z

p
i0
WRWW' p0j

W’ i Œ CW, j Œ CW’ with W≠W’ , 1≤W,W'≤Z

where p i j
W

 are arbitrary probabilities within subnetwork W, i,jŒCW, p
i0
W  =SjŒCW

 p i j
W

  is

the departure probability from node iŒCW to a different subnetwork, and p
i0
W

 
is the

probability that a job arriving at subnetwork CW enters node i, 1≤i≤M, 1≤W≤Z. In other

words, the routing among subnetworks is node independent, whereas upon job arrival at

and within a subnetwork, an arbitrary routing is allowed.

The author defines an ‘overall’ STOP or RECIRCULATE blocking, that is, as

long as one of the subnetworks is saturated, i.e., when for some W  nW ≤ BW, 1≤W≤Z,

the blocking mechanism acts on all the nodes outside that subnetwork, that is, when the

service at each node iŒCW', with W'≠W, 1≤W'≤Z, is stopped or recirculated. Both a

product form solution and an equivalence property between STOP and RECIRCULATE

blocking have been proved [39], as reported in the following theorems.
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Theorem PF10

A homogeneous closed Jackson network with single job class and a set of finite

constraints defined on subnetworks shows the following product form solution under

‘overall’ STOP and ‘overall’ RECIRCULATE blocking mechanisms:

product form (4) with

(pf10)

V(n) = 1 " n≥0

 g (ni ) =  ( xi / µi ) 
ni " ni ≥0, 1≤i≤M

Theorem EP10

In a closed Jackson network with finite constraints defined on subnetworks and a

single class of jobs, ‘overall’ STOP and ‘overall’ RECIRCULATE blocking mechanisms

are identical.

4. Conclusions

Queueing networks with blocking and product form solution have been presented

and compared, by considering different blocking mechanisms introduced in the literature.

Blocking type definitions arise from modeling systems behaviors in many different fields

including production, communication, and computer systems.

Equivalence properties between blocking types for product form networks have been

presented and classified according to network topology, both in terms of joint queue

length distribution and in terms of mean performance indices. Moreover, by combining

product form results and equivalence properties, product form solutions have been

extended to non-homogeneous networks where different nodes can have different types of

blocking. This class of networks can be used to model complex systems, e.g., integrated

computer-communication systems.

Finally, an equivalence relation between open Jackson networks with STOP blocking and

the closed analogues has been defined, from which a new product form case for BBS-0

blocking was derived.
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