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Abstract

Representation and reasoning with qualitative spatial relations is an important problem in

artificial intelligence and has wide applications in the fields of geographic information system,

computer vision, autonomous robot navigation, natural language understanding, and spatial

databases etc. The reasons for this interest in using qualitative spatial relations include cognitive

comprehensibility, efficiency and computational facility. This paper summarizes progress in

qualitative spatial representation by describing key calculi representing different types of spatial

relationships. The paper concludes with a discussion of current research and glimpse of future

work.
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1 Introduction

Spatial representation and reasoning plays an essential role in human daily life. Although

quantitative approaches can provide the most precise information, numerical information is often

unnecessary or unavailable at human level. For example, when people describe relations between

objects, they usually cannot give an accurate numerical description, but something like “the coffee

is in the cup, the cup is in the room”, which is quite enough to give a reasonable deduction “the

coffee is in the room”. The qualitative approach for spatial reasoning, known as QSR(Qualitative

Spatial Reasoning)(Cohn, 1997; Cohn and Hazarika, 2001; Cohn and Renz, 2007; Liu et al., 2004;

Vieu, 1997) thus becomes a promising way to process spatial information at this level and has

prevailed in AI(Artificial Intelligence), GIS(Geographical Information Systems), database and

multimedia communities for its understandability, high efficiency and computational facility.

It is quite natural to represent spatial situations by the qualitative relations between the

considered objects, so qualitative spatial relationship becomes a basic way of representing and

reasoning with spatial knowledge. Thus dozens of formalisms of qualitative spatial relations have

been proposed for describing various aspects of space. This paper presents a much broader range

of qualitative spatial calculi, including not only the most representative calculi in the previous

surveys on QSR(Cohn, 1997; Cohn and Hazarika, 2001; Cohn and Renz, 2007; Liu et al., 2004;

Vieu, 1997), but also the new results for the existing calculi, new calculi and comparisons between

them. A more systematic survey of direction relation calculi is given than that in these previous

surveys. Representative figures are provided to facilitate the understanding of the calculi. Calculi

modeling relationships between moving objects are presented, which were not part of the previous

surveys. Two types of combination of spatial calculi are presented, where loose combination looks

more practical than tight combination, as it is unlikely to develop a single universal qualitative
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spatial representation language(Cohn and Hazarika, 2001; Cohn and Renz, 2007). Another novel

aspect of this paper is the material describing the well-known implementations for QSR. Finally a

perspective of future research directions is presented, such as the combination of different aspects

of spatial relationships, spatial relationships over complex objects in 3D or discrete space and

exploiting the hierarchical structure of spatial relations according to their granularity.

The structure of the paper as follows: Section 2 introduces the main notions and terminologies

about qualitative spatial representation. Section 3 provides a categorized survey of representative

spatial relationship formalisms. Section 4 summarizes current publicly available implementations

employing qualitative spatial reasoning techniques. Section 5 proposes some future works for

qualitative spatial representations.

2 Preliminaries

Spatial relationships specify how some spatial entities are related in space with others. It

includes abstractions of physical spatial entities and the structure of the space. The space the

entities embedded in ranges from one to three-dimensions(or even four dimensions if space-time

histories are considered), acyclic or cyclic(e.g. regions on a surface or a sphere), discrete(raster

or grid) to continuous(vector), all of which results in a variety of formalisms fit for different

kinds of space. R
2 and Z

2 are the most common approaches modeling the continuous and

discrete 2D surface respectively. And they are the space of most studied in QSR. Traditionally in

mathematical theories, points are considered as primary primitive spatial entities, perhaps as well

as lines. Extended spatial entities such as regions are of particular interests, if necessary, defined

as a set of points on a plane(or a higher dimensional space). In some formalism, regions are

divided into simple regions(disk-like and with connected boundaries and interior) and complex

regions(multi-part regions possibly with holes) according to their connectivity.

Formally, a relation R over the sets X1,. . . ,Xk is a subset of their Cartesian product, written

as R⊆X1×. . .×Xk , and each element of R is a tuple (x1,. . . ,xk), where xi is a member of

corresponding domain of Xi. When specified to spatial relations, the considered domains are

identical, namely the set of spatial entities, such as points, lines or regions. Usually the considered

domain is infinite, so the spatial relations contain infinitely many tuples. But fortunately the set

of relations the spatial entities form is finite, and often is a JEPD(Joint Exhaustive and Pairwise

Disjoint) relation set, i.e., for arbitrary spatial entities there is one and only one specific relation in

the set that can be satisfied. JEPD relations are also called base or basic relations and represent

definite relationships between spatial entities. Indefinite information can be expressed by the

union of these base relations which can possibly hold. If no information is known, then all base

relations are possible.

Although this paper focuses on the qualitative spatial representation, it would involve some

parts of qualitative spatial reasoning, such as constraint satisfaction problems, composition,

converse etc. Often the information between spatial entities are expressed as constraints, such as

unary constraint “this room is 5 meter long and 3 meter wide”, or the binary constraint “the table

is in front of the desk”, even ternary constraint “the trolley is between the chair and the desk”.

Although there are many different spatial reasoning tasks, much research of QSR has focused

on one particular reasoning problem, the consistency problem, i.e., is the given information

consistent or inconsistent. Usually it is abstracted as a constraint satisfaction problem (CSP).

As many spatial constraints are binary, then this problem is transformed to that whether the

firs-order logic expression ∃x1. . . ∃xn∧i,j∨R∈AR(xi, xj) has an instantiation, where x1,. . . ,xn are

the variables over the domain of spatial entities, R(xi, xj) is the binary spatial relation constraint

between xi and xj , and A is the set of all available base relations. If the domain of the variables is

finite, the CSPs can be solved by backtracking over the ordered domains of the single variables,

but it is not very helpful when the domain of the variables is infinite. The domain of spatial

entities happens to be such an infinite range, so it needs another method.
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Relation Algebra (Tarski, 1941) is one way of dealing with the CSPs with infinite

domains(Ladkin and Maddux, 1994) . The power set of a set of binary base relations is a relation

algebra if and only if it is closed under specific relation operations: union (∪), intersection(∩),

complement(−), converse(−1) or composition(◦), as well as three particular relations. They are

the empty relation which cannot hold between any two members of the domain, the universal

relation which holds between any two members of the domain, i.e., the disjunction of all base

relations, and the identity relations which holds between each members of the domain and itself.

Following is the formal definitions of the operations in Relation Algebra.

− ∀x∀y : x(S ∪ T )y ↔ x S y ∨ x T y,

− ∀x∀y : x(S ∩ T )y ↔ x S y ∧ x T y,

− ∀x∀y : x(S ◦ T )y ↔∃z : x S z ∧ z T y,

− ∀x∀y : x T y ↔¬(x T y),

− ∀x∀y : x T−1y ↔ y Tx

Among these operations, composition is of particular interests which is correlated with a

local consistency, path-consistency. Since the consistency of CSPs with infinite domains is

generally undecidable(Hirsch, 1999), path-consistency then is of more attentions. A CSP is

path-consistent if and only if for every consistent instantiation of two variables it is always

possible to find an instantiation for any third variable such that the three variables together

are consistent. Accordingly the algorithm to get a set of path-consistent constraints is called

path-consistent algorithm. But in many cases of QSR, composition cannot be computed and

only weak composition(⋄) i.e., algebraic closure is available. If S ⋄ T = {R1, . . . , Rn} then

∀x∀y∀z(xSy ∧ yTz)−→ (xR1z ∨ . . . ∨ xRnz). Since composition is based on existence, while

algebraic closure is based on consistency. It is obvious that algebraic closure is less constrained

than composition(also called strong composition, compared with weak composition) and the

result relation set includes that of composition. For further information about weak composition,

please see(Bennett et al., 1997; Cohn and Renz, 2007; Renz and Ligozat, 2005). A special subset

of the power set 2A is of particular interests, the maximal tractable subset, i.e. if all the relational

constraints are limited to this subset, then the CSP over this subset is tractable(can be decided

in polynomial time). And the CSP over its superset is intractable.

3 Aspects of Qualitative Spatial Relations

This section will review a set of representative spatial relationship formalism. These formalisms

can be divided into those aspects of mereotopology, direction, distance and shape, the relation-

ships between static spatial entities; with the increasing availability of data involving mobile

entities, relationships between moving objects have become an increasingly important new focus

of QSR. Moreover, since many applications need to represent and reason about multiple aspects

of space, integrations of different formalisms is also a problem of much interest. Finally, we note

that uncertainty is another vital aspect of spatial relationships.

3.1 Mereotopology

Mereotopology, the integration of mereology(the theory of parthood) and topology, is of most

studied in QSR concerning the invariant properties that under continuous deformations of objects,

such deformations including translating, rotating, scaling. Since it can only make qualitative

distinctions, this kind of relationship(also called topological relations) is perhaps the most

fundamental spatial relation. Although mathematical topology has influenced various qualitative

spatial theories, the wholesale importation is undesirable for number of reasons(Gotts et al., 1996).

RCC(Region Connection Calculus)(Cohn et al., 1997; Renz, 2002) and n-intersections(Egenhofer,



4 j. chen et alxyDC xyEC xyPO
yTPPx NTPPx   yEQ bx
xTPPIy NTPPIxy

Figure 1 The eight jointly exhaustive and pairwise disjoint relations of RCC8. The arrows show
which relation is the next relation a configuration would transit to, assuming the continuous movements
or deformations. This structure has been called a continuity network(p.295, Cohn et al., 1997) or a
conceptual neighborhood(p.7, Cohn & Hazarika,2001;p.564, Cohn & Renz, 2007)

2005; Egenhofer and Franzosa, 1991, 1995; Egenhofer and Herring, 1991; Egenhofer and Sharma,

1993; Egenhofer and Vasardani, 2007; Egenhofer et al., 1994a,b) are the two best known

approaches for representing and reasoning with topological relations; most existing approaches

are extensions or improvements of them.

RCC is based on a reflexive and symmetric primitive relation between spatial regions C(x, y).

The intended topological interpretation of C(x, y) is that two regions x and y are connected

if and only if their topological closures share a common point where the spatial regions are

non-empty regular subsets of some topological space. It does not require the regions be simple

ones i.e., they might consist of (multiple) disconnected pieces. Among the number of relations

defined by C(x, y), some relations are of particular interests: DC(x, y), P(x, y), PP(x, y),

EQ(x, y), O(x, y), PO(x, y), DR(x, y), EC(x, y), TPP(x, y), NTPP(x, y) and P−1, PP−1, TPP−1

and NTPP−1, the converse of non-symmetrical relation P, PP, TPP and NTPP respectively.

Their formal definitions and the meaning under the intended interpretations, denoted after the

double slash are the following(Randell et al., 1992b; Renz, 2002).

DC(x, y) ≡def ¬C(x, y) //x is disconnected from y

P(x, y) ≡def ∀z(C(z, x)→C(z, y)) //x is a part of y

PP(x, y) ≡def P(x, y)∧¬P(y, x) //x is a proper part of y

EQ(x, y) ≡def P(x, y)∧P(y, x) //x equals y

O(x, y) ≡def ∃ z(P(z, x)∧P(z, y)) //x overlaps y

PO(x, y) ≡def O(x, y)∧¬P(x, y) ∧¬P(y, x) //x partially overlaps y

DR(x, y) ≡def ¬O(x, y) // x is discrete from y

EC(x, y) ≡def C(x, y) ∧ ¬O(x, y) // x is externally connected with y

TPP(x, y) ≡def PP(x, y) ∧ ∃z(EC(z, x)∧EC(z, y)) // x is a tangential proper part of y

NTPP(x, y) ≡def PP(x, y) ∧ ¬∃z(EC(z, x)∧EC(z, y)) // x is a non-tangential proper part of y

P−1(x, y) ≡def P(y, x) // y is a part of x

PP−1(x, y) ≡def PP(y, x) // y is a proper part of x

TPP−1(x, y) ≡def TPP(y, x) // y is a tangential proper part of x

NTPP−1(x, y) ≡def NTPP(y, x) // y is a non-tangential proper part of x

By adding new primitive relations and functions, a much larger number of different relations

can be defined upon the C relation(Cohn and Hazarika, 2001).Here only presents a small fraction

of relations can be expressed by RCC theory. If some of the above relations can form a set of
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Figure 2 The corresponding basic relations of 4IM, RCC8 and RCC5

JEPD relations and closed under composition, then they generate relation algebra; thus, the

reasoning about these relations can be done by the path-consistency algorithm mentioned in

section 2. DC, EC, PO, EQ, TPP, NTPP, TPP−1 and NTPP−1 are the eight JEPD relations of

the constraint language RCC81as shown in Figure 1. They are of particular interests, for they

forms the smallest set of base relations which allows topological distinctions rather than just

mereological, i.e., being expressed by part-whole relationship(Randell et al., 1992b; Renz, 2002)

RCC5 is the coarser edition of RCC8, containing five base relations DR, PO, EQ, PP, PP−1, and

does not take the boundary of a region into account.

A series of extensions and completions of RCC theory have been made: the density axiom of the

RCC has been shown to be redundant and each RCC model leads to a Boolean algebra(Düntsch

et al., 2001). Three maximal tractable subsets of RCC8: Ĥ8, C8 and Q8 have been given

in(Renz, 2002). Each RCC model is a consistent model of the RCC8 CT(the consistency-based

composition table of RCC8) and no RCC model can be interpreted extensionally anyway, thus

given a negative answer to Bennett’s conjecture which is to remove the universal region from the

domain of possible referents of the region constants(Li and Ying, 2003). A generalization of RCC

(GRCC)(Li and Ying, 2004) is introduced, which accommodates both discrete and continuous

spatial information. Each countable RCC model(compared to the ‘standard RCC in continuous

space) can be constructed hierarchically from a sequence of finite GRCC models, and every finite

GRCC model can be isomorphically embedded in any RCC model; this bridges the gap between

qualitative and quantitative approaches for spatial information(Li et al., 2005). Consistency w.r.t.

RCC theory is equivalent to consistency w.r.t. topology and an O(n3) algorithm for generating a

realization of any path-consistent network of RCC8 base relations has been proposed, proving that

any consistent RCC8 network has a realization in the digital plane and in any RCC model(Li,

2006a). Any consistent RCC8 binary constraint network can be consistently extended(Li and

Wang, 2006), which removes the doubts about the complexity analysis of RCC8, i.e. whether

the reduction method proposed in (Renz and Nebel, 1999) works for all calculi using weak

compositions, given that the composition table of RCC8 is a weak one.

N-intersections are an alternative representation framework of mereotopology based on point-

set topological theory. An object can be seen as a point set embedded in a specified space. For

example a region is a homogeneously 2D point set x embedded in R
2 related to three point sets:

the interior(x◦) is the union of all open sets in x, the boundary(∂x) is the intersection of the

closure of x and the closure of the exterior of x, and the exterior(x−) is the set of all points of not

1It is important to distinguish between RCC as a general theory of space, i.e. as an axiomatization in
first order logic, and the various constraint languages with varying numbers of JEPD relations (such as
RCC5 and RCC8) in these languages the JEPD relations are themselves taken as primitives rather than
the C relation. Terms such as RCC8 are usually regarded as referring to the constraint language, though
in some presentations the first-order theory interpretation is actually meant.
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contained in x. In the simplest case, only the interior(x◦) and the boundary(∂x) are considered.

The relationship between any two (simply connected) 2D regions x and y can be characterized

by a 2×2 matrix called the 4-intersection matrix(4IM)(Egenhofer and Franzosa, 1991).

R(x, y) =

[

x◦
∩

y◦ x◦
∩

∂y

∂x
∩

y◦ ∂x
∩

∂y

]

After taking into account the constraints imposed by the physical reality of planar space and

some specific assumptions about the regions, it turns out there are exactly eight valid matrices,

which correspond to the RCC8 and RCC5 relations, as shown in Figure 2. In (Egenhofer et al.,

1994a), it shown that the topological relations between regions with holes can be classified by

not only the relation between each pair of regions, but also the relations each hole of each region

has w.r.t. the other region and each of its holes, where the topological relations between basic

elements (regions and holes) are the eight basic relations discerned by 4IM. The shortcomings

of this approach are that the resulting relations are dependent on the number of holes, as the

number of holes increases this approach will be inefficient and painstaking. A method independent

of holes is proposed in (Vasardani and Egenhofer, 2009), which is based on the 23 JEPD relations

between a region and a region with a hole (Egenhofer and Vasardani, 2007). It shows that there

are 152 basic topological relations (Vasardani and Egenhofer, 2008) between single-holed regions.

Considering the exterior(x−), the 4IM is extended into 9IM, one can use this calculus to

classify the relationship not only between pairs of regions but also between all combinations of

lines, points and regions (Egenhofer and Herring, 1991; Egenhofer et al., 1994b). Dividing the

exterior of a concave region into two parts, the inside and outside of the convex hull, the 9IM is

extended to 16IM (Ouyang et al., 2009a), which is a refinement of RCC23 (Cohn, 1995) a calculus

discriminating the topological relations between concave regions.

R(x, y) =





x◦
∩

y◦ x◦
∩

∂y x◦
∩

y−

∂x
∩

y◦ ∂x
∩

∂y ∂x
∩

y−

x−
∩

y◦ x−
∩

∂B x−
∩

y−





Different calculi with more JEPD relations can be derived by changing the assumptions about

what kind of space the entities are in and what information the cells of the matrix represent.

For examples, three new relations can be identified between the regions on the spherical surface

(Egenhofer, 2005). If the exterior of the entity is replaced by its voronoi-region in the 9IM, a

more comprehensive calculus V9I (Voronoi-based 9-intersection)(Chen et al., 2001) is obtained.

One can derive a calculus for representing and reasoning about regions in Z
2 rather than R

2,

in which case the base relations in R
2 is a strict subset of those in Z

2 due to the one-pixel

extent the boundary of a raster region has (Egenhofer and Sharma, 1993). Alternatively, one can

extend the representation in each matrix cell by the dimension of the intersection rather than

emptiness and non-emptiness which is called the dimension entended method(DEM). To handle

the large number of possible relationships identified by DEM, the calculus based method(CBM)

has been proposed to group all possible cases into five meaningful topological relationships:

disjoint, touch, in, overlap and cross (Clementini et al., 1993). Besides the dimension of the

non-empty intersection, the types (touching, crossing and different refinements of crossings), the

relationships w.r.t. the exterior neighborhoods and sequence can also be used to discriminate

fine-grained relationships and evaluate the topological similarity between any two pair of spatial

objects, which have the same topological relation (Egenhofer and Franzosa, 1995).

It should be noticed that the above calculi are mostly concerned about topological relationships

that are discernible between simple spatial objects such as points, lines or disk-like regions in

2D space2. However in practice, spatial objects are the deformations or aggregations of these

primary elements or entities in 3D space, such as complex points, compound regions or bodies.

2RCC is actually formulated for an arbitrary, fixed, dimension, though most often has been applied in
the 2D case.



A Survey of Qualitative Spatial Representations 7samexnorthnorthwest northeastwest eastsouthwest southeastsouthy
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direction relations(p.7, Isli
et. al, 2003)
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Figure 4 Projection-based
direction relations(p.7, Isli et.
al, 2003)
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Figure 5 A basic relation x4∠

3

13y in
OPRA4 (p.37, Mossakowski & Moratz,
2012)

9IM is the most popular calculus to reason the topological relationships between these objects.

Compared with the eight possible 9IM matrices over simple regions, it has been proved that

only 43(out of 29=512) matrices are identified as realizable over general regions, where a general

region is a nonempty proper regular closed subset of the Euclidean plane(Li, 2006b). According

to 25 rules which encode the constraints imposed by physical space and assumptions relating

to spatial objects in 3D space, only 69 valid 9IM matrices remain and can discriminate 279

different relationships between all types of combinations of objects(Zlatanova, 2000). Given the

definitions of complex points(finite collections of single points), complex lines(finite collections of

one-dimensional curves), and complex regions(multi-part regions possibly with holes) one can use

9IM to classify 248 exclusive relations for all type combinations(Schneider and Behr, 2006). A

nested matrix, called the 9+-intersection matrix which extends each matrix cell by a sub matrix,

gives a systematic way representing different topological relations in planar space, cubic space,

circle and spherical surface (Kurata, 2008).

Ever since (Allen, 1983) gives the composition table for the Interval Algebra (he actually called

it the transitivity table), building composition tables has become a major challenge for current

qualitative spatial reasoning approaches(Randell et al., 1992a). (El-Geresy and Abdelmoty,

2004) presents a general method for automatic derivation of such tables between different types

of objects, according to the space division theory inside the 9IM.

3.2 Direction

Direction relations describe where a spatial entity is placed relative to one another, which is

more constrained than topological information, but less constrained than metrical information.

It usually involves three primary elements: the target object, the reference object and the

reference frame; thus contrast to the binary relationships usually found in mereotopological

calculi, direction relations can be binary (if there reference frame is implicit), ternary or with

even more arguments. Depending on the dimension of the objects involved, direction calculi can

be divided into two categories: one based on the points and the other based on extended objects.

The two most common binary point-based calculi are cone-shaped direction(Frank, 1991),

and projection- based(Frank, 1996) direction, shown in Figure 3 and Figure 4 respectively. The

basic relations of the cone-shaped calculus are based on the four or eight disjoint sectors of the

space divided by the lines going through the reference point; while the basic relations of the

projection-based calculus are decided by the horizontal and vertical lines across the reference

point. Their combination with a coarser version of double-cross(Freksa, 1992) leads to a more

expressive calculus cCOA(Isli et al., 2003), which claims to integrate directions in geography

and those of human perception. For oriented points (an abstraction of objects with an intrinsic

direction), the Oriented Point Algebra(OPRA)(Moratz, 2006) can be used to describe the relative

direction information which can be seen as an extension of the cone-shaped calculus. Scalable
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Figure 6 Pictorial examples of the 24 CYSt basic relations, where l, e, o and r stands for to the left of,
equal to, opposite to and to the right of, thus orl denotes that orientation y is opposite to x, z is to the
right of y and z is to the left of x .(p.156, Isli & Cohn,2000)

granularity is used in OPRAm(Mossakowski and Moratz, 2012) dealing with information with

different granularities in one frame, where m is the number of lines going through the points. As

shown in Figure 5, x4∠
3

13
y denotes that oriented point x lies on the 3rd part of the space divided

by the lines going through oriented point y, while y lies on the 13th part decided by x, where

4 means that there are four lines going through points and divide the space around the points

equally.

The CYCORD(short for CYClic ORDering) system is a ternary relation calculus based on the

cyclic ordering relation CYCORD(x, y, z), which is true when x, y and z are clockwise in 2D

space. It shows that a number of qualitative calculi can be translated into the CYCORD system,

but reasoning in it is NP complete(Röhrig, 1994, 1997). CYCt is a refinement of CYCORD system,

which leads to a ternary relation algebra containing 24 basic relations, as shown in Figure 6. A

basic relation expresses for triples of orientations3 whether each of the three orientations is equal

to, to the left of, opposite to or to the right of each of the other two orientations. The constraint

propagation procedure is proved be polynomial and complete for a subset including all atoms;

it also delineates those situations when the consistency checking problem is tractable or NP

complete(Isli and Cohn, 2000).

Motivated by cognitive considerations and based on relative direction information about spatial

environments, the concept of view point is introduced in the ternary double-cross calculus(Freksa,

1992), as shown in Figure 7. A relation in the double-cross calculus can be seen as the relationship

of a target point c w.r.t. a vector ab, denoted by ab : c, since there is no difference between

view point and reference point. A binary composition operation is defined, as well as unary

operations: INV(derive ab : c from ba : c), HM(map ab : c to bc : a) and SC(derive ac : b from

3Orientation is an inherent character of objects. For example, an oriented point can be seen as an
abstraction of a car, since cars have heads and tails intrinsically. The main difference from direction is
that orientation often does not involve reference objects, thus orientation is not a relative relation.
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Figure 7 15 base rela-
tions in the double- cross
direction calculus, where l,
s, r, f, i, b and n stand for
left, straight, right, front,
identical, back and neu-
tral(p.7, Isli et al., 2003)
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Figure 8 Double-cross direction calculus in
3D space.(p.91, Pacheco etal., 2002)

xyb
f rl c

Figure 9 Pictorial illus-
tration of seven base rela-
tions in the LR cal-
culus when x ̸= y. l, f,
r, b and c stand for
left, further, right, back
and closer(p.285, Scivos &
Nebel, 2005)

ab : c)(Zimmermann and Freksa, 1996) to compute all the possibilities between the three points.

More relations can be derived when the double-cross calculus is extended to 3D space, as shown

in Figure 8; this naturally increases the complexity of the calculus. Three models under different

granularity are proposed to reduce the complexity and dealing with coarse direction information:

length coarse model, height coarse model and general coarse model, where an accurate model can

be derived from the integration of above three coarse models(Pacheco et al., 2002).

A ternary point-based calculus is RST(the initials of rotation, scaling and translation)(Scivos

and Nebel, 2004)) if the relations are invariant when all points are mapped by rotations, scalings

or translations. Examples for such RST calculi are the double-cross(Freksa, 1992), the flip-

flop(Ligozat, 1993)(also called LR in (Scivos and Nebel, 2004), as shown in Figure 9), and

the TPCC(Moratz and Ragni, 2008). However it has been proved(Wolter and Lee, 2010)that

a qualitative calculus expressive enough to distinguish left of from right of including flip-

flop(Ligozat, 1993), double-cross(Freksa, 1992), dipole(Moratz et al., 2000), OPRA(Moratz,

2006), TPCC(Moratz and Ragni, 2008), existing relation algebraic approach is too weak for

deciding consistency problems and all reasonable sub-algebras remain NP-hard, i.e. directional

relation calculi are inherently intractable.

The above is a brief summary of point-based direction. Direction relations between extended

objects are more complex, for extended objects often have intrinsic directions and shapes in

themselves. Therefore, to simplify the process, MBRs(Minimal Bounding Rectangle) are often

used as the approximation of such objects. This approach translates the direction relation between

the MBRs into a pair of interval relations, where the intervals are the projections of MBRs

on each axis. Examples of such approaches are: 2D-String(Chang et al., 1987) as shown in

Figure 10, its extension 2D-CString(Lee and Hsu, 1990) and 2D-GString(Chang et al., 1996),

the two-dimensional extension of Interval Algebra(Allen, 1983) as shown in Figure 11—the

Rectangle Algebra (Balbiani et al., 1998, 1999a) as shown in Figure 12 and the three-dimensional

extensionthe Block Algebra(Balbiani et al., 1999b). It should be noticed that these string-based

and interval algebra-based methods can represent not only the direction information but also

topological information.4 A string-based model only dealing with topological information is

presented in(Li and Liu, 2010).

4If regions are abstracted to MBRs, then the actual topological relations between the actual regions will
not in general be correctly reflected. As shown in Figure 13 x DC y is satisfied, while using MBRs to
abstract the region x and y then MBR(x) PO MBR(b) holds.
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Figure 10 An exam-
ple of a 2D-string. (p.414,
Chang et al., 1987 )
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Figure 11 The 13 basic relations of the
Interval Algebra (p.835, Allen, 1983 )

x yx (m, p) y
Figure 12 An example
of the basic rectangle alge-
bra relation x (m, p) y

The direction information described by MBR-based calculi is relatively coarse and cannot

express the direction influenced by the shape of the objects in precise reasoning. The cardinal

direction matrix(direction matrix for brevity)(Goyal and Egenhofer, 2000, 2001) and Cardinal

Direction Calculus(CDC)(Skiadopoulos and Koubarakis, 2004, 2005) are the two most well-known

binary direction relation calculi.

A direction matrix is a 3× 3 matrix(Goyal and Egenhofer, 2000, 2001), whose elements have the

same topological organization as the nine direction tiles formed by the corresponding MBR of the

reference object, as shown in Figure 13. The content of each entry of a direction matrix is decided

by whether the target object intersects with it. After taking into account the constraints imposed

by simple regions, it turns out only 218 out of 29 − 1 = 511 matrices are realizable. When dealing

with objects with different dimensions, the deep direction relation matrix(Goyal and Egenhofer,

2000) is used, where each cell of the matrix is a nine-bit neighbor code recording the information

about intersections with the direction tiles and the neighboring boundary. Instead of the Boolean

value of the intersection, the cell of the matrix can also represent the percentage of how much the

target object intersects with each direction tile, which is useful for similarity assessment (Goyal

and Egenhofer, 2001). In a topological calculus, usually each basic relation corresponds to only

one basic relation when inverted: for example the converse relation of PP(x, y) is PP−1(y, x). But

in the direction matrix calculus, one direction matrix may have several valid converse matrices;

for example the matrix representing the direction relation NE:E and E are both valid converses

of the matrix of W. It has been proved(Cicerone and Felice, 2004) that out of 2182 possibilities,

only 2004 pairs of matrices are realizable over simple regions, although this is still a huge number

of relations.

In contrast to direction matrices, an arbitrary basic CDC relation(Skiadopoulos and

Koubarakis, 2004, 2005) is a binary relation involving a target object and a reference object,

and a symbol that is a non-empty subset of nine atomic relations which has similar semantics to

the nine direction tiles in direction matrix. The most important difference between the two calculi

is the semantics of intersections of the target object and the direction tiles(Chen et al., 2010a).

In the direction matrix, the only question is whether there is an intersection, so the intersecting

part can be a point, a line or a region. But in the CDC, the intersecting part must at least be a

sub region of the target object, as shown in Figure 14.

An O(n5) and an improved cubic consistency checking algorithm for the basic CDC constraints

are given in (Skiadopoulos and Koubarakis, 2005) and (Liu et al., 2010) respectively. It has been

proved that composition in CDC is weak composition(Skiadopoulos and Koubarakis, 2004) and

consistency checking a set of unrestricted CDC constraints is NP-complete(Skiadopoulos and

Koubarakis, 2005; Liu et al., 2010). However by introducing the rectangle algebra into CDC,

a tractable subset including 36 base rectangular relations has been identified(Navarrete and

Sciavicco, 2006); the rectangle-based inverting rules(Chen et al., 2010a) and composition(Chen
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Figure 13 A pictorial example of the nine direction tiles divided by the MBR of reference object y and
the corresponding representations in direction matrix and CDC.direction matrix: x                             yCDC：     x W  yx y ∅ ∅ ∅  ¬∅ ¬∅ ∅  ∅ ∅ ∅ 
Figure 14 A pictorial example of the difference between the direction matrix representation and CDC:
x and y intersect on y,s left border, but due to the definitions, the direction relations between x and y

are different in direction matrix and CDC. (p.280, Chen et.al, 2010a )

et al., 2010b) are given, and these can be easily extended to cubic space. Neither the direction

matrix nor CDC can handle direction information between overlapping and contained regions

properly. ICD(Internal Cardinal Direction)(Liu et al., 2005) solves this problem partially, but

the notable inherent shortcoming is that the ICD relations are not closed under converse. For

example, if x and y have a specific ICD relation, the relation between y and x will not be in ICD

anymore. The Interior-boundary direction calculus settles this problem(Du et al., 2008a).

However, it can be argued that the direction partition in the direction matrix and CDC

is unnatural. Typically, people tend to organize surrounding space using lines with angles

similar to the cone-based model, hence the cone-based partition is arguably more intuitive

and descriptive(Franklin et al., 1995; Huttenlocher et al., 1991). An alternative family of

direction relation models(Skiadopoulos et al., 2007) are proposed, where the reference object

is approximated by its MBR as with the direction matrix and CDC, but the space around the

reference object is partitioned into five zones using the cone-based model; thus the family contains

an infinite number of models identified by the unique value for ϕ(0◦ < ϕ< 90◦) defining the origin

angle of the space partitioning lines, as shown in Figure 15. For a given ϕ, the five partitioned

zones correspond to five atomic relations, and result in 25 − 1 = 31 basic relations in the calculus,

which is significantly smaller than the respective sets of CDC or direction matrix which contains

511 basic relations respectively.

The projective direction calculus is the ternary calculus of most notes. This calculus is built

on a partition of the plane into five separate zones: before, between, after, left-side and right-side

which are obtained from projective properties of two reference objects as shown in Figure 16.

Then, by considering the empty/nonempty intersections of a primary object with these zones,

the model is able to distinguish 34 different projective relations (Clementini and Billen, 2006).

Its extension to a spherical surface is addressed in (Clementini, 2008). The converse, rotation and

composition rules are discussed in (Clementini et al., 2010).

Although above direction calculi partially support complex objects, such as that the target

object is a multi-part region; they cannot always yield precise or may give counterintuitive
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y B(y)N(y)S(y) E(y)W(y)
ϕ

ϕ

ϕ

ϕ

r1(y)
r4(y)r3(y)

r2(y)
MBR(y)

Figure 15 The five direction tiles divided by
the MBR of reference object y and the four
lines starting at the vertices of the MBR with
a horizontal angle of ϕ in the cone-shaped
CDC.(p.1118, Skiadopoulous et al., 2007)

cb between(b, c)before(b, c) after(b, c)aleftside(b, c)rightside(b, c)ls:af (a, b, c)
Figure 16 A pictorial example of five separate
zones in ternary projective relations, where a is
on the left side and after b and c, denoted by ls:af
(a, b, c). (p.805, Clementini & Billen, 2006)

results for certain spatial scenarios. E.g., according to CDC model Argentina lies on partially

same location and partially south to Brazil; but in human intuition, Argentina lies partially

to the southwest and west of Brazil. The main reason is that for complex objects, it need

consider much better the influence of shape. A two-phase model, called the Objects Interaction

Matrix(OIM)(Schneider et al., 2012) is proposed to solves these problems and determine the

cardinal direction between even complex regions. It consists of a tiling and interpretation phase. In

tiling phase, a tiling strategy first determines a bounding grid called objects interaction grid. Then

for each grid cell it stores the information how the region objects intersect with the corresponding

tile, which leads to the OIM. In the subsequent interpretation phase, an interpretation method

is employed to the OIM and determines the detail of cardinal directions.

3.3 Distance5

The spatial representation of distance can be classified into two main groups: absolute and

relative. Absolute approaches usually measure the distance between two objects, such as “the

distance between A and B is 100 meters” or “A is close to B”. Relative approaches often involve

the comparison to a third object. For example, “A is closer to B than that to C”. Absolute

approaches can be qualitative or quantitative; while relative approaches generally are qualitative.

Distance relations alone are not enough in reasoning, normally direction relations are needed

too: for instance, given the distance from A to B and from A to C, to determine the distance

from B to C, the direction relations between these three points are necessary. A straightforward

idea is to combine directions as represented by segments of the compass with a separate distance

metric, which leads to a unified framework across different level of granularities in (Clementini

et al., 1997), as shown in Figure 17. One approach combines the Delta-calculus(Zimmermann

and Freksa, 1996) with point-based directions, but only a restricted set of distance distinctions

can be identified (Zimmermann, 1993). Another approach combines qualitative distance with

qualitative direction angles and then formulates a set of qualitative inference rules called

qualitative trigonometry and qualitative arithmetic(Liu, 1998). Several examples are illustrated

how to use this method in qualitative spatial constraints analysis, such as reducing the search

space in a simulated annealing based quantitative value assignment problem. A Ternary Point

Configuration Calculus(TPCC) is proposed in (Moratz and Ragni, 2008), where direction

knowledge is represented in the double-cross calculus(Freksa, 1992) and distance measurements

are based on the two of the three points. It has 27 atomic JEPD relations as shown in Figure 18

and hence gives finer distinction than in previously published calculi.

5In general, the distance relation has meaning only when combined with direction relations; strictly
speaking, it should be classified into the combination of different spatial calculi as said in section 3.6.
But such distance relations are quite common in daily life, so it is selected as a single category.
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same xyvcclcmfrvf N NE ESES
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Figure 17 An iconic representation of the
combination of cone-shaped direction and abso-
lute distance: very close(vc), close(cl), com-
mensurate(cm), far(fr) and very far(vf).(p.324,
Clementini et al., 1997)

origin relatumcslcsr csbcsr samdsf dsbdsl
dsr dbr drbdlbdbldfldlfdrf dfr

cfl cbl clbcrbcbrcfrcrfclf target
Figure 18 A pictorial representation of 27
basic relations in TPCC, where f, b, l, r, s,
d, c stand for front, back, left, right, straight,
distant and close.(p.79, Moratz & Ragni, 2008)

3.4 Moving Objects

With the popularization of mobile positioning and communication, moving objects have become

a new point of focus for QSR. To facilitate information collection and processing, moving objects

are often abstracted as points, and the focus is mainly on the relations between the trajectories

formed by these moving points. Although certain direction information is included for moving

objects, the essential difference is that this kind of calculus commonly describes the relative

motion between objects, but not the relative direction between the static objects at any given

time point.

One simple method approximates trajectories as oriented line segments and then expressing

movements by the relative position between the segments, which leads to several segment-based

calculi. One approach abstracts such oriented line segments as dipoles constituted by the start

points and end points. It distinguish the location and orientation of different dipoles according

to whether a point lies to the left, to the right, or shares the same point with the start or the end

point of the referring dipole. Then it forms a relation algebra called Dipole calculus (Moratz et al.,

2000) including 24 basic relations, but reasoning over these relations is NP-hard. For example, x

ells y as shown in Figure 19. denotes the case that the start point of x shares the same point with

the end point of y, the end point of x lies to the left of y, while the start point of y lies to the left

of x and the end point of y and shares the same point with the start point of x. Another approach

is based on interval algebra(Allen, 1983). By considering whether the direction of two intervals

is same or not, the interval algebra can be extended to the directed interval algebra(DIA)(Renz,

2001). DIA can be seen as the Cartesian product of the interval algebra with {=, ̸=}, which

represent whether the orientations of two intervals are same or not; Thus the calculus includes

26 basic relations, as shown in Figure 20. Path-consistency decides the consistency for a certain

subset of DIA, which contains all basic relations. The major disadvantage of the DIA is that it is

only suitable for movements in one dimension; free or restricted 2D movements are not supported

by the DIA. A corresponding refinement of DIA on road network is introduced in (Wang et al.,

2005).

Rather than comparing relative movements over a pair of fixed intervals, the family of QTC

(Qualitative Trajectory Calculus) calculi compares trajectories point by point, by considering

instantaneous relative motions. In these calculi the point-wise relative motions between different

spatial entities are mapped to one of the qualitative values {-, +, 0}, denoting towards, away

from and stable. In the basic Qualitative Trajectory Calculus(QTCB)(de Weghe et al., 2004), the

direction frame is compass-like and the base relations can be represented by tuples of qualitative
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Figure 19 Basic relations of the Dipole calculus, where l, r, s, e stand for left, right, start point and
end point, and the oriented line segment x and y are denoted by solid and dotted line separately.(p.235,
Moratz et al., 2000)x b= y x f= y x b≠ y x f≠ y x mb= y x mf= y x mb≠ y x mf≠ yx cb= y x ef= yx cb≠ y x eb≠ y x cf= y x eb= y x cf≠ y x ef≠ y x ob= yx of= y x ob≠ y x of≠ y x c= y x e= y x c≠ y x e≠ yx eq= y x eq≠ y
Figure 20 Basic relations of DIA, where b, f , m, o, c, e, eq stand for behind, in-front-of, meets,
overlaps,contained in, extends and equals respectively. = denotes that both intervals have the same
orientation and ̸= for opposite. x is represented by a solid arrowed interval while y is by a dotted arrowed
interval.(p.52, Renz, 2001) -+ 0+ ++-0 00 +0-- 0- +-
Figure 21 Basic relations of QTCB in a conceptual neighborhood diagram. The solid dots represent
the stationary objects and the open dots represent the moving objects. (p.1103, de Weghe et al., 2004 )

values. For example, (+, 0) means that the 1st object is moving away from the 2nd object,s

position and the 2nd object is stable with respect to the 1st object,s position. QTCB is expressive

enough to describe movements such as a carnivore hunting a prey; but for movements such as

vehicles traversing a crossroads, the complex double-cross direction(Freksa, 1992) frame is needed

and so the QTC Double-Cross(QTCC)(de Weghe et al., 2005a) has been defined. QTCC includes

81 base relations and the rules for composing relations are given in (de Weghe et al., 2005b).

According to (Moreira et al., 1999) there are two types of moving objects: objects that have

a completely free trajectory which is only constrained by the dynamics of the object itself (e.g.

a bird flying through the sky), and objects that have a constrained trajectory (e.g. a car on a

road network). QTCB and QTCC can describe two objects moving freely in a plane, but not the

objects with constrained trajectories in a network. The network version of QTC, QTCN (Bogaert

et al., 2006) is proposed where the movement towards or away from is defined along the shortest

path in a network between two objects, rather than the Euclidean distance as in QTCB . While
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Figure 22 Concave regions with different shapes distinguishable using convex hulls (p.313, Cohn, 1995)m+m- m-m- M-M+ M+ M+
Figure 23 A pictorial example of Process-
Grammar (p.220, Leyton, 1988)

Straight line segmentConvex curve segmentConcave curve segmentOutward pointing angleInward pointing angleOutward pointing cuspInward pointing cusp
Figure 24 A picture of the seven qualitative cur-
vature types. (p.1063, Galton & Meathrel, 1999)

the topological structure of the network can change with time, the qualitative trajectory calculus

on changing networks QTCDN (Delafontaine et al., 2008) is derived from QTCN . A prototype of

QTC-based information system has been implemented in (Delafontaine et al., 2011).

3.5 Shape

Shape is perhaps one of most important characteristics of an object, but is also particularly

difficult to describe qualitatively. Topological information can express limited shape information,

such as whether there is a hole in a region or the interior is connected; this information is too weak

for finer grained distinctions for shape information. Although direction and distance have already

added something to pure mereotopology, these calculi and models are not directly applicable for

shape description.

Region based methods focus on the interior of objects. A hierarchical representation approach

is presented in (Cohn, 1995). It uses two primitive notions: that of two regions connecting and the

convex hull of a region, computing the topological relationships between the concavities in the

convex hull and number of concavities, then a wide variety of concave shapes can be distinguished

as shown in Figure 22. But the predicate to detect whether two concavities i1, i2 in the convex

hull of region x, lie on the same side of x, SameSide(i1, i2, x) in (Cohn, 1995) does not always

give correct answer. This problem is solved in (Ouyang et al., 2009b) by an improved SameSide*

predicate definition and an algorithm based on detecting concave concavities and transforming

them to convex concavities which are amenable to the revised SameSide predicate definition.

The convex hull is a powerful primitive and it has been shown that any pair of bounded, regular

regions in 2D space can be distinguished by the three primitives: external connection, proper part

of and being convex, if and only if they are not related by an affine transformation (Davis et al.,

1999).

Most boundary based methods distinguish shapes mainly by the sequence of different types

of curvature extrema along its contour or the boundary segments.(Galton and Meathrel, 1999)

generalized much of this work. Process-Grammar (Leyton, 1988) expresses the smooth shape

evolution of a smooth 2D curve in terms of transitions at five extrema: M+, m+, M-, m-

and 0 corresponding to actions: protrusion, squashing, internal resistance, indentation and zero-

curvature respectively, as shown in Figure 23.
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Figure 25 Left: The orientation grid formed by line segment BC and an example polygon described
by T LT 36; Middle: Iconic representations of T LT 36; Right: Iconic representations of T LT 12 and T LT 6

(p.103, 104, 106, Gottfried, 2003b)FrontDuringBack
left middle rightFI Fm FrFOI FOmI FOmr FOrFCI FCrCI Id Cr DrDI BCI BCrBOmI BOmrBOI BOrBI Bm Br
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Figure 26 Left: Conceptual neighborhood of BA23 (right); Middle: iconic instantiations of all relations;
Right: an example polygonal outlines described by BA23, the bold vertical segment being the reference
segment which is oriented upwards. (p.114, 119, Gottfried, 2006; )

In contrast to the smooth outline assumption in (Leyton, 1988), a representation of outlines by

means of strings over an alphabet of seven qualitative curvature types (as shown in Figure 24) is

proposed in (Galton and Meathrel, 1999), which forms a formal language for the qualitative

representation of two-dimensional outlines. T LT (Tripartite Line Tracks)(Gottfried, 2003a,b)

considers three end-point-connected lines then the medial line determines an orientation grid

which has 15 partitions. And the two endpoints are described with respect to the medial line

by their position in the orientation grid. If only consider the general position (do not consider

the position on the lines), then it at most can discerns 36 different cases. Removing all the

symmetrical relations of T LT 36, there remain 12 distinguishable relations denoted by T LT 12,

where the subscript is the number of possible relations. If omitting the length information encoded

in T LT 12, only six relations left. Thus, T LT can describe 2D polygonal outlines by a sequence

of different types of tripartite line tracks under different granularities.

Instead of considering three end-point-connected line segments, BA(Bipartite Arrangements)

Calculus(Gottfried, 2004) describes arbitrary pairs of line segments and then gets 23 different

base relations as shown in Figure 26. If one line of a polygon is made the basis, then the position

of every other line can be described relative to it, using the relations of BA. Consequently the

list of BA relations so formed gives a qualitative shape representation, which is used in similarity

assessment (Gottfried, 2006, 2008).
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3.6 Combinations of Binary Qualitative Calculi

Many types or aspects of spatial relations are formed by making different abstractions of the

objective (metric) spatial relations. Topology, distance, direction and shape are classified by

the subjective motivations of how people observe the world. These aspects can be integrated.

Compared to single aspect spatial relations, integrating multi-aspect spatial relations has more

potential for practical application since expressiveness is increased, and has become a focus in

QSR research.

In QSR, existing calculi can be combined to create new formalisms(Wölfl and Westphal,

2009); for example, the rectangle algebra (block algebra) can be defined as a specific twofold

(threefold) product of the interval algebra. Compared with such orthogonal cases (where there

is no interaction between the component algebra), it is more challenging to combine calculi

with interdependent semantics such as the work(Gerevini and Renz, 2002) combining RCC8 and

Point Algebra(Vilain et al., 1990). Two possible combining strategies(Wölfl and Westphal, 2009)

can be found in these non-orthogonal combinations: loose combining and tight combining. Loose

combining focuses more on reasoning and interactions between the component calculi, while tight

combining in general leads to a new constraint language and can be more expressive.

The combinations of RCC8 with either qualitative or metric size information are obvious

examples of loose combinations(Gerevini and Renz, 2002). It has been shown that in each of

the three maximal tractable subsets of RCC8, qualitative size information does not increase

reasoning complexity. But with respect to metric size, even when the set of topological relations

is restricted to the eight basic relations, constraint network satisfaction is intractable; however if

some basic relation(s) are not used, then deciding the consistency becomes polynomial; e.g. if PO

is not permitted, which is a realistic assumption for applications where the variables represent

physical objects. If we assume that all changes are continuous, then relations adjacent in time

must be neighbors in the conceptual neighborhood diagram, and one can formalize temporal

information and integrate it with topological and size information (Wang et al., 2003).

Other loose combination examples concentrate on integrating topological information with

region-based direction calculi. In (Li, 2007), it shown that for the three maximal tractable subsets

of RCC8, the satisfiability of a joint network of RCC8 and DIR9(MBR based direction relations)

is decided by the two satisfiability problems in RCC8 and rectangle algebra. In (Liu et al., 2009),

it is proven that only considering basic relations, the joint network of RCC8 and rectangle algebra

is tractable; but that of RCC8 and CDC is NP-complete. Furthermore, in (Li and Cohn, 2012)

the bipath-consistency algorithm in (Gerevini and Renz, 2002) is proven be able to separate the

topological constraints in polynomial time from directional ones, when the topological constraints

are taken from two tractable subclasses of RCC8 (Ĥ8, C8), and directional constraints are from

a sub algebra of the rectangle algebra, termed DIR49. Considering the mutual influence between

topological and directional relations, it is natural to derive topological relations from direction

relations, when topological information is unavailable for computing topological relations. In (Guo

and Du, 2009), it presents such computation methods for deriving topological relations from one

and two CDC relations. In turn, because topological relations are less constrained than direction

information; it is not much sense to derive direction information from topological relations. If the

topological information is that x and y share a same part, then x must share a same part with

MBR(y); so only base CDC relation O can be exactly derived. If no same part shared between x

and y, then no useful direction information can be derived.

Tight combinations commonly form a new set of relations that can express multiple aspects

of spatial information. In (Sistla and Yu, 2000), a set of qualitative relations and reasoning rules

are presented to describe both topological and directional information. The set of basic relations

includes left of, right of, behind, in front of, above, below, inside, outside and overlaps, and it

has been proven that its deductive system is complete for 3D space but is not complete for 2D

space. The INDU calculus (Pujari et al., 1999) can be seen as a tight combination of Interval

Algebra with Point Algebra, i.e., each basic relation includes not only the interval relations but
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Figure 27 25 basic relations of INDU calculus (p. 294 Pujari et al., 2006)

also the size information represented by the point algebra, and it forms a JEPD relation set

including 25 basic relations, as shown in Figure 27. The detailed analysis of its consistency is

in (Balbiani et al., 2006). Extended rectangle relations(Chen et al., 2010c), the twofold product

of INDU relations, can be used for the integrating coarse representing and reasoning of the

topological, directional and size information over MBRs.

3.7 uncertainty

Uncertainty is an inherent characteristic of almost every aspect of knowledge representation

in the real world. Although qualitative approaches can be seen as a technique dealing with

uncertainty in some degree, as precise quantitative information may be unavailable or unnecessary,

in practice, some situations cannot be properly represented by qualitative relations. For example,

it is hard to define the accurate boundaries of regions. One reason is the limitation of observations:

the object may have an explicit boundary but cannot be measured accurately. Another reason is

intrinsic to the objects themselves, such as the boundary between a canyon and a river, or between

mountains and flatlands: there is no exact boundary, but one would still like to represent that

the mountains are adjacent to the flatlands.

Existing techniques for representing and reasoning about such uncertainty can be mainly

classified into two categories: one approach extends existing spatial calculi specifically to express

the indeterminacy while the other applies mathematical tools, such as fuzzy sets and rough sets,

to express the vagueness of the spatial objects or the spatial relationships.

Approaches in the former category often approximate the vagueness of regions by two nested

crisp regions or a broad boundary. A vague region with indefinite boundary is represented by egg-

yolk pairs(Cohn and Gotts, 1996), a pair of nested traditional crisp regions. The yolk represents

a minimum extension of the indefinite region, whilst the egg represents its maximum extension.

The topological relations between the indefinite regions are represented by a quadruple of RCC

relations between the component crisp regions. For example, F (yolk(x), egg(y)) means the RCC5

relation between the minimum extension of x and the maximum extension of y. 46 different

mereological relationships are identified by the quadruples. A generalization of the egg-yolk

calculus(Roy and Stell, 2001) is based Lukasiewicz algebra, where the indeterminate regions

include the crisp ones as a special case. A refinement of the egg-yolk model(Yu et al., 2004)

is based on the three predicates: P(x, y), C(x, y) and I(x, y) which mean x has a part of y, x

contains y and y contains x respectively. Due to the uncertainty, the value of the predicates is

no longer a Boolean value but a value in a lattice, as shown in Figure 28. Value A means that

all regions satisfy the predicate, N means there are no regions satisfying the predicate; {B, L,

R, E} are refinements of the value M i.e., there may exist regions satisfying the predicate. Only
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Figure 28 The value lattice (p.613 Yu et. al,
2004)
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Figure 29 9-intersection matrix with broad
boundary (p.179 Clementini & Felice, 1997b)

considering boundary-insensitive RCC5, this approach can discriminate 14 different topological

relations when the values of predicates are in {A, M, N }, and 51 different topological relations

while the range of the predicates is {A, B, L, R, E, N }.

The extension of the 9-intersection models (Clementini and Felice, 1997) looks very similar

to the egg-yolk calculus, but is not equivalent, since only 44 relations are discerned rather than

the 46 in egg-yolk theory, and the conceptual neighborhood graph is different from that in egg-

yolk theory; this difference arises from different assumptions about the nature of the regions.

In the latter, it is assumed that the broad boundary is not so broad as to accommodate the

other region. The indefinite boundary is approximated as a broad boundary(△A) in place of

a sharp boundary(∂x), as shown in Figure 29. It is shown in (Clementini and Felice, 1997)

that this extension can be used to reason not only about regions with indeterminate boundaries

but also can be specialized to cover various regions such as the convex hulls of regions, buffer

zones, MBRs and raster images. An extension of broad boundaries to complex regions offers a

solution to the problem of representing the uncertainty commonly affecting the boundaries of

spatial objects(Clementini and Felice, 2001) An alternative 4-tuple equivalent representation of

the extended 9-intersection relations and composition table are presented in (Du et al., 2008b),

which aids in transforming the topological relations between broad boundary regions into 4-tuples

of the topological relations between the crisp regions composing the broad boundary regions, i.e.,

the topological relations of lower crisp w.r.t. lower crisp, lower crisp to upper crisp, upper crisp

to lower crisp and upper crisp to upper crisp. But it should be mentioned that this quadruple

representation is inherently different from that in egg-yolk theory. The first difference is that both

the yolk and the white are closed sets while the interior in (Du et al., 2008b) is open and the

broad boundary is closed. The second difference lies in the semantic groups of the base relations.

A third difference is that the four relations in the quadruples of (Du et al., 2008b) can express

topological relations between objects with different dimensions, while egg-yolk theory requires

that both objects have the same dimension.

Similar to the approaches handling uncertainty in topological relations, one approach to

handling uncertainty in directional relations partitions the space by the pair of MBRs of minimum

and maximum extension of an indeterminate region, and obtains 25 direction tiles, as shown in

Figure 30 represented by a 5*5 direction matrix. In contrast to the empty and non-empty values

of the 9-intersection, each entry of the matrix stores one of four values, expressing the four

different situations the target objects can have when intersecting with the direction tiles, which

give rise to a huge number (425) of potential base relations(Cicerone and Felice, 2000). Another

approach expresses the direction relation between broad boundary regions as a 4-tuple of direction

relations(Figure 31) between the crisp regions, which are the direction relations of lower crisp

w.r.t. lower crisp, lower crisp to upper crisp, upper crisp to lower crisp and upper crisp to upper

crisp (Dong et al., 2011).

When treating uncertainty numerically, fuzzy sets and rough sets are the main tools to express

the vagueness of the spatial entities and their relations. In Zhan,s approach(Zhan, 1998; Zhan and
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x y
Figure 30 A pictorial example of 5×5 direc-
tion tiles(p.17, Cicerone & Felice, 2000)

y1x2x1 y2<NW, NW, NW:N, NW:N >
Figure 31 An example of the CDC quadruple
between the broad boundary regions. (p.331,
Dong et. al, 2011 )

Lin, 2003), a vague region is treated as a fuzzy set which can be decomposed into three parts in: the

core, the indeterminate boundary, and the exterior. The indeterminate boundary is approximated

by a set of α-boundaries, each of which corresponds to the boundary of an α-cut level region; thus

a binary topological relation between fuzzy regions only belongs to a prototypical topological

relation to some degree. The fuzzy extension of the 9-intersection calculus(Du et al., 2005) is

quite similar to Zhan,s approach. According to the definitions of the membership functions, the

topological space is divided into the fuzzy exterior, fuzzy boundary and fuzzy interior. Therefore

the domain of each element in 9 intersection matrix is a value in the interval [0, 1], rather

than a Boolean value. The uncertainty of topological relations in fuzzy 9-intersection calculus is

indicated by a membership degree. Unlike the previous discussion pertaining to continuous space,

a finite resolution fuzzy spatial algebra(Schneider, 2000, 2003) is introduced achieving a uniform

treatment of continuous and discrete space, and applied into the fuzzy extension of 9-interesection

calculus. A fuzzification of the well-known RCC framework adapted for the finite discrete space

domain is presented in (Palshikar, 2004).

Contrasting with approaches focusing on the fuzzy representation of regions, the fuzzy region

connection calculus(Schockaert et al., 2006, 2008, 2009) only requires that the fuzzy version of

the C relation is reflexive and symmetric, as in standard RCC. It does not impose any constraints

on how regions are represented, nor how connection should be interpreted. So it is applicable in

a wide variety of contexts, including those where space is used in a metaphorical way.

Rough set based approaches often relate to the partition of the plane. In (Bittner and Stell,

2000, 2002), the indefiniteness also relates to locations. The rough location of a spatial object

within a regional partition is characterized by a set of relations between parts of the object and

parts of regions forming the regional partition, while the exact location is the region of space

taken up by the object. For example, the rough location of boundary insensitive approximations

are defined by functions from the partition to the value set {fo, po, no}which means the region

covers all, some but not all and none of the cell defined by the partition. So the indefiniteness is

expressed by the pairs of greatest minimal and least maximal regions. Another way of expressing

this is that the vague region defined by rough location consists of the three concentric regions:

core, wide boundary and exterior, which coincide with the idea approximating vagueness by a

broad boundary and pair of crisp regions in the former category of approaches dealing uncertainty

(Cicerone and Felice, 2000; Clementini and Felice, 1997; Cohn and Gotts, 1996; Dong et al., 2011;

Roy and Stell, 2001). When applying this rough location extension to the 9-intersection matrix, an

algebra with 249 base relations emerges(Wang et al., 2003). A combined description of topological

and direction relations between broad boundary regions is given in (Du et al., 2006).

Granularity is another concept worth mentioned relating to rough set approaches dealing

with uncertainty. It characterizes the scale or level of detail (partition of the space), and

therefore reflects the common phenomenon in knowledge stratification, that knowledge can be

organized into a hierarchical structure according to different granularities. Uncertainty can be
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managed by selecting appropriate granularities. Temporal and spatial granularity techniques are

proposed respectively in (Bittner, 2002; Bittner and Smith, 2001) and applied in knowledge

discovery(Bédard et al., 2001; Roddick and Spiliopoulou, 2002). A qualitative extent for spatio-

temporal granularity is addressed in (Stell, 2003), which shows how the three spatial extents

(everywhere, somewhere, nowhere) can be generalized to the granular description of spatio-

temporal regions. The framework in (Li and Nebel, 2007) hierarchically represents and reasons

about topological information, which implements jumping between different granularities of the

topological relations.

4 Implementations

In contrast to the large number of qualitative spatial calculi (both those cited above, and others

in the literature), the number of publicly available implementations employing qualitative spatial

reasoning techniques is still relatively small. QAT6(the Qualitative Algebra Toolkit)(Condotta

et al., 2006) is a JAVA constraint programming library developed at the University of Artois,

which aims at providing an open and generic tool to handle qualitative algebras and constraint

networks on these algebras. The core of QAT includes three packages: the algebra package

allows user to define qualitative algebras (including non-binary algebras) in a simple XML file;

the QCN(Qualitative Constraint Network) package contains tools for defining the constraint

networks; the Solver package provides various methods solving the problems of interests on QAT,

such as consistency checking, finding solutions and minimal networks.

SPARQ7(SPAtial Reasoning done Qualitatively)(Dylla et al., 2006; Wallgrün et al., 2006, 2010)

is a qualitative spatial reasoning toolbox developed at University of Bremen, which supports

the most common tasks: qualification, computing with relations and constraint based reasoning

over binary and ternary calculi. SPARQ is written in LISP and libraries are implemented in C

language. The qualification module transforms the quantitative geometric scene description into

a qualitative description according to one of the supported calculi. The computing relations

module applies the relational operations defined in the calculus specification. Finally the

constraint reasoning module performs computations on constraint networks, such as path-

consistency, scenario-consistency and back tracking search. According to the latest version of

the manual(Wallgrün et al., 2010), SPARQ supports 20 calculi in total.

GQR8(Generic Qualitative Reasoner)(Gantner et al., 2008) is a solver for binary qualitative

constraint networks, developed at the University of Freiburg. GQR is written in C++ and its aim

is to implement a fast and extensible generic solver, while preserving the efficiency of calculus-

specific solver as much as possible, which contrasts with the focus in QAT and SPARQ. It takes

a calculus specification and several constraint networks as input, and tries to solve the networks

by path-consistency and (heuristic) back tracking methods. New calculi can be added into the

system by the specifications in text or XML format.

Spatial knowledge is essential component in human knowledge, so several well-known Knowl-

edge Bases and reasoning engines have introduced relations from qualitative spatial calculi into

their ontology. For example, RCC has been introduced into the CYC9 spatial ontology (Grenon,

2003). SNARK10 (Stickel et al., 2000; Waldinger et al., 2003), an automated theorem-prover once

used as the reasoning component of SRI’s High Performance Knowledge Base (HPKB) system, has

a built-in version of Allen, s Interval calculus and RCC. Pellet Spatial11(Stocker and Sirin, 2009)

is a qualitative spatial reasoning engine implemented on the top of OWL reasoner Pellet (Sirin

6http://www.cril.univ-artois.fr/∼saade/QAT/
7http://www.sfbtr8.uni-bremen.de/project/r3/sparq/
8http://sfbtr8.informatik.uni-freiburg.de/R4LogoSpace/Tools/gqr.html
9http://www.opencyc.org/doc/
10http://www.ai.sri.com/∼stickel/snark.html
11http://clarkparsia.com/pellet/spatial/
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and Parsia, 2004), which is capable of consistency checking and query answering over spatial data

represented with RCC.

5 Final Discussion

In this paper we have surveyed some of the representative results in the literature about

qualitative spatial relationships, but space has certainly not allowed an exhaustive survey. As has

already been seen in many other fields of knowledge representation, a single universal language for

spatial representation is unlikely appear. The best we can hope is that a series of representation

and reasoning systems and the criteria for the applications will be developed(Cohn, 1997; Cohn

and Hazarika, 2001; Cohn and Renz, 2007). It is shown in this survey that there is already a

rich set of various spatial relationship calculi concerning the different aspects of space. We have

outlined some of the key calculi according to the different type of spatial relationships (topology,

direction etc.) and have classified them in terms of the objects considered (region-based and

point-based etc).

Most existing calculi focus only one aspect of space, but many applications concerns more

than just one aspect of space; integrations of spatial calculi thus need to be considered. The

combination is not only confined to the combination of different aspects calculi, such as topology

and direction, or direction and distance; but also the combination of qualitative calculi with

quantitative information: qualitative and quantitative approaches are two complementary aspects

of knowledge representation and reasoning.

In many situations, spatial entities cannot be abstracted as simple objects, such as simple

regions, simple lines or points, but the deformations or integration of these basic components,

which we called complex objects, for example groups of points or compound regions. The spatial

relationships between these objects will be more complicated but potentially more applicable

in real world applications. Calculi should not be confined to planar space but should also give

frameworks for representation and reasoning in 3D space.

Another aspect to be noted is the abstraction of space. Continuous and discrete space (vector

and raster space) result in different spatial relationship calculi, see for example, the difference

of 9IM in vector and raster space. Moreover, most spatial information obtained from physical

recording devices is nowadays invariably digital in form and therefore implicitly uses a discrete

representation of space. How to bridge the gap between the two types of space or to develop a

unified framework is worthy of further research.

Hierarchy and granularity is fundamental to human cognition(Langacker, 1987). People can

conceptualize the world at different levels and switch among these levels freely, and this is

fundamental to human intelligence and flexibility(Hobbs, 1985). It reflects the process from

coarse to fine, from simple to complex, from superficial to essential. Usually the hierarchical

structure consists of a number of distinct levels with respect to different levels of abstractions,

where these levels can be decided by the semantics, granularities or resolutions. For example,

as the distance between the observers and the observed decreases, more and more details can

be captured by the observers. The same observed objects may be abstracted as either points or

regions of increasing shape complexity at different resolutions; therefore the calculi modeling the

spatial relationships between them may need to be adapted to reflect the finer resolution; to be

able to reason across these different levels, one needs a unified calculus or a way of propagating

knowledge across levels.
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