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Summary 

A class of algorithms known as random search methods has been developed for 

obtaining solutions to parameter optimization problems. This paper provides 

a guide to the literature in this area, while describing some of the theore

tical results obtained as well as the development of practical algorithms. 

Included are brief descriptions of the problems associated with inequality 

constraints, noisy measurements, and the location of the global optimum. 

An attempt is made to indicate types of problems for which random search 

methods are especially attractive. 
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1. Introduction 

The fields of optimum system design, optimal control, and system idelltifi

cation have stimulated a great deal of research in the area of parameter 

optimization - the problem of finding a set of parameters, x = (xI' x
2

' ••• 

which minimizes (or maximizes) a function F(x). Many types of algorithms 

have been devised (e.g., steepest descent, conjugate-direction methods, 

pattern search), and the worth of an algorithm is judged in terms of its 

effectiveness in minimizing difficult functions and its economy in the use 

of evaluations of F(x) - usually the most time consuming operation of an 

algorithm. Although there are several recent books and review articles 

which discuss parameter optimization algorithms [1-9J , they have, "ith 

some exceptions [8,9J , largely neglected a group of techniques known 

as random search methods, which have proved effective in solving many 

optimization problems. This paper reviews the random search methods, indi

cates situations where they may be of special value, and provides a guide 

to the literature. 

The early development of random search optimization was motivated mainly 

by the need for methods which were simple to program and effective in irre

gular parameter landscapes. Before the availability of true analog-digital 

hybrid computers, simple random search algorithms could be implemented by 

hard-wired optimizers attached to analog machines. Random search algo

rithms have still found use with modern hybrid computers. The complex, 

nonlinear dynamic systems which are most advantageously simulated on 

analog machines often have parameter landscapes with the sharp ridges, 

discontinuous first derivatives, etc., which can cause deterministic al

gorithms to become inefficient or to fail. Also the noisy environment of 

the analog machine can decrease the effectiveness of mathematically 

sophisticated algorithms. This is not to say that random search methods 

are limited to hybrid applications. There 1S evidence to suggest that 

t 
x ) , 

n 

random methods are superior in optimizing smooth functions of many variables. 

Formal definitions of the parameter optimization problem and related 

mathematical concepts are given in References [1-7] • The notation to be 

used here is introduced in the following problem statement. 
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Determine the values of the ordered set of n parameters x = (xI' x2 • •••• xn)t 

which optimize (minimize or maximize) the criterion function 

F(x) (I) 

subject to the m inequality constraints 

(i = 1. •••• m) (2) 

(F and g. are scalar functions). The set of all x satisfying the constraints 
1 

(2) defines the feasible region R. For some problems the constraints are not 

present or may effectively be eliminated (unconstrained optimization). The 

solution to the parameter optimization problem is denoted 
lO lO 

by (x • F ) 
lO 

where x is the optimal x lO ( lO) • and F = F x . For conveU1ence all problems here 

are considered as minimization problems. Figure 1 illustrates the ideas 

introduced here. 

For engineering purposes it 1S important to realize that the problem outlined 

above is only a formal framework by means of which a "real world" problem 

can be made amenable to solution. The engineer may be primarily interested 1n 

- Fl' I is small. and is not so concerned finding a value of x such that I F(x) 
. h . l' W1t know1ng x exactly (e.g •• on - line adjustment of parameters in control 

system optimizations). On the other 

of a system it is important that I 
hand, in 

x. - x~ I 
1 1 

the estimation of the parameters 

(i = 1. . ..• n) be as small 

as possible. Another consideration is whether or 
l' . 

not the value F 1S known 

a priori. In general 
~ I x. - x. as well 

1 1 

which determine the 

the most difficult problem is that of minimizing 

as F(x) when FlO is not known a priori. These factors. 

goal of the optimization. must be considered in the design 

and/ or evaluation of an algorithm.· 

Most of the techniques discussed here are designed to find a local minimum 
+ + of F(x) (a point x such that F(x ) < F(x) for all x in some neighborhood of 

+ x ) for problems with no constraints on x and where the measurements of 

F(x) are n01se - free. The problems of n01SY measurements. inequality con

straints. and the location of the global optimum are discussed briefly in 

Section 4. 

- 3 -



2. Some theoretical results for random search 

a) Pure random search 

The pure random search method, proposed by Brooks [12] and discussed 

by other authors [13,16J , consists of measuring F (x) at N random 

points selected from a probability distribution uniform over the entire 

parameter space and taking the point with the smallest value of F as 

an approximation to the minimum. If we assume that each parameter can 

vary between zero and 100 per cent and that x· is to be located within 

10 per cent for each parameter, then the probability of locating the 

optimum in N trials is [IS] 

n for 10 »N (3) 

Conversely, the number of trials required to have a probability 0.9 of 

locating the minimum is [I4J 

n 
N,.. 2.3x10 

According to Korn (15J we are "looking for a needle in an n-dimensional 

haystack". Such a large number of trials obviates the use of pure random 

• search for locating x , but in the absence of any information regarding 

the location of the optimum, it may be useful in choosing a starting 

point for a sequential search algorithm. 
For the minimization of 

F(x) 
n 2 

= L x. 
i=1 1 

where I x I < p, Schumer [16] found that if a total number N of function 

evaluations may be expended on a pure random search and a subsequent 

local random search (Sec. 111-2), five or six of these evaluations should 

be used for the pure random search in order to minimize the expected 

value of F(x) obtained after the N evaluations. 

b. Creeping random search 

Rastrigin (17] has studied the convergence of a simple creeping random 

search. Starting from a base point x the criterion function is measured 

at x + ~x, where ~x is a vector with fixed length (stepsize) and random 

direction. If F(x + ~x) < F(x) (a "success") the base point is moved 

to x + ~x; otherwise the base point remains at x, and another random 

step is attempted. 
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Such an algorithm may be represented by 

where 

i+1 
x 

oi = {ol 

if 

if 

(4) 

(success) 

(failure) 

Figure 2 shows typical progress of such a search in two dimensions. 

This algorithm was compared to a steepest descent method, where at 

each iteration a step of magnitude I Ax I is taken in the negative 

gradient direction. Rastrigin introduced the concept of search loss, 

defined as the number of criterion function evaluations required for 

a displacement 1n the negative - gradient direction equal to the step 

length I Ax I, or equivalently, the reciprocal of the average dis

placement in the negative - gradient direction per function evaluation. 

The search loss was computed for both algorithms applied to a linear 

test function 

F(x) 
n 

= L x. 
i= I 1 

and a distance function 

F(x) = [ I x~J 
i=1 1 

1/2 

For both functions it was found that as the number of parameters in

creased, the creeping random algorithm was superior to the steepest 

descent method on the basis of search loss. A similar result for the 

function 

F(x) = 
n 2 
L x. 

i= I 1 

has been found [16,18]. 
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The convergence of the creeping random method 1n the presence of noise 

has been studied by Gurin and Rastrigin [19] • For a linear criterion 

function, measurements were corrupted by Gaussian noise with zero mean 
2 

and variance a • The random search algorithm used a "testing step" of 

fixed length a and random direction. When such a testing step resulted 

in an improvement in the measured value of F (x), a step of length 1 I1x I> a 

was taken in the same direction. The progress of this algorithm was 

compared to that of a steepest descent method, which used 2n perturbations 

of length a to determine the gradient and then took a working step of 

length 1 I1x 1n the estimated negative - gradient direction. Comparisons 

were made on the basis of search loss, and as a function of the number of 

parameters n and a signal - to - noise ratio 

y 
a/2 

where VF is the gradient of F. 

For any fixed value of y search loss is a linear function of n for the random 

method. For y = 00 (no noise) the gradient method has a search loss linear 

in n, but for y = the search loss is greater than c n/n-I, where c is 

a constant. For y = 1 and y = 00 the random search method was superior 

for n > 6. It might be noted that a study by Brooks and Mickey [201 of a 

similar steepest descent algorithm in the presence of noise has shown that 

a minimum number of function evaluations (n+l) should be expended on estimating 

the gradient. This alteration of the steepest descent algorithm would not 

change the nature of the results obtained by Gurin and Rastrigin, but 

would increase the value of n above which the creeping random algorithms 1S 

superior. 

It must be recognized that the results reviewed above were obtained for 

algorithms simplified so as to be amenable to analysis. In fact, a similar 

study [21] (without noise) using two different models of steepest - descent 

and random search algorithms has shown the steepest descent method to be 

superior for a class of criterion functions. Thus, the extension of the 

results to practical algorithms is unclear. But further results of Schumer 

and Steiglitz [16] (Sec. 3.b.) seem to indicate the superiority of creeping 

random search for problems with many parameters. 
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3. Practical Algorithms and Applications 

Experiments with creeping random search on analog computers were reported 

as early as 1958-59 by Favreau and Franks [221 and Munson and Rubin [23) 

A hard-wired creeping random optimizer, including provisions for expanding 

and reducing step size and correlating future trial-step directions with 

past successful directions, was built by Mitchell [241 and employed by 

Maybach [25J in the solution of optimal control problems on a fast repetitive 

hybrid computer. The development of true analog-digital hybrie computers 

has made it possible to employ more sophisticated random search strategies. 

In this section we describe some of the alterations to the basic creeping 

random algorithm and some schemes for adapting the step size and search 

directions to the function being minimized. 

a) Soma modifications of the basic creeping random search. 

For the basic algorithm, Eq. (4), the steps ax are of fixed length and 

random direction. Although ax can be generated quickly by having each 

component ax. of equal length and random sign, this results in only 2N 
J 

possible search directions, and the search may be forced to zig-zag toward 

the optimum. This can be avoided by choosing each ax. from a probability 
J 

distribution uniform on, say, [-a, a] and normalizing the resulting ax 

to obtain the desired step size. The steps can be made random in length 

and direction by choosing each ax. from a uniform [26,27] or a Gaussian 
J 

distribution [28-30] • 

Another modification concerns the classification of a trial step as a 

success or failure. Stewart, Kavanaugh and Brocker [28] have used a creeping 

random search to solve a five - parameter two - point boundary value 

problem resulting from the Maximum Principle solution of an orbit transfer 

problem (For this problem F(x) > 0 and F¥ = 0). Their algorithm included 

a threshold strategy, which requires a certain percentage change in F(~) 

in order to have a success: 

or 

1 i+ 1 i F (x ) - F (x ) > n F (x ) 

F(xi ) _ F(xi + l ) 

F(x i
) 

> n 

(0 <n< I) (5) 

At the beginning of the search a relatively large improvement in F is 

required, causing the algorithm to be selective in choosing a succesful 
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search direction. This might be 

are used to 

the search, 

direct future trial 
i 

especially helpful when successful moves 

steps. (See Sec. 3.c. below) Later in 

as F(x ) approaches 
'Ii 

F , smaller improvements are accepted. 

Similar success criteria could be written for more general problems. 

In the same study the use of a vector-valued criterion function was 

introduced. Boundary conditions were to 

representing displacement and velocity, 

p. The criterion function was defined as 

F 

be matched for state variables 
d v x and x , and adjoint variables, 

(6) 

where each component of F is the sum of the errors in matching the boundary 

conditions for one class of variables. For a trial to be regarded as a 

success, it was required that all three components of F be reduced (the 

threshold strategy Eq. (5) was applied to each component). This jmore 

restrictive success criterion might be useful in avoiding a local minimum 

where only one or two components of F are small. Gonzalez [26J employed a 

vector-valued function in a Maximum-Principle optimization of the same 

systems solved by Maybach [25] with a scalar F(x). The number of evaluations 

required for convergence was reduced on the average, the most striking 

reductions being obtained for difficult starting points in the parameter 

space. 

b. Control of step size 

For the determination of parameter pertubations in practical optimization 

problems, it would seen logical to calculate the ste~ size for each para

meter I~x. I (or the variance of AX. for a random step-size algorithm), 
J J 

as a percentage of the value of xl. at the base point [22] • A cons tant 

step size can represent a very large or very small percentage change in xi 

depending on the current valllP at the base point. 

If the step size 1S small, a large proportion (asymptotic to 1/2) of the 

trial steps result in success (assuming no threshold strategy), but the 

average improvement in F per step is small. On the other hand a large step 

size results in a small ratio of successes to trial steps. On the basis of 

this observation several intuitive procedures for step-size adjustment 

have been proposed. Karnopp [31] suggests increasing IAxl if an improvement 

occurs within two trials and decreasing IAxl if none occurs within three 

trials. Maybach [25] reduced the step size following some number of 
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consecutive failures, but found that increasing the step size after 

consecutive successes had no significant effect on performance. Bekey 

et al. [29] used a constant variance of 4% of the range of each para

meter. It was reported that their work and the results of a further 

study [32]failed to find a variance adjustment strategy yielding faster 

convergence than the constant variance method. 

Beginning with Rastrigin's fixed step-size random search (Eq.4), 

Schummer and Steiglitz [18] developed an algorithm with adaptive step 

size. For the criterion function 

F(x) 
n 2 2 

= I x. = p , 
i= I 1 

the expected improvement per step, normalized by the present value of F, 

was computed as a function of n and n = sip, the ratio of the step size 

to the distance to the optimum, i.e., 

-E{llF} 
I (n, n) = -::..;:::=..;!--

F 

l(n,n) was maximized with respect to n, and the optimum len) was evaluated 

for large n. This led to the result that the average number of function 

evaluations necessary to minimize F within a fixed accuracy is asympto

tically linear in n. A practical algorithm, which attempts to adjust the 

step size to the optimum during the minimization process, was developed 

and compared to two determinstic algorithms, the simplicial method of 

Nelder and Mead [33] and a second-order Newton-Raphson method which 

evaluates first and second partial derivatives at each iteration. Per

formances were compared on the basis of the average number of function 

evaluations required for minimization. (First- and second- order partial 

derivatives were computed analytically for the Newton-Raphson algorithm, 

but for the comparison, calculation of these derivatives was considered 

equivalent to (n+I)2 function evaluations.) For a quadratic function, the 

second-order method was superior for n < 78, but for the function 

F(x) 
n 4 
I x. 

i=1 1 
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tile adaptive random searcil algoritlull was super~or to the second order method 

for n > 2 and superior to the simplicial method for n > 10. The adaptive 

search was also tested for 

<F 
n 2 I a.x. 

~ ~ i=1 
and 

n 4 
F = L a.x. 

i=1 ~ ~ 

where the a. were chosen from a probability distribution uniform on [O.I,IJ 
~ 

For each of these three test functions the number of function evaluations 

required by the adaptive random search method was proportional to n. 

The only other parameter optimization method for which required functions 

evaluations are reported to be a linear function of n is pattern search [I, 34J 

These results indicate that creeping random search and/or pattern search 

might be the most efficient strategy when the number of parameters is large. 

Korn and Kosako [35J have successfully employed a creeping random algorithm 

in a 200 - parameter functional optimization problem. 

c. Directional adaptation 

The convergence of a creeping random search can be accelerated using in

formation obtained from trial moves to choose the direction of future trial 

steps. 

A simple modification for directional adaptation is absolute positive and 

negative biasing [29J (Fig. 3). If the last step produced a success, it is 
i i-I 

used again for the next trial step, i.e. 6x = 6x (positive biasing). 

If the last step resulted in a failure, _6x i - 1 is used for the next trial 

step (negative biasing). Of course, negative biasing is not used following 

two successive failures, or the algorithm will loop endlessly. Also, it is 

wasteful to use it after the first failure following a success. Bekey et al 

[29] reported that absolute biasing was effective in improving convergence. 

Stewart et al. [28]used only positive biasing and found that it decreased the 

average number of steps required by approximately 40% compared to the search 

without biasing. 

Directional adaptation can also be accomplished by introducing correlation 

between past successful steps and future random trial steps. In an algorithm 

employed by de Graag [30J , future exploratory moves are influenced by the 

last successful step. 

i k i 
a(x - x ) + z 
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k . i 
where x 1S the prev10us base point, a > 0, and z is a random vector with 

independent, zero-mean Gaussian components (Fig. 4). Setting a =0.1, as 

compared to a = 0 (no biasing), reduced by a factor of four the number of 

function evaluations required to solve two problems - a minimization of 
2 2 2 Rosenbrock's function (F(x

l
,x

2
) = 100(x

2 
- xI) + (I -xI) ) from a starting 

point (10,10) and a four- parameter identification problem. 

Matyas [36J has devised a more complex biasing scheme: 

(8) 

where ri is an nxn matrix, the z~ are independent and Gaussian with zero 
• J . 

mean and unit variance, and d1 specifies the mean of 6x1 • Adaption is 

accomplished by adjusting d
i 

according to past trial steps and past successes 

and failures. 

(9) 

where c 
o 

i-I and c
1 

satisfy the following conditions. If the last step 6x 

resul ted in an improvement, 

otherwise 

Thus, the mean for the next trial step is weighted positively by the present 

mean value and weighted positively or negatively by the last trial step. 

The matrix ri might be used to introduce correlation between the 

step components i 6x .• 
J 

But for a simple algorithm, ri is given by 

trial 

where I is the identity matrix and b
i 

is a scalar specifying the variance 

of the trial steps. 
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Directional adaptation has been discussed at length by Rastrigin [37J , 

who has proposed several learning algorithms which 

probability of selecting a positive trial step 6x~ 
• J 

adjust p~, the 
J th 

for the j para-

h .th b' . meter at t e 1 ase p01nt, as a funct10n of past performance. 

Adjustment is accomplished by making p~ = p~ (w~), a monotonic, 
J J i J "I decreasing function of the memory parameter w .• One examp e of 

• J 
Rastrigin's schemes for adjusting w~ is the following algorithm. 

J 

i 
w. 

J 

i-I 
w. 

J 

i-I 
- a 6x. 

J 

where 

and 

i I i-I 6F - = F(x + 

i 
w. is 

J 
limited by 

non-

( 10) 

i 
The adjustment of w. is proportional to the last change in the criterion 

J 
function, the step causing this change, and a positive coefficient. For 

example, a positive 6x~-1 causing an improvement (6Fi - 1 
< 0) brings about 

. J . 
an increase in w~ and thereby an increase in p~, the probability of 

J J 
increasing x. at the next trial step. Rastrigin introduces other algorithms 

J 
similar to Eq. (10), which allow for discarding information collected in 

the distant past ("forgetting") and which provide for better adaptation 

to the best of possible successful directions. A more complete review of this 

work has been written by Schumer [16J • 

Another technique suggested by Rastrigin is being investigated by Heydt 

[38] • A local search is made about an initial point XO for an improved 

point xl. The line xl - xO is used to determine the axis of 

an n-dimensional hypercone in parameter space with focus at 

The hypercone has angle e and length h. F(x) is measured at 

uniformly distributed inside the cone, and when an improved 

- 12 -
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of 

5) • 

random points 
. 2 

p01nt x 



~s found, a new 
2 

defined by x 

2 
cone is constructed with focus at x and an axis of symmetry 

1 
- x • Thus, past successes are used to determine the search 

direction. If an improved point is not found after some number of measurements 

inside a cone, e and h are increased to enlarge the search region. Such an 

algorithm was successful in optimizing a six-parameter sattelite attitude 

aquisition problem, which had been solved [39] with the algorithm described 

by Stewart et al. [28]. 

- 13 -



4. The Global Optimum, Noisy Measurements, and Constraints 

a. Locating the global optimum 

In practical optimization problems it is usually important to locate the 

global minimum x· rather than just a local minimum. Although it is possible 

for a creeping random search to jump over some local minima, the strategies 

discussed here for accelerating the search use information about the 

local behaviour of the criterion function, and thus tend to descend to 

a local minimum. A full discussion of techniques for location the global 

optimum is beyond the scope of this survey. While some sophisticated 

techniques have been proposed [40-441 , the methods are either untested or 

have been found to require very many functions evaluations as n increases. 

In practice, when 
+ expanded about x 

.. + . 
a local m1n1mum x 18 located, the search range may 

+ 
in an attempt eo detect a region where F(x) < F(x ) 

be 

[28,29J ; or local searches can be initiated from several starting points 

in the hope that one such search will descend to the global minimum. 

Information about the nature of the problem, either known a priori or 

made available by way of output during the optimization, might help the 

engineer eliminate some regions of R from future consideration. Easy 

interaction between the operator and the system under study - by way 

of hybrid computation, [27,4S]and / or display systems interfaced to 

digital s~stems [46] -_would appear to be an aid in solving this problem. 

b. Noisy measurements 

Observations of the criterion function might be corrupted by noise arising 

from measurement techniques or from the inherent statistical nature of a 

problem. Noisy observations make gradient measurements difficult and can 

decrease the efficiency of the powerful conjugate- direction algorithms [47) 

Although the design of strategies for noisy functions is a separate problem 

(stochastic approximation), it may be noted that random search methods -

and other "direct search" methods such as pattern search or the simplicial 

method - are less affected by small measurements errors, because the progres 

of the search depends on the determination of "successes" and "failures" 

rather than on the accurate calculation of function differences. Also, 

since random search methods can have relatively little memory, a wrong 

move resulting from observation error affects the search for one or only 

a few steps. A creeping random algorithm has been used in minimizing a 

noisy criterion function resulting from the optimization of a system 

with random parameters. [27] 
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c. Inequality Constraints 

The methods reviewed here have been discussed in terms of unconstrained 

optimization. In many practical problems inequality constraints are 

present, and it is possible that the optimal point lies on or close to 

a constraint boundary. Techniques for using the powerful unconstrained 

minimization algorithms (gradient methods, conjugate-direction methods) 

usually involve a projection of the negative-gradient vector onto the 

boundaries or the construction of penalty functions inside or outside 

the feasible region. While these techniques have been used successfully, 

they increase considerably the complexity of the problem and also 

usually the effort required for solution. A different approach has been 

taken by Box [48] ,who began with the basic idea of the simplicial 

method and developed a randomized version named the "complex" algorithm. 

With the creeping random methods described in the previous sections, 

inequality constraints can be handled by restricting the trial points 

x + ~x to lie in R. For small l~xl the search can approach a solution 
.. . d x on a constra1nt boun ary. 
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5. Discussion 

This survey has attempted to bring together the results of research in the 

area of random methods for parameter optimization. Comparisons between the 

different random search algorithms - and between random and nonrandom 

methods - are difficult, because there is a dearth of reports describing 

the performance of random searches on standard test functions. It would seem 

desirable for future works in the area to include this type of results. 

For the minimization of relatively smooth unconstrained functions of several 

variables, the more powerful conjugate - direction algorithms are unquestionabl· 

superior. But as the number of parameters becomes large ( n > 50 ?) random 

search may enjoy an advantage. Certainly the modest computational effort and 

storage requirements for random search become attractive as n increases and 

for applications where the digital computer is small or has arithmetic which 

is not so fast relative to the time for measurement of the criterion function 

(e.g., high- speed hybrid computation). The ease of handling inequality 

constraints with the random methods invites research into the development 

of creeping random algorithms for constrained problems (acceleration of 

the search along a constraint boundary) and comparisons with other constrained 

optimization techniques. 
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Figure I An illustration of some features of a parameter 

optimization problem. 
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Figure 2 Typical progress of a creeping random search. 
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Figure 3 Illustration of positive and negative absolute biasing. 



Figure 4 Correlation of trial steps witll the last successful step. 



Figure 5 Creeping random search tvith hyperconical search regions 


	Summary
	Contents
	1. Introduction
	2. Some theoretical results for random rearch
	3. Practical algorithms and applications
	4. The global optimum, noisy measurements, and constraints
	5. Discussion
	Acknowledgements
	References

