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As the trends of process scaling make memory systems an even more crucial bottleneck, the importance of
latency hiding techniques such as prefetching grows further. However, naively using prefetching can harm
performance and energy efficiency and, hence, several factors and parameters need to be taken into account
to fully realize its potential. In this article, we survey several recent techniques that aim to improve the
implementation and effectiveness of prefetching. We characterize the techniques on several parameters to
highlight their similarities and differences. The aim of this survey is to provide insights to researchers
into working of prefetching techniques and spark interesting future work for improving the performance
advantages of prefetching even further.
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1. INTRODUCTION

As the on-chip core count increases at a much faster rate than the memory bandwidth,1

the memory system becomes an increasingly crucial bottleneck in modern processor
design. This has forced researchers to pursue aggressive approaches to hide memory
latency, for example, use of large-size caches, multithreading, and prefetching. Of
these, prefetching offers unique advantages. Large caches incur an energy penalty
and consume precious chip area that may be better used for additional cores [Mittal
2014]. MT can improve the performance of parallel applications only. By comparison,
prefetching does not incur a large area/energy penalty and can boost even serial

1We use the following acronyms frequently in this article: bandwidth (BW), Bloom filter (BF), chip multipro-
cessor (CMP), control flow graph (CFG), correlation (CoR), cycle per instruction (CPI), data cache (D-cache),
hardware (HW), instruction per cycle (IPC), instruction cache (I-cache), last level cache (LLC), linked data
structure (LDS), middle level cache (MLC), multithreading (MT), simultaneous multithreaded (SMT), soft-
ware (SW), virtual CPU (vCPU), and virtual machine (VM).
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applications. In the optimal case, prefetching can bring the performance close to that
of a perfect cache by removing nearly all the cache misses [Ferdman et al. 2011;
Annavaram et al. 2001b]. Thus, due to its advantages, prefetching is now used in
nearly all high-performance commercial processors, such as AMD Opteron, IBM
Power8, Intel Xeon, and Oracle Sparc M7.

However, realizing the full potential of prefetching requires careful management
and addressing several key challenges. Unlike MT, prefetching requires prediction
of future access patterns that is non-trivial in most cases. Complex access patterns
demand sophisticated prefetchers that have huge metadata and latency overheads.
Naive prefetchers may bring useless lines that consume cache space and may degrade
performance by displacing the useful lines [Srinath et al. 2007]. Further, prefetching
may interfere with other processor management policies (e.g., cache replacement policy)
and cause BW contention. Clearly, although promising, prefetching by itself is not a
panacea for improving performance. To address these challenges, several techniques
have been recently proposed.

Contributions: In this article, we present a survey of prefetching techniques for
processor caches. Figure 1 shows the organization of this article. Section 2 provides
a background on and classification of prefetching techniques and then discusses the
key challenges related to implementation and effectiveness of prefetching. Section 3
discusses techniques for hardware, data, and core-side prefetching, and Section 4 dis-
cusses techniques for software, instruction, and memory-side prefetching. Section 5
discusses techniques evaluated using real systems and analytical models. Section 6
presents several techniques for reducing overhead of prefetchers and improving their
effectiveness. Section 7 concludes this article with an outlook towards future work.

Scope of the article: To strike a balance between breadth and brevity, we focus on
recent research works that present innovations or insights focused on prefetching in
caches and not on other techniques or processor components. We only discuss prefetch-
ing in central processing unit (CPU) and not in graphics processing unit (GPU). We
present key ideas of research works and do not include their quantitative results, since
they use different evaluation platforms and methodologies. To bring out the similarities
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Fig. 2. Illustration of (a) prefetching metrics, (b) stride prefetcher, and (c) irregular access patterns.

and differences of the techniques, we classify them based on key features. We hope that
this article will provide a bird’s eye view of the state of- the art in prefetching techniques
and will be useful for researchers, system designers, application developers, and others.

2. BACKGROUND AND OVERVIEW

We now discuss prefetching briefly (Section 2.1) and refer the reader to previous work
for taxonomy and a detailed background [Srinivasan et al. 2004; Vanderwiel and Lilja
2000; Sherwood et al. 2000; Falsafi and Wenisch 2014]. Sections 2.2 through 2.6 char-
acterize prefetching algorithms and research works based on several key parameters.
Section 2.7 discusses tradeoffs involved in leveraging full potential of prefetching.

2.1. Metrics and Terminologies for Prefetching

A few parameters and metrics are useful for characterizing prefetchers [Emma et al.
2005]. The prefetch degree and distance are illustrated in Figure 2(a). Coverage shows
the fraction of original misses eliminated by prefetched lines. Accurate or useful
prefetches are those that eliminate original misses, while harmful prefetches are those
that induce misses by replacing useful data. A timely prefetch is one where the prefetch
request is completed and the data are placed in cache before they are accessed and op-
posite is true for a late prefetch. Lookahead shows how well in advance a prefetch is
issued, such that prefetched data arrive in cache on time and are not evicted by other
data. A prefetch is redundant if the data-block brought by it is already present in cache.

2.2. Hardware and Software Prefetching

Prefetching is performed in either HW or SW. HW prefetchers may use additional stor-
age (e.g., a table) to detect specific memory access patterns such as strided accesses
and use this to prefetch data that are expected to be referenced soon. SW prefetching
inserts prefetch instructions in source-code based on compiler or post-execution analy-
sis, for example, in an LDS, a compiler can insert prefetch instructions for the children
of a visited node. An example of SW prefetching is shown in Figure 3.
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Original code Code with software prefetching instructions 

Fig. 3. An illustration of prefetch instructions inserted for software prefetching.

2.3. Data and Instruction Prefetching

Compared to instruction access patterns, data access patterns show higher sensitivity
to input dataset and less regularity, which makes data prefetching more challenging.
The large instruction working set size of commercial workloads can lead to misses
at the L1 and L2 caches, which underscores the need of instruction prefetching for
them. However, for applications with a negligible I-cache miss rate (e.g., scientific),
instruction prefetching is not required.

2.4. Core-Side and Memory-Side Prefetching

In core- (or processor) side prefetching, the prefetch requests are issued by an engine
in cache hierarchy, while in memory-side prefetching, such an engine resides in the
main memory subsystem (after any memory bus). Memory side prefetching can save
precious chip space by storing metadata off-chip and can also perform optimizations
at main memory side [Yedlapalli et al. 2013]. By comparison, core-side prefetching can
avail more accurate knowledge of memory reference patterns and can perform cache
level optimizations, such as avoiding cache pollution [Srinath et al. 2007].

2.5. A Classification Based on Pattern and Complexity

Prefetchers can also be classified based on the (ir)regularity or complexity of the
miss/access pattern they target. The “Next-K” line prefetcher brings next K lines after
the current miss. The stride prefetcher brings lines showing a strided pattern relative
to the current miss [Chen and Baer 1995], refer to Figure 2(b). For example, if a past
sequence of addresses accessed by loads have been A, A+ Q, A+ 2Q, and A+ 3Q, then
the data at address A+ 3Q + Q can be prefetched, since this sequence has a stride of
Q. For Q = 1, this is referred to as stream prefetching.

For many applications, however, the access patterns are not perfectly strided, and
these are termed irregular patterns (refer to Figure 2(c)). Correlation prefetching tracks
past reference sequence or miss addresses to detect some correlation and use it to guess
future miss addresses that are used for prefetching. Spatial prefetchers assume spatial
locality and, thus, bring lines into the vicinity of a current miss [Somogyi et al. 2006].
Temporal prefetchers assume that recently seen address streams are expected to recur
and, hence, they prefetch based on temporal streams from recent miss history [Wenisch
et al. 2005].

Other sophisticated prefetchers target irregular access patterns in particular [Jain
and Lin 2013; Somogyi et al. 2009]. Several other prefetchers and variants of the
above-mentioned prefetchers have been proposed, which are discussed in this survey.
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Table I. A Classification Based on Objective and Cache Level of Prefetching

Classification References

Study/optimization objective

Performance Almost all

Energy [Guo et al. 2011; Kolli et al. 2013; Dang et al. 2012, 2013; Yu and Liu 2014; Hur
and Lin 2006, 2009; Guttman et al. 2015]

Fairness [Ebrahimi et al. 2011; Chaudhuri et al. 2012; Albericio et al. 2012]

Level in cache hierarchy

In first-level caches [Marathe and Mueller 2008; Guo et al. 2011; Srinivasan et al. 2001; Ferdman
et al. 2011; Kolli et al. 2013; Reinman et al. 1999; Ferdman et al. 2008; Ferdman
and Falsafi 2007; Lim and Byrd 2008; Somogyi et al. 2006; Burcea et al. 2008; Yu
and Liu 2014; Hur and Lin 2006; Annavaram et al. 2001b; Lai et al. 2001; Falcón
et al. 2005; Yan and Zhang 2008; Hu et al. 2003; Wenisch et al. 2005; Peir et al.
2002; Chilimbi and Hirzel 2002; Alameldeen and Wood 2007; Lee et al. 2012;
Guttman et al. 2015; Sherwood et al. 2000; Iacobovici et al. 2004; Joseph and
Grunwald 1997; Kumar and Wilkerson 1998; Chen et al. 2004; Mehta et al. 2014]

In mid/last level
caches

[Solihin et al. 2003; Kandemir et al. 2009; Ebrahimi et al. 2009; Dang et al. 2013;
Hur and Lin 2006; Wu et al. 2011; Wang et al. 2003; Kim et al. 2014; Chaudhuri
et al. 2012; Panda and Balachandran 2014; Chen and Aamodt 2008; Srinath
et al. 2007; Lee et al. 2008; Pugsley et al. 2014; Nesbit et al. 2004; Sharma et al.
2005; Cantin et al. 2006; Hu et al. 2003; Ganusov and Burtscher 2005; Nesbit
and Smith 2004; Chilimbi and Hirzel 2002; Alameldeen and Wood 2007; Lee
et al. 2012; Guttman et al. 2015; Lin et al. 2001a; Mehta et al. 2014]

2.6. A Classification Based on Objective and Cache Level

Before moving to detailed discussion and classification of prefetching techniques in
Sections 3 through 6, we first classify the prefetching techniques based on their opti-
mization goal. Table I shows this classification and, from this, it is clear that prefetching
can provide versatile optimizations. The first and last level caches have different prop-
erties (e.g., locality of access stream, characteristic such as private/shared, acceptable
latency/storage overhead, etc.) which dictate choice of prefetching technique/
parameters for them (e.g., Mehta et al. [2014]). For this reason, Table I also classi-
fies the works based on the cache level where prefetching is used.

2.7. Challenges in Prefetching

Several challenges need to be addressed to realize the full potential of prefetching.

2.7.1. Implementation Overheads. While simple prefetchers (e.g., next-line prefetching)
have limited coverage and accuracy, sophisticated prefetchers require a large amount
of metadata (e.g., tens of MBs [Lai et al. 2001; Ferdman and Falsafi 2007]). Storing
the metadata off-chip requires frequent and costly communication of data on and off
chip, while storing it on-chip is only possible for small structures, which still consumes
precious chip resources. Also, passing information about the miss address, program
counter (PC), and so on, to prefetchers (of especially lower-level caches) introduces non-
trivial changes (such as wire-routing) to chip design. To avoid redundant prefetches,
the cache needs to be probed, which requires an extra port or sequential checking
[Reinman et al. 1999].

2.7.2. Performance Tradeoffs. Due to the features of modern processors, such as out-of-
order execution, reduction in misses brought by prefetching may not directly translate
into performance improvement. Issuing prefetches in a timely manner requires esti-
mating cache miss latencies and other timing information [Srinath et al. 2007; Marathe
and Mueller 2008; Zhu et al. 2010], and this is especially challenging for SW-based
prefetchers.
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Fig. 4. An illustration of change in cache hits with amount of data fetched in cache.

2.7.3. Cache Pollution and Resource Contention. Prefetching can be seen as a complemen-
tary approach to bypassing and this is illustrated in Figure 4. As the volume of data
fetched in cache increases, hit rate increases due to better storage utilization; how-
ever, thrashing begins as soon as the working set exceeds cache capacity. Prefetched
blocks start evicting useful demand-fetched blocks or those brought into shared cache
by prefetchers of other cores. Resultant cache pollution generates further misses, which
may trigger more prefetches. With increasing core-count, inter-core interference esca-
lates and, due to reduced per-core BW, contention from prefetch requests also increases.

Some techniques place prefetched blocks in an additional buffer (Section 6.1). How-
ever, accessing them sequentially or in parallel with cache causes energy/latency over-
head. Also, they require reorganization of chip architecture and preclude the possibility
of cache space sharing between demand-fetched and prefetched data. It is clear that
achieving the optimum balance (peak point in Figure 4) requires a careful moderation
of prefetching parameters and aggressiveness.

2.7.4. Reliability Challenges. Prefetching techniques can increase the soft error rate by
increasing the residency time of data in the cache [Mittal and Vetter 2015]. Also, by
inducing extra writes, they can cause hard errors and reduced device-lifetime in non-
volatile memories that have limited write endurance.

The techniques discussed in subsequent sections seek to address these challenges.

3. HARDWARE PREFETCHING, DATA PREFETCHING, AND CORE-SIDE PREFETCHING

In this section, we discuss HW, data, and core-side prefetching techniques that form
the most prominent prefetching approaches. In this and the next sections, we discuss
prefetching techniques by roughly organizing them into several groups. Although some
of the techniques belong to multiple groups, we discuss them under a single group only.

3.1. Stream and Stride Prefetching

Jouppi [1990] presents a prefetching scheme using stream buffers. On a cache miss, se-
quential cache blocks are prefetched into a separate stream buffer until it is filled. Thus,
the prefetched blocks are not placed into the L1 cache to avoid its pollution. The stream
buffer is organized as a first in first out (FIFO) buffer. Next time, when the L1 cache sees
a miss, the first entry of the stream buffer is checked and, on a hit, a block is brought
into the L1 cache. As prefetched data are used, more prefetches are issued, which keeps
the buffer sufficiently ahead of the instruction stream of the processor so the entire
latency can be hidden. Jouppi also explored the use of multiple streaming buffers in
parallel that can prefetch multiple intertwined reference streams. This is useful in
several cases, for example, when applications access multiple arrays inside a loop.

Joseph and Grunwald [1997] present a prefetching approach based on the assumption
that the miss address stream can be approximated by a Markov transition diagram. In
this diagram, a weight is given to every transition from node P to node Q, which shows

ACM Computing Surveys, Vol. 49, No. 2, Article 35, Publication date: August 2016.



A Survey of Recent Prefetching Techniques for Processor Caches 35:7

the fraction of accesses to P where the next access happens to node Q. Assuming that
the execution pattern is repetitive, this Markov diagram can be used to predict the miss
address wthat follows the current miss address. Since programs show time-varying
behavior and the degree of a node may become very large, constructing and storing
a full Markov diagram is infeasible. To address this issue, they limit the number of
nodes in the transition diagram along with their out-degrees. This allows the diagram
to be stored in a table. When a miss address matches that in the table, the predicted
next addresses can be prefetched. Higher priority is given to those “next addresses”
that have a higher probability of transition to them from the current address. If the
prefetch request queue is full, then low-priority requests are discarded.

Sherwood et al. [2000] propose a scheme where the stream buffer follows the stream
predicted by an address predictor, instead of a fixed-stride predictor. This allows use of
different predictors that can prefetch more effectively than the fixed-stride predictor.
They demonstrate the use of a stride-filtered Markov predictor that uses a two-delta
stride table before the Markov predictor table (a two-delta stride predictor is one where
only a new stride, which is consecutively observed twice, can replace a predicted stride).
In the write-back stage, the PC for a missed load is used to index the stride table. If
the stride computed from (present miss address-last address) differs from two-delta
stride or the last stride, then the address cannot be predicted by the stride, and, hence,
it is stored in the Markov predictor. The Markov table is queried using the last miss
address for finding the next prefetch address. In case of a hit, the Markov address is
utilized for prefetching and, in case of a miss, the next stride address for prefetching
is computed using the last address. They show that their predictor allows accurately
prefetching for pointer-based and complex array-access-based applications.

Sair et al. [2002] analyze load miss streams to obtain insights that can improve
prefetcher effectiveness. Based on the miss access patterns, they classify the load miss
streams into four categories, viz. stride, next-line, same-object, and pointer-based miss
stream. Same-object misses are further misses occurring on a heap object that has
been accessed recently. These misses can be avoided by prefetching the entire object
or, minimally, the blocks of the object to be accessed in the near future. Pointer-based
misses happen when a pointer is dereferenced to access an object. Since these misses
are most challenging to eliminate using prefetching, they discuss two metrics to analyze
them and design a strategy for alleviating them. “Pointer variability” shows the number
of pointer transitions that are frequently changing and that are stable (a load is called
a pointer transition if it loads a pointer). Pointer variability quantifies the number of
times a pointer transition for an address does not load the same pointer as the one
loaded previously from that address. “Object fan out” shows how many pointers are
transitioned and frequently miss in the cache. Thus, programs with high variability
and fan out are more difficult to prefetch than those with small variability and fan out.
They also show that the classification of misses can be accurately done in HW and,
based on this classification, prefetching can be efficiently performed.

Iacobovici et al. [2004] note that unit stride and single non-unit stride prefetching
techniques do not work for patterns that frequently appear in scientific applications.
They present a multi-stride prefetcher that can detect and prefetch for a stream con-
sisting of a maximum of two steady-state and two transitional strides, that is, four
distinct strides. An example of multi-stride miss address stream is A, A+1, A+2, A+4,
A+5, A+6, A+8, . . . , which is composed of two stride components, viz. a unit stride
that appears twice and a stride of two that occurs once. In the training phase, the
prefetcher detects the stride patterns. If successive misses in a stream show identical
stride, then the prefetcher takes them as belonging to a single stride stream, and the
prefetcher remains in state 1. If a miss displays a different stride, then the prefetcher
transitions to state 2. The stride from this miss sets the transitional stride (stride12).
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A future miss that deviates from the second stride switches the state to state 1 and
this stride sets the transitional stride (stride21). After training, if, for a missing load,
the recorded stride is same as the one that is predicted, then a prefetch is triggered.

Zhu et al. [2010] note that, in a stream, the timing of data accesses happens in a
predictable manner, for example, in a constant-stride prefetcher, adjacent accesses in
a stream are expected to occur at nearly equal time intervals. Based on this, their
prefetching technique stores both the addresses referenced and the timing informa-
tion to predict when a miss happens, in contrast with the conventional stream-based
prefetchers that only store the addresses. The timing information is measured in
terms of the number of misses. Their technique classifies miss addresses into dif-
ferent streams based on whether they are from the same memory region or the same
instruction. By virtue of avoiding untimely prefetches, their technique mitigates cache
pollution and memory BW wastage.

Kim et al. [2014] present a technique that aims to identify all potential stride streams,
including those detected by PC-based and delta-correlation-based prefetchers. Their
technique sees whether the last miss and a previous miss form a stream where a fixed
stride separates more than two miss addresses. Since the last miss may be part of
different streams having dissimilar strides, tracking multiple streams is essential for
choosing the best stream from them. In such a case, their technique chooses the longest
stream, since it is likely to cover a larger number of misses and be more accurate than a
short stream. This addresses the issue of overlapping streams. On detecting a stream,
future accesses in that stream can be identified. The number of streams that can be
tracked are limited by the available storage space. Still, since their technique tracks
multiple streams, it can continue prefetching by skipping a few of them.

3.2. Correlation Prefetching

As shown in Table II, many works propose correlation prefetching (refer Section 2.5)
techniques. We now discuss a few of them.

Lai et al. [2001] propose a dead-block prediction-based prefetching technique. Their
technique records the memory reference trace to estimate when an L1-D cache block
sees the last access. From this time, until a cache miss replaces the block, the block
is dead [Mittal 2014]. They note that dead times are typically large and more than
the time required for fetching data from the next level of cache. Their technique also
uses address CoR to predict the block that will be referenced soon and prefetches it to
eliminate the miss and improve performance. This block can be stored at the place of
the dead block in the L1 cache itself. They show that their technique provides timely
and effective data prefetching. However, their technique requires storage proportional
to the application working set size. CoR data need to be stored across long recurring
application phases and since the information about last reference is computed on each
L1 access, it needs to be stored on-chip to achieve high BW. Hence, to provide reasonable
coverage, their technique may require impractically large storage space [Ferdman and
Falsafi 2007].

Nesbit and Smith [2004] note that conventional prefetch methods store miss address
streams in a table, which provides fast lookup, but the table reserves a fixed space,
and the entries in a table quickly get stale, which may trigger useless prefetches.
They present an alternative organization for storing prefetch history. Their method
decouples matching of prefetch key from storage of history required for prefetching.
First, the prefetch key is used to access the “index table” to obtain a pointer into a
global history buffer (GHB). In every GHB record, a global miss address and a link
pointer are stored. Using link pointers, GHB entries are chained into address lists that
are chronological list of addresses with an identical “index table” prefetch key. By using
different keys, different history-based prefetching techniques are realized, for example,
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Table II. Correlation and Pre-Execution-Based Prefetching Techniques

Classification References

Correlation
prefetching

[Ferdman et al. 2008; Solihin et al. 2003; Lai et al. 2001; Hu et al. 2003;
Ferdman and Falsafi 2007; Chou 2007; Diaz and Cintra 2009; Manikantan
et al. 2011; Dang et al. 2012; Liu et al. 2012; Jain and Lin 2013; Somogyi et al.
2006; Burcea et al. 2008; Wenisch et al. 2009; Somogyi et al. 2009; Srinath
et al. 2007; Ferdman et al. 2011; Nesbit and Smith 2004; Huang et al. 2012;
Roth et al. 1998]

Tag-based correlation
prefetching

[Hu et al. 2003; Sharma et al. 2005]

Pre-execution based
prefetching

[Zilles and Sohi 2001; Ganusov and Burtscher 2005, 2006; Zhang et al. 2007;
Huang et al. 2012; Annavaram et al. 2001b; Collins et al. 2001b; Lu et al.
2005; Luk 2001; Balasubramonian et al. 2001; Collins et al. 2002; Rabbah
et al. 2004; Aamodt et al. 2002]

stride prefetching can use PC of load instruction while Markov prefetching [Joseph and
Grunwald 1997] can use PC-independent global miss addresses. The GHB can be sized
depending on the length of the history required to be tracked, which leads to better
storage efficiency than conventional tables. The GHB is organized as a FIFO buffer and,
thus, stale entries are automatically removed from it. Thus, accurate reconstruction of
access pattern allows them to implement sophisticated prefetch techniques that exploit
complex access patterns.

Chou [2007] note that as off-chip latency increases, latency of on-chip computation
that separates overlapping off-chip accesses becomes negligible, and very little useful
work can be performed during this time. Thus, application execution can be logically di-
vided into “epochs,” such that each epoch has on-chip computation periods and off-chip
accesses. Eliminating off-chip accesses removes the epoch, and decreasing the num-
ber of epochs translates into performance improvement. Conventional CoR prefetching
techniques avoid single misses and epochs are eliminated as a secondary effect. How-
ever, avoiding single misses may not remove an entire epoch and, thus, may not improve
performance. Instead of eliminating individual misses, their technique prefetches all
the off-chip misses in the epochs to remove them entirely. Their technique does not
attempt to eliminate cache misses that overlap with another miss that triggered the
epoch, and this helps in reducing the size of the CoR table. Their correlating prefetcher
is stored in main memory and its access latency is hidden by exploiting memory level
parallelism, that is, the table is accessed during the time an off-chip access stalls the
processing core. Thus, without wasting on-chip space, prefetches can still be issued in
a timely manner.

Liu et al. [2012] present a miss CoR-based prefetching technique. In their technique,
CoR between a miss and a previous miss is ascertained when they happen closely
in space and time, where space CoR means that these misses lie within a specified
address range. After dynamically capturing these miss correlations, their technique
uses compression to save them along with the data block content. Thus, along with
the demand data, prefetch metadata are brought with minimal overhead. This allows
very large CoR history. Compression is used to save metadata of each block within the
original block size in the Dynamic random access memory (DRAM). Based on the miss
correlations, accurate prefetches can be issued for improving performance.

Roth et al. [1998] present a dependence-based prefetching technique that works by
identifying a program kernel that computes addresses of LDS elements. Assuming that,
in the near future, the program will follow similar steps to traverse the structure, a
prefetching engine speculatively executes this kernel together with the main program.
As an address is loaded, the loads consuming that address are predicted, and prefetches
for those loads are immediately issued, and, in this way, dependence information is
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utilized. By virtue of executing only those loads required for traversing the LDS, the
prefetching engine can run far ahead of the main program and thus perform prefetch
in a timely manner. Using this, their technique can cover long LDS access latencies.

Wenisch et al. [2005] present a temporal memory streaming (MS) technique to elim-
inate coherent read misses in shared memory multiprocessors. They note that shared
addresses are likely to be accessed together and in the same sequence. Also, recently
accessed address streams tend to recur. Such temporal correlation is found in accesses
to general data structures such as arrays and LDSs (e.g., trees and lists). By com-
parison, spatial or stride locality, found only in array-based data structures, relies
on memory layout of the data structure. Based on temporal correlation, they extract
temporal streams from miss history of recent sharers and move data to a subsequent
sharer before the data are requested.

Somogyi et al. [2006] note that in commercial workloads, memory accesses show
repetitive layouts spanning over large (e.g., several kilobytes) memory regions. Also,
repetitive pattern of these accesses can be predicted by code-based correlation. Since
these patterns may be non-contiguous, the use of larger cache block size for capturing
such spatial correlation wastes the bandwidth. They present a technique that detects
code-correlated spatial access patterns and brings such blocks into the cache before
demand misses. On first reference to a spatial region, their technique predicts the
cache blocks that will be referenced in that region during a monitoring interval. The
monitoring interval is the time from first access to the region until any block accessed in
the interval is invalidated or evicted from the cache. By virtue of exploiting correlation
between code and access patterns, their technique achieves much higher prediction
coverage than the address-based predictors since there are so much fewer distinct code
sequences than data addresses.

Somogyi et al. [2009] propose spatio-temporal memory streaming (STeMS) to syn-
ergistically integrate spatial and temporal streaming. Temporal MS tracks past miss
sequences to predict subsequent chains of dependent misses, while spatial MS tracks
recurring data layout patterns in memory regions of fixed size to predict future misses.
While temporal MS fails to predict compulsory misses and achieves low accuracy due
to the inability to detect where streams terminate, spatial MS cannot establish order
between predictions and is also limited due to the use of fixed size regions. Noting that
the spatial access sequence recurs in a single region and across regions, STeMS tracks
temporal sequence of region accesses. Also, spatial relationships in every region are
used to predict the complete miss sequence. Based on it, cache blocks are prefetched
to the requesting processor. Unlike a naive combination of spatial and temporal MS,
STeMS avoids interference between the predictors and, thus, achieves higher prefetch
accuracy. They also show that STeMS achieves comparable or better prefetch coverage
and performance than using either spatial or temporal MS alone.

Panda and Balachandran [2014] note that in parallel applications data and code are
shared and communicated between cores. Also, demand misses seen in a core repeat
in other cores at a large time interval (e.g., average of tens of thousands of cycles).
These miss streams, referred to as cross-core miss streams, cannot be eliminated by
core-local stream prefetchers. They propose a cross-core spatial streaming technique in
which the cross-core spatial streams and the cores involved in it are detected. Then, the
spatial streams from a private MLC prefetcher are transmitted to MLC prefetchers of
associated cores well in advance to allow them to prefetch data and eliminate cross-core
misses for improving performance.

Cantin et al. [2006] present a technique, called stealth prefetching, for broadcast-
based shared-memory multiprocessor systems. In such systems, memory latency values
are high and early prefetches may cause state downgrades or invalidations in remote
nodes. They define a region to encompass power-of-two number of cache lines and
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identify non-shared regions using a coarse-grained coherence tracking scheme [Cantin
et al. 2006]. They note that the majority of memory accesses happen in memory regions
that are not shared when the access happens, and the majority of lines in such regions
are accessed. Based on this, when the lines accessed in a region exceed a threshold,
their technique prefetches a certain number of lines in the region from DRAM and
dispatches them to the requesting processor. To improve prefetching accuracy, lines in
a region that were previously accessed are tracked. Prefetched lines are stored with a
no-permission coherence state and not kept individually coherent. If another processor
obtains exclusive access to the region or sends a memory request to make the prefetched
lines stale, then the prefetched lines in the original processor are invalidated. The
prefetch requests are not broadcast to other processors, and they can still get exclusive
copies of lines, and, thus, the prefetching is stealthy. Also, since multiple lines can be
prefetched in a single request, the prefetching is aggressive and efficient.

3.3. Approaches for Improving Prefetcher Training

The training stream presented to a prefetcher decides the “repeating pattern” observed
by the prefetcher and, hence, it has a significant impact on the efficacy of the prefetcher.
We now discuss a few techniques to improve prefetcher training (e.g., Ferdman et al.
[2011], Manikantan et al. [2011], Jain and Lin [2013], and Guttman et al. [2015]).

Manikantan et al. [2011] study extending the training stream stored by CoR prefetch-
ers to improve their performance. They denote a primary miss as one that initiates a
request to the next level of cache/memory and a secondary miss as a request where
the data requested by a primary miss have not arrived in the cache. They note that
presenting only a primary miss address stream to train a prefetcher precludes the op-
portunity of exploiting information provided by secondary misses and cache hits. They
propose including secondary misses and cache hits in the training stream to improve
the regularity seen by the prefetcher. The improvement in regularity is confirmed by
a reduction in entropy measurement. While other techniques trigger a prefetch only
on a primary miss, they suggest triggering prefetches on secondary misses also to
improve the performance of prefetchers. While requiring minimal HW modifications,
their technique reduces cache misses.

Jain and Lin [2013] present a prefetcher, called an irregular stream buffer, for tar-
geting irregular streams of memory accesses that are temporally correlated. Their
technique translates groups of correlated physical addresses into contiguous addresses
in a new address space by using an extra indirection level. Based on this, their tech-
nique organizes prefetching metadata such that it is simultaneously spatially and
temporally ordered. This reduces the problem of irregular stream prefetching to se-
quential prefetching in the new address space. This remapping also improves accuracy
and coverage since, based on PC of the loading instruction, prefetcher input can be
segregated into several streams [Nesbit and Smith 2004]. Further, storing most of
its metadata on-chip allows us to use the LLC access stream (and not the LLC miss
stream) to train the prefetcher, which leads to significant improvement in reference
stream predictability.

3.4. Tag-Based Correlation Prefetching

Since applications reference a large number of addresses, the CoR prefetchers that
work by tracking addresses incur large metadata overhead. To address this, tag-based
correlation prefetching (TCP) techniques have been proposed that utilize the obser-
vation that, due to address locality, the tags formed by high-order address bits also
show locality. Since one tag sequence may correspond to multiple address sequences, a
tag-based CoR table requires a much smaller number of entries. We now discuss a few
TCP techniques.
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Hu et al. [2003] note that while a memory address always maps to a fixed cache
set, a tag can appear in different cache sets, which happens when multiple addresses
have the same tag but different set indices. Hence, tag sequences are highly repetitive
both in a single set and across the sets. Based on this, they propose a TCP technique
that has the same accuracy as an address-based CoR prefetching scheme but requires
magnitude order smaller storage. Their technique monitors per cache-set tag sequences
and makes predictions based on recurring tag correlation sequences. They show that
their technique provides better performance than a prefetching approach based on
correlations of both PC traces and addresses.

Sharma et al. [2005] present a prefetching technique that works by partitioning
the memory address space into tag concentration zones (TCzones). If addresses of two
misses have same lower order bits, then they are in the same TCzone. The prefetcher
tracks L2 cache miss stream. The number of miss events, after which a miss stream
shows the same data item again, is termed recurring distance. On detecting multi-
ple misses with identical recurring distance, a pattern is inferred. At this point, the
prefetcher starts recording for making future prediction. The prefetcher can work in
one of the two modes, viz. absolute and differential. In absolute mode, it looks for value
locality by monitoring pattern of tags within every TCzone and in differential mode, it
looks for stride value locality by monitoring stride (i.e., delta between subsequent tags)
pattern in every TCzone. Depending on which of the two patterns is dominant in the
miss stream, the prefetcher can switch to it to improve the effectiveness of prefetching.

3.5. Pre-Execution or Helper-Thread-Based Prefetching

In processors with multithreading, while the main thread executes the program, an-
other thread can redundantly execute a full or reduced version of the program to
speculatively generate data addresses for performing prefetching. Such a thread is
known as speculative slice, pre-execution (or pre-computation) thread, helper thread,
or future thread. These threads progress ahead of the main thread and run nearly the
same code. Thus, they actually compute load addresses instead of predicting them and
allow restricting prefetching to probable control-flow paths instead of all possible paths.
Figure 5 show some examples of helper-thread prefetching (based on Luk [2001]). We
now discuss a few of these techniques (refer Table II).

Annavaram et al. [2001b] present a precomputation-based approach to predict
prefetch addresses. For an instruction fetched in instruction fetch queue (IFQ) from
I-cache, their technique determines the dependencies and stores them in IFQ as
pointers along with the instruction. Using profiling, their technique identifies ad-
dresses referenced by the load/store instructions that may lead to majority (90%) of
D-cache misses. When a load/store instruction that may cause a cache miss enters
the IFQ, their technique tracks the dependence pointers that are stored in IFQ for
generating a dependence graph of instructions that await execution. The dependence
graphs are executed by a separate precomputation engine (PE) to produce load/store in-
structions early for prefetching. PE executes in a speculative manner and, thus, it does
not affect the processor state, and it makes progress faster than the main execution by
avoiding delays in reorder buffer and fetch queue that may be seen by the main execu-
tion. Their technique achieves performance reasonably close to that of perfect D-cache.

Luk [2001] present a software-controlled pre-execution scheme to accelerate pro-
grams with irregular access patterns. Their technique runs the original program itself
and, thus, does not require program shortening. When the main thread is stalled, more
resources can be given to the pre-execution thread to enhance overall performance.
They suggest pre-execution schemes for dealing with different irregular access pat-
terns. For the pointer chasing problem, one helper thread is spawned for pre-executing
each pointer chain. Similarly, helper threads can be used to execute different procedure
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Fig. 5. Illustration of use of helper-thread prefetching.

calls or traverse different control-flow paths. On determining the correct execution
path, their technique cancels the wrong-path pre-executions. Thus, their technique
performs effective prefetching under complex data access patterns and control flows.

Collins et al. [2001b] present a technique where idle HW contexts are used to spawn
speculative threads that aim to hide miss latency by triggering upcoming cache miss
events well in advance of access by main thread. Since speculative threads cause con-
tention for processor resources (e.g., fetch and memory bandwidth), such pre-execution
is done only for those static loads, called delinquent loads, which lead to the majority
of stalls in the main thread. For example, fewer than 10 static loads may lead to more
than 80% of L1D cache misses. Speculative threads compute the address referenced
by a future delinquent load to prefetch the corresponding data. They show that, com-
pared to the case when only the main thread starts speculative threads, allowing the
speculative thread to start additional speculative threads provides higher performance
improvement due to aggressive speculation.

Collins et al. [2002] propose using a pointer cache (PtC), a dedicated cache that
stores pointer transitions in the application. Given the effective address of a pointer
and assuming the pointer points to an object, PtC provides this object’s base address.
When a load shows miss in L1 cache but hit in PtC, the first two cache blocks of the
pointed-to object are prefetched. They also explore use of PtC with speculative pre-
computation. With pointer-traversing codes, a speculative-thread in other techniques
cannot progress faster than the main thread. In their technique, with help from PtC,
a speculative thread can progress farther ahead by traversing data structures under
pointer-transition induced cache misses. PtC helps in avoiding serial accesses to re-
current loads and, thus, by using PtC, speculative-threads’ control instructions can
go along the right object traversal path, which leads to accurate prefetching for the
main thread. As pointer transitions change, PtC is also updated. For a fixed transistor
budget, using a PtC with an L3 cache provides higher performance benefits than using
a larger-sized L3 cache alone.

Aamodt et al. [2002] present a helper-thread based prefetching technique. Using
profiling, they identify code regions with many I-cache misses. The instructions im-
mediately preceding the basic blocks showing I-cache misses are identified and are
called target points. Further, trigger points are identified where a helper thread can
be initiated for prefetching instructions after the target point. Then, a helper thread is
generated and is attached to the main thread. At runtime, on encountering a trigger
point in the main thread, a helper thread is spawned in the spare context. The helper
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Table III. A Classification of Research Works

Classification References

SW prefetching (or
compiler support)

[Beyler and Clauss 2007; Khan et al. 2014; Marathe and Mueller 2008;
Solihin et al. 2003; Kandemir et al. 2009; Wang et al. 2003; Lu et al. 2003,
2005; Luk 2001; Chilimbi and Hirzel 2002; Zhang et al. 2006; Mehta et al.
2014; Lee et al. 2012; Rabbah et al. 2004; Collins et al. 2001b; Mowry et al.
1992; Fuchs et al. 2014; Guo et al. 2011; Chen et al. 2007; Zhang et al.
2007]

HW prefetching Almost all others

Comparison/coordination
of HW-SW prefetching

[Verma and Koppelman 2012; Guttman et al. 2015; Mehta et al. 2014; Lee
et al. 2012]

Use of dynamic
optimization framework

[Lu et al. 2003, 2005; Zhang et al. 2006, 2007]

thread speculatively executes instructions related to control flow that will be later
encountered by a main thread and this achieves prefetching effect.

Ganusov and Burtscher [2006] present an event-driven helper threading approach
for software emulation of simple or complex HW prefetchers. Based on the cache miss
observed in the main thread, the helper thread predicts the data that will be accessed
next and prefetches it. For making a prediction, the helper thread can use any simple
or complex prefetching algorithm. After that, the helper thread again stalls, waiting
for a miss in main thread. To enable efficient inter-thread communication without
causing contention on shared cache ports, they use a FIFO-style event buffer. Using
this, the helper thread can receive information about cache misses from the Re-order
buffer (ROB) of the core running the main thread. When the main thread accesses
a prefetched line, the corresponding load instruction is marked as consumer of the
prefetched data. When this instruction is committed, a prefetch trigger is transmitted
to the helper thread as if the cache miss was shown by this instruction. In this manner,
their technique emulates the conventional HW prefetching and the helper thread can
progress faster than the consumption of data by main thread. Their prefetching mech-
anism allows flexibly, turning on/off the prefetcher when desired without affecting the
operation of the main thread.

4. SOFTWARE PREFETCHING, INSTRUCTION PREFETCHING,

AND MEMORY-SIDE PREFETCHING

This section complements Section 3 by discussing techniques for SW, instruction, and
memory-side prefetching. Table III classifies the research works based on HW or SW
prefetching and use of dynamic optimization framework.

4.1. Software Prefetching

Chilimbi and Hirzel [2002] present a prefetching technique that is especially useful for
pointer codes developed in weakly typed languages such as C/C++. First, a temporal
data reference profile is collected from the application being executed. Then, profiling is
disabled, and hot (e.g., frequently repeating) data streams are extracted from the refer-
ence profile using an analysis algorithm. Only reasonably long streams are extracted to
amortize the prefetching overhead. Then, instructions are inserted into the application
for detecting and prefetching the hot data streams. Then, analysis is disabled, and the
application runs with the prefetch instructions. Afterwards, the inserted checks and
prefetch instructions are removed. After this, the entire cycle of profiling step, analysis
step, optimization step, and so on, begins again. Their technique improves performance
while keeping the overhead low by focusing on few hot data streams.

Marathe and Mueller [2008] present a SW-only prefetching technique to reduce
L1 cache misses. They first run the application with a training data set to extract
annotated memory access trace. Using this, memory addresses generated by loads and
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stores and their contents are monitored in an offline manner to see whether a load miss
address may be predicted from previous instructions (called predictor instructions).
Based on this, prefetch predictors are produced of which timely, accurate, and non-
redundant predictors are selected. To see timeliness of a predictor, their technique
checks whether a load miss is too close (in terms of processor cycles) to a predictor
instruction, since, in such a case, prefetching will not be useful. When this distance is
smaller than a threshold, the predictor is not used. Also, if a large fraction of prefetched
data of a predictor is redundant, it is eliminated. Based on the selected predictors, SW
prefetching instructions are placed in an application’s assembly code directly. Working
at instruction level enables their technique to have a broad view of memory access
patterns spanning over boundaries of functions, modules, and libraries. Their technique
integrates and generalizes multiple prefetching approaches such as self-stride, next-
line and intra-iteration stride, same-object, and other approaches for pointer-intensive
and function call-intensive programs.

Wang et al. [2003] present a HW-SW co-operative prefetching technique. Their tech-
nique uses compiler analysis to generate load hints, such as the spatial region and
its size (number of lines), to prefetch the pointer in the load’s cache line to follow for
prefetching and the pointer data structure to recursively prefetch. Specifying size al-
lows prefetching a variable-size region based on loop bounds. Based on these hints and
triggered by L2 cache misses, prefetches are generated in HW at runtime. Unlike other
SW techniques, in their technique, individual prefetch addresses are generated by HW
and not by SW, which allows timely prefetching of data. Also, use of compiler hints
allows reduced storage overhead and accurate prefetching even for complex access pat-
terns, which is challenging for a HW-only approach. They show that while generating
significantly less prefetch traffic, their technique still provides similar performance
improvement as a HW-only prefetching technique.

Rabbah et al. [2004] present a compiler directed prefetching technique that uses
speculative execution. The portion of program dependence graph relevant to the ad-
dress computation of a long latency memory operation is termed as load dependence
chain (LDC). The LDCs are identified by the compiler and precomputations are stat-
ically embedded in the program instruction stream with prefetch instructions. Using
speculative execution of LDCs, future memory addresses are precomputed, which are
utilized for performing prefetching. For pointer-based applications, LDCs contain in-
structions that may miss in D-caches, and, hence, generating prefetch addresses for
such applications causes large instruction overhead. To address this, their technique
provisions that if a load in the LDC sees a miss, successive precomputation instructions
are bypassed.

Khan et al. [2014] present a SW prefetching technique based on runtime sampling
and fast cache modeling. Their technique randomly samples memory instructions with
low sampling ratio (e.g., 1 in 100,000). The blocks in D-cache that are accessed by
sampled instructions are monitored for data reuse. Further, whenever the sampled
instructions are re-executed, a stride sample is recorded. Based on data reuse samples
recorded over the whole execution, a statistical cache model estimates per-instruction
cache performance for given cache sizes. Based on it, delinquent loads are identified
and stride samples for each delinquent load are analyzed to detect regular stride pat-
terns. On detecting a dominant stride pattern for a delinquent load, their technique
computes suitable prefetch distance and inserts a prefetch instruction for such a load.
Based on cache modeling, their technique also identifies whether a data block will not
be reused in MLC/LLC. For such data blocks, their technique uses a special prefetch
instruction that prefetches data in L1 cache without polluting MLC/LLC. On eviction,
this cache block is directly written back to main memory. Thus, by using cache by-
passing, their technique reduces cache pollution. For single-thread applications, their
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technique provides performance comparable to HW prefetching, but, with increasing
core-count and resource-contention, the advantage of their technique improves.

4.2. Use of Dynamic Optimization Framework

Several input- and microarchitecture-dependent events cannot be predicted at com-
pile time, which limits the effectiveness of SW prefetching. Dynamic optimization
frameworks can address these limitations by allowing performance monitoring and
addition/removal of optimizations at runtime. Several prefetching techniques that use
these frameworks are discussed next.

Lu et al. [2003] use a user-mode dynamic optimization system, named ADaptive
Object code REoptimization (ADORE) for implementing D-cache prefetching. Using
ADORE, they monitor performance of binary execution and ascertain performance-
critical traces/loops that show frequent D-cache misses. Prefetch instructions are in-
serted only in these loops/traces, and binary is patched to redirect further execution to
optimized traces. Their approach provides higher performance than static prefetching,
while incurring only small overhead.

Lu et al. [2005] note that SMT and CMP processors present different tradeoffs of
helper-thread-based prefetching. In SMTs, several processor resources, for example,
issue queues, and L1 caches, may be shared or partitioned. Both main and helper
threads run on the same core, which enables fast synchronization. By comparison, in
CMPs with private L1 cache and shared L2 cache, the main thread cannot easily start
helper-thread execution for a specific L2 cache miss. Also, communication of register
values between main and helper threads is not straightforward. To address this, they
use the ADORE framework to implement helper-thread-based prefetching in CMPs.
They bind the main thread to one core, while the helper code, runtime optimizer, and
runtime performance monitoring codes are executed on another core. This minimizes
the negative influence of helper threads on main threads and precludes the need of
starting multiple thread slices. Performance monitoring code detects program regions
with delinquent loads and the helper code for these regions prefetches for delinquent
loads. The main thread initiates the helper thread and communicates with it using a
mailbox in shared memory.

Zhang et al. [2006] present a prefetching technique that uses Trident [Zhang et al.
2006] dynamic optimization framework to collect frequently executed basic instruction
blocks that form hot traces. By analysis of hot traces, delinquent loads and a suitable
prefetch distance for them are identified, and then prefetch instructions are inserted
into the hot trace. To adapt to dynamically changing workload behavior, they use HW
monitoring to adjust prefetch distance for each load operation or even remove prefetch
instructions. This allows their technique to achieve higher performance by utilizing
runtime information.

Zhang et al. [2007] use the Trident framework to improve the effectiveness of helper-
thread based prefetching. Trident monitors program’s behavior and triggers compiler
optimizations in a separate thread to adapt to that behavior. The hot execution traces
of the main thread are stored in the code cache of the dynamic optimization system
and are used to create p-slices. Generation of p-slices happens in the Trident frame-
work, which allows adaptation based on program input, HW configuration (e.g., cache
architecture, available HW contexts etc.), and runtime behavior (e.g., control-flow ex-
ecution). To accelerate p-slice ahead of main thread’s execution, they predict HW load
stride to speculatively specialize the p-slice for reducing their overhead. Further, based
on tracking the effectiveness of prefetching, they adapt the runahead distance of p-slices
so memory access is fully covered. Control-flow hazards are mitigated by the stream-
lined nature of the hot traces. Also, prefetching addresses are monitored to detect and
prevent a p-slice from diverging from the main thread.
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4.3. Comparison and/or Coordination of HW and SW Prefetching

Lee et al. [2012] study the advantages and disadvantages of HW and SW prefetching
and their interaction. As for advantages of SW prefetching, HW prefetchers fail for
very short streams and require complex structures for detecting irregular access pat-
terns. Also, when the number of streams present in the application exceeds the HW
resources, HW prefetchers may not clearly distinguish them, whereas SW prefetchers
can insert prefetch instructions for each stream individually. Further, the HW prefetch-
ers in commercial processors place data in lower-level (L2 or L3) cache only, whereas
SW prefetchers can place data directly into the right cache level. Also, SW prefetchers
can easily ascertain loop bounds and avoid prefetching outside the bounds that (es-
pecially aggressive) HW prefetchers fail to do. Based on this, SW prefetching can be
used for short streams, irregular access patterns, and L1 cache miss avoidance. As for
advantages of HW prefetchers, they can account for runtime behavior and input vari-
ations and can adapt their aggressiveness. Also, SW prefetchers can greatly increase
the instruction count (e.g., up to 100%), which wastes fetch and execution BW, although
applications that use prefetching are generally memory bound, and, hence, additional
instructions may not increase their completion time. By using HW and SW prefetchers
together, prefetching can be performed for a larger variety of streams, and SW prefetch
requests can be used to train the HW prefetcher. However, these prefetchers may also
interact negatively, for example, when SW prefetches inhibit the ability of HW to detect
streams properly or when the harmful prefetches brought by SW cause cache pollution
and BW contention.

Mehta et al. [2014] note that different architectural features on different proces-
sors present unique tradeoffs and demand specific prefetching strategies for them. For
example, in SandyBridge, the MLC streamer prefetcher and L1 SW prefetcher can co-
ordinate to bring data to L1 cache, overcoming the limitations of the L1 HW prefetcher.
By comparison, on Xeon Phi, no prefetching is done by the L2 streamer prefetcher in
the presence of L1 SW prefetch commands. Yet, to bring data into the L1 cache, coordi-
nation between SW prefetch instructions at multiple cache levels can be utilized, such
that LLCs prefetch first and use larger prefetch distance than L1 cache, and then the L1
cache prefetches data from the LLC. They present coordinated multi-stage prefetching
techniques for each of the two processors. Their technique prefetches array references
that are direct-indexed streaming, direct-indexed strided, and indirect indexed. For
such references, prefetch instructions are inserted only for L1 cache for SandyBridge
since other cache levels use HW prefetch. For Xeon Phi, prefetch instructions are in-
serted for all levels of cache. In a loop, prefetch instructions are introduced in a manner
where computation is performed between them, which avoids the possibility of pipeline
stall due to prefetches filling the miss status holding register (MSHR). Finally, their
technique determines the prefetch distance, and this computation differs between Xeon
Phi and SandyBridge since the former has in-order cores while the latter has out-of-
order cores. They also discuss several processor-specific optimizations for improving
the efficacy of prefetching.

4.4. Instruction Prefetching

Table IV shows several techniques for instruction prefetching (Section 2.3). We now
discuss a few of them.

Zhang et al. [2002] present a prefetching technique that works by correlating exe-
cution history with cache miss history. For each cache miss, a correlated instruction is
ascertained that was fetched a fixed number of instructions before the miss, and this
correlation is stored in a table. For instance, for an I-cache with 12-cycle miss latency,
an instruction fetched 12 cycles before the miss is used as the prefetch trigger. When
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Table IV. A Classification Based on Data/Instruction and Memory/Core-Side Prefetching

Classification References

Instruction
prefetching

[Zhang et al. 2002; Srinivasan et al. 2001; Ferdman et al. 2011; Kolli et al.
2013; Reinman et al. 1999; Spracklen et al. 2005; Ferdman et al. 2008; Falcón
et al. 2005; Yan and Zhang 2008; Kaynak et al. 2013; Annavaram et al. 2001a;
Aamodt et al. 2002; Alameldeen and Wood 2007]

Data prefetching Almost all others

Use of branch
prediction information

[Srinivasan et al. 2001; Reinman et al. 1999; Kadjo et al. 2014; Zilles and Sohi
2001]

Memory-side
prefetching

[Hur and Lin 2006; Yedlapalli et al. 2013; Hughes and Adve 2005; Solihin
et al. 2003; Yang and Lebeck 2000]

Core-side prefetching Almost all others

these correlated instructions are again encountered, a prefetch is performed. Since
multiple execution paths may lead to one miss, multiple triggering instructions may
be stored for that miss. This is useful for cache blocks that tend to show miss on only
some of the execution paths. They associate neighboring cache misses with a single
instruction to reduce CoR table size. To avoid redundant prefetches, they use a filter-
ing mechanism that uses a confidence-counter scheme to retire ineffective correlations.
This reduces unbeneficial prefetches and also obviates the need of probing the I-cache
before prefetching.

Spracklen et al. [2005] analyze I-cache miss behavior of commercial workloads that
exhibit high miss rates in both L1 and L2 I-caches. They show that eliminating misses
due to discontinuous accesses is as important as removing those due to sequential ac-
cesses. They propose a discontinuity prefetching technique that can be used together
with sequential prefetching for removing both types of misses. Control transfer in-
structions such as functional calls and branches lead to discontinuity in instruction
fetch by transitioning to a non-sequential address. When such a transition leads to
an I-cache miss, their technique inserts this discontinuity information in a table. The
prefetcher moves ahead of the demand fetch stream, and when it finds a valid table
entry, it prefetches the target of discontinuity.

Ferdman et al. [2008] note that as repeated traversals of program data structure
lead to repetitive data-cache miss sequences, repeated traversals of CFG lead to repet-
itive sequences of I-cache misses. Also, almost all I-cache misses can be associated
with these recurring sequences, termed temporal instruction streams. Their technique
dynamically tracks temporal instruction streams themselves and records them in L2
cache. Afterwards, their technique predicts when these streams would repeat and,
based on this, prefetches instructions before the demand requests are made. The tech-
niques (e.g., Spracklen et al. [2005] and Reinman et al. [1999]) that use a branch
predictor to traverse a program’s CFG to predict discontinuous control flow have a
limited lookahead distance since they use a branch predictor and work on basic-block
sequence. By comparison, their technique works directly on I-cache misses and does
not explore program’s CFG, and, hence, it achieves higher lookahead distance, BW
efficiency, and prefetching accuracy.

Ferdman et al. [2011] note that control-flow variations are amplified by mi-
croarchitectural components and these, along with random HW interrupts, lead to
non-repetitive instruction history that degrades the effectiveness of conventional
prefetching techniques. For example, control-flow variations may disturb the branch
predictor state and L1 I-cache replacement sequence, leading to randomness of in-
struction stream, different miss sequences, and execution of wrong-path instructions.
To address this, they propose using a correct-path, retire-order instruction sequence to
track an accurate sequence of instruction-fetch. This provides a near-ideal recurring
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instruction stream and eliminates the randomness introduced due to branch predictor,
cache, and interrupts. On encountering a recorded address, a prefetch is triggered for
subsequent requests based on replaying a recorded sequence beginning with the most
recent position of the recurring address in the sequence. Further, instead of storing
individual accesses, recording temporally and spatially correlated groups of accesses
enables compact storage of history. Thus, only one address is stored per spatial region
(e.g., a function), and storage of multiple iterations of tight loops is avoided. Their ap-
proach improves the prefetching coverage and accuracy and enables the L1 I-cache to
achieve nearly 100% hit rate.

Kolli et al. [2013] note that the current call stack reflects the execution path of the
program traversed to reach an execution point and the program context captured by it
has strong correlation with L1 I-cache misses. Further, the return address stack (RAS)
concisely summarizes the program context. On any call or return operation, their tech-
nique saves the RAS state into a signature consisting of current call stack along with
direction/destination of call or return operation. These signatures are strongly corre-
lated with L1 I-cache misses, and, hence, a sequence of misses seen for any signature
is associated with that signature. Signatures constructed with fine-grained context in-
formation allow prefetching of the traversals deep into the call graph and within large
functions. Further, they show that RAS signatures have high predictability and, thus,
prediction of subsequent signatures can be accurately done based on current signa-
tures, which provides higher prefetch lookahead. Their technique reduces storage and
energy overhead of accurate HW instruction prefetching (incurred in Ferdman et al.
[2011]), while still maintaining high prefetcher coverage and program performance.

4.5. Use of Branch Prediction or History Information

We now discuss some techniques that use information from branch prediction to spec-
ulate on program control flow for determining the data to be prefetched.

Srinivasan et al. [2001] present an instruction prefetching scheme that correlates
branch instruction execution with misses in I-cache, based on the fact that control-flow
alterations due to branches cause I-cache misses. Based on this, branch instructions
are used to trigger prefetching of instructions that appear in the execution after a fixed
number (say, K, for example, K = 4, etc.) of branches. For instance, a candidate basic
block (BB1) will be associated with a branch instruction (R1) if an I-cache miss to BB1

happens exactly K branches after the execution of R1 occurs. On future execution of R1,
BB1 will be prefetched. Thus, their technique avoids the need of a branch predictor to
estimate the result of K +1 branch operations. Also, since another basic block starts at
the branch instruction target address and may last several cache lines, their technique
also stores the length of prefetch candidate blocks along with their addresses to prefetch
the entire blocks in a timely manner.

Zilles and Sohi [2001] note that a few frequently executed static instructions (called
problem instructions) cause a majority of branch mispredictions and cache misses.
Their technique creates a code portion, called a speculative slice, that mimics the
computation including the problem instruction and includes only those operations that
are necessary to compute the outcome of problem instruction. By forking such slices
well before the problem instruction, data prefetching can be done to avoid the penalty
of misses.

4.6. Memory Side Prefetching

Solihin et al. [2003] present a technique where CoR prefetching is performed by a user
thread running in main memory, and the prefetched data are sent to the L2 cache. L2
cache misses are tracked and recorded in a CoR table. Afterwards, for each miss, the
CoR table is looked up and a prefetch of several lines is triggered for the L2 cache.
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The CoR table is stored in main memory and, thus, changes to L2 cache are minimal.
They show that by combining their technique with a core-side sequential prefetcher,
the performance improvement can be increased further. Also, the prefetch algorithm
used by the thread can be adapted on a per-application basis.

Yedlapalli et al. [2013] present a memory-side prefetcher (MSP) that fetches data
on-chip from memory but, unlike in Solihin et al. [2003], does not push the data to the
caches and, thus, avoids resource contention. They use a next-line prefetching scheme
and prefetch when a row buffer hit occurs such that, first, the demand request is served
and then the prefetch request is served. Successive requests to lines in that row then
turn into prefetch hits. Data are maintained in a separate buffer at each memory
controller and, thus, access to prefetched data does not use memory channel or bank,
which lowers the queuing delays. The advantage of their MSP is that it can utilize
knowledge of memory state to reduce row-buffer conflicts for reducing the miss latency
itself, in addition to reducing the number of memory accesses. Also, unlike a core-side
prefetcher, an MSP can easily adapt to the available memory BW. To achieve larger
performance improvement, MSP can be integrated with a core-side prefetcher, whereby
the former brings data on-chip and the latter leverages core request predictability to
access the data brought by MSP without issuing an off-chip request.

Hughes and Adve [2005] present a prefetching technique where the prefetch engine
resides on the processor-in-memory. A local or remote processor provides a summary
of LDSs and likely traversals. Based on it, the prefetcher performs traversal indepen-
dently and sends the data to the requesting processor. By virtue of its proximity to
memory, their prefetcher provides faster service than a processor-side prefetcher, and
this allows their prefetcher to run ahead of the processor, thus bringing data in ad-
vance of the processor access and pipelining data transfer over the network. They com-
pare their prefetcher to a processor-side prefetcher by using programs with significant
LDS memory stall time. They observe that both their prefetcher and the processor-side
prefetcher provide better performance on different applications that highlight the need
to combine them for optimal performance.

5. EVALUATION USING REAL SYSTEMS AND ANALYTICAL MODELS

Different experimentation approaches/platforms offer complementary insights, for ex-
ample, real hardware allows quick and realistic evaluation, whereas simulators offer
high flexibility to compare with different configuration/parameter choices that may
even be unrealizable on real systems. Analytical models provide insights independent
of a particular platform or program. Clearly, it is revealing to note the evaluation ap-
proach of a study, and, hence, Table V classifies the works based on this feature. We
now discuss some works that use real processors or theoretical models for evaluation.

5.1. Studies Using Real Processors

Wu and Martonosi [2011] propose a technique that dynamically turns on/off the
prefetcher, based on the LLC interference caused by it. They perform experiments on
an Intel Core i7 processor, where, of the four different HW prefetchers, two prefetchers,
viz. MLC spatial and MLC streamer prefetchers, can be externally controlled using
SW-accessible state registers. The samples for application LLC miss counts are col-
lected using Intel’s Precise Event Based Sampling (PEBS) capability. Their technique
works in two phases. In the profiling phase, the time taken to see a fixed number of
LLC misses is observed with prefetchers turned on and off, respectively. If this time
is higher when prefetchers are turned off, then it indicates that misses happen less
frequently in time without the prefetchers, and, hence, prefetchers are turned off in
the run phase; otherwise, the prefetchers are turned on. For a small implementation
overhead, their technique effectively mitigates prefetching-induced LLC interference.
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Table V. Experimentation Platform/Approach Used for Evaluating Prefetching Techniques

Classification References

Real system [Beyler and Clauss 2007; Khan et al. 2014; Marathe and Mueller 2008; Kang and
Wong 2013; Huang et al. 2012; Jiménez et al. 2012; Lu et al. 2003, 2005; Chilimbi
and Hirzel 2002; Wu and Martonosi 2011; Mehta et al. 2014; Lee et al. 2012;
Guttman et al. 2015]

Analytical model [Liu and Solihin 2011; Chen and Aamodt 2008]

Simulator Almost all others

Jiménez et al. [2012] study prefetching on an IBM POWER7 processor. They first
examine the performance and power consumption of a prefetcher for its different pa-
rameter settings using microbenchmarks and standard benchmarks. These settings
include prefetch degree, stride-N (whether streams with a fixed stride greater than
one cache line are prefetched), whether prefetching is done on store operations and
whether the prefetcher is enabled/disabled. Since the optimal prefetcher setting varies
between and within benchmarks, they propose an adaptive prefetch technique that dy-
namically configures the prefetcher parameters based on benchmark characteristics.
Their technique works in two phases. In the exploration phase, different prefetcher
parameter settings are tried, and the one that provides the largest IPC is used in
the running phase. Since phase changes may also lead to a change of IPC, instead of
comparing with individual measurements, they use a moving average buffer to record
most recent Q IPC values for each setting and then compare different settings by using
average values in the buffer. To avoid the impact of inefficient settings on performance,
their technique does not try them for K exploration phases, where K is determined by
the slowdown introduced by those settings. Thus, inefficient settings are penalized by
being dropped from exploration.

Kang and Wong [2013] note that prefetching leads to contention for shared cache
and bandwidth, and virtualization also complicates shared cache management by con-
solidating multiple VMs on a single CMP. Hence, a study of their interaction can allow
effective LLC sharing among VMs and deciding whether prefetching should be enabled.
They study HW prefetching in virtualized environments and account for various vir-
tualization factors, such as number of vCPUs and VMs, interference between VMs and
vCPU-core binding, and so on. They show that, for most configurations, the negative
influence of prefetching is small, and prefetching degrades overall performance signif-
icantly only in few configurations. To avoid destructive interaction between the two
approaches, they propose a prefetching-aware vCPU-core binding technique. Based on
the cache access pattern (including both demand and prefetch requests) of every VM’s
workload, VMs are categorized into groups showing different cache sharing constraints.
For example, a VM with a very low miss rate has the lowest constraint, while one with a
high miss rate and showing negative self-prefetching influence (self-prefetching influ-
ence shows whether prefetching benefits or harms performance on consolidating it with
the same application in a different VM) has the highest constraint. The higher the con-
straint, the higher the priority of allocating to a dedicated cache to avoid the negative
impact of prefetching. VMs with lower constraint are given more shared caches, since
they do not cause contention. Thus, based on the cache sharing constraints, scheduling
of the vCPUs of every VM on suitable cores is done to improve performance.

Guttman et al. [2015] study HW and SW prefetching and their interaction on the
Xeon Phi system. They show that when HW and SW prefetchers work together, SW
prefetch misses train HW prefetchers directly, and the demand misses generated by
SW prefetching train HW prefetchers indirectly. Further, when the SW prefetcher is
effective in removing the majority of L2 demand misses, the HW prefetcher is not trig-
gered frequently, and, thus, it is throttled. In this way, the HW prefetcher effectively
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adapts itself to the SW prefetcher, and the coordinated HW+SW prefetching provides
the best performance by virtue of prefetching for a wide variety of access patterns. For
some applications, compiler-inserted prefetch instructions are ineffective, and, hence,
those inserted manually by the programmer alone are effective for prefetching. For
other applications, compiler-inserted instructions are sufficient, and, hence, program-
mer effort is not worthwhile. When prefetching improves performance, the resulting
energy savings offset the energy overhead due to extra instruction/metadata and mem-
ory operations, and, thus, the overall effect of prefetching on energy is positive.

5.2. Studies Using Analytical Models

Liu and Solihin [2011] study the interaction of prefetching and bandwidth partitioning
(BPT) and their impact on system performance. Based on CPI model and queuing the-
ory, they develop an analytical model that takes as input several key system parameters
(e.g., frequency, available BW, and cache block size) and application cache behavior in-
dices (e.g., prefetching accuracy and coverage and prefetching frequency). Their model
provides a composite prefetching metric that determines conditions in which prefetch-
ing improves performance. This metric is shown to be more effective than traditional
metrics such as coverage and accuracy. Their BPT model accounts for prefetching and
determines BW partitions for each core that lead to optimal performance. Based on
their model, they derive several important insights and conclusions. Use of prefetching
reduces the available BW, which enhances the role of BPT in improving performance.
In BW-constrained systems, performance loss due to prefetching cannot be alleviated
by BPT, and, hence, the decision of (de)activating prefetchers needs to be made before
using BPT. Also, when the prefetcher of every core is activated, naively providing large
BW to a core that performs accurate prefetching does not lead to highest performance
(weighted speedup). Instead, BW partition of this core should be more constrained; this
is because, by virtue of utilizing the BW efficiently, this core can donate some BW to
other cores for improving overall performance.

Chen and Aamodt [2008] present an analytical model to evaluate the impact of HW
prefetching, pending cache hits, and limited MSHR resources on superscalar processor
performance with long latency memory systems. A CPI stack divides the application
CPI into CPI from useful computation and that from miss events, for example, cache
misses, branch mispredictions, and so on, and, of these, their technique models CPI
from D-cache misses. Under no prefetching, the instruction trace produced by a cache
simulator is analyzed to see misses in the cache. Under prefetching, several loads that
might have seen misses become hits or pending hits (a memory reference where the
cache block has been requested but the data have not arrived), depending on whether
prefetching can fully hide the memory latency. A pending hit may be due to a demand
miss or a prefetch miss. For each pending hit, they identify a previous instruction that
brought the current instruction’s required data into cache. The latency of the current
instruction that can be hidden is computed as the number of instructions between
the current and previous instructions divided by the processor’s issue width. Then the
actual latency of the current instruction is the delta between memory access latency
and hidden latency; if memory latency is fully hidden, then the actual latency is zero.
Using this approach, CPI due to D-cache misses under prefetching is estimated.

6. REDUCING IMPLEMENTATION AND PERFORMANCE OVERHEAD OF PREFETCHING

As discussed in Section 2.7, a careful choice of design parameters is required to reduce
area/latency overheads of prefetching and its negative impact on performance. We first
summarize some approaches proposed for this (Section 6.1) and then discuss several
of these approaches (Sections 6.2 to 6.7).
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6.1. An Overview of Approaches

(1) Controlling negative impact of prefetching:

—To avoid cache pollution, prefetched data can be stored in separate buffer(s) [Hur
and Lin 2006; Yedlapalli et al. 2013; Jouppi 1990; Falcón et al. 2005; Zhang et al.
2002; Cantin et al. 2006; Somogyi et al. 2009; Joseph and Grunwald 1997; Roth et al.
1998] or in place of dead blocks [Lai et al. 2001].

—Some techniques temporarily disable the prefetcher (globally or for certain loads)
[Kandemir et al. 2009; Yu and Liu 2014; Wu and Martonosi 2011; Jiménez et al.
2012; Alameldeen and Wood 2007; Kadjo et al. 2014; Nesbit et al. 2004], while others
adapt its aggressiveness [Srinath et al. 2007; Jiménez et al. 2012; Nesbit et al. 2004;
Zhang et al. 2007; Mehta et al. 2014; Ebrahimi et al. 2009; Hur and Lin 2006, 2009;
Wang et al. 2003; Zhang et al. 2006; Albericio et al. 2012; Yu and Liu 2014]; for
example, the prefetch degree/distance may be adapted. Some works use multiple
prefetchers [Marathe and Mueller 2008; Guo et al. 2011] or switch between different
prefetching modes [Sharma et al. 2005]. Some works start actual prefetching only
after the prefetcher accuracy has been confirmed [Pugsley et al. 2014].

—Prefetch accuracy can be ascertained by seeing whether the prefetched or evicted
block is accessed first [Alameldeen and Wood 2007; Dang et al. 2013; Kandemir et al.
2009].

—The position of prefetched blocks in the LRU stack can be controlled [Lin et al. 2001a;
Srinath et al. 2007; Wu et al. 2011; Wang et al. 2003; Lin et al. 2001b]; for example,
they can be placed near LRU to avoid pollution.

—Redundant prefetches can be avoided [Spracklen et al. 2005; Zhang et al. 2002;
Marathe and Mueller 2008; Guo et al. 2011; Reinman et al. 1999; Kim et al. 2014];
for example, a prefetch request can be canceled if it has been recently demand fetched
or if it matches an upcoming demand fetch request [Spracklen et al. 2005]. Similarly,
in parallel applications where per-core prefetchers may redundantly prefetch shared
data, only the longest stream that is beneficial for shared data should be prefetched
[Kim et al. 2014].

—Prefetch filtering can be driven by the number of cache misses [Wu and Martonosi
2011; Albericio et al. 2012] or IPC [Jiménez et al. 2012; Nesbit et al. 2004].

—Data brought by certain cores can be pinned in cache if they are frequently the victim
of harmful prefetches [Kandemir et al. 2009].

—Strategies for addressing inter-core interference can be used [Wu and Martonosi
2011; Ebrahimi et al. 2009; Yu and Liu 2014; Kandemir et al. 2009; Albericio et al.
2012] (refer to Section 6.3).

(2) Improving effectiveness of prefetching:

—Main memory policies can be made prefetch aware [Lee et al. 2008; Yedlapalli et al.
2013; Hur and Lin 2006; Lin et al. 2001a, 2001b; Ebrahimi et al. 2011]; for example,
a DRAM controller can give different priorities to useful and useless prefetches and
demand requests.

—Several works classify the miss stream into different categories to drive the prefetch-
ing algorithm or to gain insights [Sair et al. 2002; Iacobovici et al. 2004; Spracklen
et al. 2005; Zhu et al. 2010].

—Since prefetching is only useful if a helper thread runs ahead of the main thread,
helper threading may be applied only for those loops where it can prefetch delinquent
loads on a loop’s critical path [Lu et al. 2005]. The helper thread can be terminated
once the main thread makes equal progress [Aamodt et al. 2002].

—For higher effectiveness, prefetching can be triggered by dead-block prediction (and
not cache miss) [Lai et al. 2001] or branch instructions [Srinivasan et al. 2001].

ACM Computing Surveys, Vol. 49, No. 2, Article 35, Publication date: August 2016.



35:24 S. Mittal

—For achieving higher accuracy, Chilimbi and Hirzel [2002] prefetch a hot data stream
only if it is sufficiently long (e.g., has more than 10 unique references).

—Some techniques primarily focus on those misses that have a bigger (or direct) impact
on performance [Chou 2007; Manikantan and Govindarajan 2008]. Several other
techniques focus on delinquent loads (e.g., Khan et al. [2014], Collins et al. [2001b],
Lu et al. [2005], Zhang et al. [2006], Zilles and Sohi [2001], and Lu et al. [2003]).

—To improve accuracy of prefetching, access history can be stored in a GHB structure
[Nesbit and Smith 2004; Nesbit et al. 2004; Diaz and Cintra 2009; Manikantan et al.
2011; Manikantan and Govindarajan 2008].

—Prefetching can be integrated with other approaches, for example, compression
[Alameldeen and Wood 2007; Raghavendra et al. 2015], virtualization [Kang and
Wong 2013], cache insertion/promotion [Wu et al. 2011], and BW partitioning [Liu
and Solihin 2011].

(3) Reducing latency overhead:
—Prefetching can be done only when the processor/bus is idle [Chou 2007; Wang et al.

2003; Lin et al. 2001a], and a helper thread may be run only when idle HW is
available [Luk 2001; Collins et al. 2001b; Aamodt et al. 2002].

—The helper thread can run a reduced version (e.g., Zilles and Sohi [2001], Annavaram
et al. [2001b], Collins et al. [2001a, 2001b], and Balasubramonian et al. [2001]) of the
program instead of the full version [Luk 2001], since its actual results are usually
ignored.

—BF can be used for early hit/miss determination [Peir et al. 2002], storing candidate
prefetched blocks [Pugsley et al. 2014], and estimating prefetching-caused pollution
[Srinath et al. 2007] (refer Section 6.4).

—Using sampling, only a fraction of memory instructions may be tracked [Khan et al.
2014], which reduces profiling overhead.

(4) Reducing storage overhead:
—Prefetcher metadata may be stored off-chip [Wenisch et al. 2005; Solihin et al. 2003;

Chou 2007; Liu et al. 2012; Ferdman and Falsafi 2007; Wenisch et al. 2009; Somogyi
et al. 2009; Burcea et al. 2008] or in the cache hierarchy itself [Burcea et al. 2008].

—Metadata can be stored in compressed form [Liu et al. 2012].
—Correlated accesses or misses can be stored together and not separately [Zhang et al.

2002; Ferdman et al. 2011].
—Instead of address-based correlation, tag-based correlation can be used [Hu et al.

2003; Sharma et al. 2005].
—Timing information can stored in terms of miss-counter instead of CPU cycles [Zhu

et al. 2010], which also provides a more accurate and stable measure of time.
—Access history can be shared between cores [Kaynak et al. 2013], and resource shar-

ing can be used in helper-thread prefetching [Lu et al. 2005].

6.2. Adapting Aggressiveness of Prefetcher

Lin et al. [2001b] present a technique to filter useless prefetches by predicting spatial
locality in a memory region. A bit vector, called a density vector (DV), is used to record
which cache blocks in a memory region were fetched during an epoch. The epoch for a
region ends and its next epoch begins when a miss to a block happens that is already in
density vector. The number of bits in a DV that are “1” (i.e., set) shows available spatial
locality, and the longest consecutive string of set bits shows whether the access pattern
is dense. CoR between the two DVs is defined as a fraction of identical bits between
them, and the local-CoR is defined as the CoR between the two most recent epochs in
a region. They note that, for most programs, local-CoR is strong, which indicates that,
over time, access patterns in a region do not change. Using this, they design a filter
that tracks current DVs and also stores previous DVs. It exploits local-CoR between
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DVs to filter out prefetch requests that it predicts will not be useful for a given region
and epoch. They show that their technique can eliminate a large fraction of useless
prefetches without harming performance.

Hur and Lin [2006] present an adaptive stream detection (ASD) technique that
modulates the aggressiveness of prefetch policy based on the spatial locality present
in the workload. The prefetcher runs in the memory controller and brings data in a
prefetch buffer. On detecting access to k successive cache lines, a stream prefetcher
begins prefetching from (k + 1)th line onwards, until it detects a useless prefetch.
Generally, k is chosen at design time. However, for short streams, a stream prefetcher
becomes ineffective. For example, for applications where every stream has a length of
2, using k = 1 leads to one useless prefetch after every useful prefetch. Their technique
associates every memory access with a suitable stream length to generate a stream
length histogram (SLH). As an example, if most memory requests occur in streams
of length 2, then their technique only prefetches the second and not the third line
of a stream. This adaptive stream detection approach avoids useless prefetches. By
dynamically adapting the histogram, changes in application behavior can be accounted
for. Their technique extends the scope of a stream to include even those having only
two cache lines, which allows several commercial applications to be viewed as stream
based and, thus, enable the use of a low-overhead stream-based prefetcher with them.

Hur and Lin [2009] present three approaches to further improve the effectiveness of
the ASD stream buffer [Hur and Lin 2006]. To improve the stream detection mechanism
of the stream buffer, they use a length-based stream detection approach, whereby, with
increasing stream length, the time duration for which the stream filter waits for the
next element of a stream is reduced, for example, for streams of lengths 1, 2 and
3, the wait time can be T , T/2, and T/4. If the next element does not arrive by
this time, then the stream filter becomes available for allocation to a new stream,
since the loss from not capturing the last element in the stream is higher for smaller
streams than in long streams. This approach gives a greater chance for shorter streams
to be fully prefetched, which increases the number of streams that can be gainfully
prefetched in irregular applications. Since SLHs vary over time, their second approach
uses an adaptive epoch length for the SLH feedback mechanism, based on whether
SLHs observed in consecutive epochs are similar. The third approach uses information
from SLH to prefetch a variable number of blocks at a time. When N consecutive
memory requests are likely to appear in a burst, and the memory queue is not too busy,
a maximum of N consecutive prefetch requests are generated, which helps in avoiding
late prefetches.

Srinath et al. [2007] present a technique to dynamically adapt the aggressiveness
of a prefetcher. In each interval, they monitor three metrics, viz. prefetcher accuracy,
lateness, and the cache pollution due to prefetching. Prefetch accuracy is estimated
by tracking the fraction of prefetched blocks that lead to hit of demand requests. A
late prefetch is identified when the data at a prefetched address are requested by the
core but the data have not arrived. Cache pollution is measured by using a BF–based
predictor that estimates the demand-fetched L2 cache blocks evicted due to prefetched
data. Each of the three metrics are classified in different ranges (e.g., high and low)
by using individual thresholds for them. Based on them, prefetching parameters viz.
prefetch degree and prefetch distance are adjusted. For example, if prefetches are
accurate and do not cause pollution, then both the parameters are increased to amplify
the aggressiveness of prefetching. Similarly, if prefetching causes large amounts of
pollution, then, in the next interval, prefetched blocks are inserted near the LRU
position, while in the case of low pollution, they are inserted into the midway position
in the LRU chain.
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Albericio et al. [2012] present ABS, an adaptive controller design that uses a hill-
climbing approach for modulating the aggressiveness of prefetchers in a banked shared
LLC. In their design, each LLC bank has a prefetch engine and an ABS controller that
collects bank-local statistics. Prefetchers and ABS controllers of different banks are
independent, which avoids the need of communication between them and requires
looking up only a local bank for reducing useless prefetches. In every epoch, the ag-
gressiveness of only one core’s prefetcher is changed, and the miss ratio of the bank
(computed as demand misses divided by demand requests of all the cores) is computed.
The miss ratio in the current epoch is compared to that in a reference epoch. If the miss
ratio in the current epoch is higher, then the change in the prefetcher aggressiveness is
undone; otherwise, it is confirmed. Also, the accuracy of a core’s prefetcher is computed
by computing the ratio of the hits from the core being probed to prefetched blocks and
the total number of prefetches issued by this core. If this accuracy value is lower than
a threshold, then the aggressiveness of the prefetcher is decreased. Thus, each core’s
prefetcher can have dissimilar aggressiveness values in different LLC banks. They
show that their technique improves performance and fairness.

Nesbit et al. [2004] present a prefetching technique based on monitoring delta cor-
relations in memory zones. They divide the memory address space into concentration
zones (CZones) of equal sizes. Within each CZone, patterns in miss address deltas
(difference between successive addresses) are detected using a GHB. A prefetch is trig-
gered when an access pattern is detected within a CZone. Their technique does not
require a PC for load instructions that lead to misses. Since programs show different
phases, the values of the prefetcher parameters (viz. CZone size and prefetch degree)
that provide the best performance also change over the program execution. Hence,
they also present an adaptive version of their technique. This technique begins in the
UNSTABLE state with certain values of parameters. If, after an interval of fixed in-
structions, a phase change is detected, then the algorithm stays in the UNSTABLE
state; otherwise, it switches to the TUNING state. In this state, the algorithm tries
several parameter values (and “no prefetching”), and, at the end, the values providing
the highest performance are selected, and the algorithm switches to a STABLE state.
A phase change again switches the algorithm to the UNSTABLE state and resets the
configuration. Adaptivity also allows us to turn off prefetching in case it harms the
performance.

6.3. Mitigating Inter-Core/Thread Interference

Kandemir et al. [2009] propose two techniques for filtering harmful prefetches in a
multi-core processor that causes inter-core interference and replaces useful data. They
note that in any execution phase, a small set of cores brings or get affected by harm-
ful prefetches, and such patterns change over different execution phases. Their first
technique selectively suppresses prefetches from certain cores. The harmful prefetches
from each core are recorded by tracking the block replaced by a prefetched block and
checking whether the prefetched or discarded block is accessed first in later execution.
At the end of each phase, if the ratio of harmful prefetches issued by a core and total
harmful prefetches exceeds a threshold, then prefetches from a core are suppressed for
a single (next) phase. The second technique records the cache misses seen by a core
due to harmful prefetches and if, in a phase, the ratio of such misses seen by a core and
the total such misses seen by all cores exceeds a threshold, then data blocks fetched by
that core in the cache are marked as non-removable for a single (next) phase. Instead
of the blocks from this core, those from other cores that are least recently used are se-
lected. Thus, this technique aims to mitigate the negative effect of prefetching on cores
that are harmed the most by it. By removing the effect of harmful prefetches, their
techniques enable leveraging the benefit of SW prefetching, even for large core-counts.
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Yu and Liu [2014] note that in a multicore system running multi-threaded ap-
plication, different threads share data and, hence, if prefetched data blocks replace
demand-fetched data blocks, all the sharers of that cache block need to invalidate
their local copy. Thus, prefetching can lead to inter-thread invalidations and cause
contention in shared resources such as LLC and main memory. A prefetching request
that causes demand miss in an L1 cache due to invalidation of data block in its
sharer’s L1 caches is termed an attacking prefetch request. For each thread, they
utilize a prefetcher that can prefetch both sequential and chained stream patterns and
they use filtering mechanisms for each of the two patterns. For sequential streams,
the data of all attacking prefetches are ignored, and only the address is stored in
the pattern table for later use. For chained patterns, if L1 prefetching misses are
found to be attacking prefetches, then they are not immediately ignored. Instead,
they are issued and the linked pattern streams are maintained based on the return
value. In other words, return value is used to compute the next node address in the
linked stream, and then it is ignored (i.e., not moved to cache). Further, based on the
runtime feedback about memory requirement and prefetching effectiveness of each
thread, their technique adapts the mode and aggressiveness of its prefetcher. For
example, for applications with high memory intensity but low prefetching intensity, the
prefetcher can be temporarily shut down to reduce contention on shared resources. For
applications showing high accuracy and intensity of prefetching, the aggressiveness
of the prefetcher is increased to maximally improve performance. By contrast, the
aggressiveness of a prefetcher showing low accuracy is reduced.

6.4. Reducing Latency Overhead by Using a Bloom Filter (BF)

A Bloom filter [Bloom 1970] is a probabilistic algorithm that uses multiple hash func-
tions to quickly check whether an item is certainly a non-member or may be a member
of a set. By slightly sacrificing the accuracy, BF significantly speeds up the classification
process. We now discuss prefetching techniques that use BF.

Peir et al. [2002] present a BF-based predictor that predicts whether an access is
a miss or may be a hit. By making this decision early in the pipeline, data can be
prefetched in L1 in a timely and accurate manner. The first one, called partitioned-
address, splits the line address into M partitions. If single or multiple address parti-
tions in a requested line’s address do not belong to a corresponding address partition
of any cache line, then a cache miss is ascertained. In the second design, called partial-
address, a bit array is indexed using the least-significant bits of the line address. Every
bit shows whether a match is found between the partial address and any corresponding
partial address of a cache line. If no match occurs, then a miss is identified. Once a
miss is identified in L1 cache, a miss request can be issued to L2 cache to prefetch data
in the L1 cache. They also use their technique for speculatively scheduling dependent
instructions for boosting performance. They show that accuracy of their predictor is
very close to 100%, and their technique achieves significant performance improvement.

Pugsley et al. [2014] present a technique to enable the use of aggressive prefetchers,
while avoiding their limitations, such as BW wastage. Their technique tracks prefetch
requests generated by a candidate prefetch pattern but does not actually prefetch re-
quests. The addresses of all the cache blocks that would have been prefetched by a
prefetch pattern, are stored in a “sandbox” that is implemented using BF. By compar-
ing subsequent cache accesses against the addresses in the sandbox, both the accuracy
of prefetcher and existence of prefetchable streams are ascertained. Only when accu-
racy of a prefetcher exceeds a threshold, actual prefetches are performed. By virtue
of prefetching only after confirming, their technique avoids harmful prefetches and
can confidently issue many prefetches along that pattern to improve performance by
avoiding late prefetches.
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6.5. Reducing Energy Overhead of Prefetching

Guo et al. [2011] present techniques to offset energy overheads of prefetching due
to extra cache lookups (to avoid redundant prefetching) and prefetch-HW. Their first
technique uses compiler to identify memory accesses such as scalar accesses, which are
not advantageous for prefetching. Then, only accesses such as those to LDSs and arrays
are passed to the prefetcher to reduce prefetch-HW lookups. The second technique
annotates pointer and array accesses using a compiler. Based on them, at runtime, a
suitable prefetching scheme (such as pointer prefetcher or stride prefetcher) is applied
to optimize performance. The third technique reduces prefetch-HW lookups for access
patterns with very small strides. For such patterns, a single lookup is performed for
their multiple occurrences. A fourth technique reduces prefetching-induced cache tag
lookups. It stores the most recently prefetched cache tags in a separate buffer. Each
prefetching address is compared with this buffer, and, on a match, the prefetching
operation is canceled. Otherwise, a cache tag lookup is performed.

Dang et al. [2013] present a filtering technique for improving the energy efficiency
of prefetching. When insertion of prefetched data leads to eviction of an existing data
block, their technique records the prefetch-victim address pair. As execution proceeds,
either (1) the prefetch address or (2) the victim address may be accessed or (3) the
prefetched block may be replaced before being accessed. The first case indicates a use-
ful prefetch while the last two cases indicate a useless prefetch. Thus, based on which
address in the pair is accessed first, their technique collects a utilization count of both
issued and filtered prefetches. Access to a filtered address indicates incorrect filtering
of a useful prefetch. In such a case, its address is recorded to develop a feedback mech-
anism for avoiding filtering of future useful prefetches. Based on these, the decision
about issuing or filtering the prefetch request is taken.

6.6. Reducing Storage Overhead of Prefetchers

Burcea et al. [2008] present predictor virtualization (PV) as a technique to use memory
hierarchy for emulating large predictor tables and show its application by virtualizing
a spatial memory prefetcher [Somogyi et al. 2006]. Their technique reserves a part of
physical memory space for storing the predictor table (PVTable). Another structure,
called PVProxy, preserves the interface between the actual optimization technique
and the predictor table. It stores a few predictor entries in a small on-chip structure,
called PVCache. If an entry is not found in the PVCache, then a memory request is
generated to bring the entry. This memory request does not differ from those issued by
L1 caches. In this way, PVProxy is transparent to the memory hierarchy. The benefits
of virtualizing the predictor are that it avoids wasting a large on-chip space for storing
the predictor table, and if the optimization technique is turned off, then the entries
of its predictor in L2 cache are soon replaced. Spatial memory streaming [Somogyi
et al. 2006] uses two HW structures, viz. a pattern history table (PHT) and an active
generation table (AGT). The spatial patterns found by AGT from active memory regions
are stored in PHT. In their design, PHT requires 86KB storage, while AGT requires
less than 1KB storage. Hence, Burcea et al. apply virtualization to PHT only and bring
its on-chip storage requirement to less than 1KB. For this, PHT is itself stored in main
memory (PVTable), and a few sets from it are stored in PVCache, which are properly
delivered to the prefetching engine by PVProxy.

Ferdman and Falsafi [2007] note that, given the large-sized CoR tables, storing
them on-chip forces limited size and reduced coverage, while storing them off-chip
reduces prediction lookahead and increases prediction latency. To bring the best of
the two together, CoR data are recorded off-chip in order that they will be used and
are streamed to a small-sized on-chip table just before their use. In their technique,
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long-recurring sequences of consecutively used last-touch signatures are stored off-
chip, and, for each sequence, only one head signature is stored on-chip. When an access
sequence repeats, its associated last-touch signature sequence is streamed from off-
chip to on-chip table. Thus, their technique facilitates timely signature retrieval from
off-chip and keeping the size of on-chip table small. They show that last-touch order
of blocks can be approximated by a sequence of block evictions. They show that their
technique reduces L1D cache misses with minimal on-chip storage overhead and off-
chip traffic increase.

Kaynak et al. [2013] note that for processors with many simple (lean) cores, the
storage overhead of stream-based prefetching techniques (e.g., Ferdman et al. [2008,
2011]) becomes very high. For homogeneous server workloads that execute similar
requests on all cores, instruction access sequences generated on the cores have high
(e.g., 90%) similarity. They propose that commonality and recurrence of instruction-
level behavior across the cores can be leveraged to produce a single instruction history
shared among all cores running the workload. This amortizes the area overhead of
sophisticated instruction prefetchers. One randomly chosen core, termed the history
generator core, generates the instruction fetch stream history. This is stored in the
shared history buffer and read by the stream address buffer, which is private to each
core and issues prefetches in coordination with I-cache misses. Since keeping a separate
history buffer introduces several overheads (such as dedicated storage and logic), they
propose embedding the history buffer in the LLC using the PV approach [Burcea et al.
2008]. The large capacity of LLC also allows us to easily support workload consolidation,
where one history buffer can be allocated for each workload to maintain per-workload
history.

6.7. Interaction of Prefetching with Other Approaches

Alameldeen and Wood [2007] study the interaction of prefetching with cache and BW
compression and show that these approaches work synergistically to provide large per-
formance improvement. This is because prefetching partially hides the decompression
latency, and compression reduces the BW contention caused by prefetching. Also, com-
pression increases the effective cache capacity that facilitates bringing more blocks
into cache using prefetching. They also propose an adaptive prefetching mechanism
to throttle prefetching when it hurts performance. For each of the private L1 caches
and shared L2 cache, they use a saturating counter, which is decremented on a useless
or harmful prefetch and incremented on a useful prefetch. Initially, the counters have
their largest value. When they reach zero, prefetching is disabled for that cache. They
use a “prefetch bit” for each cache block, which is set at the time a prefetched line is
inserted in cache. On first access to this block, the bit is reset and counter is incre-
mented. If an evicted line still has its prefetch bit set, then the prefetch is considered
useless and the counter is decremented. For detecting harmful prefetches, they utilize
additional tags employed for cache compression and store the addresses of replaced
blocks in them. On a cache miss, each of the invalid tags in the cache set is examined
in the LRU stack sequence. If a match is found, then the line is replaced by a currently
cached line, but if any valid line has its prefetch bit set, then this harmful prefetch is
assumed to have evicted the line, and the counter is decremented.

Wu et al. [2011] note that conventional cache replacement schemes give identical
treatment to prefetch and demand requests, and, hence, in the presence of prefetch-
ing, they may not provide expected performance improvement. Their cache manage-
ment approach dynamically predicts and mitigates the cache interference due to
prefetching by altering the insertion and hit promotion schemes of the cache such
that they handle prefetch and demand requests differently. They demonstrate their
approach by utilizing prefetch/demand request information in improving re-reference
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predictions generated by the Dynamic Re-Reference Interval Prediction (DRRIP) re-
placement policy. Thus, their technique synergistically integrates prefetching with in-
telligent cache replacement schemes. Also, for multicore multiprogrammed workloads,
their technique eliminates inter-core and intra-core prefetch-induced interference in
shared LLCs.

7. CONCLUSION AND FUTURE OUTLOOK

As key applications become even more data intensive and power and thermal budgets
reach a plateau, effective latency hiding mechanisms such as prefetching are becoming
more attractive than costly alternatives such as increases in cache size. However,
several challenges remain to be addressed for fully realizing the potential of prefetching
in next-generation computing systems. We now discuss a few of them.

In recent years, researchers have explored alternative memory technologies (e.g.,
non-volatile memories that are write-agnostic, gigabyte-size DRAM caches that may
employ cache line sizes of few KBs [Mittal et al. 2015]) and fabrication approaches (e.g.,
3D stacking which demands intelligent data placement and thermal management), and
so on. These trends present several new constraints and optimization opportunities
for prefetching. Also, while conventional prefetching techniques only optimize perfor-
mance, higher-level objectives such as quality of service (QoS), relative applications
priorities, and so on, also become important with the rising number of cores. These fac-
tors call for re-evaluation of traditional techniques and design of novel techniques for
ensuring effective prefetching, and this will be an interesting direction for researchers
in coming years.

Exascale systems seek to achieve 1018 computations per second within an energy
budget of 20MW. It is clear that no single approach can bridge the performance and
power efficiency gap between the current and the future systems. Hence, achieving
synergistic integration of prefetching with other approaches, such as data compression,
near-threshold voltage computing, dynamic voltage/frequency scaling (DVFS), and so
on, will be vital and present a key challenge for computer architects.

In this article, we presented a survey of recent prefetching techniques for caches.
We identified tradeoffs in the use of prefetching and the challenges that merit further
investigation. We classified the works along several dimensions to highlight major
research directions. It is hoped that this article will help the readers see the prefetching
techniques in synthesis and understand their potential in improving performance of
future processors.
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