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Abstract: Unsaturated carbohydrate derivatives are useful intermediates in synthetic 

transformations leading to a variety of compounds. The aim of this review is to highlight 

the rich chemistry of ∆-2,3 unsaturated pyranosides, emphasizing the variety of 

transformations that have been carried out in these substrates during the last decade. 

Keywords: hex-2,3-enopyranosides; cycloaddition; glycosylation; epoxidation; osmylation; 

Ferrier rearrangement; de novo synthesis 

 

1. Introduction 

Hex-2-enopyranoses, e.g., 3, also known as pseudoglycals, have provided fertile ground for 

synthetic and mechanistic developments in carbohydrate chemistry during the last decades [1,2]. The 

first report of a molecule belonging to this category was made by Fischer [3], although it was not until 

a decade later that its correct structure could be established by Bergmann [4]. However,  

the process 1→3 (Scheme 1), which made hex-2-enopyranosides broadly recognized synthetic 

intermediates, was only rendered available on a preparative scale in 1969 by Ferrier and Prasad [5]. 

This reaction has come to be known as the Ferrier I rearrangement, and the cationic intermediate 2  

has since played a relevant role in many carbohydrate transformations [6,7]. From the outset,  

hex-2-enopyranosides have been employed in a plethora of synthetic endeavors [8–10]. Excellent 
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coverage of the chemistry and synthetic applications of hex-2-enopyranosides has appeared regularly 

in the yearly issues of Carbohydrate Chemistry, Specialist Periodical Reports, until 2003 [11]. The 

vast contribution to the chemistry of hex-2-eno-pyranosides developed in the Fraser-Reid group, 

covering more than 20 years of research in the area, has recently been reviewed [12]. 

The aim of this review is to highlight synthetic transformations on 2,3-dideoxy-hex-2-eno-pyranosides 

reported during the last decade, 2003–2014. 

2. Synthetic Routes to Hex-2-enopyranosides 

The most widely used method for the preparation of 2,3-unsaturated hex-2-enopyranosides involves 

the Ferrier reaction, applied to glycal derivatives. Early studies on the Ferrier rearrangement made use 

of simple Lewis acids, e.g., BF3·Et2O, as promoters [5]. Since then, considerable attention has been 

devoted to the investigation of alternative catalysts for this transformation. In this context, a large 

number of publications involving the use of a variety of metallic, non-metallic, and heterogeneous 

catalysts have appeared. A report dealing with the promotors and nucleophiles currently used for the 

Ferrier rearrangement have been recently published, and readers in search of comprehensive 

information on this reaction are directed to it [13]. 

Besides the Ferrier rearrangement, outlined in Scheme 1, additional routes to access hex-2-enopyranoses 

from carbohydrates have also been described. Thus, Fraser-Reid and Boctor made use of the reductive 

elimination of vicinal disulfonates [14] to gain access to 5 (Scheme 2) [15]. 

 

Scheme 1. Ferrier rearrangement route to hex-2-enopyranoses 3, from glucal 1. 

 

Scheme 2. Fraser-Reid and Boctor’s route to hex-2-eno-pyranosides. 

A more circuitous route to allylic pyranosides from non-carbohydrate sources was developed by 

Zamojski and Achmatowicz (Scheme 3) [16,17]. In 1971, they reported the oxidative rearrangement  

of 2-furanylcarbinols into highly functionalized pyranones, e.g., 6→7, to gain access to  

hex-2-eno-pyranosides 8 (Scheme 3). In the original Achmatowicz approach, the furfuryl carbinol is 

oxidized with bromine in the presence of methanol under weakly basic conditions. Many other 

modifications of the original Achmatowicz procedure, such as oxidation of the furan ring with  
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m-CPBA [18], dimethyldioxirane [19], NBS [20,21], tert-BuOOH\VO(OAc)2 [22], or H2O2-titanium 

silicalite [23], have also been used for this transformation. This route has the advantage that the 

original configuration of the alcohol moiety in the furylcarbinol is preserved and, therefore, the method 

is amenable to the preparation of both D- and L-series [24–26]. 

 

Scheme 3. Achmatowicz and Zamojski’s de novo route to hex-2-enopyranosides from furylcarbinols. 

The hetero Diels-Alder reaction (HDA) has been amply used in the de novo synthesis of  

hexoses, and in many those instances 2,3-unsaturated derivatives have been key intermediates in these 

protocols [27–29]. Pioneering work by Danishefsky’s group had shown that hexoses could be accessed 

by Lewis acid-catalyzed HDA reaction of alkylated siloxy dienes with aldehydes via the intermediacy 

of labile 3-O-silyl-2,3-unsaturated glycoside adducts [30,31]. The hetero-Diels Alder reaction between 

substituted 1,4-dialkoxy-1,3-dienes and activated carbonyl compounds such as glyoxylates also 

provides access to hex-2-enopyranosides, e.g., 8, from non-carbohydrate sources (Scheme 4a) [32,33]. 

This process can be promoted simply by heating, [33], by use of high pressure [33], or by Lewis acid 

catalysis [32]. A HDA reaction has been used to gain access to a pseudo C-disaccharide 10 from a  

D-glucosamine diene 9 (Scheme 4b) [34]. More recently, a one-pot multicomponent approach to  

3-branched-2,3-unsaturated hexopyranoses 11 has been devised by Botta and co-workers  

(Scheme 4c) [35]. The protocol, in which a monosubstituted alkyne, ethyl vinyl ether and ethyl 

glyoxalate were combined, involved an enyne cross-metathesis (Grubb’s catalyst, 2nd generation) [36] 

leading a diene intermediate (A), followed by an in situ HAD reaction. 

 

Scheme 4. Hetero Diels-Alder (HDA) routes to hex-2-eno-pyranosides. 
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Ring-closure metathesis has become an important tool in organic synthesis and its application to 

carbohydrate chemistry [37] has included the synthesis of hex-2,3-enopyranose derivatives (Scheme 5). 

For example, dibenzoate 12 yielded 1-deoxy-hex-2,3-enopyranose 13 via ring-closing metathesis [38]. 

 

Scheme 5. Ring-closing metathesis route to hex-2-eno-pyranose derivatives. 

An acid-catalyzed domino reaction has been developed by Guaragna and coworkers as a synthetic 

route to enantiomerically pure L-hex-2-enopyranosides (Scheme 6) [39]. Their strategy started  

from the three-carbon homologating agent 14, prepared in a few steps from methyl pyruvate,  

and a chiral building block derived from L-glyceraldehyde 15, which provides the inherent chirality  

at the C5 stereocenter of the final product, 18 [40]. The ring closure of the intermediate 16 was 

effected by a domino process triggered by DDQ in CH2Cl2/MeOH involving five steps: MPM 

protecting-group removal, oxidation of the ensuing primary alcohol, aldehyde dimethoxyacetalation, 

isopropylidene group cleavage, and ring closure. Finally, desulfuration of 17 with Raney-Ni led to  

2,3-unsaturated-L-pyranoside 18. 

 

Scheme 6. Guaragna’s group de novo approach to hex-2-enopyranosides. 
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3.1. Addition Reactions 

Hydrogenation reactions of 2,3-enopyranosides have generated interest as a tool for delivering 

deoxy sugars which are present in biologically intriguing compounds [41,42]. For example, it has been 

shown that in aminoglycosides, the removal of hydroxyl goups imparts in vitro stability by lessening 

the abilities of naturally occurring glycosidase enzymes to degrade the structure [43]. In this context, 

Zhang et al. developed a divergent strategy for constructing uncommon L-sugars with 4-substitution. 

They employed 2,3-eno-pyranosides 19 and 20 and a combination of typical palladium on carbon 

hydrogenation and Mitsunobu reactions involving the use of diphenylphosphorylazide (DPPA) 

(Scheme 7) [44]. 

 

Scheme 7. Zhang’s synthesis of 4-substituted uncommon-sugars. 

O’Doherty’s goup proposed a diimide reduction as an alternative to the direct hydrogenation 

reaction of 2,3-enopyranosides where partial hydrogenolysis could compete. The method was applied 

to allyl alcohol 25 that upon standard hydrogenation conditions produced a significant amount of  

the hydrogenolysis product 27 (Scheme 8). Thus, by exposing allylic alcohol 25 to an excess of  

o-nitrobenzenesulfonyl hydrazide (NBSH) and Et3N, an excellent yield of the desired pivalate 26 could 

be obtained [45]. 

 

Scheme 8. O’Doherty’s diimide reduction of 2,3-enopyranosides. 
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β-D-erythro-2-enopyranoside 30, where the C-1 and C-4 substituents are disposed in opposite faces of 

the pyranose, led exclusively to β-D-allopyranoside 31, with the osmium approach taking place anti- to 

the anomeric substituent (Scheme 9b) [46]. Similarly, dihydroxylation of galactal derivative 32 occurred 

mostly from the β-face opposite to the anomeric substituent leading to “talo”·derivative 33, although 

some “gulo” derivative 34 was also obtained (Scheme 9c) [47]. On the other hand, exposure of allylic 

alcohol 35 to OsO4/NMO in t-BuOH/H2O afforded gulose isomer 36 in 80% yield, whereas the 

protected talose isomer 37 was selectively produced upon treatment of 35 with the TMEDA adduct of 

OsO4 (Scheme 9d) [26]. 

 

Scheme 9. Cis-dihydroxylation of hex-2,3-enopyranosides by OsO4. 
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protected [49]. Ring-opening of epoxides arising from hex-2,3-enopyranosides tend to form trans-diaxial 

products, due to the Fürst-Platnner rule [50] and therefore this approach is complementary to the 

previously mentioned cis-hydroxylation. For instance, hex-2-enopyranoside 41 under common Upjohn 

conditions gave exclusively methyl L-mannopyranoside 42, whereas L-altropyranoside 44 was obtained 

after treatment with dimethyldioxirane and the subsequent ring opening of the 2,3-anhydro derivative 

43 by acid or by base-catalyzed hydrolysis (Scheme 11) [40]. 

 

Scheme 10. O’Doherty’s synthesis of 1,4-linked α-rhamno-trisaccharides. 

 

Scheme 11. Alternative routes for cis- and trans-dihydroxylation of hex-2,3-enopyranoside 41. 
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Scheme 12. Synthesis of ascarosides 48 and 49. 
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The incorporation of chemical functionality that polarizes the alkene on 2,3-enopyranosides makes 

possible Michael-like additions resulting in the regioselective introduction of nucleophiles. Several 

examples of Michael reactions on 3-nitro-hex-2-enopyranosides, e.g., 50, were previously reported by 

Sakakibara’s group. In these reactions, active methylene compounds [52–54] and sterically demanding 

purine bases [55] reacted regio- and stereoselectively at C-2 from the side opposite to the anomeric 

substituent (e.g., 51 from α-50 and 52 from β-50) (Scheme 13). Amines, however, produced 

thermodynamically more stable C-2 equatorial products (53 and 54) irrespective of the anomeric 

configuration of the starting glycoside [56]. These results have been discussed in terms of electrostatic 

interactions [57], stereoelectronic control [57], steric hindrance [57], A-strain [58] and also hydrogen 

bonding [58]. Dideoxy-hex-2-en-4-ulopyranosides, on the other hand, always produced epimeric mixtures 

at C-2 [59–61]. 

 

Scheme 13. Michael addition on isomeric 3-nitro-hex-2-enopyranosides 50. 
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Figure 1. Vinyl-sulfone Michael acceptors 55–58. 

 

Scheme 14. Synthesis of functionalized chiral pyrrol 60 from vinylsulfone 55. 
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sulfoxide 61a produced a C-2 α/β 3:1 epimeric mixture (Scheme 15). A similar trend was also observed 

in the reaction of 61a and 61b with primary amines, leading to 62a and 62b, respectively (Scheme 15). 

 

Scheme 15. Michael addition on 3-arylsulfinyl-hex-2-enopyranosides 61. 
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Finally, hex-2-enopyranosides have shown to be popular starting materials in the preparation of 

biologically relevant 2,3-dideoxy-3-amino sugars in which the amino group is cis to a vicinal (C4-OH) 

hydroxyl group [68]. Thus, Fraser-Reid’s group introduced the iodine mediated cyclization of (C-4) 

allylic imidates to the Δ2,3 unsaturation on hex-2-enopyranosides, which directed the cis entry of the 

nitrogen function [69–71]. Several other functionalities such allylic carbamates or isoureas have been 

used since in this electrophile induced cyclization. Hydrolysis of the resulting oxazoline paves the way 

to the desired cis amino alcohol functionality [68]. In this context, Takahashi and co-workers have 

reported the synthesis of L-vancosamine, L-ristosamine, L-saccharosamine, and L-daunosamine by use 

of an electrophile-induced [o-iodoxybenzoic acid (IBX)] [72] cyclization of allylic carbamates [73]. 

3.2. Nucleophilic Substitutions 

Reactions that allow the displacement of the C-4 allylic group on 2,3-enopyranosides also open 

opportunities for functionalization. Early reports were based on the nucleophilic allylic substitution 

with copper reagents. This possibility was limited to substrates containing acetoxy and pivaloxy, leaving 

groups to afford anti SN2' products in moderate to good yields (Scheme 16) [74–76]. In contrast, 

reaction of the corresponding benzothiazolyl thio ethers afforded syn SN2' adducts [77,78]. More 

recently, allylic substitution of substrates possesing the picolinoxy group have been studied and it was 

found that different alkyl and aryl groups could easily be installed on the pyran ring with anti SN2' 

selectivity [79]. 

 

Scheme 16. Allylic substitution reaction on 2,3-enopyranoside 64 and possible regio- and stereoisomers. 
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Scheme 17. Palladium-mediated allylic substitution. 

This methodology has been applied to the addition of phenols [86], heterocyclic nucleophiles 

including uracil derivatives [87], and/or azides [88,89]. Nucleophilic substitution carried out in  

alkyl α-D-erythro-hex-2- enopyranosides, e.g., 70 and 72, took place with a very high regio- and 

stereoselectivity to provide C-4 substituted derivatives 71 and 73, respectively (Scheme 18a,b). 

Likewise, the palladium-catalyzed reaction of 72 with TMSN3 led regio- and stereoselectively to  

4-deoxy-4-azido derivative 74 (Scheme 18c). On the other hand, palladium-catalyzed reaction of the 

epimeric 2,3-dideoxy-α-D-threo-hex-2-enopyranoside 75, with TMSN3 provided a regioisomeric mixture 

of 76 and 77 arising from attack at positions C-4 and C-2 of the π-allyl complex (Scheme 18d). 

 

Scheme 18. Examples of palladium-mediated allylic substitution. 
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3.3. [3,3]-Sigmatropic Rearrangements 

Unsaturated sugar derivatives are ideally structured to take part in [3,3]-sigmatropic rearrangements 

that allow the construction of carbón-carbon or carbón-heteroatom bonds. For example, in 1973  

Ferrier et al. showed that 4-vinyl 2,3-enopyranoside 78 could undergo a Claisen rearrangement upon 

heating at 185 °C to give the branched-chain aldehyde 79 (Scheme 19a) [90]. The reaction took  

place readily and in a completely stereoselective manner, as was expected for such suprafacial  

allyl rearrangement. However, the yield in the mercury-catalyzed preparation of the required vinyl 

derivative 78 was low (30%). As a synthetic alternative, Krohn et al. described the reaction of the 

related allylic alcohol 80 with an eightfold excess of orthoacetic ester 81a in the presence of  

catalytic amounts of propionic acid to afford the corresponding ester 83a in good yield as one single 

isomer (Scheme 19b) [91]. Similarly, the Eschenmoser variant of the Claisen rearrangement allowed 

access to 83b (89% yield) from allylic alcohol 80 by using 1.5 equiv. of N,N-dimethylacetamide 

dimethyl diacetal 81b [91]. The C-4 epimeric allylic alcohol 84, also experienced a Claisen-Johnson 

rearrangement in a completely stereoselective manner leading to C-2 branched derivative 85, in good 

yield (Scheme 19c) [92]. 

 

Scheme 19. Examples of Claisen rearrangements. 
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since the expected amide 92 was obtained alongside a chlorinated side-product 93 [94]. It was 

subsequently found that the formation of allylic chloride 93 was related to the degree of purity of 

trichloroacetimidate 91 used in the rearrangement. Thus, chromatographically pure imidate 91 underwent 

the Overman rearrangement to give the expected amide 92 in 82% yield (Scheme 21c). However, 

when the rearrangement was carried out with non-purified trichloroacetimidate 91, and in the presence 

of hydroquinone as a radical scavenger, the synthetically useful chloride 93 could obtained as the 

single product in a moderate yield (Scheme 21d) [95]. 

 

Scheme 20. Sigmatropic rearrangement of allyl phenyl ethers. 

 

Scheme 21. Examples of Overman rearrangements. 
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whereas selective oxidation of the primary hydroxyl group can be effected by a modification  

of the Corey-Kim procedure [103], as recommended by Fraser-Reid and co-workers, leading to 

aldehyde 96 [104–106]. The latter compound (R = Et) was used in a stereoselective synthetic approach 

to (+)-asperlin [107]. 

 

Scheme 22. Chemoselective oxidation of 2,3-dideoxy-α-D-erythro-hex-2-eno-pyranoside 94. 

On the other hand, synthetically useful 2,3-dideoxyhex-2-enono-1,5-lactones 99 can be accessed from 

hex-2-enopyranosides, e.g., 97, through oxidation (30% H2O2, MoO3). This process, reported by 

Zamojski’s group, involved dehydration of initially formed allylic hydroperoxides, e.g., 98  

(Scheme 5) [108,109]. However, more concise routes to lactones 99 involve the direct oxidation of the 

corresponding glycals, and in this context the methods described by Lichtentahler’s (mCPBA, 

BF3.Et2O) and Sinaÿ’s (PCC) groups are worthy of mention [110,111]. 
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In order to participate in cycloaddition processes, the double bond in hex-2-eno-pyranoses has been 
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finally isomeric dienes 104 and 105 were reported to undergo stereoselective Diels-Alder reactions 

with maleic anhydride and dimethyl acetylenedicarboxylate, among other dienophiles [116,118]. 

 

Scheme 23. Zamojski’s route to unsaturated lactones from hex-2-enopyranosides. 
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Figure 2. ∆2,3-Unsaturated derivatives employed in cycloaddition reactions. 

They have reported that the cycloaddition between aldono-1,5-lactones 106–108 and chiral  

five-membered cyclic nitrones 109 and 110 proceeded exclusively in the exo mode, to provide in  

many instances a single adduct as a result of double asymmetric induction (Figure 3) [120]. 

 

Figure 3. δ-Unsaturated lactones and chiral nitrones. 

In particular, the cycloaddition reaction between lactone 106 and nitrone 110 resulted in the 

completely stereoselective formation of tricyclic derivative 111 as a consequence of an exo-approach 
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lactone (Scheme 24). The latter was then used in the synthesis of 8-homocastanospermine 113, via 

key-intermediate 112, which after cleavage of the isopropylidene group and hydrogenolysis of the N-O 

bond underwent intramolecular alkylation of the nitrogen atom, leading ultimately to 113 [121]. 

 

Scheme 24. Chmielewski’s synthesis of 8-homocastanospermine 113. 
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Scheme 25. Chmielewski’s synthesis of 1-homoaustraline 115. 

 

Scheme 26. Chmielewski’s synthesis of 1-epilupinine 119. 
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Scheme 27. Chmielewski’s synthesis of (−)-isofagomine 124. 

Recent work by Chmielewski’s group has shown that the 1,3-dipolar cycloaddition to  

α,β-unsaturated δ-lactones is under kinetic control. Conversely, when γ-lactones are involved in  

the cycloaddition, the process becomes reversible and could be used to obtain the more stable, 

thermodynamic products. Owing to these properties along with the above-shown high stereoselectivity 

of their cycloaddition, δ-lactones have been employed for the kinetic resolution of racemic nitrones [126]. 

Testero and Spanevello reported a concise synthetic route to pentanelactone 128 from α,β-unsaturated 

aldehyde 125 (Scheme 28) [127]. The successful approach was based on two key steps. First, a completely 

O

AcO

O
AcO

O N

Ot-Bu
H

H

H

111

steps

OMs

O N

Ot-Bu
H

H

H

OTBDPS
TBDPSO

1
4

1
5

4
5

N

OH

5

4

1

2 2
2

steps

114 115carbohydrate numbering

HO

HO

H

HO

O

AcO

O

AcO

106

O

116

+
r.t. 72 h, then
reflux 2 h

O

AcO

O

AcO

O N

H

H

H

86%
117

steps

O

O N

H

H

H

O
MsO

toluene 1
4

15

4
5

N

OH

HO

HO

1

4

5

5
4

1

2 2
2

steps

118 119carbohydrate numbering

N

H

O

AcO

O

AcO

106 120

+

O

AcO

O

AcO

O N

H

H

121

steps

O

O N

H

H

O
MsO

toluene 1
4

15

4
5

1

4

5

2 2

steps

122 124
carbohydrate numbering

N
Bn

O

Bn Bn

N

HO

OHOH

12
5

4N

Bn

O

HO

HO

123

1

24

5

H



Molecules 2015, 20 8373 
 

 

stereoselective Diels-Alder cycloaddition of cyclopentadiene and enal 125 [128], with the diene 

approaching the dienophile from the β-face in an exo-mode of addition. Second, the ozonolysis of 126 

took place via a completely regioselective cleavage leading to dialdehyde 127. The latter was then 

transformed in ten steps into pentalenolactone 128. 

 

Scheme 28. Synthetic approach to pentalenolactone 128. 
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Scheme 29. Spanevello’s synthetic route to enal 135. 
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Scheme 30. Diels-Alder cycloaddition between nitroalkene 133 and cyclopentadiene. 
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3.6. Glycosylation Reactions 

The study of glycosylation reactions of 2,3-unsaturated hexenopyranoses has recently been addressed 

by mediation of either palladium or Lewis acid catalysis. 

3.6.1. Palladium Mediated Glycosylation 

Feringa and O’Doherty’s groups addressed the issue of glycosylation with 2,3-unsaturated hexoses 

functioning as glycosyl donors [134]. 

Following previous studies on palladium catalyzed allylic substitution on 6-acetoxy-2H-pyran-

3(6H)-ones by alcohols (Scheme 31a) [135], Feringa and co-workers reported the stereoselective 

palladium catalyzed glycosylation of pyranones (Scheme 31b) [136]. The method proved to be particularly 

useful in synthesis since retention of stereochemistry at the allylic acetal moiety was observed in the 

newly formed glycosidic bond. 

 

Scheme 31. Feringa and co-workers’ palladium-catalyzed allylic substitution. 
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(Scheme 32). This sugar was next glycosylated with (−)-138 under palladium catalysis [Pd2(dba)3, 
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Scheme 32. Feringa’s approach to iterative saccharide synthesis. 
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unsaturated glycoside 151 (Scheme 33a), π-allyl intermediate 150 reacted with a variety of alcohols to 

give allylic glycosides 152 in moderate to excellent yields (Scheme 33b). O’Doherty’s group ascribed 

these contrasting results to the higher electrophilicity of Pd π-allyl intermediate 150 compared to 149. 

In this context, Lee and co-workers reported that the reaction of intermediates type 149, generated from 

glycals rather than from hex-2,3-enopyranosides, with alcohol acceptors to give O-glycosylation products, 

e.g., 151, could be carried out by activating the acceptor via zinc(II) alkoxide formation [138,139]. 

 

Scheme 33. O’Doherty’s Pd-catalyzed glycosylation with pyranone donors 148. 
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Scheme 34. Pd-catalyzed stereoselective glycosylation. 

 

Scheme 35. O’Doherty’s approach to daumone, 154. 

 

Scheme 36. Enantioselective synthesis of α-pyranone 155. 
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Scheme 37. Palladium-catalyzed glycosyl coupling and processing to daumone 154. 

The iterative glycosylation protocol was also applied to the stereoselective synthesis of digitoxin 

163 (Scheme 38) [143,144]. O’Doherty’s retrosynthesis for digitoxin is outlined in Scheme 38 and 

involved the iterative, diastereoselective, palladium catalyzed glycosylation of digitoxigenin (165) 

with pyranone 164, which is accessible in enantiomerically pure form from acylfuran 157. 

 

Scheme 38. O’Doherty’s retrosynthesis of digitoxin 163. 
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family [149], as well as the total syntheses of kaempferol glycoside SL101 (174) [150], jadomycin B 

(175) [151,152], and vineomycinone B2 methyl ester (176) [153] (Figure 4) [154]. 

 

Scheme 39. O’Doherty synthesis of digitoxin (163) by iterative palladium-catalyzed glycosylations. 

 

Figure 4. Natural products synthesized by O’Doherty’s group. 
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The synthetic potential of this protocol is enhanced by the flexibility of the enantioselective 

reduction of the acyl furans and the stereocontrol in the formation of the anomeric tert-butyl carbonates. 

Thus acyl furan 157 can be transformed, in a stereocontrolled manner in α-L, β-L, α-D or β-D  

tert-butyl carbonates 155 and 164, respectively (Scheme 40) [155]. These derivatives were used in  

the preparation of a collection of 11 methymycin analogues (179) by stereoselective glycosylation  

of 10-deoxymethylnolide 177 followed by synthetic manipulations of the ensuing pyranones 178 

(Scheme 41). 

 

Scheme 40. O’Doherty’s enantio- and stereo-divergent approach to D/L and α/β-pyranones 155 and 164. 

 

Scheme 41. Enantio- and stereo-divergent synthesis of glycosylated methymycin analogues, 179. 
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Scheme 42. Enantiodivergent synthesis of pyranones, 148c and 185 from acyl furan 180. 

Pyranone 185 has also been used in the preparation of the glycosylated tyrosine portion of 

mannopetimycin-E, 186 (Scheme 43) [158,159]. 

 

Scheme 43. O’Doherty’s retrosynthesis of the disaccharide portion of mannopetimycin-E 186. 
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glucals, was compatible with a variety of protecting groups on the glycosyl donor. 

 

Scheme 44. Liu and co-workers’ stereoselective palladium-catalyzed N-glycosylation. 
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and to the nitrogen of the pycoloyl group at the α-face of the sugar to generate intermediate 189. 

Subsequent cleavage of the picoloyl acid species yielded the π-allyl system depicted as 190. Finally, 

coordination of the N-nucleophile to the palladium released the picoloyl acid and provided 

intermediate 191, where an intramolecular nucleophilic addition takes place to yield N-heterocyclic 

glycosides 188. 

 

Scheme 45. Proposed reaction mechanism for the synthesis of N-glycosides 188. 

3.6.2. Lewis-Acid Mediated Glycosylation of 2,3-Unsaturated Glycosyl Acetates 

Toshima and co-workers reported on the chemoselective assembly of differently substituted  
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glycosyl donors. An implementation of their strategy is outlined in Scheme 46. Accordingly, 4-keto 

derivative 193 was chemoselectively glycosylated with 192 by use of TMSOTf in CH2Cl2 at −78 °C, 

to give disaccharide 194 in fairly good yield. Subsequently, the ensuing 4-keto derivative 194 was able 

to act as a glycosyl donor and was used to glycosylate methyl glucoside 195, in toluene at higher 

temperature, to yield trisaccharide 196 (TMSOTf, –40 °C). The observed α/β anomeric selectivity was 

high and in agreement with literature precedents favoring the α-anomer in each case. 

 

Scheme 46. Toshima’s chemoselective glycosylation strategy to trisaccharide 196. 
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allyl glycosides 197 and 198, respectively (Scheme 47). Protecting groups such as acetonide, nitro, or 

esters proved to be compatible with the reaction conditions. 

 

Scheme 47. Taneja’s stereoselective α-glycosylation with allyl glycosides 197 and 198. 
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Scheme 48. Boysen’s pair of pseudoenantiomeric carbohydrate derived phophinites 201 

and 204, in rhodium catalyzed asymmetric 1,4-addition of phenylboronic acid to unsaturated 

enones and enoates. 
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3.8. Miscellaneous 

A series of synthetic transformations of de novo hex-2,3-enopyranose derivatives, e.g., 155, into  

a variety of monosaccharide and deoxy-monosaccharide derivatives have been described by O’Doherty’s 

group [167]. These transformations make imaginative use of addition, oxidation, and substitution 

reactions performed on hex-2,3-enopyranoses and 3,4-unsaturated pyranoses, e.g., 207, the latter 

readily available from the former by Wharton rearrangement (Scheme 49) [168]. Accordingly,  

Boc-pyranone 155 was converted by way of stereoselective Pd(0) glycosylation into α-benzyl 

derivative 205, whose epoxidation under basic conditions led stereoselectively to epoxy ketone 206 [169]. 

Wharton rearrangement of the latter then provided benzyl hex-3,4-enopyranoside 207. 

 

Scheme 49. Wharton rearrangement of pyranone 205 to hex-3,4-enopyranoside 207. 

A synthetic route to α-ascariloside 209, was devised by regio- and stereoselective reaction of 207 

with N-iodosuccinimide (NIS) in acetic acid followed by LiAlH4 reduction of the ensuing β-acetoxy 

iodide 208 (Scheme 50) [169,170]. An approach to benzyl α-fucoside (211) from 207 was implemented 

via osmylation of 210 (2-epi-207, prepared by oxidation/reduction of 207) (Scheme 50). It was 

observed that osmylation of 210 leading to fucose monosaccharides (211) was better carried out on  

2-silyl derivative 210b, which produced a 7:1 diastereomeric mixture favoring 211b [211b/212b 7:1)]. 

Conversely, osmylation of 210a led to diastereomeric 212a as the major isomer [211a/212a 1:4)] [169]. 

 

Scheme 50. Synthetic transformations of hex-3,4-enopyranoside 207 leading to α-ascariloside 

209 and α-fucosides 211. 
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4. Conclusions 

Hex-2,3-enopyranosides continue to be important intermediates currently used in a variety of 

synthetic transformations. They are readily available by Ferrier rearrangement of commercially available 

glycals, although more recently the de novo approach to pyranones, and thence hex-2,3-enopyranosides, 

has positioned itself as reliable synthetic alternative for their preparation. The latter approach has the 

advantage of providing access to enantiomeric hex-2,3-enopyranoside pairs. The use of 2,3-unsaturated 

pyranosides in glycosylation has grown exponentially during the last decade, more than likely because 

of the success on the stereoselective Pd(0)-mediated glycosyl coupling of α- and β- pyranones. 
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