
A Survey of Recent Trends in Testing
Concurrent Software Systems

Francesco A. Bianchi, Alessandro Margara, Mauro Pezzè

Abstract—Many modern software systems are composed of multiple execution flows that run simultaneously, spanning from
applications designed to exploit the power of modern multi-core architectures to distributed systems consisting of multiple components
deployed on different physical nodes. We collectively refer to such systems as concurrent systems.
Concurrent systems are difficult to test, since the faults that derive from their concurrent nature depend on the interleavings of the
actions performed by the individual execution flows. Testing techniques that target these faults must take into account the concurrency
aspects of the systems. The increasingly rapid spread of parallel and distributed architectures led to a deluge of concurrent software
systems, and the explosion of testing techniques for such systems in the last decade.
The current lack of a comprehensive classification, analysis and comparison of the many testing techniques for concurrent systems
limits the understanding of the strengths and weaknesses of each approach and hampers the future advancements in the field.
This survey provides a framework to capture the key features of the available techniques to test concurrent software systems, identifies
a set of classification criteria to review and compare the available techniques, and discusses in details their strengths and weaknesses,
leading to a thorough assessment of the field and paving the road for future progresses.

Index Terms—Survey, Classification, Testing, Concurrent Systems, Parallel Systems, Distributed Systems

1 INTRODUCTION

Concurrent systems are common in several application
domains: many interactive applications exploit the multi-
threaded paradigm to decouple the input-output processing
from the back-end computation; applications developed for
single nodes often exploit multiple threads to enable parallel
computations on multi-core architectures; Web applications
implement the client-server communication paradigm with
client-side and server-side computations; mobile applica-
tions often access data and interact with remote servers;
peer-to-peer services coordinate a multitude of computing
nodes.

Concurrent software systems are composed of multiple
execution flows that execute simultaneously, and the need
to synchronize the execution flows leads to new problems
and introduces new design and verification challenges. The
behavior of concurrent systems depends not only on the
sequence of actions executed within each individual flow,
but also on the interleavings of the actions in the different
execution flows. Wrong interleavings may lead to concur-
rency faults regardless of the correctness of the computation
of each execution flow. The problem of developing reliable
concurrent systems has attracted a lot of interest in the
software engineering community, and has led to several
solutions for designing [1], implementing [2], refactoring [3],
modeling, verifying and validating concurrent software sys-
tems [4].

Concurrency faults are intrinsically non-deterministic,
since they occur only in the presence of specific interleav-

• The authors are with the Faculty of Informatics, Univeristà della Svizzera
italiana, USI Lugano. E-mail: first.last@usi.ch

ings, and the interleavings depend on execution conditions
that are not under the direct control of the program. The
testing techniques that address the problem of efficiently
exploring the space of the interleavings consider one or
more of the following activities: (i) generating test cases,
which are sequences of operations that stimulate the system;
(ii) selecting a subset of interleavings for the execution
flows; (iii) executing the system with the selected test cases
and interleavings and validating the results.

Although the problem of testing concurrent systems has
attracted the attention of the research community since
the late seventies, and has grown considerably in the last
decade, to the best of our knowledge a precise survey and
classification of the progresses and the results in the field is
still missing.

In this paper, we provide a comprehensive survey of the
state-of-the-art in testing concurrent software systems. We
studied the recent literature by systematically browsing the
main publishers and scientific search engines, and we traced
back the results to the seminal work of the last forty years.
We present a general framework that captures the different
aspects of the problem of testing concurrent software sys-
tems and that we use to identify a set of classification criteria
that drive the survey of the different approaches. The sur-
vey classifies and compares the state-of-the-art techniques,
discusses their advantages and limitations, and indicates
open problems and possible research directions in the area
of testing concurrent software systems.

The remainder of the paper is organized as follows.
Section 2 introduces background information on concur-
rent systems, defines the terminology used in the paper
and presents a general framework that captures the key
aspects of the testing techniques for concurrent systems.
Section 3 presents the historical trends in the research on

testing concurrent systems and describes the methodology
we adopt to select the relevant work. Section 4 introduces a
set of criteria to classify testing techniques for concurrent
systems. Section 5 surveys and classifies t he state-of-the-
art techniques. Section 6 discusses the key observations that
emerge from the analysis of the literature. Section 7 briefly
overviews some important areas that lie on the borders
of the scope of this survey, and Section 8 summarizes the
contribution of the paper.

2 CONCURRENT SOFTWARE SYSTEMS

In this section, we define t he s cope o f o ur a nalysis and
introduce the terminology that we adopt in this paper. To
do so, we define a conceptual framework that captures the
main elements of the different approaches to test concurrent
software systems. In the remainder of the paper, we use the
framework to structure our survey.

2.1 Concurrent Systems
In this survey, we follow the definition o f c oncurrent sys-
tem proposed by Andrews and Schneider in their popular
survey and book [5], [6] that represent classic references and
accommodate the wide range of heterogeneous techniques
and tools presented in the literature.

A system is concurrent if it includes a number of ex-
ecution flows1 t hat c an p rogress s imultaneously, a nd that
interact with each other. This definition e ncompasses both
flows t hat e xecute i n o verlapping t ime f rames, l ike con-
current programs executed on multi-core, multi-processor
parallel and multi-node distributed architectures, and flows
that execute only in non-overlapping frames, like concurrent
programs executed on single-core architectures. Depending
on the specific a rchitecture a nd p rogramming paradigm,
execution flows can be concretely implemented as processes
on different physical machines, processes within the same
machine or threads within the same process, as common in
modern programming languages such as C++, Java, C# and
Erlang.

We distinguish two classes of concurrent systems based
on the mechanism they adopt to enable the interaction
between execution flows, shared memory and message passing
systems. In shared memory systems, execution flows inter-
act by accessing a common memory. In message passing
systems, execution flows i nteract b y e xchanging messages.
Message passing can be used either by execution flows
hosted on the same physical node or on different physical
nodes (distributed systems). Conversely, shared memory
mechanisms are only possible when the execution flows are
located on the same node (as in multi-threaded systems).

We model a shared memory as a repository of one or
more data items. A data item has an associated value and
type. The type of a data item determines the set of values
it is allowed to assume. We model the interaction of an
execution flow f w ith t he r epository u sing t wo primitive
operations: write operations wx(v), meaning that f updates
the value of the data item x to v, and read operations

1. Although in the paper we adopt the terminology of Andrews and
Schneider, we prefer the term execution flow over process to avoid biases
towards a specific technology.

rx(v), meaning that f reads the value v of x. Operations
are composed of one or more instructions. Instructions are
atomic, meaning that their execution cannot be interleaved
with other instructions, while operations are in general not
atomic. This model captures both operations on simple data,
like primitive variables in C, and operations on complex
data structures like Java objects, where types are classes,
data items are objects and operations are methods that can
operate only on some of the fields of the objects.

We model message passing systems using two primitive
operations: send operations sf (m) that send a message m
to the execution flow f , and receive operations rf (m) that
receive a message m from the execution flow f . Message
passing can be either synchronous or asynchronous. An execu-
tion flow f that sends a synchronous message sf ′(m) to an
execution flow f ′ must wait for f ′ to receive the message m
before continuing, while an execution flow f that sends an
asynchronous message sf ′(m) to an execution flow f ′ can
progress immediately without waiting for m to be received
by f ′.

The message passing paradigm can be mapped to the
shared memory paradigm by modeling a send primitive as a
write operation on a shared queue and a receive primitive as
a read operation on the same shared queue. Thus, without
loss of generality, we refer to shared memory systems in
most of the definitions and examples presented in this
survey.

2.2 Interleaving of Execution Flows

The behavior of a concurrent system depends not only
on the input parameters and the sequences of instructions
of the individual flows, but also on the interleaving of
instructions from the different execution flows that comprise
the system.

Following the vast majority of approaches that we dis-
cuss in Section 5, we introduce the main concepts of con-
currency under the assumption of a sequentially consistent
model [7]. This model guarantees that all the execution
flows in a concurrent system observe the same order of
instructions, and that this order preserves the order of
instructions defined in the individual execution flows. We
discuss the implications of relaxing this assumption at the
end of this subsection, and in the survey we consider
approaches regardless of this assumption.

Under the assumption of sequential consistency, we can
model the interleaving of instructions of multiple execution
flows in a concrete program execution with a history, which
is an ordered sequence of instructions of the different exe-
cution flows.

In a shared memory system, histories include sequences
of invocations of read and write operations on data items.
Since in general the operations on shared data items are not
atomic, we model the invocation and the termination of an
operation op as two distinct instructions. The execution of
an operation o′ overlaps the execution of another operation
o if the invocation of o′ occurs between the invocation and
the termination of o. In a message passing system, histories
include sequence of atomic send and receive operations.

Given a concrete execution ex of a concurrent system S,
a history Hex is a sequence of instructions that (i) contains

the union of all and only the instructions of the individual
execution flows t hat c omprise e x, a nd (ii) p reserves the
order of the individual execution flows: for all instructions
oi and oj that occur in ex and belong to the same execution
flow f , if o i occurs before o j in f , then o i occurs before o j in
Hex.

We use the term interleaving of an execution ex to indi-
cate the order of instructions defined in the history Hex.

Listing 1: A non-deterministic concurrent system

begin f_1
if (x==0) {

print OK
}
end f_1

begin f_2
x=1
end f_2

Listing 1 exemplifies the impact of the interleaving of
instructions from multiple execution flows on the result
of an execution. In Listing 1 both execution flows f1 and
f2 access a common data item x with initial value 0, f2
writes 1 to x, while f1 prints OK if it reads 1 for x. Multiple
interleavings are possible. If the write operation x = 1 of f2
occurs before the read operation x == 0 of f1 in the history,
then f1 reads 1 and prints OK, otherwise f1 reads 0 and does
not print anything2.

Systems that do not assume sequential consistency re-
fer to relaxed memory models. Examples of systems that
refer to relaxed models are shared memory systems where
different execution flows may observe different orders of
operations due to a lazy synchronization between the caches
of multiple cores in a multi-core architecture. Several pop-
ular programming languages refer to relaxed models by
allowing the compiler to re-order the operations within a
single execution flow to improve the performance. This is
allowed in the memory models of both Java [8], [9] and
C++ [10].

The histories of relaxed systems may violate the prop-
erties that characterize the history of sequential consistent
systems, leading to new types of possible concurrency faults
that cannot occur under the sequential consistency hypothe-
sis. In this survey we review both the many approaches that
work under the sequential consistency hypothesis and the
few approaches that extend to relaxed models.

2.3 Synchronization Mechanisms

Concurrent programming languages offer various synchro-
nization mechanisms to constrain the order of instructions
and thus prevent erroneous behaviors. The synchroniza-
tion mechanisms depend on the concurrency paradigm, the
granularity of the synchronization structures and the con-
straints imposed on the system architecture. For instance,
Java offers synchronized blocks and atomic instructions to
assure that program blocks are executed without the inter-
leaving of instructions of other execution flows [11]. Other
programming languages like C and C++ offer locks, mutexes

2. In this example, we assume that read and write of x are atomic.
Relaxing the atomicity assumption would produce even more inter-
leavings.

and semaphores to constrain the concurrent execution of code
regions. Yet other concurrent programming environments,
like Posix threads and OpenMP, offer barrier synchronization
to constrain the access to code regions executed concurrently
by multiple execution flows: barriers and phasers introduce
program points that all the execution flows in a group must
reach before any of them is allowed to proceed [12]. In the
context of message passing, programming languages and
libraries that implement the actor-based paradigm ensure
that individual messages are processed atomically and in
isolation [13]. Synchronous message passing ensures that
the sender of a message can progress only after the message
has been successfully delivered to the recipient [14].

2.4 Testing Concurrent Systems
In this paper we focus on software testing techniques that
target concurrency faults, which are faults caused by unex-
pected interleavings of instructions of otherwise correct ex-
ecution flows. Concurrency faults can be extremely hard to
reveal and reproduce, since they manifest only in the pres-
ence of specific interleavings that may be rarely executed. To
expose concurrency faults, testing techniques for concurrent
systems need to sample not only a potentially infinite input
space, but also the space of possible interleavings, which
can grow exponentially with the number of execution flows
and the number of instructions that comprise the flows.

The many approaches for testing concurrent systems
that have been proposed so far address different aspects of
the problem. Our detailed analysis of the literature led to
a simple conceptual framework that captures the different
aspects of the problem and relates the many approaches for
testing concurrent systems. Figure 1 presents the conceptual
framework that we use to provide a comprehensive view of
the problem and to organize this survey.

Approaches for testing concurrent systems deal with spe-
cific types of target systems and address one or more of the
three main aspects of the problem visualized with rectan-
gles in Figure 1: generating test cases, selecting interleavings
and comparing the results with oracles. Generating test cases
amounts to sample the program input space and produce
a finite set of test cases to exercise the target system. Se-
lecting interleavings amounts to augment the test cases with
different interleavings of the execution flows to exercise the
operations that process the same input data in different
order. Comparing the results with oracles amounts to check
the behavior of the target system with respect to some
oracles. The approaches that we found in the literature focus
on either generating test cases or selecting interleavings,
sometimes dealing with comparing with oracles as well.

Figure 1 presents a conceptual framework for the testing
techniques, but does not prescribe a specific process. Some
approaches may first generate a set of test cases and a set of
relevant interleavings and then compare the execution re-
sults with oracles, while other approaches may alternate the
selection of interleavings and the comparison with oracle by
executing each interleaving as soon as identified.

The approaches for generating test cases sample the input
space to produce a finite set of test cases by considering the
target system. They optionally also consider a target prop-
erty of interleaving, a system model that provides additional
information about the target system, or both.

Testing Technique

Input

Selecting
Interleavings

Comparing with
Oracles

OracleProperty of
Interleavings

System
Model

Test CasesGenerating
Test Cases

Output

Target System

Fig. 1: A general framework for testing concurrent software systems

The approaches for selecting interleavings identify a sub-
set of relevant interleavings to be executed, and target either
the interleaving space as a whole or some specific properties
of interleaving. The techniques that target the interleaving
space as a whole, hereafter space exploration techniques,
explore the space of interleavings randomly, exhaustively or
driven by some coverage criteria or heuristics. Two relevant
classes of space exploration techniques are stress testing and
bounded search techniques.

As we discuss in detail in Section 4, properties of in-
terleaving typically identify patterns of interactions across
execution flows that are likely to expose concurrency faults.
Approaches that target some interleaving properties, here-
after property based techniques, aim to identify the interleav-
ings that are most likely to expose such patterns.

Some property based techniques use the property of
interleavings not only to select a relevant subset of in-
terleavings, but also to generate a set of test cases that
can execute the identified interleavings. Such techniques
steer the generation towards test cases that can manifest
interleavings that expose the property of interest.

Most property based techniques rely on some dynamic
or hybrid analysis to build an abstract model of the sys-
tem and capture the order relations between the program
instructions, and then exploit the model to identify a set of
interleavings that expose the property of interest.

Some property based techniques, hereafter detection tech-
niques, use the model to simply detect the presence of the
pattern of interest in the analyzed trace. Other property
based techniques, hereafter prediction techniques, also look
for alternative interleavings that may expose the property
of interest, usually relying on model checking or SAT/SMT
solvers.

Approaches that address also the problem of comparing
the results with oracles execute the system in a controlled
environment that forces the selected interleavings and com-
pare the results of the execution with the given oracle.

3 TRENDS IN RESEARCH ON TESTING CONCUR-
RENT SYSTEMS

In this section we present an analysis of the research on
testing concurrent systems conducted in the last fifteen
years referring to the seminal work of the last forty years.

Concurrency has been investigated since the early sixties
with pioneer work on models for concurrent systems, like
the research of Karl Adam Petri [15] and the inspiring
work on process algebras of Tony Hoare [16] and Robin
Milner [17].

In the seventies, with the emergence of distributed ar-
chitectures, the focus of the research extended towards the
analysis and verification of distributed systems with the
Lipton’s influential work on the theory of reduction [18] and
Lamport’s seminal work on distributed systems [7].

The nineties have seen the introduction of the term test-
ing concurrent systems with continuity in the literature [19],
[20], [21], and the appearing of analysis techniques that
are at the core of many popular approaches for testing
concurrent systems [22], [23], [24], [25], [26].

The research on testing concurrent systems has emerged
overbearing in the last fifteen years fostered by the rapid
spread of multi-core technologies, distributed, Web and
mobile architectures and novel concurrent paradigms. Our
survey indicates that most of the concurrent software testing
techniques developed in the last fifteen years target shared
memory systems, and only few cope with (distributed) mes-
sage passing systems, which are addressed mainly by run-
time monitoring and model based verification approaches.

To provide a comprehensive survey of the emerging
trends in testing concurrent software systems, we systemati-
cally review the literature from 2000 to 2015: (i) we searched
the online repositories of the main scientific publishers, in-
cluding IEEE Explore, ACM Digital Library, Springer Online
Library and Elsevier Online Library, and more generally
the Web through the popular online search engines such
as Google Scholar and Microsoft Academic Search; we col-
lected papers that are published from year 2000 and that
present one of the following set of keywords in their title

0

2

4

6

8

10

12

14

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

Data	race
Atomicity
Deadlock
Combined
Order
Exploration

Fig. 2: Number of publications from 2000 to 2015 that
witness novel research contributions and address different
concurrency properties

0

2

4

6

8

10

12

14

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

Software	engineering
Programming	languages
Systems
Formal	methods

Fig. 3: Number of publications from 2000 to 2015 that
witness novel research contributions in different research
communities

or abstract: “testing + concurrent”, “testing + multi-thread”,
“testing + parallel”, “testing + distributed”, (ii) considered
all publications that are cited or citing the papers in our
repository, and that match the same criteria, (iii) manually
analyzed the proceedings of the conferences and the jour-
nals where the papers in our repository appear, (iv) filtered
out the papers outside the scope of our analysis, as de-
fined in Section 2, for example papers on hardware testing
and papers on theoretical aspects or purely monitoring ap-
proaches with no direct application to software testing (see
Section 7 for an overview of such papers), and (v) filtered
out workshop papers and preliminary work that has been
later subsumed by conference or journal publications.

We selected 94 papers that were published in the last
15 years and that we identified as unique representatives
of clusters of related publications. The papers focus on
the main concurrency properties, and reflect the interest
of different communities in the area of testing concurrent
systems. We discuss the possible biases of our choices in
Section 6.8.

Figures 2 and 3 show the distribution of the papers over
the years according to the concurrency properties they deal

with and the research communities they refer to3, respec-
tively. The figures indicate a relevant increase of interest and
results: more than 80% of the papers have been published
in the second half of the considered period (2008-2015), and
more than almost 65% have appeared since 2010. Figure 2
indicates that the recent research has focused on specific
interleaving properties, which we use in Section 4 as the
main classification criterion. Figure 3 suggests a growing
interest in the software engineering and programming lan-
guages communities, and a stable interest in the systems
and formal methods communities, whose main focus has
been on techniques for monitoring concurrent systems and
theoretical investigations, respectively. We briefly discuss
both topics in the related work Section 7 since they are
relevant but not central to the topic of this paper.

4 TOWARDS A CLASSIFICATION SCHEMA

Our analysis of the literature led to the definition of the
framework of Figure 1 in Section 2, which inspired a classifi-
cation schema presented in this section and used in Section 5
to organize our survey. Figure 4 overviews our classification
schema, which includes seven distinct classification criteria
that distinguish techniques based on:

Input. Most approaches assume the availability of a set
of input test cases, few approaches work on some models of
the system under test, yet others require both test cases and
models.

Selection of interleavings. Many approaches refer to some
properties of the interleavings to select a relevant subset
(property based), other approaches either exhaustively ex-
plore the interleaving space or exploit some coverage crite-
ria or heuristics (space exploration). Property based detection
techniques simply check for the presence of patterns of
interest in the execution traces, while prediction techniques
also select new interleavings that potentially expose the
property of interest.

Property of interleavings. Many approaches select inter-
leavings referring to some specific concurrency properties:
data race, atomicity violation, deadlock, combined or order
violation properties.

Output and oracle. Some techniques simply report
whether the explored interleavings satisfy the property of
interest (property satisfying interleavings), while others iden-
tify failing executions according to some oracles, in the form
of system crashes, deadlocks or violated assertions.

Guarantees. Different techniques offer various levels of
assurance in terms of precision and correctness of their
results.

Target systems. Most techniques target some specific
kinds of systems that depend on the communication model
(shared memory, message passing or general, that is, indepen-
dent from the communication paradigm), the programming
paradigm (either general or specific, such as object oriented,
actor based or event based paradigms) and the consistency
model (either sequential or relaxed).

3. We identify the communities through the publication venues.

Input

Test case

System model

Output / Oracle

Guarantees

Soundness

Completeness

Feasibility

Property of
Interleavings

Data race

Order violation

Space exploration

Deadlock

Atomicity violation

High level
Low level

Data centric
Code centric

Heuristics
Coverage criteria
Exhaustive explor.
Stress testing

Resource
Communication

Target System

Programming
paradigm

Consistency
model

Communication
model

Testing Technique

Analysis

Scope of testing

Testing
architecture

Granularity
of testing

Type of testing

Hybrid
Dynamic

Non-functional
Functional

Distributed indep.
Distributed sync.
Centralized

System
Integration
Unit

Selection of
Interleavings

Property based

Detection
Prediction

Shared memory

General
Message passing

Specific
General

Sequential
Relaxed

Property satisfying
interleavings

Failing execution

Violated assertion
Deadlock
System crash

Property
Soundness
Property
Completeness

Combined

Fig. 4: A classification schema for the approaches to test concurrent systems

Testing technique. The techniques differ in terms of the
type of analysis, which can be dynamic or hybrid, the type of
testing, which can focus on either functional or non-functional
properties, the granularity of testing (unit, integration or sys-
tem testing), the scope of testing, and the testing architecture
used to implement the technique, which can be either cen-
tralized or distributed.

In the remainder of this section, we discuss the classifi-
cation criteria in detail.

4.1 Input

All the techniques take in input the system under test, which
we keep implicit in our classification. Many techniques
require also a set of test cases, while others generate test
cases automatically, thus implementing the generating test
cases feature of Figure 1.

Some techniques require also a system model that specifies
either some relevant properties or the expected behavior
of the system. For instance, some techniques rely on code
annotations to identify either code blocks that are intended
to be atomic or sets of data items that are assumed to be
updated atomically [27]. For some technique, the presence of

a system model is optional: they work independently from
an initial system model, but can benefit from an optional
model to improve the accuracy of the approach.

4.2 Selection of Interleavings

Selecting interleavings is the primary objective of many ap-
proaches. Some techniques exploit properties of interest to
select interleavings: we refer to them as property based. Other
techniques explore the space of interleavings exhaustively
or randomly, possibly exploiting heuristics or coverage cri-
teria: we refer to them as space exploration techniques.

4.2.1 Property based techniques

Property based techniques select interleavings according to
one or more properties of interest. They typically apply
some form of analysis to an execution trace to identify
relevant synchronization constraints between instructions.
For instance, lockset analysis focuses on lock based synchro-
nization and looks for accesses to shared data items that are
not protected with locks [23]. Happens-before analysis ex-
tends this approach by capturing general order constraints.
Different types of happens-before analysis apply to different

synchronization mechanisms [28], and present various cost-
accuracy trade offs [29], [30].

Property based techniques exploit the order information
identified w ith t he a nalysis t o e ither s imply understand
whether the analyzed trace exposes the property of interest
(detection techniques) or also identify alternative interleav-
ings that can expose the property of interest (prediction
techniques).

4.2.2 Space exploration techniques
Space exploration techniques explore the space of interleav-
ings without referring to a specific property, and include:

Stress testing. Stress testing approaches execute the test
suite several times, aiming to observe different interleav-
ings. They do not offer any guarantee of observing a given
portion of the interleaving space, and do not introduce any
mechanism to improve the probability of executing new
interleavings.

Exhaustive exploration. Exhaustive exploration ap-
proaches aim to execute all possible interleavings. Since
in general the space of interleavings can be huge, these
techniques either limit both the number of instructions and
the execution flows o f t he i nput t est c ases, o r introduce
bounds to the exploration space [31]. They also often adopt
reduction techniques such as dynamic partial order reduc-
tion [32] to avoid executing equivalent interleavings.

Coverage criteria. Coverage criteria identify the interleav-
ings to exercise in terms of depth of the explored space. For
example, in shared memory systems, a coverage criterion
might require that for each pair of instructions i1 and i2
that belong to different execution flows and operate on the
same data item d there should exist at least a test case that
exercises the interleaving in which i1 occurs before i2 and
one that exercises the interleaving in which i2 occurs before
i1.

Heuristics. Heuristics guide the exploration of the in-
terleaving space. For instance, some techniques prioritize
interleavings by their diversity with respect to the executed
ones. Similarly, some other techniques prioritize interleav-
ings that can be obtained by introducing a bounded number
of scheduling constraints.

4.3 Property of Interleavings
Property based techniques target specific p roperties o f in-
terleavings, which are patterns of interactions between ex-
ecution flows t hat a re l ikely t o v iolate t he d evelopers’ as-
sumptions on the order of execution of instructions. Some
property based techniques target the classical properties of
interleavings: data races, atomicity violations and deadlocks.
Other techniques combine multiple classical properties. Yet
other techniques focus on program-specific o r domain-
specific order violations.

4.3.1 Data Races
A data race occurs when two operations from different
execution flows a ccess t he s ame d ata i tem d concurrently,
at least one is a write operation, and no synchronization
mechanism is used to control the (order of) accesses to d. A

system is data race free if no data races can occur during its
execution.

Listing 2: An example of data race

begin f_1
x=’AAAAAAAA’
end f_1

begin f_2
x=’BBBBBBBB’
end f_2

Listing 2 shows an example of data race. Both execution
flows f_1 and f_2 write on the data item x of type string.
Let us assume that the underlying programming language
can write atomically 32 bits (4 characters). If f_1 and f_2
start writing on x concurrently, the resulting value of x will
be any combination of ’AAAA’ and ’BBBB’, for example
x=’AAAABBBB’, where the first 4 characters come from the
write instruction in f_1 and the remaining ones from the
write instruction in f_2.

Data races might represent violations of atomicity as-
sumptions on the execution of individual operations. Such
violations break the serializability of the system behavior. The
concept of serializability was originally defined in the con-
text of database systems as a guarantee for the correctness
of transactions [33]. In our context a history is serializable if
it is equivalent to a serial history, which is a history in which
all the atomicity assumptions are satisfied. Two histories are
equivalent if they produce the same values for all the data
items.4 A data race implies an uncontrolled access to a data
item, which may or may not be an error. For instance, in
the example of Listing 2 the value x=’AAAABBBB’ may be
valid or not depending on the application logic.

Data race techniques target either low level or high level
data races, and propose different kinds of analysis and algo-
rithms. Techniques for detecting low level data races work
at a fine granularity level, and typically consider accesses
to individual memory locations. Techniques for detecting
high level data races check misbehaviors due to different
execution flows invoking concurrent operations on shared
complex data structures, like public methods of an object or
a library in an object oriented program.

Data races can occur also in programs that implement
the message passing paradigm, when the code fragments
that process two messages access a common data item, and
at least one fragment modifies that data item.

4.3.2 Atomicity violations
Atomicity violations extend the concept of atomicity to se-
quences of operations. An atomicity violation occurs when
a sequence of operations of an execution flow that is as-
sumed to be executed atomically is interleaved with conflict-
ing operations from other flows. Many atomicity violation
techniques use serializability to validate the correctness of
interleavings. However, checking for the serializability of
an interleaving can be very expensive, since it requires com-
paring the interleaving with all the possible serial histories.
Thus, many techniques often check for specific patterns of
interleavings that are known to be non serializable.

4. In literature such property is referred to as view serializability
opposite to conflict serializability [34]

Listing 3: An example of atomicity violation

begin f_1
if (x>0)

x = x-1
end f_1

begin f_2
x = 0
end f_2

Listing 3 shows an example of atomicity violation. In the
example, we assume that x initially holds a non-negative
value, and we expect its value to always remain non-
negative. The property is satisfied under the assumption
that f_1 executes atomically, that is, the sequence of op-
erations in f_1 is executed atomically without interleaved
operations of f_2. However, if the atomicity of f_1 is not
properly enforced through synchronization mechanisms,
the conflicting operation x=0 in f_2 can occur between the
two operations of f_1, causing the value of x to become
negative (-1).

Atomicity violations can occur also in programs that
implement the message passing paradigm, when the code
fragments that process two or more messages that shall
be executed atomically are interleaved by the processing of
some other messages.

We distinguish two main classes of approaches to detect
atomicity violations, namely code centric and data centric
approaches, based on their definition of atomic blocks.

Code centric. Code centric techniques work at a coarse
granularity level. They target code blocks that should be
executed atomically according to some specification of the
system, and verify if the system implementation guarantees
the atomicity requirements. Atomic code blocks can be ei-
ther explicitly specified [27], [35] or implicitly assumed [36],
[37], based on some heuristics or some hypotheses of the
programming paradigm.

Data centric. Data centric atomicity violations were first
studied in 2006 by Vaziri et al. who introduced the concept
of atomic-set serializability as a programming abstraction
to ensure data consistency [38]. Atomic-set serializability
builds on the concepts of atomic sets that represent sets of
data items that are correlated by some consistency con-
straints, and units of work that are the blocks of code used to
update variables in an atomic set. In the atomic-set program-
ming model, developers only need to specify atomic sets
and units of work, and the compiler infers synchronization
mechanisms to avoid potentially dangerous interleavings.

Some testing techniques use patterns that violate atomic-
set serializability to select dangerous interleavings. Since
atomic-set serializability approaches require the definition
of atomic sets, these techniques either rely on some code
annotations or infer atomic sets using either heuristics or
assumptions about the programming paradigm in use.

4.3.3 Deadlocks
Deadlocks occur when the synchronization mechanisms
indefinitely prevent some execution flows from continuing
their execution. This happens in the presence of circular
waits, where each execution flow of a given set of flows
is waiting for another execution flow from the same set to
progress, and thus cannot continue its own execution.

Listing 4: An example of deadlock

begin f_1
acquire(L1)
acquire(L2)
...
release(L2)

release(L1)
end f_1

begin f_2
acquire(L2)
acquire(L1)
...
release(L1)

release(L2)
end f_2

Listing 4 shows a simple example of deadlock due to an
incorrect use of locks. Locks provide two atomic primitives,
acquire(L) and release(L). When an execution flow f
acquires a lock L (acquire(L)), no other execution flow
f ′ can acquire L until f releases the lock (release(L)).
Locks are used to implement mutual exclusion: for instance,
to guarantee the atomicity of a set O of operations, each
execution flow shall acquire a lock L before accessing an
operation in O, and release the lock L upon terminating the
access to the resource to prevent other flows to execute an
operation in O concurrently.

In the example of Listing 4, the execution flow f_1
acquires first lock L1 and then lock L2 before releasing
L1, while the execution flow f_2 acquires lock L2 before
releasing L1. If f_1 acquires L1 and f_2 acquires L2 before
a progress of f_1, then f_1 is blocked waiting for f_2 to
release L2 and f_2 is blocked waiting for f_1 to release L1,
thus resulting in a deadlock.

Deadlocks may depend either on an incorrect order of
accesses to shared resources (resource deadlocks) or on an
incorrect communication protocol between execution flows
(communication deadlocks) [39].

Resource deadlocks. Resource deadlocks occur when a set
of execution flows try to access some common resources
and each execution flow in the set requests a resource held
by another execution flow in the set. The code in Listing 4 is
an example of resource deadlock.

Communication deadlocks. Communication deadlocks oc-
cur in message passing systems when a set of execution
flows exchange messages and each of them waits for a
message from another execution flow in the same set.

4.3.4 Combined
Some testing techniques address combined properties of in-
terleavings, that is more than one of the properties defined
above.

4.3.5 Order violation
Data races, atomicity violations and deadlocks are classic
and well studied properties that in general result in specific
violations of the order of interleavings. Some techniques
target program- or domain-specific violations of the order
of interleavings that cannot be traced back to classic in-
terleaving properties. We refer to these techniques as order
violation approaches. For instance, some techniques target
the domain of concurrent object oriented programs, and
focus on interleavings that lead to null pointer dereferencing
that occur when an execution flow erroneously tries to

dereference an object reference after it has been set to null
by another execution flow [40], e ven i f s uitable protected
with locks that avoid data races.

4.4 Output and Oracle
Testing techniques produce two types of outputs, some
simply produce property satisfying interleavings that are in-
terleavings that expose a property of interest, while others
compare the results produced by executing an interleaving
with an oracle, and return the failing executions, thus imple-
menting the comparing with oracle feature of Figure 1.

In general, not all the interleavings that exhibit a prop-
erty of interest lead to a failure. Thus, techniques that
output property satisfying interleavings may result in false
positives. For instance, some techniques that detect data
races may signal many benign data races.

Oracles define c riteria t o d iscriminate b etween accept-
able and failing executions, and can be system crash, deadlock
or violated assertion oracles. System crash and deadlock ora-
cles, also known as implicit oracles, identify executions that
lead to system crashes and deadlocks, respectively. Violated
assertion oracles exploit assertions about the correct behav-
ior of the system, based either on explicit specifications or
implicit assumptions about the programming paradigm.

4.5 Guarantees
Different techniques for selecting interleavings guarantee
various levels of validity of the results.

A technique guarantees the feasibility of the results if
it produces only interleavings that can be observed in
some concrete executions. Not all techniques guarantee
the feasibility of interleavings, for instance, some predic-
tion techniques that analyze traces and produce alternative
interleavings of the observed operations may miss some
program constraints, and thus return interleavings that do
not correspond to any feasible execution.

A technique guarantees soundness of the results if it
produces only interleavings that lead to an oracle violation.
A technique guarantees the completeness of the results if it
produces all the interleavings that can be observed in some
concrete executions and that lead to an oracle violation. A
technique guarantees property soundness if it identifies only
feasible interleavings that exhibit the property of interest for
the considered test cases. A technique guarantees property
completeness if it identifies a ll f easible i nterleavings that
exhibit the property of interest for the considered test cases.

The concepts of property soundness and property com-
pleteness only apply to property based techniques. Several
authors of property based techniques present their approach
as sound and/or complete with respect to the property of
interleavings they consider. However, their claims often rely
on the assumption that only some specific synchronization
mechanisms are used. In the general case, the type of or-
der relations and analysis adopted in most property based
techniques, such as happens-before analysis [28] or causally-
precedes relations [29], can introduce approximations that
hamper both soundness and completeness [30].

Soundness and completeness describe the accuracy of a
technique in detecting concurrency faults. Property sound-
ness and property completeness describe the accuracy of

a technique in detecting interleavings that expose a given
property.

4.6 Target System
We identify three elements that characterize the type of
target concurrent systems, the communication model, the pro-
gramming paradigm and the consistency model.

The communication model specifies how the execution
flows interact with each other, and includes shared memory
and message passing models. General techniques target both
types of systems.

Many techniques target a specific programming paradigm,
sometimes identified by the target synchronization mecha-
nisms. For instance, some techniques exploit specific prop-
erties of the object oriented paradigm, such as encapsulation
of state or subtype substitutability. Similarly, other tech-
niques build on the assumptions provided in actor based
systems. Some techniques only consider faults that arise
from the use of specific synchronization mechanisms, such
as deadlocks that derive from the incorrect use of lock
based synchronization. Yet other techniques do not make
any assumption on the programming paradigm adopted
and work with general systems.

Finally, some testing techniques assume a sequential con-
sistency model, while other techniques can be applied to
relaxed consistency models.

4.7 Testing Technique
We characterize the many testing techniques proposed so
far along five axes, the type of analysis they implement, the
type, granularity and scope of the testing technique, and the
type of testing architecture they adopt.

4.7.1 Analysis
Testing techniques implement either dynamic or hybrid anal-
ysis. Dynamic analysis techniques use only information de-
rived from executions of the system under test. Hybrid anal-
ysis techniques use both static and dynamic information.
Strictly speaking, techniques that rely on static information
only are not testing techniques, and thus fall outside the
scope of this survey. We discuss the most relevant static
analysis techniques in the related work section (Section 7).

4.7.2 Type of testing
Testing techniques may target either functional or non-
functional properties. Functional testing techniques check the
correctness of the program results with respect to a given
oracle, while non-functional testing techniques verify non-
functional properties such as response time and scalability.

4.7.3 Granularity of testing
Different testing techniques work at various granularity lev-
els that span from unit to integration and system. Unit testing
techniques target individual units in isolation. For instance,
in object oriented programs, unit testing considers classes
in isolation, without taking into account their interactions
with other components of the system. Integration testing
techniques focus on the interactions between units, and
check that the communication interface between the units

under test works as expected. System testing techniques
target the system as a whole, and verify that it meets its
requirements. In Section 5 we indicate both the granularity
level and the type of system components considered by the
testing technique.

4.7.4 Scope of testing
Some testing techniques have a limited scope in the devel-
opment process. For example, many techniques are used for
system validation, while other techniques target regression
testing.

4.7.5 Testing Architecture
Testing techniques refer to different testing architectures that
characterize the concrete infrastructure used to exercise the
system under test. Such infrastructures are composed of
one or more test drivers, which produce input data to one
or more execution flows of the system under test, and that
observe the outputs produced by the system under test. For
instance, to test a client-server distributed system, a driver
can initialize a client, submit some requests to the server,
wait for replies from the server, and evaluate the received
replies with respect to an oracle.

Testing architectures can be either centralized, when a
single driver interacts with the system under test, or dis-
tributed, when more than one driver interacts with (differ-
ent) execution flows o f t he s ystem u nder t est. T he above
scenario of a client-server distributed system exemplifies
a centralized testing architecture. A framework for testing
a peer-to-peer system in a distributed environment with a
test driver for each peer is a simple example of a distributed
testing architecture.

We distinguish between synchronized and independent dis-
tributed testing architecture. In synchronized testing architec-
tures, the drivers coordinate each other by exchanging mes-
sages, while in independent testing architectures the drivers
execute independently and do not exchange messages to
coordinate their actions. In distributed testing architectures,
the driver synchronization is used to overcome controllability
and observability problems. These problems occur if a driver
cannot determine when to produce a particular input, or
whether a particular output is generated in response to a
specific input or not, respectively [41].

5 DETAILED SURVEY

We classify the main approaches for testing concurrent
systems according to the criteria discussed in Section 4.
Figure 5 shows the organization of this section. We use selec-
tion of interleavings as the main classification c riterion, and
distinguish between property based and space exploration tech-
niques. We classify property based approaches according to
the target property of interleaving as data race (Section 5.1),
atomicity violation (Section 5.2), deadlock (Section 5.3), com-
bined (Section 5.4) and order violation (Section 5.5), and
discuss space exploration techniques in Section 5.6.

This organization groups together approaches that im-
plement related classes of methodologies and algorithms to
detect faults. This is the case of property based techniques
that exploit the same property of interleavings, which typi-
cally target the same type of concurrency faults, as well as

space exploration approaches, which typically target generic
types of faults.

We summarize the classification of the techniques in six
tables according to the criteria. Table 1, Table 2, Table 3,
Table 4 and Table 5 overview property based techniques.
Table 6 overviews space exploration techniques. The six
tables share the same structure. The rows indicate the tech-
niques with their name, when available, or with the name
of the authors of the paper that proposed the technique.
Rows are grouped by subcategory when applicable, and
report the approaches sorted by main contribution within
the same subcategory. The contribution of most approaches
is multi-faced, we list the approaches according to what we
identify as their core novelty, mentioning other elements
when particularly relevant. The columns correspond to the
criteria identified in Figure 4.

In the six tables we do not report explicitly type of testing,
scope of testing and testing architecture, since all the techniques
we analyze (i) implement functional testing, with the only
exception of SpeedGun, which focuses on performance,
(ii) are in the scope of validation testing, with the exception
of ReConTest, SimRT and SpeedGun, which are explic-
itly designed for regression testing, and (iii) implement a
centralized architecture. In Table 6, we also omit columns
prediction, property completeness and property soundness, since
they apply only to property based techniques.

5.1 Property Based: Data Race
We classify the large number of techniques designed to
detect data races in shared memory programs according to
both their granularity and the type of analysis they perform.
We consider techniques that target low level and high level
data races, and we further classify low level techniques as
lockset, happens-before and hybrid analysis techniques.

Low level data race detection techniques. Low level data race
detection techniques target data races that occur at the level
of individual memory locations. They rely on some form
of analysis to track the order relations between memory
instructions in a given execution trace, and either detect the
occurrence of a data race or predict if a data race is possible
in alternative interleavings.

These techniques rely either on lockset analysis, which
simply identifies concurrent memory accesses not protected
by locks, or on happens-before analysis, which detects some
order relations among concurrent memory accesses. Testing
techniques that rely on happens-before analysis often claim
to be property complete, meaning that they can detect all the
data races that can be generated with alternative schedules
of an input execution trace. However, happens-before analy-
sis is in general conservative: for instance, when it observes
the release of a lock followed by an acquisition of the same
lock in an execution trace, it interprets the two operations as
totally ordered, while they could appear in a different order
in other interleavings of the same trace. Because of this,
traditional happens-before analysis may miss some possible
interleavings, and may thus miss some faults [29].

The property completeness problem has been addressed
by either implementing variants of the happens-before re-
lation that capture the order of events more accurately, and
thus reduce the possibility of missing some faults [29], [30],

Testing techniques

Property based

Exploration (S 5.6)

Order violation (S 5.5)

Combined (S 5.4)

Deadlock (S 5.3)

Atomicity violation (S 5.2)

Data race (S 5.1)

Data centric

Code centric

High level

Low level

Hybrid

Happens-before

Lock-set

Heuristics

Coverage criteria

Exhaustive exploration

Stress testing

Fig. 5: Organization of the detailed survey

or by exploiting model checking to explore re-orderings
of instructions that are not allowed according to the over-
restrictive happens-before analysis, but still possible in prac-
tice. Some hybrid solutions combine the advantages of the
less accurate but inexpensive lockset analysis with the more
accurate but expensive happens-before analysis [42].

High level data race detection detection techniques. High
level data race detection techniques target complex data
structures, such as objects in object oriented programs, and
look for interleavings that lead to results not compatible
with any serial execution. The naı̈ve approach to detect
high level data races consists in comparing the results of an
interleaving with all possible serial executions. The intuitive
scalability issues of the exhaustive analysis of all possible
serial executions is tackled by many testing techniques that
exploit some form of specification provided by the devel-
oper, which indicates relevant order characteristics among
operations, such as commutativity.

5.1.1 Low level — Lockset
Lockset analysis has been proposed for data race detection
by Savage et al. in the late nineties based on the theory
of reduction that Lipton introduced in the seventies [18].
Savage et al.’s Eraser approach [23] addresses both the con-
servative limitations of static data race analysis and the per-
formance problems of happens-before analysis, the two pop-
ular classes of approaches for detecting data races that were
investigated at that time. Indeed in the nineties, happens-
before analysis was considered too expensive, since it re-
quires information for each execution flow about the con-
current accesses to each shared data item. Lockset analysis
reveals possible data races by both dynamically computing
the set of common locks held when accessing shared data
items, and identifying execution flows that access the same
shared data items without sharing any lock. By taking into

account only lock based synchronization, lockset analysis
improves the efficiency with respect to happens-before anal-
ysis since it only needs to store information about the set of
locks held by the execution flows, but looses accuracy, since
it ignores additional order relations determined by other
synchronization mechanisms. Thus, the techniques based on
lockset analysis are not property sound.

In the last fifteen years, research on data race detection
focused mostly on reducing the amount of false positives,
moving the attention back to happens-before analysis and
forward to hybrid approaches. The few recent techniques
based exclusively on lockset analysis aim to either improve
precision and efficiency or to extend to new programming
paradigms. Shacham et al. [43] and Racez [44] improve
the precision and accuracy, respectively, while Praun and
Gross [45] and ACCORD [46] extend lockset analysis to
object oriented and array based concurrent programs, re-
spectively.

Improving precision

Shacham et al., PPoPP 2005 [43]. Shacham et al. combine
dynamic lockset analysis with model checking to detect data
races in general shared memory programs. They capture
locking constraints with dynamic lockset analysis, generate
alternative interleavings for the executed trace with model
checking, and execute the interleavings identified by the
model checker to reveal faults. Lockset analysis ensures
property completeness but not property soundness, while
the final execution phase guarantees both soundness and
completeness with respect to the oracle.

Improving efficiency

Racez, ICSE 2011 [44]. Racez reduces the overhead of

TABLE 1: Data race detection techniques

Input Output /
Oracle

Select.
Interl.

Target
System

Testing
Tech. Guarantees

Te
st

C
as

e

M
od

el

Sa
t.

In
te

rl
.

C
ra

sh

D
ea

dl
oc

k

A
ss

er
t.

V
io

l.

Pr
ed

ic
t.

C
om

m
un

.

Pa
ra

di
gm

C
on

si
st

.

G
ra

nu
la

ri
ty

A
na

ly
si

s

Pr
op

.C
om

pl
et

.

Pr
op

.S
ou

nd
.

C
om

pl
et

.

So
un

dn
es

s

Fe
as

ib
il

it
y

Low level — Lockset
Shacham et al. X X X X X SM General Seq S D X X X X
Racez X X SM General Seq S D - - X
von Praun and Gross X X SM OO Seq S H - - X
ACCORD X X X X SM Fork-join Seq S D - -

Low level — Happens-before
FastTrack X X SM General Seq S D - - X
LiteRace X X SM General Seq U D - - X
Pacer X X SM General Seq S D - - X
SOS X X SM General Seq S D - - X
Carisma X X SM General Seq S D - - X
ReEnact X X X SM General Seq S D - - X
Narayanasamy et al. X X X SM General Seq S D X - - X
Frost X X X X X SM General Seq S D X
Portend X X X SM General Seq S D X - - X
Tian et al. X X SM General Seq S D - - X
RDIT X X X SM General Seq S D - -
Smaragdakis et al. X X X SM General Seq S D - -
DrFinder X X X SM General Seq S D - - X
RVPredict X X X SM General Seq S D - -
WebRacer X X SM Web platforms Seq S D - - X
EventRacer X X SM Event-based Seq S D - - X
DroidRacer X X SM Android apps Seq S D - - X
Java RaceFinder X X X SM General Rel S D X - - X
Relaxer X X X SM General Rel S D - - X

Low level — Hybrid
Choi et al. X X SM General Seq S H - - X
Wester et al. X X SM General Seq S D - - X
RaceMob X X SM General Seq S H X - - X
RaceFuzzer X X X SM General Seq S D X X
RaceTrack X X SM General Seq S D - - X
Goldilocks X X SM General Seq S H - - X
MultiRace X X SM General Rel S D - - X
SimRT X X X SM General Seq S D X X
Racageddon X X SM General Seq S D - - X
Narada X X X SM General Seq S D X X

High level
Colt X X X X SM OO Seq U D - - X
Dimitrov et al. X X X SM OO Seq U D - - X

In this and all the tables in the paper, the techniques are sorted according to their publication date within each subcategory, and are named as indicated by the
proposers, or by the authors of the seminal paper when a name is not available.

Legend (common to all tables):
SM shared memory Seq sequential consistency S system testing H hybrid analysis
MP message passing Rel relaxed consistency U unit testing D dynamic analysis

lockset analysis with a sampling approach that captures
only a subset of the synchronization operations and the
memory accesses performed by the target system, thus
trading accuracy for complexity. Racez inherits the idea of
sampling from previous work such as LiteRace and Pacer,
that we discuss in the remainder of this section. Racez
further reduces the overhead by both only instrumenting
synchronization operations and delegating the detection of
memory operations to the hardware performance monitor-
ing unit (PMU). The PMU stores hardware information in
a buffer that is accessed asynchronously with system-level
calls, and is usually adopted for performance monitoring.
This combination of user-level instrumentation to monitor
synchronization operations and hardware monitoring of
memory accesses leads to a very low overhead —Sheng
et al. report an overhead as low as 2.8% in some experi-
ments performed on real systems—. The approach is neither

property complete, due to the approximations introduced
by the sampling, nor property sound, since it relies on the
imprecise lockset analysis.

Extending to new paradigms

von Praun and Gross, OOPSLA 2001 [45]. von Praun
and Gross exploit the encapsulation features of object ori-
ented programs to reduce the time and space overhead
of the instrumentation to optimize lockset analysis. The
approach takes advantage of the confinement property that
characterizes objects and object fields that can be accessed
only by one execution flow, and excludes them during the
instrumentation. The technique pairs static analysis to detect
encapsulation properties and dynamic lockset analysis to
detect memory accesses. It searches for data races within
the executed interleavings, without predicting faults, thus,

it is not property complete.

ACCORD, PPoPP 2011 [46]. ACCORD targets data races
in array-based concurrent programs characterized by fork-
join parallelism, like programs written in OpenMP, CILK
and TBB. ACCORD strengthens lockset analysis by relying
on an input model expressed as source code annotations
that specify the intended concurrency coordination strategy.
The model specifies t he s et o f m emory l ocations t hat each
execution flow r eads a nd w rites, d istinguishing between
accesses that should only occur when a lock is acquired
and accesses that might occur without mutual exclusion.
ACCORD is one of the few approaches that exploit an-
notations from the developers to improve the accuracy of
the results. ACCORD automatically verifies t hat t he con-
currency coordination strategy is data race free using a
constraint solver. It also automatically generates assertions
to check that the implementation conforms to the specified
concurrency coordination strategy during testing. ACCORD
is neither property complete, since the constraint solving
might not be able to generate solutions in all cases, nor
property sound, because the specification only targets lock
based synchronization mechanisms.

5.1.2 Low level — Happens-before
Happens-before analysis was introduced by Leslie Lamport
in the late seventies [47] and has been adopted in several
early techniques to detect data races in concurrent pro-
grams [48], [49].

Happens-before analysis is more precise than lockset
analysis, since it can deal with any kind of synchroniza-
tion mechanism beyond lock based synchronization, and
thus can avoid many false positives that are inevitable in
lockset analysis at the price of additional computational
costs. Happens-before analysis has been widely studied in
the last fifteen y ears i n t he c ontext o f t esting d ata races
with focus on (i) improving performance, (ii) reducing false
positives, (iii) improving completeness, (iv) tailoring the
analysis to specific p rogramming p aradigms o r languages,
and (v) extending the analysis to relaxed (non sequential)
memory models.

Different approaches improve the performance of
happens-before analysis by maintaining additional infor-
mation at runtime (FastTrack [50]), reducing the expensive
monitoring activities to a subset of samples (LiteRace [51],
Pacer [52], SOS [53] and Carisma [54]), exploiting the paral-
lelism of multi-core systems (Wester [55]), and implement-
ing happens-before analysis in hardware (ReEnact [56]).

Some approaches reduce the amount of false posi-
tives by (i) classifying data races in harmful and benign
(Narayanasamy et al. [57], Frost [58] and Portend [59]),
(ii) exploiting program specific s ynchronization mecha-
nisms (Tian et al. [60]) or (iii) considering synchronization
events generated from external libraries (RDIT [61]).

Smaragdakis et al. and DrFinder improve the complete-
ness of happens-before analysis by taking into account alter-
native interleavings of locked code regions [29], [62], while
RVPredict improves completeness by integrating happens-
before analysis with control flow information [30].

Some techniques improve the precision of the analysis
by reducing its scope to specific t ypes o f a pplications, and

exploiting the domain semantics to infer order constraints
more precisely: WebRacer [63] and EventRacer [64] adapt
the analysis to Web and event-based applications, respec-
tively; DroidRacer [65] applies the analysis to Android
applications.

RaceFinder [66] and Relaxer [67] augment the analysis
with model checking to capture order relations in the re-
laxed Java memory model.

Improving performance

FastTrack, PLDI 2009 [50]. FastTrack introduces a runtime
happens-before analysis with a constant time and space
complexity, thus improving over the linear complexity of
traditional vector clocks approaches. FastTrack builds upon
the observation that in the context of data race detection
the full generality of vector clocks is not needed to charac-
terize a large fraction of read and write operations. Thus, it
proposes a lightweight representation of the happens-before
information that records only the information about the last
write operation on each data item. In this way, it reduces the
cost of vector clock comparison up to an order of magnitude
compared to the original happens-before analysis. FastTrack
is neither property complete nor property sound.

LiteRace, PLDI 2009 [51]. LiteRace is the first technique
that introduces sampling to reduce the analysis overhead.
LiteRace instruments only cold regions that are defined as
the less frequently accessed code elements, based on the
assumption that frequently accessed code elements (hot
regions) have fewer probabilities to be involved in data races.
LiteRace trades property completeness (number of detected
data races) for efficiency. The technique is not property
sound, since the happens-before analysis might be unaware
of program-specific synchronization mechanisms.

Pacer, PLDI 2010 [52]. Similar to LiteRace, Pacer targets
the efficiency of happens-before analysis through sampling.
Differently from LiteRace that relies on a heuristic approach,
Pacer estimates the probability of finding data races within
code regions based on the sampling rate, thus trading
precision for costs. Pacer extends FastTrack by alternating
a sampling period that implements the classic FastTrack
algorithm, and a non-sampling period that reduces the
amount of recorded information and simplifies the manage-
ment of vector clocks. The non-sampling period reduces the
overhead of precise happens-before analysis. Pacer is not
property sound since the happens-before analysis does not
capture program-specific synchronization mechanisms. It is
not property complete due to the sampling approach that
does not analyze the entire execution.

SOS, OOPLA 2011 [53]. SOS improves FastTrack and
Pacer by reducing the overhead of dynamic happens-before
analysis, while maintaining the precision of the original
approach. SOS introduces the concept of stationary objects,
which are objects that are only read after being written
during the initialization period, and optimizes happens-
before analysis by excluding stationary objects from the
analysis, since they cannot lead to data races. SOS reduces
the average overhead of FastTrack by 45%, while increasing
the amount of detected races, and reveals over five times

more races than Pacer when considering 50% runtime over-
head.

Carisma, ISSTA 2012 [54]. Carisma improves both the
performance and the accuracy of LiteRace and Pacer by ex-
ploiting the similarity between multiple accesses to the same
data structures, such as arrays or lists. When processing
many accesses to the same data structure, techniques such
as LiteRace and Pacer waste time with redundant memory
access sampling. Carisma dynamically infers the application
contexts that specify mappings between memory locations
and high level data structures, and uses the contexts to
compute the distribution of memory locations across data
structure to better balance the sampling budget. Being
based on FastTrack, Carisma is neither property sound nor
property complete.

ReEnact, ISCA 2003 [56]. ReEnact improves the perfor-
mance of happens-before analysis by proposing an original
hardware implementation. It segments a program execution
into epochs, saves the state of the program in cache prior to
each epoch, and persistently saves the state of the epoch
only at the end of its execution, if they do not suffer
from data races. Otherwise ReEnact rolls back, restores
the previous state, and re-executes the epoch under the
same interleaving with additional instrumentation to collect
useful information for the developers. ReEnact implements
happens-before analysis based on vector clocks, and reduces
the analysis overhead to a bare 5.8% of the program exe-
cution time in average. ReEnact automatically repairs data
race problems that match a set of predefined bug patterns,
such as a missing lock-unlock synchronization, and relies
on program annotations to distinguish benign data races.
Hence, it is neither property sound nor property complete
since it is not predictive.

Reducing false positives

Narayanasamy et al., PLDI 2007 [57]. Narayanasamy et
al.’s technique reduces the false positive rate by automat-
ically classifying the detected races as either benign or
harmful. For a given data race, the approach replays the
execution for the different orders among the memory op-
erations involved in the data race, and classifies t he race
as harmful only if the executions result in different program
states. The approach can still lead to misclassifications, since
it would erroneously classify as benign a data race between
two interleavings that lead to indistinguishable state and
results only incidentally [59]. The approach is not property
complete, due to imprecisions in the dynamic analysis. It is
property sound, since it checks that the two different orders
between the memory operations involved in the data race
are feasible.

Frost, SOSP 2011 [58]. Frost detects non-benign data
races by comparing the results and program state obtained
by executing multiple replicas of the same program with
different interleavings. Frost segments an execution into
epochs, and runs each epoch on three replicas. It executes a
replica instrumented with dynamic happens-before analysis
to detect synchronization points in the program, and the
other two replicas with a non-preemptive controlled sched-

uler on a single thread. Frost schedules these two replicas
as complementary as possible, meaning that it schedules two
statements in reversed order in the two replicas whenever
the synchronization mechanisms allow so. Frost both infers
the presence of harmful data races and identifies the most
likely faulty replica by comparing the output of the three
replicas. When used at runtime, Frost can also recover from
a faulty execution by rolling back and re-executing the faulty
epoch. Frost incurs a utilization cost of 3 ×, since it executes
three replicas of each epoch. Simultaneously executions
replicas on spare cores can reduce the increased utilization
to a bare 3% to 12% overhead. Frost is neither property
sound nor property complete because of the imprecision
introduced by the happens-before analysis and by the epoch
splitting mechanism.

Portend, ASPLOS 2012 [59]. Portend proposes a precise
classification of data races, which includes different types of
harmful data races based on the effects that they have on
the system under test. It addresses the limitations of data
race classification approaches that rely on the identity of
both outputs and state of the pair of interleavings induced
by a data race: accidental identity and differences that do
not depend on data races. Portend considers data races
as benign only if they produce both the same results and
state under all possible test inputs, and checks this property
with symbolic execution. Portend is not property complete,
due to imprecisions of dynamic analysis. It is property
sound, since it checks if the two different orders between
the memory operations involved in the data race are both
feasible.

Tian et al., ISSTA 2008 [60]. Tian et al.’s dynamic tech-
nique proposes an automated mechanism to infer program-
specific synchronization mechanisms to improve the accu-
racy of happens-before analysis and thus reduce the rate
of false positives. Specifically, Tian et al. target synchro-
nizations based on flags, test-and-set locks and barriers.
They infer common patterns that indicate the presence of
such synchronization mechanisms, and dynamically detect
these patterns. The approach improves the precision of data
race detection, but does not detect all possible synchroniza-
tion constraints, and thus cannot guarantee either property
soundness or property completeness.

RDIT, FSE 2015 [61]. RDIT reduces the amount of false
positives of happens-before analysis by analyzing missing
events, which are events not captured by happens-before
analysis because they belong to portions of the code that
cannot be instrumented, such as external libraries. Missing
events are responsible for many false positives. RDIT tack-
les this problem by extending happens-before relation to
take into account also the invocations of external functions
even if their implementation cannot be instrumented. RDIT
assumes that two external functions that operate on some
shared memory locations can possibly use such locations
for synchronization purposes, and adds a happens-before
relation between the invocation of the two functions, thus
reducing the number of false positives that could be gen-
erated if this relation is ignored. RDIT relies on RVPredict,
discussed in the remainder of this section, for the data race
detection based on the computed happens-before relations.

Thus, it does not ensure either property completeness or
property soundness.

Improving completeness

Smaragdakis et al., POPL 2012 [29]. Smaragdakis et al.
observe that, by analysing single execution traces, happens-
before analysis may infer incorrect order relations and thus
miss some data races. Indeed the order relation that the
happens-before analysis infers between the release and a
subsequent acquisition of the same lock may be violated
in other execution traces. Smaragdakis et al. mitigate this
problem, by proposing a new causally-precedes (CP) relation
that captures the order of execution of statements. The CP
relation relaxes the happens-before relation with respect to
lock releases and acquisitions by inferring an order between
two lock-protected blocks if and only if they contain con-
flicting s tatements. S maragdakis e t a l. d etect C P-races that
occur when two conflicting m emory a ccesses a re n ot CP
related, and demonstrate that a CP-race always corresponds
to a feasible interleaving with a data race. The technique
is neither property complete nor property sound, since it
can miss relations due to program-specific synchronization
mechanisms.

DrFinder, FSE 2015 [62]. DrFinder targets the problem of
detecting hidden data races, which are data races that pre-
vious the happens-before analysis –as well as the causally-
precedes analysis and the precise analysis implemented in
RVPredict– may miss due to the over-constraining nature of
the analysis. A hidden data race consists of a pair of accesses
to the same shared memory location that are in a happens-
before relation only for a subset of all possible interleavings.
For instance, hidden data races can occur when a happens-
before relation depends on the order of acquisition of a
lock, which can change from execution to execution. The
key intuition of DrFinder is that many hidden races can
be detected by reversing the order of execution of one or
more operations in a happens-before relation. For instance,
reversing the execution order of two locking operations
could remove a happens-before relation and expose a hid-
den data race. DrFinder introduces a new may-trigger relation
that specifies i f a f unction m ay t rigger a l ock acquisition
either directly or indirectly, through a chain of function
invocations. DrFinder is a predictive technique. It computes
the may-trigger relation on an execution trace, looks for
alternative interleavings that might expose data races, and
executes the selected interleavings to check their feasibility.
DrFinder is neither property complete nor property sound.

RVPredict, PLDI 2014 [30]. RVPredict defines a n order
relation to detect data races that improves the accuracy
of the classic happens-before analysis and the causally-
precedes analysis of Smaragdakis et al. The key insight of
the proposed relation consists in taking into account control
flow i nformation. P revious d ynamic d ata r ace prediction
approaches permute an execution trace to identify possible
feasible traces that may suffer from a data race by relying on
a conservative definition o f f easibility t hat m ay m iss some
valid interleavings. In particular, they assume read-write
consistency, meaning that every read in a valid permutation
returns the same value as in the original trace. RVPredict

exploits a more precise definition of feasible permutations:
it encodes the order relation as a set of constraints, and in-
vokes a constraint solver to detect races. Thanks to the addi-
tional information, RVPredict can detect up to two order of
magnitude more concurrency faults than approaches based
on happens-before or causally-precedes analysis. RVPredict
is not property complete, since it relies on constraint solving,
and is not property sound since it can miss program-specific
synchronization mechanisms like all the techniques based
on classic happens-before analysis.

Tailoring to specific paradigms

WebRacer, PLDI 2012 [63]. WebRacer enhances happens-
before analysis by taking advantage of the semantics of Web
platforms and in particular information about the specifica-
tion and implementation of the different browsers, like the
order constraints between loading, parsing and executing.
WebRacer focuses on (i) variable races, which represent data
races caused by concurrent accesses to shared memory loca-
tions, such as JavaScript variables, (ii) HTML races, which
occur when accesses of DOM nodes that represent HTML
elements may occur both before and after their creations,
(iii) function races, which occur when function invocations
may occur both before and after the parsing of the functions,
(iv) event dispatch races, which occur when events may fire
both before and after adding the corresponding event han-
dlers. WebRacer is neither property sound, since happens-
before analysis can miss program-specific synchronization
mechanisms, nor property complete, since it does not check
for alternative interleavings of the analyzed execution trace.
WebRacer automatically generates sets of events to interact
with Web sites, thus producing concrete test case.

EventRacer, OOPSLA 2013 [64]. EventRacer extends We-
bRacer by formulating the happens-before relation for
event-based programs, and improves the classification of
data races to reduce false positives. EventRacer extends the
analysis to ad-hoc synchronization mechanisms that devel-
opers often use to extend the few synchronization primitives
available in Web platforms, thus eliminating many benign
data races that data race detectors such as WebRacer report.
EventRacer prunes benign races by introducing the notion
of race coverage: a race a covers a race b if the race on
a is used as a synchronization element to eliminate the
race on b. An inexpensive inspection of uncovered races
can quickly identify races on synchronization variables, and
eliminate the false positives covered by those races. The set
of data items with uncovered races is 14 times smaller on
average than the set of all data items with races. EventRacer
implements an efficient vector clock algorithm to perform
happens-before analysis based on chain decomposition [68].

DroidRacer, PLDI 2014 [65]. DroidRacer dynamically ex-
ploits the concurrency semantics of the Android program-
ming model to derive a precise happens-before relation that
reduces the amount of false positives for Android applica-
tions. DroidRacer takes into account the non determinism
that derives from both multi-threaded executions and asyn-
chronous tasks, a concurrency mechanism implemented in
Android to prevent complex computations from running on
the user interface thread. Although DroidRacer is the only

technique specifically conceived for Android applications so
far, the concurrency model of Android that is based on asyn-
chronous callbacks is similar to the model of Web platform
that is targeted by WebRacer and EventRacer. Compared
with EventRacer, DroidRacer does not consider ad-hoc syn-
chronization mechanisms, and thus it is not property sound.
It is not property complete either, due to the limitations in
the happens-before analysis it relies on.

Extending to relaxed memory models

Java RaceFinder, ASE 2009 [66]. Differently from most
data race detection techniques, Java RaceFinder (JRF) does
not assume a sequentially consistent memory model and
introduces a new happens-before analysis to capture or-
dering relations in the relaxed Java memory model. JRF
relies on the Java PathFinder model checker to generate
interleavings that may result in data races, and explores
the interleaving space driven by patterns that increase the
probability to identify a data race. JRF is property complete,
since it relies on model checking and exploits a precise
variant of happens-before analysis that does not produce
false order constraints. It is not property sound, since it can
miss program-specific synchronization mechanisms.

Relaxer, ISSTA 2011 [67]. In line with Java RaceFinder,
Relaxer defines a dynamic analysis approach to detect data
races in a relaxed memory model. The analysis detects
potential data races in a sequentially consistent execution
trace by computing the set of potential happens-before
cycles, which represent possible violations of sequential
consistency, uses the detected races to predict alternative
interleavings on a relaxed memory model, and exploits a
biased-random scheduler to force the occurrence of such
interleavings. Relaxer is not property complete, since it uses
a random scheduler that could miss some interleavings that
suffer from a data race, and is not property sound, since it
may miss program-specific synchronization mechanisms.

5.1.3 Low level — Hybrid
Hybrid techniques combine lockset and happens-before
analyses to benefit f rom t he a ccuracy o f happens-before
analysis with the efficiency o f l ockset a nalysis. Following
the seminal work of Choi et al. [69], hybrid techniques
limit the scope of expensive happens-before analysis to
code fragments that either static or dynamic lockset analysis
efficiently isolates as possibly affected by data races.

The approaches differ from their focus that can be on
(i) improving performance by means of specific execution
frameworks, (ii) reducing the amount of false positives,
(iii) targeting specific synchronization mechanisms, (iv) cov-
ering relaxed memory models, and (v) completing the iden-
tified interleavings with test cases.

In line with the seminal work of Choi et al., Wester et
al. and RaceMob improve performance by pipelining the
analysis on multicore hardware [55] and crowdsourcing
distribute data race detection across several executions [70],
respectively. RaceFuzzer [71] reduces the amount of false
positives by randomly generating executions that expose
data races and observing their effects. RaceTrack [72] targets
both lock-based and fork-join synchronization primitives,

while Goldilocks [73] targets the synchronization mecha-
nisms of software transactions. MultiRace [74] covers re-
laxed memory models. SimRT [75] complements interleav-
ings with test case priorities, while Racageddon [76] and
Narada [77] complement interleavings with test cases.

Seminal work

Choi et al., PLDI 2002 [69]. Choi et al.’s reduce the
overhead of data-race detection by combining static and
dynamic optimization techniques. They determine a set of
statements that can cause data races with static lockset
analysis, and verify if the canditate statements lead to a
data race by tracing the runtime memory accesses of the
selected statements only. They introduce a weaker-than de-
pendence relation among statements that identifies state-
ments whose instrumentation would be redundant, They
cache the memory accesses to further optimize the analysis.
The combination of these optimizations reduces the runtime
overhead down to 13% to 42%, by trading performance for
completeness. The weaker-than relation guarantees to report
at least one (not every) memory access operations involved in
a data race on a memory location. As a consequence, the
technique is neither property complete nor complete. It is
not sound, since it could miss ad-hoc synchronization mech-
anisms. O’Callahan and Choi later extend this approach by
relying on dynamic lockset analysis [42].

Improving performance

Wester et al., ASPLOS 2013 [55]. Wester et al. propose a
parallel infrastructure that exploits multiple cores to speed
up lockset and happens-before analyses. The technique
splits an execution trace into multiple epochs, which are
executed on different cores in a pipeline. A preliminary
cheap analysis identifies epochs whose initial conditions
depend on the results of other epochs to determine the
minimum amount of information needed to initialize all
epochs. The technique takes advantage of multiple cores
to execute different epochs in parallel, and guarantees that
an epoch runs entirely on a single core thus significantly
optimizing the analysis due to the limited synchronization
on data structures that store information on individual
epochs. The technique inherits the limitations of the tools it
uses for data race detection, and thus it is neither property
complete nor property sound.

RaceMob, SOSP 2013 [70]. RaceMob optimizes dynamic
analysis with crowdsourcing. RaceMob statically identifies
candidate data races with lockset analysis, and distributes
the dynamic validation of these candidate data races to
many people. Each individual monitors only the memory
accesses related a subset of candidate races, thus requiring
to instrument only a small subset of memory accesses for
each individual, with a conceivable reduction of the over-
head of the single executions. RaceMob is property sound.
It is not property complete, since it is not predictive.

Reducing false positives

RaceFuzzer, PLDI 2008 [71]. RaceFuzzer extends the hy-

brid lockset and happens-before analyses proposed by Choi
et al. to predict data races in alternative executions [42].
RaceFuzzer dynamically computes order information us-
ing an imprecise but efficient c ombination o f l ockset and
happens-before analyses to reduce the computational cost.
It then computes alternative interleavings of the execu-
tion trace using a probabilistic algorithm that pauses an
execution flow w ith r andom s leeps w hen t rying t o per-
form unprotected accesses to shared data items. RaceFuzzer
executes the different interleavings determined by a data
race and uses either program crashes or assertions to dis-
criminate between faulty and benign races. RaceFuzzer is
not property complete since it selects interleavings with a
probabilistic mechanism, and is not property sound either
since the hybrid analysis might miss some synchronization
constraints. Nevertheless, the final execution phase guaran-
tees the soundness with respect to the oracle.

Targeting specific synchronization mechanisms

RaceTrack, SOSP 2005 [72]. RaceTrack detects data races
in shared memory programs that are executed on the vir-
tual machine of the Microsoft Common Language Runtime.
RaceTrack improves the accuracy of the analysis by means
of a hybrid algorithm that supports both lock-based and
fork-join synchronization, and that monitors memory ac-
cesses up to the granularity of individual object fields and
array elements. RaceTrack reduces the runtime overhead
by implementing an adaptive approach that dynamically
adjusts both the granularity of the detection and the amount
of history of memory accesses maintained for each unit.
RaceTrack analyzes a system execution to detect possible
data races, without predicting new ones, and is neither
property complete nor property sound. Indeed, RaceTrack
might miss some data races as a consequence of the adap-
tive mechanism it adopts to adjust the granularity of the
analysis, and might generate false warnings, due to user
defined locking mechanisms not captured by the happens-
before relation.

Goldilocks, PLDI 2007 [73]. Goldilocks is the first data race
detection technique that considers software transactions in
addition to other synchronization mechanisms. Similarly to
Choi et al’s approach approach, Goldilocks exploits a sound
lockset static analysis to avoid instrumenting memory ac-
cesses that are guaranteed to be race free. Goldilocks dy-
namically detects data races using a happens-before analysis
that takes into account the semantic of memory transactions.
In this way, Goldilocks combines lockset and happens-
before analyses to improve precision and efficiency. The
technique does not predict alternative interleaving, thus it
is not complete. It is also not sound, since it can miss ad-hoc
synchronization mechanisms.

Covering relaxed memory models

MultiRace, PPoPP 2003 [74]. MultiRace detects data races
both at variable and object granularity levels by consider-
ing the relaxed C++ memory model. MultiRace combines
lockset and happens-before analyses and takes into account
both lock-based and barrier synchronization mechanisms.

MultiRace aims to detect data races in production mode and
introduces analysis optimizations that reduce the number
of checks to memory accesses thus reducing the overhead.
MultiRace is neither property complete nor complete since
it is not predictive. It is not property sound, since it could
miss program-specific synchronization mechanisms.

Completing Interleavings with test cases

SimRT, ICSE 2014 [75]. SimRT targets regression testing.
It selects and prioritizes regression test cases according to
the probability of exposing newly introduced data races
after program changes by identifying the variables that
are both impacted by a program change and accessed by
multiple execution flows in the modified program. It imple-
ments a classic greedy test case prioritization to early detect
possible data races, thus reducing the analysis time with a
saving of up to 95% of the overall testing time. SimRT builds
on top of RaceFuzzer to detect data races, and presents the
same guarantees.

Racageddon, PPoPP 2014 [76]. Racageddon introduces
race directed scheduling, a technique to generate a test input
together with an interleaving that lead to executing a target
data race. Racageddon combines the hybrid data race de-
tection technique introduced by O’Callahan and Choi [42]
to identify a set of candidate data races, with dynamic
symbolic execution to find an input and an interleaving
that expose the candidate data race. Racageddon alternates
dynamic symbolic execution with an improve function that
permutes some instructions in the schedule to increase the
probability of observing the candidate data race. Racaged-
don is neither property sound nor property complete, be-
cause it inherits the limitations of the underlying analysis
and exploration approaches.

Narada, PLDI 2015 [77]. Narada automates the task of
generating a test suite to detect data races. It monitors the
execution of a sequential test suite with lockset analysis
to identify unprotected accesses to shared data elements,
and to infer the state of the system and the sequences of
function invocations that can trigger a data race. It uses
this information to synthesize concurrent test cases that can
expose the data race. Narada relies on RaceFuzzer [71] to
execute and analyze the generated test cases.

5.1.4 High level
Few approaches move from the analysis of direct shared
memory accesses to the analysis of complex data structures.
Both Shacham et al. with Colt, [78] and Dimitrov et al. [79]
rely on system specifications to detect high level data races,
that is, data races that involve complex data structures.

Colt, OOPSLA 2011 [78]. Colt detects non-linearizable
sequences of operations on Java objects by analyzing the
trace of a single execution flow and randomly generating an
adversary concurrent execution flow. It prunes the space of
interleavings by exploiting both the commutativity proper-
ties of operations on data structures and a set of specified
linearization points, which are program locations in which
an operation is assumed to take place [80]. Colt is not
property complete because it relies on a random definition

of the adversary execution flow and executes only a subset
of all possible interleavings. It is not property sound because
the randomly generated sequences of operations may be
infeasible due to semantics of the program.

Dimitrov et al., PLDI 2014 [79]. Dimitrov et al. target com-
mutative data races, which are pairs of operations on the
same object that are not ordered according to the happens-
before relation, and do not commute according to commuta-
tivity specifications given in expressive ECL logic formulas,
which predicate on the arguments and return values of each
method. The technique converts the commutativity speci-
fications i nto i ntermediate e xecutable r epresentations that
enrich the happens-before relation and reduce the amount
of interleavings to consider. The approach is not property
sound because happens-before analysis might miss some
synchronization constraint. It is not property complete since
it only checks for data races in a given trace and does not
consider alternative interleavings.

5.2 Property Based: Atomicity Violation
We classify atomicity violation techniques based on the
considered atomicity constraints as code centric, which target
code regions, and data centric, which target data items.
Similarly to the data race detection techniques, atomicity
violation techniques dynamically analyze the target system
to investigate the order relations imposed by the synchro-
nization mechanisms, by exploiting some form of lockset or
happens-before analysis, and suffer from the limitations of
the ground analyses.

5.2.1 Code centric
Detecting code centric atomicity violations involves (i) iden-
tifying code regions that are intended to be atomic, and
(ii) detecting interleavings that violate the atomicity of the
identified code regions.

Different techniques identify code regions that are in-
tended to be atomic by relying on (i) system specifications
or models, (ii) assumptions or heuristics on atomic blocks,
or (iii) static or dynamic analyses that infer atomic blocks.

In general, detecting if an interleaving violates atomicity
correspond to check if the interleaving is serializable, that
is, the results of its execution are equivalent to the results of
any serial execution. Checking serializability is impractical
due to the large number of serial executions that are present
even in small programs. Code centric approaches reduce
the problem of verifying the atomicity of interleavings by
searching for memory-access patterns that encode sufficient
but not necessary conditions for non-serializability, thus
trading completeness for performance. Current approaches
exploit some form of dynamic analysis, usually happens-
before analysis.

The two-phase code centric approach to detect atomicity
violations originates from Atomizer, the seminal work of
Flanagan and Freund [27]. The recent code centric ap-
proaches improve the original Atomizer approach with
techniques to: (i) infer atomic regions, (ii) reduce the amount
of false positives, (iii) improve performance, and (iv) aug-
ment the selection of interleavings with test case generation.

SVD [81] and AVIO [36] infer atomic code regions
by relying on information of both the structure and the

dynamic behavior of the system under test. Velodrome,
AtomFuzzer, HAVE and Penelope reduce the amount of
false positives by either taking into account static informa-
tion (HAVE [82]) or analyzing the results of interleavings
that lead to atomicity violations (Velodrome [35], Atom-
Fuzzer [83] and Penelope [37]). The approach by Wang
and Stoller [84], CTrigger [85], Falcon [86], Best [87] and
DoubleChecker [88] improve performance, in many ways.
Wang and Stoller exploit object oriented properties to opti-
mize the Atomizer approach; CTrigger reduces the time to
reveal atomicity violations by prioritizing the interleavings
according to the probability they will occur; Falcon limits
the amount of information stored during the analysis, thus
trading accuracy for performance; Best aggregates interleav-
ings into equivalence classes and examines only one repre-
sentative interleaving per class; DoubleChecker combines
an imprecise but efficient analysis with a precise but more
expensive analysis on demand. Intruder [89] completes the
interleaving by generating test cases that expose atomicity
violations.

Seminal work

Atomizer, POPL 2004 [27]. Atomizer is the first work to
target atomicity violations. Atomizer exploits lockset anal-
ysis —and in particular a reduction algorithm— to identify
non serializable interleavings, relying on code annotations
that specify atomic code blocks. The technique is not predic-
tive, since it only analyzes the executed interleaving.

Inferring atomic regions

SVD, PLDI 2005 [81]. SVD automatically infers approx-
imations of atomic regions by exploiting data and control
dependencies. As SVD atomic region is the largest group
of mutually related and control dependent statements that
do not read again any variable written in the region itself.
The heuristic inference of atomic regions does not rely on
any synchronization construct, hence it identifies atomic
regions even when locks are mistakenly omitted. In the case
of atomicity violation, SVD reports a detailed log of the
conflicts on data items to simplify software debugging and
repairing. SVD is neither property complete nor property
sound, because of the heuristic approach used to infer
atomic regions.

AVIO, ASPLOS 2006 [36]. Similar to SVD, AVIO automat-
ically infers atomic code blocks, but referring to a relaxed
definition of atomicity, to detect also atomicity violations
that involve write-write conflicts, which are not considered
by the SVD heuristic. AVIO models atomicity in terms of
access interleaving invariants that it iteratively infers from
system executions. AVIO starts from an initial set of can-
didate invariants —all pairs of accesses in the program—
and repeatedly executes the system to remove unserializ-
able interleavings that do not lead to system misbehaviors.
AVIO monitors the execution of the system to detect four
different access patterns that violate the access interleaving
invariants and thus are not serializable. The authors present
both a software and a hardware implementation of AVIO.
The hardware implementation takes advantage of hardware

TABLE 2: Atomicity violation detection techniques

Input Output /
Oracle

Select.
Interl.

Target
System

Testing
Tech. Guarantees

Te
st

C
as

e

M
od

el

Sa
t.

In
te

rl
.

C
ra

sh

D
ea

dl
oc

k

A
ss

er
t.

V
io

l.

Pr
ed

ic
t.

C
om

m
un

.

Pa
ra

di
gm

C
on

si
st

.

G
ra

nu
la

ri
ty

A
na

ly
si

s

Pr
op

.C
om

pl
et

.

Pr
op

.S
ou

nd
.

C
om

pl
et

.

So
un

dn
es

s

Fe
as

ib
il

it
y

Code centric
Atomizer X X X SM General Seq S D - - X
SVD X X SM General Seq S D - - X
AVIO X X SM General Seq S D - - X
Velodrome X X SM General Seq S D - - X
AtomFuzzer X X X X SM General Seq S D X X
HAVE X X X SM General Seq S H - -
Penelope X X X X SM General Seq U D X X
Wang and Stoller X X X SM OO Seq S D X - -
CTrigger X X X X X SM General Seq S D X X
Falcon X X SM General Seq U D - - X
Best X X X SM General Seq S H - - X
DoubleChecker X X X SM General Seq U D - - X
Intruder X n.a. n.a. n.a. n.a. SM General Seq U D n.a. n.a. n.a. n.a. n.a.

Data centric
Muvi X n.a. n.a. n.a. n.a. n.a. SM General Seq S D n.a. n.a. n.a. n.a. n.a.
Hammer et al. X X X SM General Seq S H - - X
AssetFuzzer X X X X SM General Seq S D - - X
ReConTest X X X X X SM General Seq S D X X X X

cache coherence protocols and virtually eliminates the anal-
ysis overhead, similarly to the ReEnact data race detector.

Reducing false positives

Velodrome, PLDI 2008 [35]. Velodrome reduces the num-
ber of false positives with respect to previous approaches
such as Atomizer, by relying on a specification of atomic
code blocks to detect (and not predict) atomicity violations.
Velodrome looks for cyclic patterns in the happens-before
graph, which represent sufficient and necessary conditions
for atomicity violations [90]. Velodrome locates the opera-
tions that most likely lead to the atomicity violations by
pruning unrelated operations.

AtomFuzzer, FSE 2008 [83]. AtomFuzzer exploits anno-
tations that specify which code blocks are intended to
be atomic, and limits the analysis to pairs of execution
flows that use a single lock to ensure the atomicity of
a code region. It randomly generates interleavings for a
test case by exploiting happens-before analysis to capture
order relations among execution flows. It executes the test
case with random pauses in correspondence of accesses
to critical memory regions, to maximize the probability of
observing an atomicity violation. AtomFuzzer is neither
property complete nor complete, since its prediction relies
on a probabilistic algorithm. It is sound, since its final output
consists only of executions that lead to oracle violations.

HAVE, FASE 2009 [82]. HAVE extends the predictive
techniques by taking into account the control flow: It im-
plements a hybrid static and dynamic analysis that specula-
tively approximates the results that could have occurred in
branches that have not been observed in the executed traces
yet. HAVE statically infers a static summary tree for each
method in the system to model the control flow, the memory
accesses and the synchronization primitives of the method.
HAVE combines the static summary trees with dynamic

happens-before analysis to produce a model that captures
both the events that happen during the execution and the
events that would have happened in different unexplored
branches. As in other techniques such as Velodrome, HAVE
looks for non serializable cyclic patterns in the model. HAVE
does not guarantee feasibility and thus is not property
sound. It is not property complete either since it does not
consider all the alternative interleavings of the analyzed
execution trace.

Penelope, FSE 2010 [37]. Penelope extends the happens-
before analysis to take into account alternative orders of
lock acquisitions and releases that violate a set of prede-
fined atomicity violation patterns, and re-executes the target
program under the predicted atomicity violating schedules
to prune false positives with test oracles. Penelope is not
property complete, since it detects only a subset of all the
alternative interleavings of the observed execution trace. It
is not property sound since the dynamic analysis it imple-
ments can miss some ordering constraints.

Improving performance

Wang and Stoller, TSE 2006 [84]. Wang and Stoller propose
the first technique to predict rather than detect atomicity
violations. They propose two approaches for optimizing the
detection of atomicity violation in object oriented programs.
The first approach extends Atomizer based on Lipton’s
reduction [18], and introduces several optimizations, for in-
stance identify read-only and thread-local variables to detect
atomicity violations online. The second approach reasons
on the commutativity of code blocks. It is more precise but
also more expensive, and thus works offline. The proposed
approaches are property complete but not property sound,
since they do not consider program-specific synchronization
mechanisms.

CTrigger, ASPLOS 2009 [85]. Like Velodrome, CTrigger is

a predictive technique. It targets C programs and refers to
specific access patterns that involve pairs of execution flows.
CTrigger executes a test case and relies on happens-before
analysis to predict interleavings that expose the patterns
of interest. CTrigger builds on the observation that, when
multiple accesses to a shared variable in an execution flows
are close to each other, the probability of an interleaved
access from a different execution flow is low. Thus, CTrigger
ranks the interleavings based on the distance of the accesses
to the shared variables, aiming to prioritize interleavings
that have a lower probability of occurrence. CTrigger is
not property sound, due the limitations of happens-before
analysis. It is not property complete either, since it detects all
possible interleavings that expose the considered patterns,
but can still miss some faulty interleavings.

Falcon, ICSE 2010 [86]. Falcon builds on the concept
of fixed-sized s liding w indow t o d etect s uspicious patterns
that lead to unserializable memory accesses. It maintains
access information for each shared data item in a fixed-
size window, and uses the information stored in such a
window to detect suspicious memory access patterns. The
sliding window keeps focus on the closely related accesses,
by substituting the oldest accesses in the window with new
ones. The size of the window is parametric and determines
the trade off between the performance and the accuracy
of the analysis. Because of this trade off, Falcon does not
guarantee property soundness and completeness. Falcon
ranks access patterns according to the probability of leading
to concurrency faults. It executes the target system multiple
times, registering the set of memory accesses occurring in
failing and non-failing executions, and ranking memory
access patterns according to their frequency.

Best, ASE 2011 [87]. Best improves the accuracy and
the performance of prediction techniques, like HAVE and
Penelope, by defining a nd t argeting n ew non-serializable
patterns. Best monitors the system execution, identifies syn-
chronization constraints, and exploits an SMT solver to de-
rive alternative interleavings that might lead to atomicity vi-
olations. It improves scalability by applying simplifications
that aggregate interleavings into equivalence classes, and
executing only one interleaving per class. A distinguishing
characteristic of Best is the analysis of non-instrumented
binary code: Best does not need the source code or any
modified v ersion o f t he t arget p rogram, b ut o nly debug
information, such as the mapping of instructions to source
code lines. Indeed, Best infers the atomicity of code blocks
by relying on the structure of the code, including the use of
non-synchronization variables and the maximum distance,
in terms of lines of code, between two uses of such variables.
Due to imprecisions in the analysis and in the inference of
atomicity assumptions, Best does not guarantee property
soundness and property completeness.

DoubleChecker, PLDI 2014 [88]. DoubleChecker reduces
the cost of detecting atomicity violations by combining pre-
cise and imprecise analyses. The imprecise analysis tracks
all the possible data dependencies between execution flows,
and identifies a s et o f p ossible a tomicity v iolations that
contains many false positives, due to approximations in
the analysis. Similar to the Velodrome and HAVE, Dou-

bleChecker precise analysis looks for cyclic patterns in the
happens-before graph and tracks precisely the data depen-
dencies by considering the execution flows involved in the
atomicity violations identified with the imprecise analysis.
In this way DoubleChecker prunes many of the false pos-
itives generated in the first step, with a small overhead
due to the limited scope of the analysis. DoubleChecker
is not property complete, since it detects but does pre-
dict atomicity violations, and is not property sound, since
happens-before analysis might miss some synchronization
constraints.

Completing interleavings with test cases

Intruder, FSE 2015 [89]. Intruder automatically generates
test cases to detect atomicity violations in multi-threaded
Java libraries. Similarly to Narada, Intruder executes a
sequential test suite and instruments the target system to
profile the lock acquisitions and releases, and the field
accesses. It then performs a lock-based analysis to infer
possible atomicity violations based on four memory access
patterns that are known to be non-serializable. Based on
the results of this analysis, Intruder combines sequential
test cases available in the test suite to generate concurrent
test cases that have a high probability to expose atomicity
violations. Intruder focuses on test case generation, and
relies on other techniques to detect atomicity violations. For
this reason, in Table 2 we do not specify any aspect that
depends on the adopted detection technique (n.a. in the
table).

5.2.2 Data centric
Detecting data centric atomicity violations involves finding
violations of atomic-set serializability, a property of inter-
leavings that Vaziri et al. introduced in 2006 to capture
data consistency properties that bind multiple data items
in concurrent programs [38]. The recent data centric ap-
proaches focus on (i) analyzing the correlation between data
items (Muvi [91]), (ii) revealing data access patterns that
characterize some form of atomicity violation (Hammer et
al. and AssetFuzzer [34], [92]) or (iii) producing regression
tests that take advantage of the differences among system
versions (ReConTest [93]).

Analyzing data correlations

Muvi, SOSP 2007 [91]. Muvi considers atomicity viola-
tions that involve multiple semantically correlated variables.
Muvi builds on the observation that shared variables that
are semantically correlated should be accessed and modified
in a consistent way. Muvi checks that correlated variables
are accessed within the same atomic region, and signals
an atomicity violation in the presence of accesses not con-
sistently protected within atomic regions. Muvi identifies
variable correlations by means of a static analysis approach
that relies on the observation that (i) correlated variables
are usually accessed together, and thus their accesses are
commonly mutually close in the source code, and (ii) cor-
related variables are accessed within the same function.
Muvi considers two variables x and y to be correlated if

they are accessed together in at least a minimum number
of functions within a maximum distance of lines of code.
Muvi relies on existing approaches to detect and predict
atomicity violations that involve correlated variables. The
features that depend on the specific a pproach a dopted are
left unspecified in Table 2.

Revealing access patterns

Hammer et al., ICSE 2008 [34]. Hammer et al. propose
an automata-based algorithm to detect violations of atomic-
set serializability constraints. They identify eleven prob-
lematic data access patterns that characterize non atomic-
set serializable executions and that apply to general shared
memory programs. The technique is predictive. It statically
identifies the object fields that may be accessed by multiple
threads, instruments the identified o bjects t o dynamically
generate an automaton for each field, a nd r elies o n the
automaton to detect access patterns that violate atomic-set
serializability. The technique generates new interleavings
relying on pseudo-random noise injection. All the generated
interleavings are feasible, since they are observed from
concrete executions. The technique is not property complete,
since it can miss some interleavings that expose the patterns
of interest due to the probabilistic nature of the interleavings
selection process. It is not property sound either, because of
possible imprecisions in the analysis to detect order relations
between instructions in different execution flows.

AssetFuzzer, ICSE 2010 [92]. AssetFuzzer uses a relaxed
happens-before analysis to detect Hammer et al.’s patterns,
and a probabilistic process to steer the execution towards
the relevant interleavings identified w ith happens-before
analysis. AssetFuzzer extends RaceFuzzer and AtomFuzzer
approaches that target data races and code centric atomicity
violations, respectively, to data centric violations. Asset-
Fuzzer is not property complete, since it relies on a prob-
abilistic algorithm to select interleavings, and not property
sound either since a relaxed happens-before analysis might
miss some synchronization constraints.

Regression testing

ReConTest, ICSE 2015 [93]. ReConTest selects a subset of
interleavings from a test suite for optimizing regression test
suites of concurrent programs. ReConTest reduces the large
amount of interleavings to be re-executed in the context of a
regression testing of concurrent systems by identifying the
interleavings that might be affected by the program changes,
and by selecting the interleavings that may both occur only
in the new version and lead to atomic-set serializability
violations. ReConTest executes both the old and the new
versions of the program to collect information about mem-
ory accesses, and uses this information to detect memory ac-
cesses potentially affected by the change with change impact
analysis. It executes the identified i nterleavings focusing
both on memory accesses that can occur in the new but
not in the old version of the system and memory accesses
that can be executed with different concurrency contexts
(sets of retained locks) in the old and new versions. The
identified i nterleavings a re f easible a nd v iolate atomic-set

serializability, thus the technique is sound.

5.3 Property Based: Deadlock
Most testing approaches for detecting deadlocks build
on the seminal work of Goodlock [94] and Deadlock-
Fuzzer [95]. Goodlock dynamically records the locking pat-
tern of each program execution as a lock tree, and compares
the trees of the threads pairwise to detect circular dependen-
cies that can lead to possible resource deadlocks. Deadlock-
Fuzzer elaborates the potential deadlocks identified with
Goodlock to find feasible executions that deadlock.

The main recent techniques build on top of Goodlock
and DeadlockFuzzer to: (i) optimize performance, (ii) com-
plement selection of interleavings with test case generation,
(iii) consider synchronization mechanisms other than locks.

MagicFuzzer [96] and Wolf [97] improve performance
by pruning the lock trees, while ConLock [98] improves
the randomized scheduler of DeadlockFuzzer to avoid
artificially-generated deadlocks. Sherlock [99] symboli-
cally executes the program to identify relevant test inputs.
OMEN [100] extends DeadlockFuzzer to generate concur-
rent test cases starting from sequential ones. Armus [101]
does not consider lock synchronization but targets dead-
locks caused by barrier synchronization primitives.

Seminal work

Goodlock, SPIN 2000 [94]. Goodlock targets lock based
synchronization between pairs of execution flows. It dynam-
ically instruments the program under test to build a lock
tree, which captures the locking pattern of an execution flow,
and compares pairs of lock trees to detect circular dependen-
cies that can lead to possible resource deadlocks. Goodlock
does not execute the identified potential deadlocks. Thus, it
does not guarantee the feasibility of the identified deadlocks
and is neither property sound nor sound.

DeadlockFuzzer, PLDI 2009 [95]. DeadlockFuzzer extends
Goodlock to execute the predicted deadlocks, thus con-
firming their actual fasibility. DeadlockFuzzer relies on
the Goodlock analysis and thus considers only lock-based
synchronization faults. DeadlockFuzzer uses the collected
information to guide a randomized scheduler, thus improv-
ing the probability of selecting interleavings that expose
deadlocks.

Improving performance

MagicFuzzer, ICSE 2012 [96]. MagicFuzzer improves the
scalability of the Goodlock analysis by introducing a tech-
nique to prune the lock graph. MagicFuzzer observes that
a deadlock that corresponds to a cycle in the lock graph
contains only nodes that have both incoming and outgoing
edges. Thus, it iteratively removes all the nodes that do not
satisfy this property, as well as their connected edges. Mag-
icFuzzer introduces a novel algorithm to analyze the pruned
graph, relying on the observation that an execution flow
can participate only in a single node of a deadlock cycle.
MagicFuzzer partitions the nodes based on the execution
flow they belong to, and implements a search strategy that
does not explore redundant paths.

TABLE 3: Deadlock detection techniques

Input Output /
Oracle

Select.
Interl.

Target
System

Testing
Tech. Guarantees

Te
st

C
as

e

M
od

el

Sa
t.

In
te

rl
.

C
ra

sh

D
ea

dl
oc

k

A
ss

er
t.

V
io

l.

Pr
ed

ic
t.

C
om

m
un

.

Pa
ra

di
gm

C
on

si
st

.

G
ra

nu
la

ri
ty

A
na

ly
si

s

Pr
op

.C
om

pl
et

.

Pr
op

.S
ou

nd
.

C
om

pl
et

.

So
un

dn
es

s

Fe
as

ib
il

it
y

Goodlock X X X SM Lock sync Seq S D - -
DeadlockFuzzer X X X SM Lock sync Seq S D X X X
MagicFuzzer X X X SM Lock sync Seq S D X X X
Wolf X X X SM Lock sync Seq S D X X X
ConLock X X X SM Lock sync Seq S D X X X
Sherlock X X X SM Lock sync Seq S D X X X
OMEN X X X SM Lock sync Seq S D X X X
Armus X X SM Barrier sync Seq S D X X X

Wolf, PPoPP 2014 [97]. Wolf improves the accuracy of the
monitoring and analysis features of Goodlock by adopting
happens-before analysis to prune candidate deadlocks that
are infeasible due to order relations among events. In this
way, Wolf reduces the number of candidate deadlocks to be
confirmed by the randomized scheduler.

ConLock, ICSE 2014 [98]. ConLock addresses the thrashing
problem of randomized scheduling algorithms that occurs
when the randomized scheduler generates an artificial dead-
lock. In this case the execution flows are suspended by
the scheduler and cannot progress, but a deadlock cannot
be confirmed. This problem reduces the confirmation capa-
bilities of the randomized scheduler and thus impacts on
the effectiveness of the approach. ConLock addresses the
thrashing problem by introducing a should-happen-before
order relation that is captured during the dynamic analysis.
The relation is used by the randomized scheduler to increase
the probability to reach and thus confirm a deadlock.

Complementing interleavings with test cases

Sherlock, FSE 2014 [99]. Sherlock extends Goodlock with
dynamic symbolic execution to select new inputs and in-
terleavings. The goal of this improved analysis is to detect
deadlocks that occur after long computations, even millions
of lines of code. Sherlock iteratively invokes two execute and
permute functions. The former computes the path condition
of the current execution by means of dynamic symbolic
execution. The latter uses the path condition to generate a
new set of program inputs that execute a new schedule.
The two functions are executed iteratively until reaching
either a schedule that leads to the deadlock candidate or
an infeasible schedule.

OMEN, OOPSLA 2014 [100]. OMEN automatically gen-
erates concurrent test cases to reveal deadlocks by exploiting
properties of sequential executions. OMEN adopts an ap-
proach similar to Intruder to generate concurrent test cases:
it executes a sequential test suite, builds a lock dependency
relation that captures the lock acquisitions of the executed
methods, and generates concurrent test cases that include
the methods and parameters of the sequential test cases,
but are invoked in different execution flows. For instance,
a sequential execution can identify a set of method calls
that acquire nested locks, and can results in a deadlock if
executed from multiple execution flows.

Extending to other synchronization mechanisms

Armus, PPoPP 2015 [101]. Armus targets deadlocks
caused by barrier synchronization primitives. It introduces
a graph analysis technique to detect deadlocks that is both
property sound and property complete with respect to pro-
grams that only adopt barrier synchronization primitives,
but not property complete in general, since deadlocks can
derive from other synchronization mechanisms. The imple-
mentation of Armus for X10 and Java is characterized by a
low overhead, which improves the scalability to industrial
size programs.

5.4 Property Based: Combined
Few techniques target both atomicity violations and data
races, and rely on happens-before analysis. Agarwal et
al. [102] focus on performance by complementing happens-
before analysis with static type checking. Chen and Mac-
Donald [103] focus on accuracy, by considering control flow
information. Kahlon and Wang [104] and PECAN [105]
focus on generality, by providing developers with languages
to express undesired patterns of memory accesses.

Improving performance

Agarwal et al., ASE 2005 [102]. Agarwal et al. propose a
low overhead testing technique for detecting both data races
and atomicity violations. They reduce the testing overhead
by combining static type checking with a modified lockset
analysis. Agarwal et al.’s static type checking is a linear
time, albeit incomplete, hybrid type discovery mechanism
that identifies types for a large portion of the system under
test, in line with hybrid data race detection techniques that
use lockset analysis to isolate unprotected memory accesses
that they monitor with a precise happens-before analysis.
Agarwal et al.’s modified lockset analysis exploits the type
information inferred though type discovery to efficiently
detect both data races and atomicity violations in the target
system. The technique is neither property sound, nor prop-
erty complete, because of the approximations in the type
discovery and dynamic analysis phases.

Improving accuracy

Chen and MacDonald, ASE 2007 [103]. Chen and Mac-
Donald’s hybrid analysis identifies statements that may

TABLE 4: Techniques for detecting combined properties violations

Input Output /
Oracle

Select.
Interl.

Target
System

Testing
Tech. Guarantees

Te
st

C
as

e

M
od

el

Sa
t.

In
te

rl
.

C
ra

sh

D
ea

dl
oc

k

A
ss

er
t.

V
io

l.

Pr
ed

ic
t.

C
om

m
un

.

Pa
ra

di
gm

C
on

si
st

.

G
ra

nu
la

ri
ty

A
na

ly
si

s

Pr
op

.C
om

pl
et

.

Pr
op

.S
ou

nd
.

C
om

pl
et

.

So
un

dn
es

s

Fe
as

ib
il

it
y

Agarwal et al. X X SM General Seq S H - - X
Chen and MacDonald X X X X X SM General Seq S H X X X
Kahlon and Wang X X X SM General Seq S D - -
PECAN X X X X SM General Seq S D - - X

happen in parallel, and generates interleavings that exercise
a selected set of concurrent access pairs. Chen and Mac-
Donald’s approach selects the relevant interleavings to be
exercised according to three types of concurrent access pairs,
read/write shared data items, concurrent acquisition of the
same lock, concurrent wait/notify on the same monitor.
Differently from Agrawal et al., and similar to HAVE, Chen
and MacDonald’s static approach takes into account both
control flow and order information, and analyzes all the
portions of the code that are reachable through a set of test
cases. The technique is property sound but not property
complete, since the JPF model checker does not guarantee
to explore all possible systems states.

Providing languages for pattern specification

Kahlon and Wang, CAV 2010 [104]. Kahlon and Wang’s
approach traces the causality relation in concurrent pro-
grams with Universal Causality Graphs (UCGs) that extend
the notion of happens-before by taking into account the
constraints introduced by a property to be verified. For
instance, in the case of a data race, the property to be
verified is the presence of multiple concurrent accesses to
a shared data item without synchronization. The approach
prunes a large number of interleavings that are not relevant
for the target property by combining the constraints that
derive from the program synchronization structure with
the constraints that derive from the target property. Kahlon
and Wang discuss the approach referring to data races
and atomicity violations, but UCGs can be extended to
capture other custom properties. The approach is not prop-
erty sound, since happens-before analysis might miss some
synchronization constraints, and is not property complete
either, since the prediction phase relies on an SMT solver
that can be unable to solve some constraints.

PECAN, ISSTA 2011 [105]. The key novelty introduced
by PECAN is a simple language to define memory access
anomalies as patterns of interaction of different execution
flows with shared data items. The patterns take into account
both the type of the executed memory operation (read or
write) and the atomic region the memory operation be-
longs to, if any. The pattern language captures well known
memory access anomalies, such as data races and atomicity
violations. PECAN implements happens-before analysis to
infer the order relations between instructions, creates a
schedule for each of the identified interleaving and checks
its feasibility. Pecan does not guarantee property soundness
since happens-before analysis can miss some synchroniza-

tion constraints, and the prediction algorithm guarantees
property completeness only under specific synchronization
patterns (nested locks).

5.5 Property Based: Order Violation
Several approaches address order violations that cannot be
reduced to any of the classic properties of interleavings
discussed in the previous sections (data races, atomicity
violations and deadlocks). These approaches look for vio-
lations of properties that derive from (i) specific types of
faults, (ii) program specifications or (iii) semantics of the
programming models.

PRETEX [106] and 2ndStrike [107] address typestate
faults, that is, faults that involve violations of the high
level semantics of the data structures. ConMem [108], Con-
Seq [109] and ExceptionNULL [40] target violations of faults
that impact on the program behavior, for instance interleav-
ing that lead to null pointer dereferences, dangling pointers
and infinite cycles. Maple [110] focuses on patterns of shared
variable accesses. Differently from the other approaches that
target fault types, Maple targets critical patterns that may or
may not lead to concurrency faults.

jPredictor [111], Sinha and Wang [112] and GPre-
dict [113] look for concurrent behaviors that violate program
specifications, while DefUse [114] targets both sequential
and concurrent faults that violate automatically generated
data-flow invariants.

SimRacer [115] targets process level violations, Cafa tar-
gets Android programs [116], Mutlu et al. target JavaScript
programs [117].

Violations of specific types of faults

PRETEX, ASE 2008 [106]. PRETEX predicts concurrency
typestate faults. A typestate is the state associated with an
object of a given type, and defines a set of operations that
can be applied to the object in that state [118]. A typestate
fault occurs when invoking an operation op on an object
obj in a typestate that does not support op. Reading a
file after the file has been closed is a simple example of a
typestate fault. Differently from many commonly studied
concurrency faults such as data races and atomicity vio-
lations, which are related to low level memory accesses,
concurrency typestate faults are related to the high level
semantics of the specific target system. PRETEX instruments
the target Java programs to trace events such as method calls
and thread creations. When executing a test case, PRETEX
(i) computes the happens-before relation among events,

TABLE 5: Techniques for detecting order violations

Input Output /
Oracle

Select.
Interl.

Target
System

Testing
Tech. Guarantees

Te
st

C
as

e

M
od

el

Sa
t.

In
te

rl
.

C
ra

sh

D
ea

dl
oc

k

A
ss

er
t.

V
io

l.

Pr
ed

ic
t.

C
om

m
un

.

Pa
ra

di
gm

C
on

si
st

.

G
ra

nu
la

ri
ty

A
na

ly
si

s

Pr
op

.C
om

pl
et

.

Pr
op

.S
ou

nd
.

C
om

pl
et

.

So
un

dn
es

s

Fe
as

ib
il

it
y

PRETEX X X X SM OO Seq U H - -
2ndStrike X X X X SM OO Seq U D X X X
ConMem X X X SM General Seq S D X X X
ConSeq X X X X SM General Seq S H X X X
ExceptioNULL X X X SM General Seq S D X X X
Maple X X X X X SM General Seq S D X X X
jPredictor X X X X SM General Seq S H X X X
Sinha and Wang X X X SM General Seq S D - -
DefUse X X SM General Seq S D - - X
GPredict X X X X SM General Seq S D - -
SimRacer X X X X SM Process level Seq S D X X X
Cafa X X X MP Event driven Seq S D - -
Mutlu et al. X X X MP Javascript app Seq S D - -

(ii) determines which objects are shared, and (iii) infers
typestate properties of each shared object relying on mining
techniques. PRETEX generates a finite state machine model
of the concurrent execution, and checks the generated model
for typestate property violations. PRETEX is not property
complete, since automatically inferring typestate specifica-
tions may miss some specifications, and is not property
sound either, since it uses an approximation of the happens-
before relation that can identify infeasible violations.

2ndStrike, ASPLOS 2011 [107]. In line with PRETEX, 2nd-
Strike detects concurrency typestate faults that involve files,
pointers and locks. The technique dynamically analyzes a
test case execution to generate a set of candidate faults,
expressed as pairs of operations in different threads, and
that may lead to a typestate fault if executed in a swapped
order. The technique relies on the happens-before relation
to identify operations that cannot be reordered. Differently
from PRETEX, 2ndStrike uses a deterministic scheduler to
force the execution of the candidate faults computed during
the analysis. 2ndStrike can be extended to work with other
objects. It only requires (i) an input finite state machine
that captures the typestates of the target object and the
operations that can be applied in each state, and (ii) an
instrumentation of the program to profile the relevant object
methods. The technique is both sound and property sound,
but not property complete since the analysis does not take
into account the control flow of the program and can thus
miss some faults.

ConMem, ASPLOS 2010 [108]. ConMem builds on the
observation that testing techniques based on traditional
properties of interleavings, such as data races and atomicity
violations, suffer both from false positives and from the
impossibility to differentiate faults based on the severity
of their effects only. ConMem overcomes these limitations
focusing on the effects of concurrency faults rather than on
the memory access patterns that may cause such effects.
ConMem selects interleavings that can lead to null pointer
dereference, read of an uninitialized data item and access to
invalid memory locations, as in buffer overflows. ConMem
analyzes execution traces offline to identify alternative inter-
leavings that can potentially lead to concurrency problems

of the considered categories. ConMem generates concrete
executions for each of the selected interleavings to prune
infeasible ones and false positives. The overall approach
is neither sound nor complete due to the initial dynamic
analysis.

ConSeq, ASPLOS 2011 [109]. ConSeq extends ConMem
by considering a larger set of fault types, including assertion
violations, infinite loops, calls to error message procedures
and invalid memory accesses, and by including indirect
faults, triggered through a chain of cause-effect relation-
ships. ConSeq improves the ConMem approach with slicing
and dynamic analysis. It slices the program statically with
respect to the data items involved in the fault to identify
accesses to shared data items that can influence the read
value through a chain of control and data dependencies. It
dynamically analyzes correct program executions to infer
alternative interleavings that could change the dynamic
control and data dependencies and cause the reading of an
incorrect value. ConSeq generates a deterministic schedule
for each selected interleaving, and executes the generated
schedules to prune infeasible interleavings and false posi-
tives. ConSeq is not property complete due to approxima-
tions in the static analysis.

ExceptioNULL, FSE 2012 [40]. ExceptioNULL detects in-
terleavings that can lead to null pointer dereferences of
shared data items in Java programs. ExceptioNULL im-
plements a hybrid lockset and happens-before approach.
It analyzes execution traces to capture memory accesses,
order relations between operations, lock acquisition and
releases. It identifies pairs of events e1 and e2 of two
different execution flows, such that e1 writes a null value to
a shared data item x and e2 reads x. It uses an SMT solver to
detect interleavings that lead to null reads, and executes the
identified interleaving in a controlled environment to check
for its feasibility. ExceptioNULL is both property sound and
sound, but not property complete, since the SMT solver may
fail to provide a solution for some input constraints.

Maple, OOPSLA 2012 [110]. Maple extends techniques to
detect and predict data race and atomicity violation with
six interleavings idioms that represent suspicious memory
access patterns that encode general violations of order con-

straints. Maple analyzes pairs of execution flows, under the
hypothesis that they can reveal most concurrency faults.
It captures order relations with happens-before analysis,
computes alternative interleavings that expose some of the
identified i dioms, a nd e xecutes t he s elected interleavings
using a deterministic scheduler looking for faults. Maple
records the executed interleavings but not the specific values
observed during the execution, and can miss some faults
that depend on the values adopted in the execution. Thus
Maple is not property complete.

Violations of program specifications

jPredictor, ICSE 2008 [111]. jPredictor idenfies violations
of program specification w ith a t wo-step a nalysis inspired
from hybrid techniques for detecting data races and atom-
icity violations. It shrinks an execution trace to only events
relevant for the property to be checked with static analysis,
builds a causality graph involving the selected events based
on the notion of sliced causality —a variant of the happens-
before relation— and predicts and executes alternative inter-
leavings that might lead to property violations. Differently
from the techniques to detect data races and atomicity vio-
lations discussed in the previous sections, jPredictor detects
more general violations of user-defined properties. jPredic-
tor is both sound and property sound since it executes and
checks the selected interleavings. It is not property complete
due to imprecisions in the dynamic analysis.

Sinha and Wang, FSE 2010 [112]. Sinha and Wang pre-
dict interleavings that can lead to assertion violations or
data races in C programs. Similar to HAVE, Sinha and
Wang take into account control flow r elations a nd b uild a
concurrent control flow g raph (CCFG) t hat c orresponds to
the execution of a test case, captures the memory accesses
and the synchronization primitives in the execution flow,
and includes an error node for each violated assertion in
the execution. They inspect each error node to compute
a path condition that is composed of a set of constraints
on the program inputs, and that indicates the order of
statements that reach error nodes. They then solve the path
condition with a constraint solver to identify interleavings
that bring the system to the error node. The technique is
not property sound, due to imprecision of the analysis, and
is not property complete either since the constraint solver
might fail to find some solutions that lead the system to an
error state.

DefUse, OOPSLA 2010 [114]. The key contribution of
DefUse is the automated generation of test oracles from data
flow i nvariants t o d etect b oth s equential a nd concurrency
faults. DefUse considers (i) local/remote invariants, which
specify that a read operation on a data item uses definitions
either only from the local or from a remote execution flow,
but not from both; local/remote invariants capture order
violations as well as read-write atomicity violations in con-
current programs; (ii) follower invariants, which specify that
two consecutive read accesses to the same data item from
the same execution flow u se a lways t he s ame definition;
follower invariants capture read-read atomicity violations
in concurrent programs, and (iii) definition s et invariants,
which specify the set of write operations that a given read

access is allowed to see. DefUse trains the analysis by
inferring invariants from a large set of correct runs, and
checks for violations against the extracted invariants in
specific interleaving. DefUse is neither property complete
nor property sound, since the learning phase can both miss
invariants and generate false positives.

GPredict, ICSE 2015 [113]. Similar to jPredictor, GPredict
verifies high level properties expressed as regular expres-
sions on the order of statements. GPredict infers the order
relations between events that are dynamically identified on
execution traces relying solely on thread-local traces, and ig-
noring global synchronizations, thus reducing the overhead
of the dynamic analysis. GPredict checks for the feasibility
of interleavings that violate the concurrency properties by
means of a constraint solver to predict possible concurrency
faults. GPredict is not property sound, since the analysis
can miss some order relations, and is not property complete
since the constraint solver might fail to generate results for
some constraints.

Violations of programming model semantics

SimRacer, ISSTA 2013 [115]. SimRacer focuses on process
level order violations that involve resources shared among
processes —such as files and devices— and detects concur-
rency faults that involve user processes, software signals,
software handlers and kernel processes. The technique is
predictive: it dynamically collects information on synchro-
nization operations and accesses to shared resources that
occur during a test case execution, analyzes the collected
information with happens-before analysis to identify po-
tential order violations, and executes the program in a
controlled environment to force such order violations to
occur. The technique relies on test oracles to distinguish
between benign and faulty order violations. The technique
is not property complete, since it does not consider all the
potential shared resources that can be accessed by different
processes. It is sound, since it executes the selected inter-
leavings and compares them with the test oracles provided
by the developers.

Cafa, PLDI 2014 [116]. Cafa analyzes event-driven (An-
droid) programs. In event-driven programs, each execution
flow owns an event queue, and processes events pushed
in such queue in a non deterministic order. In line with
ExceptionNULL, Cafa detects a specific form of order vi-
olation that occurs in event driven programs and that
leads to a use-after-free violation when a pointer is derefer-
enced after being released. Cafa implements happens-before
analysis of execution traces to identify the order relations
between events and dereferencing instructions. It heuristi-
cally prunes false positives by ignoring accesses that are
protected by branching conditions that check their safety,
not considering as dangerous the dereferencing operations
that cannot propagate outside a program unit. Cafa selects
alternative interleavings that could lead to a use-after-free
violation, and reports them with an offline analysis that does
not ensure the feasibility of the output interleavings and
thus is not property sound. Cafa is not property complete
either because of the approximations in the analysis.

Mutlu et al., FSE 2015 [117]. Mutlu et al. detect specific
order violations in client-side JavaScript programs that per-
form multiple asynchronous requests whose callbacks can
race each other, due to possible network delays. Mutlu
et al. focus on the XmlHttpRequest, an asynchronous
mechanism used to request data from a server. When the
answer of a request becomes available, JavaScript invokes
a callback function. In the presence of multiple requests,
the invocation of the corresponding callback functions can
occur in different orders, thus potentially leading to or-
der violations. The technique distinguishes benign from
harmful order violations by focusing on dangerous races
between callback functions that write on the persistent state
of the system, for instance on client-local cookies. In these
cases, the value of the persistent state at the end of the
execution strictly depends on the executed interleaving. The
technique is predictive, since it monitors an execution trace
of the target system to identify interleavings that potentially
lead to harmful races, according to the definition above.
The technique introduces a specific happens-before analysis
for JavaScript programs to detect events that cannot be
reordered. The technique does not guarantee the feasibility
of the selected interleavings, and is neither property sound
nor property complete.

5.6 Space Exploration
Some testing techniques explore the space of interleavings
not driven by specific p roperties: s tress t esting, exhaustive
exploration, coverage criteria and heuristic exploration of the
interleaving space.

5.6.1 Stress Testing
Classic stress testing approaches execute test suites that
exercise the target system under increasingly heavy and
up to extreme load conditions. In the context of testing
concurrent systems, stress testing approaches execute the
same test suite many times without explicitly controlling
the scheduling. The few recent stress testing techniques
for concurrent systems check either the linearizability of
the executions [119] or the impact of changes on perfor-
mance [120].

Checking linearizability

Pike, EuroSys 2011 [119]. Pike detects semantic and latent
concurrency faults. Semantic faults violate the application
semantics, for example by returning an unexpected value,
and are hard to find s ince t hey d o n ot u sually l ead to
system failures. Latent faults corrupt the internal state of the
system, and may manifest much later than when triggered.
Pike checks the linearizability of a concurrent execution
by comparing the output and the internal state of that
execution with the output and the internal state of the many
possible linearizations. While comparing the output of two
executions is straightforward, comparing the the internal
state is complicated by the presence of nested data items.
Pike compares internal states on the basis of a specification
expressed as a state summary function that captures the
semantics of the internal state of the system and allows for
an efficient logical comparison.

Checking the impact of changes on performance

SpeedGun, ISSTA 2014 [120]. SpeedGun is the only ap-
proach in our survey that targets performance —and in
particular performance regression testing—. SpeedGun tar-
gets Java programs and automatically generates a set of
test cases that consist of a sequential prefix and n suf-
fixes executed concurrently on n different executions flows.
SpeedGun executes the test cases several times both on
the old and on the new version of the class under test,
and reports relevant performance differences between the
two versions. SpeedGun executes each test several times to
observe various interleavings, and to alleviate the impact of
external factors, such as garbage collection and just-in-time
compilation. It does not control the interleavings to avoid
impacts on performance. SpeedGun optimizes the size of
the test cases to trade off precision and execution time.

5.6.2 Exhaustive exploration
Exhaustive exploration approaches analyze all possible in-
terleavings for a given test input on either a space reduced
to a manageable size with a suitable test suite [121], [122],
[123] or on the complete space by exploiting either symbolic
execution [124] or model checking [125], [126], [127], [128],
[129]. Different approaches studied exhaustive exploration
in the context of message passing MPI programs [124],
actor based programs [125], the C and C++ relaxed memory
model [127], [129], invariant violations [128], and dead-
locks [126].

Exploring a reduced space of interleavings

Ballerina, ICSE 2012 [121]. Ballerina generates and exe-
cutes test cases for concurrent object oriented programs. As
most approaches, Ballerina builds on the assumption that
most faults can be revealed using two concurrent execution
flows [130]. The Ballerina test cases are composed of two
execution flows that pair a randomly generated sequential
prefix with a concurrent suffix. Ballerina exploits differ-
ent strategies for executing thread interleavings, including
exhaustive stateful search, preemption bounding, stateless
search and parallelized test execution, and introduces a
technique to cluster linearizability violations based on their
characteristics to simplify the classification of faults and
the detection of false positive results. Pradel et al. [122]
extend Ballerina with oracles that consider non linearizable
execution as faults if and only if they lead to a system
crash or a deadlock. In this way, they identify only non
linearizable behaviors that lead to a visible fault. Pradel
and Gross [123] further extend Ballerina with a technique
to predict substitutability violations in concurrent object-
oriented programs. Substitutability is a desired property in
a properly designed object oriented program. It ensures that
an instance of a subclass can always substitute an instance
of a superclass without causing behavioral differences for
the clients of the superclass. Pradel and Gross’ approach
executes automatically generated test cases on both a super-
class and a corresponding subclass, and use the behavior
of the superclass as an oracle for the subclass. Pradel and
Gross’ oracles are behavioral differences, exceptions and

TABLE 6: Techniques for exploring the space of interleavings

Input Output / Oracle Target
System

Testing
Tech. Guarantees

Te
st

C
as

e

M
od

el

Sa
t.

In
te

rl
.

C
ra

sh

D
ea

dl
oc

k

A
ss

er
t.

V
io

l.

C
om

m
un

.

Pa
ra

di
gm

C
on

si
st

.

G
ra

nu
la

ri
ty

A
na

ly
si

s

C
om

pl
et

.

So
un

dn
es

s

Fe
as

ib
il

it
y

Stress testing
Pike X X X SM General Seq S D X X
SpeedGun X SM General Seq n.a. n.a. X

Exhaustive exploration
Ballerina X SM OO Seq U D X X
Sen and Agha X X MP General Seq S D X X
Basset X X X X MP Actors Seq S D X X X
CheckMate X X SM General Seq S D
CPPMem X X SM General Rel S D
ViP X X SM General Seq S D X
CDSChecker X X SM General Rel S D

Coverage criteria
Wang et al. X X SM General Seq U D X X
Hong et al. X X X SM General Seq S D X X
Bita X X X MP Actors Seq S D X X

Heuristics
Rapos X X X X SM General Seq S D X X
PCT X X X SM General Seq S D X X
Gambit X X X X SM General Seq S D X X

crashes. Ballerina identifies non linearizable behaviors and
guarantees property soundness by executing each selected
interleaving, but not completeness due to the probabilistic
nature of the generation phase and the limitation to two
execution flows.

Exploring the space of interleavings with symbolic execution

Sen and Agha, FASE 2006 [124]. Sen and Agha’s ap-
proach automatically tests distributed systems that rely
on the message passing paradigm, and in particular MPI
programs. The technique generates a set of test cases that
execute all the reachable statements of the program, and
exercises all the feasible interleavings of the generated test
cases. The technique dynamically executes an initial test
case to generate the path conditions for all the executed
branching points. It explores different interleavings of the
execution that are identified with a happens-before analysis
that captures only feasible interleavings. It generates new
test cases that reach not-yet-executed statements by solving
constraints that violate the path condition of a branch. The
technique uses system crashes and deadlocks as oracles,
and returns test cases and interleavings that expose such
problems.

Exploring the space of interleavings with model checking

Basset, ASE 2009 [125]. Basset generates efficient test
cases for actor based programs by extending the Java
PathFinder model checker [131] to support message
scheduling. Basset prunes the exploration state space by
exploiting dynamic partial order reduction and happens-
before analysis. Dynamic partial order reduction prevents
the execution of equivalent interleavings by stopping the
exploration of states that are equivalent to already explored
ones, while happens-before analysis avoids producing infea-
sible interleavings. Basset also introduces an optimization

that substitutes external libraries with stubs to speed up
the space exploration, relying on the assumption that the
exchange of messages between actors is only marginally
affected by the behavior of external libraries.

CheckMate, FSE 2010 [126]. CheckMate detects deadlocks,
without relying on any specific synchronization paradigm,
and thus differs from classic deadlock detection techniques
that target deadlocks deriving from lock-based synchroniza-
tion. CheckMate monitors an execution of the target system
and builds a trace program, which is a simplified model
of the execution that includes relevant synchronization as-
pects. Then, it generates all possible interleavings from the
executed program trace. Similar to Basset, CheckMate relies
on model checking to identity the interleavings that can lead
to deadlocks. CheckMate limits the analysis cost by building
a simplified model, which eliminates computations that are
not relevant for detecting deadlocks. The approximations
introduced in the model make the approach unsound and
incomplete.

CPPMem, POPL 2011 [127]. CPPMem exhaustively ex-
plores all possible interleavings of a test case to identify data
races and other patterns of interleavings that might lead to
faults in the presence of a relaxed memory model. CPPMem
exploits a mathematically rigorous semantics for the C++0x
concurrency model, which takes into account both opera-
tions that guarantee sequential consistency and low level
instructions that accept relaxed consistency guarantees to
enable for a higher level of code optimization and system
performance. The technique is designed to analyze small
code fragments that might exhibit non sequential behavior.
CPPMem precisely defines order relations but ignores the
contributions of control and data flow constraints, and
thus can identify infeasible interleavings. CPMem does not
guarantee either soundness or completeness. An alternative
implementation of CPPMem that relies on the Nipkin model
checker provides better performance while retaining the

same target and guarantees [132].

ViP, FSE 2012 [128]. ViP explores the space of inter-
leavings of C and C++ programs with the VeriSoft model
checker [25] to identify violations of user-defined properties
expressed in past-time Linear Temporal Logic (pLTL). ViP
does not guarantee the feasibility of the selected interleav-
ings, and thus is not sound.

CDSChecker, OOPSLA 2013 [129]. CDSChecker targets
the relaxed memory model implemented in C++ low level
instructions, and extends CPPMem largely improving its
performance. CDSChecker encodes the memory coherence
guarantees offered by the C++ semantics as a set of con-
straints, and combines these constraints with happens-
before constraints defined for sequentially consistent execu-
tions to prune redundant and infeasible executions. Similar
to CPPMem, CDSChecker precisely defines o rder relations
but ignores contributions of control and data flow con-
straints, thus it can identify infeasible interleavings and does
not guarantee either soundness or completeness.

5.6.3 Coverage criteria

Coverage criteria identify subsets of the program space to be
explored by exploiting data-flow relations i n s hared mem-
ory locations (Wang et al. [133]), the order of synchronized
code blocks (Hong et al. [134]) or the message ordering in
actor programs (Bita [135]).

Wang et al., ICSE 2011 [133]. Wang et al. introduce the
concept of HaPSet that characterizes the set of relevant
interleavings of a test case. They define t he H aPSet o f an
operation op as the set of operations op′ that can access the
same memory location as op in at least one interleaving
without any intermediate operation between op′ and op.
The technique iteratively computes the HaPSets of a set of
test cases, and explores different interleavings that exercise
not-yet-executed HaPSets. At each iteration, the technique
augments the initial set of HaPSets with all those HaPSets
that have been explored at runtime and did not produce
any system crash, until no more HaPSets can be generated.
HaPSets capture well common concurrency faults such as
data races and atomicity violations, thus by covering the
HaPSet, the technique can find m any c oncurrency faults.
Since many interleavings share the same HaPSets, focusing
on them largely reduces the amount of interleaving to be
exercised.

Hong et al., ISSTA 2012 [134]. Hong et al.’s coverage
criterion focuses on synchronized blocks, and requires to ex-
ecute all synchronization pairs in different orders. They ex-
tend previous work on synchronization pairs coverage [136]
by also considering code blocks that belong to the same
thread. The approach dynamically builds a thread model that
captures memory accesses and synchronization operations
among threads, It iteratively identifies t he not-yet-covered
synchronization pairs by analyzing the model, and exe-
cutes not-yet-executed synchronization pairs in a controlled
environment. The approach ensures both feasibility and
soundness, but not completeness.

Bita, ASE 2013 [135]. Bita targets actor based programs
and introduces three coverage criteria over pairs of events

received by an actor: the ‘pair-of-consecutive-receives, pair-of-
receives and pair-of-behavior-change-and-receive criteria, which
requie covering different sequences of receive events. Bita
incrementally builds a test suite by selecting interleavings
that improve the coverage according to a selected criterion,
and executes them in a controlled environment, while check-
ing for system crashes, thus guaranteeing feasibility and
soundness, but not completeness.

5.6.4 Heuristics
Heuristic approaches bound the space of interleavings to be
explored, and prioritize their execution: Rapos [137] exploits
partial-order reduction to identify equivalent interleavings,
PCT [138] bounds the number of scheduling constraints,
Gambit [139] prioritizes interleavings by their diversity with
respect to the executed ones.

Rapos, ASE 2007 [137]. Rapos reduces the exploration
space by exploiting partial-order reduction, an optimization
technique that model checkers exploit to identify equivalent
states. Rapos targets Java programs and is implemented on
top of CalFuzzer.

PCT, ASPLOS 2010 [138]. PCT (Probabilistic Concurrency
Testing) detects general concurrency faults in C and C++
programs with disciplined random testing. PCT guarantees
to find faults of depth d with a probability of at least
1/nkd−1 in programs that spawn at most n threads and
execute at most k instructions, where the depth d is defined
as the minimum number of scheduling constraints that need
to be enforced to reveal the fault.

Gambit, PPoPP 2010 [139]. Gambit dynamically records
the differences between the executed interleavings in a
compressed representation of the interleaving space, and
uses the model to prioritize the interleaving exploration ac-
cording to two priority functions: a randomized search with
progress guarantees, and a function that favors interleavings
that expose new happens-before relations. Gambit controls
the execution using the CHESS model checker, and uses
assertion violations and deadlocks as oracles. The execution
of the selected interleavings guarantees both feasibility and
soundness.

6 DISCUSSION

The detailed analysis of the state of the research presented
in Section 5 highlights some relevant trends, which we sum-
marize in this section referring to the classification criteria
introduced in Section 4 and illustrated in Figure 4.

6.1 Input
More than 95% of the analyzed approaches focus on the
problem of selecting execution interleavings for a given
test suite. The problem of generating test cases for concur-
rent software systems, although important, has not been
widely explored yet. The few techniques that target test
case generation either (i) build concurrent test cases from
a set of sequential test cases that identify the operations to
be executed, thus reducing the problem of generating con-
current test cases to the problem of distributing operations
over multiple execution flows (parallelization approaches), or

(ii) generate test cases randomly, and rely on the assumption
that most concurrency faults can be triggered with a small
number of execution flows a nd o perations, t hus usually
generating small test cases, and simplifying the problem
of selecting interleavings (random approaches). In addition,
the interaction between generating test cases and selecting
interleavings has been only marginally investigated so far.

About 10% of the analyzed approaches rely on system
models to obtain semantic information about the behavior
of the system. The models encode desired properties of
the system and are used to guide the techniques towards
interleavings that violate such properties.

6.2 Selection of Interleavings

More than 80% of the analyzed approaches are property
based, and about 60% of them are predictive, that is, they
analyze an execution trace to identify alternative interleav-
ings that can expose violations of the property of interest.
Predictive techniques have become increasingly popular
over time, starting from the seminal paper on Predictive
Trace Analysis by Sen et al. [140]. While some techniques to
detect data races and atomicity violations are not predictive,
almost all the techniques that target deadlocks or order
violations are predictive.

There exist several mature monitoring approaches that
detect and avoid deadlocks at runtime5, thus testing tech-
niques are mainly used to predict deadlocks in alterna-
tive interleavings before their occurrence in the field, as
shown in Table 3. As indicated in Table 5, order violation
techniques mainly target expected program invariants, and
predict alternative interleavings that violate such invariants.
As detailed in Table 6, exploration techniques are losing
popularity in the research context, and are dominated by
exhaustive exploration techniques, sometimes paired with
automated generation of test cases to limit the number of
execution flows a nd t he a mount o f c oncurrent operations
to be explored for the sake of feasibility. Stress testing tech-
niques have attracted little attention, due to their inability to
effectively explore the space of interleavings. Finally, only a
few approaches based on heuristic or coverage criteria have
been proposed so far.

6.3 Property of Interleavings

Most property based techniques deal with data races and
atomicity violations, with emphasis on low level data races
(Tables 1, 2 and 4). Patterns that involve high level data
structures and programming abstractions are gaining in-
creasing popularity. This is the case of atomic set serializ-
ability, introduced in the seminal paper by Vaziri et al. [38]
and addressed in Colt of Shacham et al. and by Dimitrov et
al. (rows high level in Table 1).

Deadlock detection has received less attention in testing,
due to the presence of effective and efficient t echniques to
avoid, detect and recover deadlocks at runtime.

As shown in Table 5, testing techniques to detect order
violations are becoming increasingly popular, likely because

5. These monitoring approaches are outside the boundaries of our
survey, which focuses on testing techniques. We discuss them in some
details in Section 7.

they target properties that better encode the semantics of
the program. Furthermore, recent studies showed that or-
der violations represent about one third of all concurrency
faults [130]. Techniques in this area target either general
properties such as null pointer dereferences or domain-
specific properties.

6.4 Output and Oracle
More than 65% of the analyzed approaches that select
interleavings do not consider the problems of executing
the identified sequences and of comparing the results with
oracles. Limiting the effort to the identification of suspicious
interleavings without executing them reduces the costs, but
results in many false positives.

As indicated in Table 3, most approaches to detect dead-
locks execute the selected interleavings to prove that the
predicted deadlocks are indeed feasible. Similarly, many
recent techniques to detect order violations exploit explicit
or implicit oracles for discriminating failing executions from
false positives. In general, we observe an increasing interest
in reducing the false positive rate that represents a main
limitation in many approaches.

6.5 Guarantees
More than 80% of the analyzed approaches guarantee the
feasibility of the identified interleavings. All property based
detection approaches are feasible since they focus on a
single execution trace. Property based prediction techniques
guarantee feasibility by executing the selected interleavings;
this is the case of almost all deadlock detection techniques,
as indicated in Table 3. As summarized in Table 6, the vast
majority of exploration approaches guarantee feasibility by
executing the interleavings observed during exploration.

Property soundness and property completeness only
apply to property based techniques. Almost no technique
is property complete, due to one or more of the following
considerations: (i) some techniques only perform detection
(and not prediction), and thus can miss relevant properties
in alternative interleavings, (ii) some techniques rely on an
over constraining analysis, such as some forms of happens-
before analysis, (iii) some techniques rely on bounded
model checking or constraint solving to generate alterna-
tive interleavings, which can fail to produce some valid
interleavings, (iv) some techniques exploit probabilistic ap-
proaches to generate or execute alternative interleavings,
(v) some techniques are limited in scope, for example some
techniques focus on data races that involve at most two
execution flows.

Techniques that do not execute the selected interleavings
are not property sound. Indeed, the selected interleavings
might be infeasible due to the limited precision of the
adopted dynamic analysis, which may miss some order con-
straints defined through program-specific synchronization
mechanisms.

Soundness and completeness apply to the techniques
that compare the results of executing test cases with oracles.
Since most techniques are not property complete, they are
also not complete. Almost all the techniques that compare
the results of executing the test cases with oracles are
sound. Only the techniques that implement oracles as model

checking over an abstract system representation might not
guarantee soundness, due to approximations in the model.

In general, we observe an increasing interest in improv-
ing the fault prediction rate and reducing the false positive
rate pursued by (i) improving the precision of dynamic
analysis techniques, and (ii) targeting specific p atterns of
faults or programming paradigms.

6.6 Target System
Almost all state-of-the-art techniques for testing concur-
rent systems address shared memory systems. Only few
techniques (we discuss five o f t hem i n t his s urvey) deal
with message passing systems, which are a main focus
of the research on runtime monitoring and model based
verification. Monitoring techniques observe the behavior of
the target system at runtime to either analyze the root causes
of observed faults or predict future faults to prevent their
occurrence. Model based techniques verify the correctness
of message passing systems on abstract models. We discuss
both classes of approaches in Section 7.

Most state-of-the-art techniques target general concur-
rent systems. Few exceptions focus on specific program-
ming paradigms: (i) data race detection techniques that rely
on lockset analysis target systems that adopt lock-based
synchronization mechanisms (rows Low level - Lockset in
Table 1); (ii) most deadlock detection techniques target dead-
locks that derive from lock-based synchronization faults
(Table 3); (iii) techniques for high level data races work at
the level of abstract objects and in particular object-oriented
systems (rows High level in Table 1); (iv) some techniques
improve effectiveness by relying on the semantics of op-
erations defined i n s pecific pr ogramming pa radigms. For
instance, some techniques focus on event-based systems,
such as Web platforms, the Android platform or Javascript,
where the framework enforces some order relations among
operations.

Almost all recent approaches assume a sequential consis-
tency model; only few approaches (we discuss five of them
in this survey) consider the memory models implemented
in specific programming languages, such as Java and C++.
Relaxing the assumption of a sequential consistency model
remains an open area for future investigations.

6.7 Testing Technique
Most techniques for testing concurrent systems rely on some
sort of dynamic analysis of the system to capture some
information about order relations between operations in
multiple execution flows. M ost t echniques a dopt happens-
before analysis. Only few approaches (we discuss nine of
them in this survey) propose some form of hybrid static and
dynamic analysis to improve the accuracy of the produced
results. For instance, some techniques use static analysis
to infer relevant properties of the system, such as atomic
regions or correlated variables in the case of atomic set
serializability.

Most techniques focus on the impact of concurrency
faults on the system functionality, leaving largely open the
problem of violations of non functional properties, such as
temporal or security properties. Most techniques apply at
the system granularity level. Only a few techniques focus on

the unit granularity level, typically objects in object oriented
systems. Most techniques focus on validation testing. Only
few techniques (ReConTest [93], SimRT [75] and Speed-
Gun [55] address regression testing.

All techniques refer to a centralized testing architecture,
which reflects the limited attention to the message passing
paradigm, mostly used to develop distributed applications.
Distributed message passing systems possibly deployed in
large scale settings remain a largely open research area that
involves the design of efficient and potentially distributed
testing architectures.

6.8 Threats to Validity
The main threats to the validity of our survey derive from
the strategy we chose to review the literature, as discuss in
Section 3. The threats include the validity of the criteria we
used to select the papers, the likelihood of missing some
relevant work, and the coherence of the filters we used
to bound the scope of the survey. In this subsection, we
acknowledge the threats that may limit the validity of our
conclusions, and briefly discuss the countermeasures that
we adopted to mitigate the related risks.

Selection criteria. We grounded our selection on a search
of relevant repositories by keywords. Testing techniques
might be referred to with different terms in different com-
munities and may have been published in different venues.
The choice of keywords and repositories for the initial search
is crucial for the success of our survey. We complemented a
search through the most popular repositories (IEEE Explore,
ACM Digital Library, Springer Online Library and Elsevier
Online Library) with general search through the Web, and
we adopted a multivariate set of keywords that include
“testing + concurrent”, “testing + multi-thread”, “testing +
parallel”, “testing + distributed”. To mitigate the intrinsic
limitations of any choice of terms and repositories, we also
included in our search the publications that are cited or
cite the papers that we selected. As shown in Figure 3, our
selection criteria let us identify many results presented in
different research communities.

Missed work. Our literature search based on repositories,
keywords and mutual relations among papers may have
missed some papers not cited in and not citing any of the
selected papers. We mitigated this risk by analyzing both
conference proceedings and journal issues that have been
published in the last fifteen years.

Boundary filters. Bounding the scope of a survey always
carries the risk of arbitrarily excluding some relevant work.
We mitigated this risk by precisely defining the boundaries
of our survey. We list closely related albeit out of bound
work in Section 7, where we present the main topics that are
excluded from this survey, namely empirical study of con-
currency faults, interleaving exploration strategies, coverage
criteria for concurrent systems, mutation analysis, moni-
toring and debugging approaches, static analysis, model
checking, and programming paradigms. We are aware that
these choices may bias the defined framework and may
privilege the work of some communities over others. By
explicitly listing the work excluded from our survey, we
fairly indicate the boundaries and the limits of our work.

The large number of publications included in our survey
—over 90 publications in 15 years— and the heterogeneity
of the communities and venues of these publications give us
a good confidence on the validity of the analysis.

7 RELATED WORK

We frame the scope of this survey to software testing tech-
niques that target concurrency faults, and intentionally leave
out other aspects of concurrent systems. In this section, we
briefly o verview s ome i mportant a reas t hat l ie o n t he bor-
ders of the scope of this survey: in Section 7.1, we overview
studies and techniques that support approaches for testing
concurrent software systems and that are particularly rele-
vant in the framework of this survey; in Section 7.2, we out-
line the main approaches for verifying concurrent systems
that are alternative to the testing techniques surveyed in this
paper; in Section 7.3, we present programming paradigms
to simplify the development of concurrent systems.

7.1 Related studies

The software testing techniques that we survey in this
paper are strongly influenced b y t he e mpirical s tudies of
concurrency faults, take advantage of different strategies for
exploring the interleaving state, and complement coverage
criteria defined for concurrent software systems.

7.1.1 Empirical studies of concurrency faults
There exist only few papers that report the results of large
empirical studies of in-development and in-field concur-
rency faults, but they strongly influenced s ome o f the
techniques presented in this survey. The most direct liai-
son between empirical studies and testing techniques is
the observation that a large amount of concurrency faults
manifest in the presence of only two execution flows, which
has strongly influenced many techniques for generating test
cases for concurrent systems.

The first comprehensive and widely cited study of con-
currency faults is due to Lu et al. [130], who consider 105
concurrency faults randomly selected from four open source
applications. Previous studies, such as the work of Chandra
and Chen [141], were performed on a small number of
concurrency faults, which limits the generalizability of the
results. Lu et al.’s experimental results lead to some inter-
esting considerations: (i) about one third of non-deadlock
concurrency faults are violations of order assumptions;
(ii) about one third of non-deadlock concurrency faults
involve multiple variables; (iii) about 92% of concurrency
faults can be reliably triggered by enforcing certain order
among at most four memory accesses; (iv) about 73% of
non-deadlock concurrency faults are not fixed b y simply
adding or changing locks, and many times the first fix is not
correct, indicating the difficulty of reasoning about concur-
rent systems; (v) concurrency faults that can cause program
crash constitute approximately 50% of non-deadlock faults;
(vi) many well known properties of interleavings, such as
data races and atomicity violations, have little correlation
with fault severity; (vii) about 85% of the crashes due
to concurrency faults involve wrong memory accesses to
shared memory objects; (viii) concurrency-memory faults

can be further classified into null shared pointer dereference,
shared buffer overflow, uninitialized read to shared data
items and dangling pointers to shared memory.

Fonseca et al. [142] study concurrency faults in the
context of MySQL applications and observe that 15% of con-
currency faults do not lead to a deadlock or a system fault,
but rather silently corrupt some data structure, and violate
the intended semantics of the application. Lin and Dig [143]
empirically study misuses of concurrent collections in Java,
focusing specifically on check-then-act errors that occur when
the code is developed under the erroneous assumption
of the atomic execution of a condition evaluation and a
subsequent operation that depends on the outcome of such
evaluation. The authors consider various patterns of use of
different types of collections, and observe that some pat-
terns have a high probability to expose concurrency faults,
indicating that they represent a good target for testing.

7.1.2 Benchmarks

Only few studies focus on benchmarks to evaluate the
approaches for testing concurrent software systems. Lin et
al. [144] review the status of benchmarks in the field, and
observe that (i) researchers often follow ad-hoc processes to
choose case studies for evaluation, and (ii) existing bench-
marks are not explicitly designed for concurrency fault
detection, are typically outdated, and consist of a selection
of real-world case studies that might introduce a bias when
evaluating the effectiveness of testing techniques. In their
survey, Lin et al. introduce JaConTeBe, a publicly available
benchmark with 47 faults in 8 software projects, which
might constitute a reference benchmark for research work.

7.1.3 Interleavings exploration strategies

The space of interleavings grows exponentially both with
the number of execution flows and with the number of oper-
ations within each execution flow. The problem of exploring
the space is addressed with algorithms that either reduce or
bound the space to be explored.

Approaches to reduce the interleaving space prune the
search space by exploiting known properties of the target
system. Java Path Finder [131], [145] introduces partial order
reduction, which exploits the commutativity of independent
operations to avoid the repeated analysis of interleavings
that lead to the same results. Partial order reduction [32],
[146] removes equivalent interleavings during exploration,
thus limiting the memory consumption during the analysis.
The level of reduction can be exponential in the size of the
search space in the best case. More aggressive approaches
further limit the execution of some specific interleavings:
for instance, Kähkönen et al.’s approach [147] trades com-
pleteness for performance by combining dynamic symbolic
execution with the unfolding of a Petri Net model of the
target system.

While approaches to reduce the interleaving space aims
to completely cover the search space, approaches that bind
the interleaving space ensure the completeness of explo-
ration within some given bounds. Depth bounding is com-
monly adopted in sequential program analysis to limit the
exploration of the execution space to a bounded number
of steps [148]. In the domain of concurrent programs, the

CHESS model checker introduces context bounding that lim-
its the maximum number of context switches to be con-
sidered during the analysis [31], [149], [150]. Delay bound-
ing [151] bounds the number of times a schedule can devi-
ate from a predefined d eterministic s cheduler. T homson et
al.’s empirical comparison of delay and context bounding
reveals that context bounding does not introduce visible im-
provements over a naı̈ve random exploration, while delay
bounding is more effective in finding faults [152]. Thomson
et al. observe that many faults can be found within limited
bounds; however, most concurrency faults do not result in
immediate system crashes, but in more subtle errors, such
as data corruption.

Bindal et al. [153] propose variable and thread bounding to
rank and explore the space of interleavings. They move from
the observation that real-world concurrency faults usually
involve a low number of shared variables and execution
flows and use these numbers as bounds. ReEx [154] focuses
on regression testing and prioritizes interleavings that can
be affected by a change in the system under test.

7.1.4 Coverage criteria for concurrent systems
Some space explorations techniques presented in Section 5.6
(rows Coverage criteria in Table 6) identify subsets of the pro-
gram space to be explored referring to coverage criteria for
concurrent systems, which are studied also independently
from testing approaches.

Bron et al. [155] propose synchronization coverage that
refers to the synchronization mechanisms. The criterion
builds on a model of the available concurrency mechanisms
and on knowledge of common fault patterns. For instance,
the authors discuss the design of synchronization coverage
for the concurrency abstractions provided by Java. Lu et
al. [156] propose a set of coverage criteria, discuss their
cost, which ranges from exponential to linear with respect
to the number of accesses to shared data items, organize
the criteria hierarchically according to the subsume rela-
tion, and discuss the types of faults addressed by each
criterion. Křena et al. [157] propose a general approach to
build coverage criteria starting from target error patterns,
focusing on criteria that are suitable to guide search-based
techniques, such as genetic algorithms. Hong et al. [158]
study the impact of some coverage criteria on the effective-
ness of testing, observing that the criteria are moderate to
good predictors of concurrent testing effectiveness, and are
generally reasonable targets for test case generation.

7.2 V&V of Concurrent Software Systems
The testing techniques discussed in this survey are one of
the many V&V approaches for concurrent software systems
that also include mutation analysis, runtime monitoring
and debugging, static analysis, model checking and model
conformance verification.

7.2.1 Mutation analysis for concurrent systems
Mutation analysis estimates the effectiveness of a test suite
for a target program by executing the suite on a set of mu-
tated programs obtained by systematically seeding program
changes, and statistically analyzing the results. Mutation
analysis applies a set of mutation operators to the target

program to generate modified versions of the system, called
mutants, executes a test suite on each mutant, and checks
if the mutants can be killed, that is, distinguished from the
original program. The ratio of killed mutants with respect
to the overall number of (non-equivalent) mutants is the
mutation score that estimates the quality of the test suite.
The interested readers can refer to the recent excellent
survey on mutation testing from Jia and Harman [159].
Mutation analysis has been extended to concurrent systems
by (i) defining mutation operators for concurrent systems,
and (ii) introducing techniques and tools to apply mutation
analysis to concurrent systems.

Bradbury et al. [160] define a set of mutation operators
for the concurrency and synchronization mechanisms intro-
duced in Java since version 5. Bernhard and Delgado [161]
propose to generate mutants for concurrent systems by
applying mutation operators at the specification level. Sen
and Abadir [162] provide mutation operators for concurrent
real-time systems.

A relevant problem that emerges when applying mu-
tation analysis to concurrent systems consists in comparing
the results produced by executing the original program with
the results produced by executing the mutants. In principle,
all possible interleavings of operations should be evaluated
to identify differences in the results. The seminal work of
Carver [163] proposes a heuristic approach that considers
only a subset of all possible interleavings. The MutMut
framework [164] exploits information collected during the
execution of the original code under test to speed up the ex-
ploration and execution of the same test in the mutant code.
In particular, MutMut prunes interleavings that cannot be
affected by the considered mutation.

Gligoric et al. [165] tackle the problem of the large num-
ber of mutants by proposing a selective mutation technique
that identifies a subset of operators that have high effective-
ness and provide high savings. Selective mutation generates
fewer mutants that approximate the mutation score.

Aichernig et al. [161] mutate the specifications and gen-
erate test cases that check whether the system conforms to
the faulty specification. Some of Aichernig et al.’s mutation
operators are strictly correlated to concurrency, such as
swapping the order of two events, or replacing a message
with another message.

7.2.2 Monitoring and debugging concurrent systems
Monitoring techniques collect information on a running
system to understand whether the execution violates some
desired properties and to provide information for replicat-
ing a failing execution. The approaches to monitor concur-
rent systems, and in particular complex distributed systems,
work either online or offline. Online monitoring approaches
analyze the target system during the execution, while offline
approaches analyze logging and checkpointing information
offline.

Magpie [166] collects performance traces at runtime and
uses them to build a performance model that can be ana-
lyzed offline. Magpie is based on a black-box instrumenta-
tion that requires no source code modification to the mea-
sured system. X-Trace [167] identifies offline correlations
between tasks at different layers of the protocol stack. It
augments tasks with metadata, and forces the propagation

of such metadata across layers to provide a unified view of
the behavior of a distributed application. Pip [168] proposes
a language to specify desired properties for a distributed
system, and checks that these properties are satisfied at
runtime. Friday [169] and WiDS-checker [170] replay (fail-
ing) executions of distributed systems to support debug-
ging. Dystalizer [171] focuses on performance monitoring
and uses machine learning techniques to detect the set
of events that are most likely responsible for performance
issues. Singh et al. [172] monitor distributed systems online
through queries to the state of the system. D3S [173] and
MaceODB [174] check online global concurrency properties.
CrystallBall [175], [176] goes one step further by both pre-
dicting potential failures in a deployed system and trying to
prevent them, steering the execution away from states that
violate safety properties.

7.2.3 Static analysis of concurrent systems

Static analysis approaches aim to verify some desired prop-
erties of systems by relying on statically available informa-
tion, that is the code or some form of specifications, without
requiring any execution of the systems. Static analysis tech-
niques aim at a different completeness-precision tradeoff
than the testing approaches surveyed in this paper. Static
analysis improves completeness by addressing the whole
program space, but may suffer from lack of precision due
to false positive warnings, which derive from conservative
approximations that can lead to infeasible interleavings.

RacerX [177], the seminal Dawson’s work on static anal-
ysis for detecting both data races and deadlocks, relies on a
static lockset analysis of the control flow graph of the target
system, and limits the problem of false positives with a
mechanism that estimates the severity of the detected faults.
von Praun and Gross [178] exploit static analysis to detect
atomicity violations. They build on the notion of method
consistency, which checks that the accesses in the scope of
a method are not interleaved with conflicting a ccesses of
other methods. von Praun and Gross statically analyze the
program to infer information about the locking discipline
and the memory access patterns of each method, and report
an atomicity violation if the method consistency is violated.
Williams et al. [179] statically analyze the code to build the
lock-order graph of a library and detect sequences of calls
to the public methods of the library that lead to a deadlock
when executed concurrently. Jade [180] statically computes
the lock acquisition graph and reduces the number of false
positives by checking six properties that represent necessary
conditions for deadlock. Marino et al. [181] target programs
that use synchronization primitives for atomic set serializ-
ability. They statically build a partial order of lock acqui-
sitions on atomic sets and generate an alert, representing
a potential deadlock, whenever a partial order cannot be
found.

7.2.4 Model checking

Model checking is a method to formally verify finite-state
concurrent systems [182]. Model checking was introduced in
the early eighties by Emerson and Clarke [183] and Queille
and Sifakis [184], and consists of exhaustively traversing
an abstract model of the system and checking if some

properties of interest, expressed in some logical formalism,
hold.

In this survey, we review several approaches that rely on
model checking for generating test cases and interleavings
for concurrent systems by combining model checking with
lockset analysis [29], [30], [43], happens-before analysis [66],
[67] hybrid analysis [103], exhaustive exploration [125],
[126], [127], [128], [129] and heuristics [137].

Model checking is also widely exploited in the context
of the analysis of concurrent software systems, and shares
the advantages and the limitations of other static analysis
techniques. A complete survey of the many applications
of model checking is out of the scope of this survey. The
interested reader can refer to Clarke’s book [182] and the
proceedings of the many symposia on model checking.

7.2.5 Model conformance
Model conformance approaches generate test cases from
some abstract models of the system under test to verify that
the system conforms to the model.

In this survey we review the model conformance ap-
proaches that produce concrete test cases, and in particular
techniques for atomicity violations that take in input a spec-
ification of atomic code blocks and check if the implemen-
tation ensures the atomicity of such blocks [27], [35], [36].
Here we briefly describe the model conformance approaches
that are not implemented in concrete testing techniques, and
thus are out of the scope of this survey. Model conformance
dates back to the research on protocol conformance veri-
fication [185], and has been extended to many formalisms
and notations: multi-port Finite State Machines [186], In-
put/Output Transition Systems (IOTS) [187], [188], Partial
Order Automata [189], [190], and Petri Nets [191]. Even
if Partial Order Automata and Petri Nets embed concur-
rency notations that simplify the specification of concurrent
systems, most work in the area has focused on multi-port
FSMs, in which the components of the distributed systems
are modeled as ports, and an input to one port can trigger a
transition that produces outputs at multiple ports.

7.3 Programming Paradigms for Concurrency

Several programming paradigms have been proposed to
develop concurrent software systems and to express con-
currency patterns. Good examples of successful program-
ming paradigms are the primitives for data parallelism and
task parallelism in OpenMP [192], Apple’s Grand Central
Dispatch and operation queues [193], programmatic event
loops [194], Microsoft’s Task Parallel Library in .NET [195],
primitives for asynchronous programming such as asynch-
await, futures and promises [196], and the Java concurrency
utilities introduced since Java 5. Here, we briefly summarize
how different programming paradigms either prevent the
occurrence of some classes of concurrency faults or enable
efficient static detection at compile time.

Functional programming languages such as
Haskell [197] do not allow mutable state and thus
guarantee race freedom by design. For this reason, most
modern frameworks for big data parallel and distributed
processing such as MapReduce [198], Apache Spark [199]
and Apache Flink [200] provide functional interfaces.

Similarly, several programming languages and libraries
provide functional abstractions to manipulate collections.
This is the case of the ReactiveX framework [201] and
of the stream operators introduced in Java 8. Actor-based
languages such as Erlang [13], [202] and Scala/Akka [14]
implement the communication between execution flows
using messages, and ensure that messages are processed
atomically. This guarantees data race freedom by design,
since two execution flows c annot a ccess a s hared resource
concurrently.

Some type systems constrain the concurrency patterns
to ensure the validity of some given properties by design:
some avoid deadlocks [203], [204], others data races [205],
[206], [207] yet others atomicity violations [208]. The ob-
ject oriented programming framework SCOOP offers high
level primitives for concurrent programming that ensure
data race freedom, exclude some forms of deadlocks, and
enable pre and postcondition reasoning guarantees between
execution flows [209]. T he T WEJava [210] m odel f or task
parallelism allows the declaration of the effects of each task
on the share state. The runtime ensures that two tasks are
executed concurrently only if their effects do not conflict.
P# [211] extends C# for event-based programming, and
forces the declarative specification of concurrency with state
machines, thus enabling sound static data race analysis.

Other programming paradigms and type systems ensure
deterministic execution order. Deterministic Parallel Java
(DPJ) [212] introduces a type and effect system that guar-
antees deterministic semantics with compile time check-
ing in Java. Grace [213] is a runtime system for C/C++
programs that masks the concurrent execution of code de-
signed as sequential on multiple cores. CoreDet [214] and
DThreads [215] replace the pthread library for C/C++ pro-
grams, providing deterministic execution with limited over-
head. Determinator [216] provides API for low overhead
deterministic concurrent execution on top of a microkernel.

8 CONCLUSIONS

This paper provides a comprehensive survey of the re-
cent results in testing concurrent systems. The research in
this area has focused mainly on the problem of selecting
interleavings to be tested and has explored two classes
of approaches: property based approaches, which target
patterns of interleavings that are more likely to lead to
faults, and exploration approaches, which explore the space
of interleavings exhaustively, based on coverage criteria or
heuristically.

The current research trends are towards predictive prop-
erty based techniques and violations of expected order
invariants rather then low level memory access conflicts
such as data races.

The research of the last decade has produced several effi-
cient and effective testing techniques for concurrent systems
that open promising directions for future investigations:

(i) Most testing techniques for concurrent systems target
the selection of relevant interleavings, and few tech-
niques focus on test case generation. Exploiting the
synergy between these two aspects remains an open
research topic.

(ii) The vast majority of testing approaches target shared
memory systems. Validation and verification of dis-
tributed message passing systems has exploited mostly
static analysis and model checking approaches, leaving
the important area of testing message passing systems
open for future research.

(iii) The last decade has seen a bloom of new programming
paradigms for concurrent software systems, which en-
force patterns of interactions among execution flows
that prevent the occurrence of some kinds of concur-
rency faults such as data races and deadlocks. The
new programming paradigms shift the testing problem
from low level memory access conflicts to high level
order violations, and open the opportunity of devising
new testing approaches that exploit the semantics of
modern programming paradigms.

REFERENCES

[1] T. Mattson, B. Sanders, and B. Massingill, Patterns for Parallel
Programming. Addison-Wesley, 2004.

[2] J. Diaz, C. Munoz-Caro, and A. Nino, “A survey of parallel
programming models and tools in the multi and many-core era,”
IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 8,
pp. 1369–1386, 2012.

[3] D. Dig, “A refactoring approach to parallelism,” IEEE Software,
vol. 28, no. 1, pp. 17–22, 2011.

[4] K. Jensen and L. M. Kristensen, Coloured Petri Nets: Modelling and
Validation of Concurrent Systems. Springer, 2009.

[5] G. R. Andrews and F. B. Schneider, “Concepts and notations
for concurrent programming,” ACM Computing Surveys, vol. 15,
no. 1, pp. 3–43, 1983.

[6] G. R. Andrews, Concurrent programming: principles and practice.
Benjamin/Cummings Publishing Company, 1991.

[7] L. Lamport, “How to make a multiprocessor computer that
correctly executes multiprocess programs,” IEEE Transactions on
Computers, vol. C-28, no. 9, pp. 690–691, Sept 1979.

[8] W. Pugh, “Fixing the java memory model,” in Proceedings of the
ACM Conference on Java Grande, ser. JAVA ’99. ACM, 1999, pp.
89–98.

[9] J. Manson, W. Pugh, and S. V. Adve, “The java memory model,”
in Proceedings of the Symposium on Principles of Programming Lan-
guages, ser. POPL ’05. ACM, 2005, pp. 378–391.

[10] H.-J. Boehm and S. V. Adve, “Foundations of the c++ concurrency
memory model,” in Proceedings of the Conference on Programming
Language Design and Implementation, ser. PLDI ’08. ACM, 2008,
pp. 68–78.

[11] D. Hovemeyer, W. Pugh, and J. Spacco, “Atomic instructions in
java,” in Proceedings of the European Conference on Object-Oriented
Programming, ser. ECOOP ’02. Springer, 2002, pp. 133–154.

[12] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer, “Phasers:
A unified deadlock-free construct for collective and point-to-
point synchronization,” in Proceedings of the Annual International
Conference on Supercomputing, ser. ICS ’08. ACM, 2008, pp. 277–
288.

[13] J. Armstrong, Programming Erlang. Pragmatic Bookshelf, 2013.
[14] D. Wyatt, Akka Concurrency. Artima Incorporation, 2013.
[15] C. A. Petri, “Communication with automata,” 1962.
[16] C. A. R. Hoare, “Communicating sequential processes,” Commu-

nications of the ACM, vol. 21, no. 8, pp. 666–677, 1978.
[17] R. Milner, A Calculus of Communicating Systems. Springer, 1982.
[18] R. J. Lipton, “Reduction: A method of proving properties of

parallel programs,” Communications of the ACM, vol. 18, no. 12,
pp. 717–721, 1975.

[19] S. Morasca and M. Pezzè, “Using high-level petri nets for testing
concurrent and real-time systems,” Real-time systems: theory and
applications, vol. 132, 1990.

[20] R. N. Taylor, D. L. Levine, and C. D. Kelly, “Structural testing of
concurrent programs,” IEEE Transactions on Software Engineering,
vol. 18, no. 3, pp. 206–215, 1992.

[21] R. H. Carver and K.-C. Tai, “Use of sequencing constraints
for specification-based testing of concurrent programs,” IEEE
Transactions on Software Engineering, vol. 24, no. 6, pp. 471–490,
1998.

[22] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness con-
dition for concurrent objects,” ACM Transactions on Programming
Languages and Systems, vol. 12, no. 3, pp. 463–492, 1990.

[23] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. E. An-
derson, “Eraser: A dynamic data race detector for multithreaded
programs,” ACM Transactions on Computer Systems, vol. 15, no. 4,
pp. 391–411, 1997.

[24] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic ver-
ification of finite-state concurrent systems using temporal logic
specifications,” ACM Transactions on Programming Languages and
Systems, vol. 8, no. 2, pp. 244–263, 1986.

[25] P. Godefroid, “Model checking for programming languages using
verisoft,” in Proceedings of the Symposium on Principles of Program-
ming Languages, ser. POPL ’97. ACM, 1997, pp. 174–186.

[26] G. J. Holzmann, “The model checker spin,” IEEE Transactions on
Software Engineering, vol. 23, no. 5, pp. 279–295, 1997.

[27] C. Flanagan and S. N. Freund, “Atomizer: A dynamic atomicity
checker for multithreaded programs,” in Proceedings of the Sympo-
sium on Principles of Programming Languages, ser. POPL ’04. ACM,
2004, pp. 256–267.

[28] D. Perkovic and P. J. Keleher, “Online data-race detection via co-
herency guarantees,” in Proceedings of the Symposium on Operating
Systems Design and Implementation, ser. OSDI ’96. ACM, 1996,
pp. 47–57.

[29] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan,
“Sound predictive race detection in polynomial time,” in Proceed-
ings of the Symposium on Principles of Programming Languages, ser.
POPL ’12. ACM, 2012, pp. 387–400.

[30] J. Huang, P. O. Meredith, and G. Rosu, “Maximal sound predic-
tive race detection with control flow abstraction,” in Proceedings
of the Conference on Programming Language Design and Implementa-
tion, ser. PLDI ’14. ACM, 2014, pp. 337–348.

[31] M. Musuvathi and S. Qadeer, “Iterative context bounding for sys-
tematic testing of multithreaded programs,” in Proceedings of the
Conference on Programming Language Design and Implementation,
ser. PLDI ’07. ACM, 2007, pp. 446–455.

[32] P. Godefroid, Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem. Springer,
1996.

[33] C. H. Papadimitriou, “The serializability of concurrent database
updates,” Journal of the ACM, vol. 26, no. 4, pp. 631–653, 1979.

[34] C. Hammer, J. Dolby, M. Vaziri, and F. Tip, “Dynamic detection
of atomic-set-serializability violations,” in Proceedings of the Inter-
national Conference on Software Engineering, ser. ICSE ’08. IEEE
Computer Society, 2008, pp. 231–240.

[35] C. Flanagan, S. N. Freund, and J. Yi, “Velodrome: A sound
and complete dynamic atomicity checker for multithreaded pro-
grams,” in Proceedings of the Conference on Programming Language
Design and Implementation, ser. PLDI ’08. ACM, 2008, pp. 293–
303.

[36] S. Lu, J. Tucek, F. Qin, and Y. Zhou, “Avio: Detecting atomicity
violations via access interleaving invariants,” in Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’06. ACM, 2006,
pp. 37–48.

[37] F. Sorrentino, A. Farzan, and P. Madhusudan, “Penelope: Weav-
ing threads to expose atomicity violations,” in Proceedings of the
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE ’10. ACM, 2010, pp. 37–46.

[38] M. Vaziri, F. Tip, and J. Dolby, “Associating synchronization con-
straints with data in an object-oriented language,” in Proceedings
of the Symposium on Principles of Programming Languages, ser. POPL
’06. ACM, 2006, pp. 334–345.

[39] M. Singhal, “Deadlock detection in distributed systems,” IEEE
Computer, vol. 22, no. 11, pp. 37–48, 1989.

[40] A. Farzan, P. Madhusudan, N. Razavi, and F. Sorrentino, “Pre-
dicting null-pointer dereferences in concurrent programs,” in
Proceedings of the ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, ser. FSE ’12. ACM, 2012, pp. 1–11.

[41] J. Chen, R. Hierons, and H. Ural, “Conditions for resolving
observability problems in distributed testing,” in Proceedings of
the IFIP International Conference on Formal Techniques for Networked
and Distributed Systems. Springer, 2004, pp. 229–242.

[42] R. O’Callahan and J.-D. Choi, “Hybrid dynamic data race detec-
tion,” in Proceedings of the Symposium on Principles and Practice of
Parallel Programming, ser. PPoPP ’03. ACM, 2003, pp. 167–178.

[43] O. Shacham, M. Sagiv, and A. Schuster, “Scaling model checking
of dataraces using dynamic information,” in Proceedings of the
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’05. ACM, 2005, pp. 107–118.

[44] T. Sheng, N. Vachharajani, S. Eranian, R. Hundt, W. Chen, and
W. Zheng, “Racez: A lightweight and non-invasive race detection
tool for production applications,” in Proceedings of the International
Conference on Software Engineering, ser. ICSE ’11. ACM, 2011, pp.
401–410.

[45] C. von Praun and T. R. Gross, “Object race detection,” in Proceed-
ings of the Conference on Object-Oriented Programming Systems and
Applications, ser. OOPSLA ’01. ACM, 2001, pp. 70–82.

[46] R. K. Karmani, P. Madhusudan, and B. M. Moore, “Thread
contracts for safe parallelism,” in Proceedings of the Symposium
on Principles and Practice of Parallel Programming, ser. PPoPP ’11.
ACM, 2011, pp. 125–134.

[47] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Communications of the ACM, vol. 21, no. 7,
pp. 558–565, 1978.

[48] A. Dinning and E. Schonberg, “An empirical comparison of mon-
itoring algorithms for access anomaly detection,” in Proceedings
of the Symposium on Principles and Practice of Parallel Programming,
ser. PPOPP ’90. ACM, 1990, pp. 1–10.

[49] R. H. B. Netzer, “Race condition detection for debugging shared-
memory parallel programs,” Ph.D. dissertation, 1991.

[50] C. Flanagan and S. N. Freund, “Fasttrack: Efficient and pre-
cise dynamic race detection,” in Proceedings of the Conference on
Programming Language Design and Implementation, ser. PLDI ’09.
ACM, 2009, pp. 121–133.

[51] D. Marino, M. Musuvathi, and S. Narayanasamy, “Literace: Effec-
tive sampling for lightweight data-race detection,” in Proceedings
of the Conference on Programming Language Design and Implementa-
tion, ser. PLDI ’09. ACM, 2009, pp. 134–143.

[52] M. D. Bond, K. E. Coons, and K. S. McKinley, “Pacer: Propor-
tional detection of data races,” in Proceedings of the Conference on
Programming Language Design and Implementation, ser. PLDI ’10.
ACM, 2010, pp. 255–268.

[53] D. Li, W. Srisa-an, and M. B. Dwyer, “Sos: Saving time in dynamic
race detection with stationary analysis,” in Proceedings of the Con-
ference on Object-Oriented Programming Systems and Applications,
ser. OOPSLA ’11. ACM, 2011, pp. 35–50.

[54] K. Zhai, B. Xu, W. K. Chan, and T. H. Tse, “Carisma: A context-
sensitive approach to race-condition sample-instance selection
for multithreaded applications,” in Proceedings of the International
Symposium on Software Testing and Analysis, ser. ISSTA ’12. ACM,
2012, pp. 221–231.

[55] B. Wester, D. Devecsery, P. M. Chen, J. Flinn, and
S. Narayanasamy, “Parallelizing data race detection,” in Pro-
ceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’13.
ACM, 2013, pp. 27–38.

[56] M. Prvulovic and J. Torrellas, “Reenact: Using thread-level specu-
lation mechanisms to debug data races in multithreaded codes,”
in Proceedings Annual International Symposium on Computer Archi-
tecture, ser. ISCA ’03. ACM, 2003, pp. 110–121.

[57] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder,
“Automatically classifying benign and harmful data races using
replay analysis,” in Proceedings of the Conference on Programming
Language Design and Implementation, ser. PLDI ’07. ACM, 2007,
pp. 22–31.

[58] K. Veeraraghavan, P. M. Chen, J. Flinn, and S. Narayanasamy,
“Detecting and surviving data races using complementary sched-
ules,” in Proceedings of the Symposium on Operating Systems Princi-
ples, ser. SOSP ’11. ACM, 2011, pp. 369–384.

[59] B. Kasikci, C. Zamfir, and G. Candea, “Data races vs. data race
bugs: Telling the difference with portend,” in Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XVII. ACM, 2012,
pp. 185–198.

[60] C. Tian, V. Nagarajan, R. Gupta, and S. Tallam, “Dynamic recog-
nition of synchronization operations for improved data race de-
tection,” in Proceedings of the International Symposium on Software
Testing and Analysis, ser. ISSTA ’08. ACM, 2008, pp. 143–154.

[61] A. K. Rajagopalan and J. Huang, “Rdit: Race detection from
incomplete traces,” in Proceedings of the European Software Engi-
neering Conference held jointly with the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. ESEC/FSE
’15. ACM, 2015.

[62] Y. Cai and L. Cao, “Effective and precise dynamic detection of
hidden races for java programs,” in Proceedings of the European
Software Engineering Conference held jointly with the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
ESEC/FSE ’15. ACM, 2015, pp. 450–461.

[63] B. Petrov, M. Vechev, M. Sridharan, and J. Dolby, “Race detection
for web applications,” in Proceedings of the Conference on Program-
ming Language Design and Implementation, ser. PLDI ’12. ACM,
2012, pp. 251–262.

[64] V. Raychev, M. Vechev, and M. Sridharan, “Effective race detec-
tion for event-driven programs,” in Proceedings of the Conference on
Object-Oriented Programming Systems and Applications, ser. OOP-
SLA ’13. ACM, 2013, pp. 151–166.

[65] P. Maiya, A. Kanade, and R. Majumdar, “Race detection for
android applications,” in Proceedings of the Conference on Program-
ming Language Design and Implementation, ser. PLDI ’14. ACM,
2014, pp. 316–325.

[66] K. Kim, T. Yavuz-Kahveci, and B. A. Sanders, “Precise data
race detection in a relaxed memory model using heuristic-based
model checking,” in Proceedings of the International Conference on
Automated Software Engineering, ser. ASE ’09. IEEE Computer
Society, 2009, pp. 495–499.

[67] J. Burnim, K. Sen, and C. Stergiou, “Testing concurrent programs
on relaxed memory models,” in Proceedings of the International
Symposium on Software Testing and Analysis, ser. ISSTA ’11. ACM,
2011, pp. 122–132.

[68] H. V. Jagadish, “A compression technique to materialize transi-
tive closure,” ACM Transactions on Database Systems, vol. 15, no. 4,
pp. 558–598, 1990.

[69] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and
M. Sridharan, “Efficient and precise datarace detection for mul-
tithreaded object-oriented programs,” in Proceedings of the Con-
ference on Programming Language Design and Implementation, ser.
PLDI ’02. ACM, 2002, pp. 258–269.

[70] B. Kasikci, C. Zamfir, and G. Candea, “Racemob: Crowdsourced
data race detection,” in Proceedings of the Symposium on Operating
Systems Principles, ser. SOSP ’13. ACM, 2013, pp. 406–422.

[71] K. Sen, “Race directed random testing of concurrent programs,”
in Proceedings of the Conference on Programming Language Design
and Implementation, ser. PLDI ’08. ACM, 2008, pp. 11–21.

[72] Y. Yu, T. Rodeheffer, and W. Chen, “Racetrack: Efficient detection
of data race conditions via adaptive tracking,” in Proceedings of the
Symposium on Operating Systems Principles, ser. SOSP ’05. ACM,
2005, pp. 221–234.

[73] T. Elmas, S. Qadeer, and S. Tasiran, “Goldilocks: A race and
transaction-aware java runtime,” in Proceedings of the Conference
on Programming Language Design and Implementation, ser. PLDI ’07.
ACM, 2007, pp. 245–255.

[74] E. Pozniansky and A. Schuster, “Efficient on-the-fly data race
detection in multithreaded c++ programs,” in Proceedings of the
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’03. ACM, 2003, pp. 179–190.

[75] T. Yu, W. Srisa-an, and G. Rothermel, “Simrt: An automated
framework to support regression testing for data races,” in Pro-
ceedings of the International Conference on Software Engineering, ser.
ICSE 2014. ACM, 2014, pp. 48–59.

[76] M. Eslamimehr and J. Palsberg, “Race directed scheduling of con-
current programs,” in Proceedings of the Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP ’14. ACM, 2014,
pp. 301–314.

[77] M. Samak, M. K. Ramanathan, and S. Jagannathan, “Synthesiz-
ing racy tests,” in Proceedings of the Conference on Programming
Language Design and Implementation, ser. PLDI ’15. ACM, 2015,
pp. 175–185.

[78] O. Shacham, N. Bronson, A. Aiken, M. Sagiv, M. Vechev, and
E. Yahav, “Testing atomicity of composed concurrent operations,”
in Proceedings of the Conference on Object-Oriented Programming
Systems and Applications, ser. OOPSLA ’11. ACM, 2011, pp. 51–
64.

[79] D. Dimitrov, V. Raychev, M. Vechev, and E. Koskinen, “Com-
mutativity race detection,” in Proceedings of the Conference on

Programming Language Design and Implementation, ser. PLDI ’14.
ACM, 2014, pp. 305–315.

[80] M. Vechev, E. Yahav, and G. Yorsh, “Experience with model
checking linearizability,” in Model Checking Software. Springer,
2009, pp. 261–278.

[81] M. Xu, R. Bodı́k, and M. D. Hill, “A serializability violation de-
tector for shared-memory server programs,” in Proceedings of the
Conference on Programming Language Design and Implementation,
ser. PLDI ’05. ACM, 2005, pp. 1–14.

[82] Q. Chen, L. Wang, Z. Yang, and S. D. Stoller, “Have: Detecting
atomicity violations via integrated dynamic and static analysis,”
in Proceedings of the International Conference on Fundamental Ap-
proaches to Software Engineering, ser. FASE ’09. Springer, 2009,
pp. 425–439.

[83] C.-S. Park and K. Sen, “Randomized active atomicity violation
detection in concurrent programs,” in Proceedings of the ACM
SIGSOFT International Symposium on Foundations of Software En-
gineering, ser. FSE ’08. ACM, 2008, pp. 135–145.

[84] L. Wang and S. D. Stoller, “Runtime analysis of atomicity for
multithreaded programs,” vol. 32, no. 2, pp. 93–110, 2006.

[85] S. Park, S. Lu, and Y. Zhou, “Ctrigger: exposing atomicity
violation bugs from their hiding places,” in Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’09. ACM, 2009,
pp. 25–36.

[86] S. Park, R. W. Vuduc, and M. J. Harrold, “Falcon: Fault localiza-
tion in concurrent programs,” in Proceedings of the International
Conference on Software Engineering, ser. ICSE ’10. ACM, 2010, pp.
245–254.

[87] M. K. Ganai, “Scalable and precise symbolic analysis for atom-
icity violations,” in Proceedings of the International Conference on
Automated Software Engineering, ser. ASE ’11. IEEE Computer
Society, 2011, pp. 123–132.

[88] S. Biswas, J. Huang, A. Sengupta, and M. D. Bond, “Dou-
blechecker: efficient sound and precise atomicity checking,” in
Proceedings of the Conference on Programming Language Design and
Implementation, ser. PLDI ’14. ACM, 2014, pp. 28–39.

[89] M. Samak and M. K. Ramanathan, “Synthesizing tests for de-
tecting atomicity violations,” in Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE ’15. ACM, 2015.

[90] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
control and recovery in database systems. Addison-Wesley, 1987.

[91] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and
Y. Zhou, “Muvi: Automatically inferring multi-variable access
correlations and detecting related semantic and concurrency
bugs,” in Proceedings of the Symposium on Operating Systems Prin-
ciples, ser. SOSP ’07. ACM, 2007, pp. 103–116.

[92] Z. Lai, S. C. Cheung, and W. K. Chan, “Detecting atomic-set se-
rializability violations in multithreaded programs through active
randomized testing,” in Proceedings of the International Conference
on Software Engineering, ser. ICSE ’10. ACM, 2010, pp. 235–244.

[93] V. Terragni, S.-C. Cheung, and C. Zhang, “Recontest: Effective
regression testing of concurrent programs,” in Proceedings of the
International Conference on Software Engineering, ser. ICSE ’15.
ACM, 2015.

[94] K. Havelund, “Using runtime analysis to guide model checking
of java programs,” in Proceedings of the International SPIN Work-
shop on SPIN Model Checking and Software Verification, ser. SPIN
’00. Springer, 2000, pp. 245–264.

[95] P. Joshi, C. Park, K. Sen, and M. Naik, “A randomized dynamic
program analysis technique for detecting real deadlocks,” in
Proceedings of the Conference on Programming Language Design and
Implementation, ser. PLDI ’09. ACM, 2009, pp. 110–120.

[96] Y. Cai and W. K. Chan, “Magicfuzzer: Scalable deadlock detection
for large-scale applications,” in Proceedings of the International
Conference on Software Engineering, ser. ICSE ’12. IEEE Computer
Society, 2012, pp. 606–616.

[97] M. Samak and M. K. Ramanathan, “Trace driven dynamic dead-
lock detection and reproduction,” in Proceedings of the Symposium
on Principles and Practice of Parallel Programming, ser. PPoPP ’14.
ACM, 2014, pp. 29–42.

[98] Y. Cai, S. Wu, and W. K. Chan, “Conlock: a constraint-based
approach to dynamic checking on deadlocks in multithreaded
programs,” in Proceedings of the International Conference on Software
Engineering, ser. ICSE ’14. ACM, 2014, pp. 491–502.

[99] M. Eslamimehr and J. Palsberg, “Sherlock: scalable deadlock
detection for concurrent programs,” in Proceedings of the ACM
SIGSOFT International Symposium on Foundations of Software Engi-
neering, ser. FSE ’14. ACM, 2014, pp. 353–365.

[100] M. Samak and M. K. Ramanathan, “Multithreaded test synthesis
for deadlock detection,” in Proceedings of the Conference on Object-
Oriented Programming Systems and Applications, ser. OOPSLA ’14.
ACM, 2014, pp. 473–489.

[101] T. Cogumbreiro, R. Hu, F. Martins, and N. Yoshida, “Dynamic
deadlock verification for general barrier synchronisation,” in
Proceedings of the Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’15. ACM, 2015, pp. 150–160.

[102] R. Agarwal, A. Sasturkar, L. Wang, and S. D. Stoller, “Optimized
run-time race detection and atomicity checking using partial
discovered types,” in Proceedings of the International Conference on
Automated Software Engineering, ser. ASE ’05. ACM, 2005, pp.
233–242.

[103] J. Chen and S. MacDonald, “Testing concurrent programs using
value schedules,” in Proceedings of the International Conference on
Automated Software Engineering, ser. ASE ’07. ACM, 2007, pp.
313–322.

[104] V. Kahlon and C. Wang, “Universal causality graphs: A precise
happens-before model for detecting bugs in concurrent pro-
grams,” in Proceedings of the International Conference on Computer
Aided Verification, ser. CAV ’10. Springer, 2010, pp. 434–449.

[105] J. Huang and C. Zhang, “Persuasive prediction of concurrency
access anomalies,” in Proceedings of the International Symposium
on Software Testing and Analysis, ser. ISSTA ’11. ACM, 2011, pp.
144–154.

[106] P. Joshi and K. Sen, “Predictive typestate checking of multi-
threaded java programs,” in Proceedings of the International Con-
ference on Automated Software Engineering, ser. ASE ’08. IEEE
Computer Society, 2008, pp. 288–296.

[107] Q. Gao, W. Zhang, Z. Chen, M. Zheng, and F. Qin, “2ndstrike:
Toward manifesting hidden concurrency typestate bugs,” in Pro-
ceedings of the International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’11.
ACM, 2011, pp. 239–250.

[108] W. Zhang, C. Sun, and S. Lu, “Conmem: Detecting severe concur-
rency bugs through an effect-oriented approach,” in Proceedings
of the International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ser. ASPLOS XV. ACM,
2010, pp. 179–192.

[109] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin, S. Lu, and
T. Reps, “Conseq: Detecting concurrency bugs through sequential
errors,” in Proceedings of the International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
ser. ASPLOS XVI. ACM, 2011, pp. 251–264.

[110] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam, “Maple: a
coverage-driven testing tool for multithreaded programs,” in Pro-
ceedings of the Conference on Object-Oriented Programming Systems
and Applications, ser. OOPSLA ’12. ACM, 2012, pp. 485–502.

[111] F. Chen, T. F. Serbanuta, and G. Rosu, “jpredictor: A predictive
runtime analysis tool for java,” in Proceedings of the International
Conference on Software Engineering, ser. ICSE ’08. ACM, 2008, pp.
221–230.

[112] N. Sinha and C. Wang, “Staged concurrent program analysis,”
in Proceedings of the ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE ’10. ACM, 2010, pp.
47–56.

[113] J. Huang, Q. Luo, and G. Rosu, “Gpredict: Generic predictive
concurrency analysis,” in Proceedings of the International Conference
on Software Engineering, ser. ICSE ’15. ACM, 2015.

[114] Y. Shi, S. Park, Z. Yin, S. Lu, Y. Zhou, W. Chen, and W. Zheng,
“Do i use the wrong definition?: Defuse: Definition-use invariants
for detecting concurrency and sequential bugs,” in Proceedings of
the Conference on Object-Oriented Programming Systems and Appli-
cations, ser. OOPSLA ’10. ACM, 2010, pp. 160–174.

[115] T. Yu, W. Srisa-an, and G. Rothermel, “Simracer: An automated
framework to support testing for process-level races,” in Proceed-
ings of the International Symposium on Software Testing and Analysis,
ser. ISSTA ’13. ACM, 2013, pp. 167–177.

[116] C.-H. Hsiao, J. Yu, S. Narayanasamy, Z. Kong, C. L. Pereira,
G. A. Pokam, P. M. Chen, and J. Flinn, “Race detection for event-
driven mobile applications,” in Proceedings of the Conference on
Programming Language Design and Implementation, ser. PLDI ’14.
ACM, 2014, pp. 326–336.

[117] E. Mutlu, S. Tasiran, and B. Livshits, “Detecting javascript races
that matter,” in Proceedings of the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE ’15.
ACM, 2015.

[118] R. E. Strom and S. Yemini, “Typestate: A programming language
concept for enhancing software reliability,” IEEE Transactions on
Software Engineering, no. 1, pp. 157–171, 1986.

[119] P. Fonseca, C. Li, and R. Rodrigues, “Finding complex concur-
rency bugs in large multi-threaded applications,” in Proceedings
of the ACM SIGOPS EuroSys European Conference on Computer
Systems, ser. EuroSys ’11. ACM, 2011, pp. 215–228.

[120] M. Pradel, M. Huggler, and T. R. Gross, “Performance regression
testing of concurrent classes,” in Proceedings of the International
Symposium on Software Testing and Analysis, ser. ISSTA 2014.
ACM, 2014, pp. 13–25.

[121] A. Nistor, Q. Luo, M. Pradel, T. R. Gross, and D. Marinov, “Bal-
lerina: Automatic generation and clustering of efficient random
unit tests for multithreaded code,” in Proceedings of the Interna-
tional Conference on Software Engineering, ser. ICSE ’12. IEEE
Computer Society, 2012, pp. 727–737.

[122] M. Pradel and T. R. Gross, “Fully automatic and precise detection
of thread safety violations,” in Proceedings of the Conference on
Programming Language Design and Implementation, ser. PLDI ’12.
ACM, 2012, pp. 521–530.

[123] ——, “Automatic testing of sequential and concurrent substi-
tutability,” in Proceedings of the International Conference on Software
Engineering, ser. ICSE ’13. IEEE Computer Society, 2013, pp.
282–291.

[124] K. Sen and G. Agha, “Automated systematic testing of open dis-
tributed programs,” in Proceedings of the International Conference
on Fundamental Approaches to Software Engineering, ser. FASE ’06.
Springer, 2006, pp. 339–356.

[125] S. Lauterburg, M. Dotta, D. Marinov, and G. A. Agha, “A frame-
work for state-space exploration of java-based actor programs,”
in Proceedings of the International Conference on Automated Software
Engineering, ser. ASE ’09. IEEE Computer Society, 2009, pp. 468–
479.

[126] P. Joshi, M. Naik, K. Sen, and D. Gay, “An effective dynamic
analysis for detecting generalized deadlocks,” in Proceedings of the
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE ’10. ACM, 2010, pp. 327–336.

[127] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber, “Math-
ematizing c++ concurrency,” in Proceedings of the Symposium on
Principles of Programming Languages, ser. POPL ’11. ACM, 2011,
pp. 55–66.

[128] J. Dingel and H. Liang, “Automating comprehensive safety anal-
ysis of concurrent programs using verisoft and txl,” in Proceedings
of the ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE ’12. ACM, 2004, pp. 13–22.

[129] B. Norris and B. Demsky, “Cdschecker: Checking concurrent data
structures written with c/c++ atomics,” in Proceedings of the Con-
ference on Object-Oriented Programming Systems and Applications,
ser. OOPSLA ’13. ACM, 2013, pp. 131–150.

[130] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A
comprehensive study on real world concurrency bug characteris-
tics,” in Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS ’08. ACM, 2008, pp. 329–339.

[131] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid, “Test input gen-
eration with java pathfinder,” in Proceedings of the International
Symposium on Software Testing and Analysis, ser. ISSTA ’04. ACM,
2004, pp. 97–107.

[132] J. C. Blanchette, T. Weber, M. Batty, S. Owens, and S. Sarkar,
“Nitpicking c++ concurrency,” in Proceedings of the International
Symposium on Principles and Practices of Declarative Programming,
ser. PPDP ’11. ACM, 2011, pp. 113–124.

[133] C. Wang, M. Said, and A. Gupta, “Coverage guided systematic
concurrency testing,” in Proceedings of the International Conference
on Software Engineering, ser. ICSE ’11. ACM, 2011, pp. 221–230.

[134] S. Hong, J. Ahn, S. Park, M. Kim, and M. J. Harrold, “Testing
concurrent programs to achieve high synchronization coverage,”
in Proceedings of the International Symposium on Software Testing
and Analysis, ser. ISSTA ’12. ACM, 2012, pp. 210–220.

[135] S. Tasharofi, M. Pradel, Y. Lin, and R. E. Johnson, “Bita: Coverage-
guided, automatic testing of actor programs,” in Proceedings of
the International Conference on Automated Software Engineering, ser.
ASE ’13. IEEE Computer Society, 2013, pp. 114–124.

[136] E. Trainin, Y. Nir-Buchbinder, R. Tzoref-Brill, A. Zlotnick, S. Ur,
and E. Farchi, “Forcing small models of conditions on program
interleaving for detection of concurrent bugs,” in Proceedings of
the Workshop on Parallel and Distributed Systems: Testing, Analysis,
and Debugging, ser. PADTAD ’09. ACM, 2009, pp. 1–6.

[137] K. Sen, “Effective random testing of concurrent programs,” in
Proceedings of the International Conference on Automated Software
Engineering, ser. ASE ’07. ACM, 2007, pp. 323–332.

[138] S. Burckhardt, P. Kothari, M. Musuvathi, and S. Nagarakatte, “A
randomized scheduler with probabilistic guarantees of finding
bugs,” in Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS ’10. ACM, 2010, pp. 167–178.

[139] K. E. Coons, S. Burckhardt, and M. Musuvathi, “Gambit: Effec-
tive unit testing for concurrency libraries,” in Proceedings of the
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’10. ACM, 2010, pp. 15–24.

[140] K. Sen, G. Rosu, and G. Agha, “Runtime safety analysis of
multithreaded programs,” in Proceedings of the ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
ESEC/FSE ’03. ACM, 2003, pp. 337–346.

[141] S. Chandra and P. M. Chen, “Whither generic recovery from
application faults? a fault study using open-source software,” in
Proceedings of the International Conference on Dependable Systems
and Networks, ser. DSN 2000, 2000, pp. 97–106.

[142] P. Fonseca, C. Li, V. Singhal, and R. Rodrigues, “A study of the
internal and external effects of concurrency bugs,” in Proceedings
of the International Conference on Dependable Systems and Networks,
ser. DSN ’10, 2010, pp. 221–230.

[143] Y. Lin and D. Dig, “Check-then-act misuse of java concurrent col-
lections,” in Proceedings of the International Conference on Software
Testing, Verification and Validation, ser. ICST ’13, 2013, pp. 164–173.

[144] Z. Lin, D. Marinov, H. Zhong, Y. Chen, and J. Zhao, “Jacontebe:
A benchmark suite of real-world java concurrency bugs (t),” in
Proceedings of the International Conference on Automated Software
Engineering, ser. ASE ’15. IEEE Computer Society, 2015, pp. 178–
189.

[145] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model
checking programs,” Automated Software Engineering, vol. 10,
no. 2, pp. 203–232, 2003.

[146] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction
for model checking software,” in Proceedings of the Symposium on
Principles of Programming Languages, ser. POPL ’05. ACM, 2005,
pp. 110–121.

[147] K. Kähkönen, O. Saarikivi, and K. Heljanko, “Using unfoldings
in automated testing of multithreaded programs,” in Proceedings
of the International Conference on Automated Software Engineering,
ser. ASE 2012. ACM, 2012, pp. 150–159.

[148] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Ap-
proach, 2nd ed. Pearson Education, 2003.

[149] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu, “Finding and reproducing heisenbugs in concurrent
programs,” in Proceedings of the Symposium on Operating Systems
Design and Implementation, ser. OSDI ’08. USENIX Association,
2008, pp. 267–280.

[150] M. Musuvathi and S. Qadeer, “Fair stateless model checking,” in
Proceedings of the Conference on Programming Language Design and
Implementation, ser. PLDI ’08. ACM, 2008, pp. 362–371.

[151] M. Emmi, S. Qadeer, and Z. Rakamarić, “Delay-bounded
scheduling,” in Proceedings of the Symposium on Principles of Pro-
gramming Languages, ser. POPL ’11. ACM, 2011, pp. 411–422.

[152] P. Thomson, A. F. Donaldson, and A. Betts, “Concurrency testing
using schedule bounding: An empirical study,” in Proceedings of
the Symposium on Principles and Practice of Parallel Programming,
ser. PPoPP ’14. ACM, 2014, pp. 15–28.

[153] S. Bindal, S. Bansal, and A. Lal, “Variable and thread bounding
for systematic testing of multithreaded programs,” in Proceedings
of the International Symposium on Software Testing and Analysis, ser.
ISSTA ’13. ACM, 2013, pp. 145–155.

[154] V. Jagannath, Q. Luo, and D. Marinov, “Change-aware preemp-
tion prioritization,” in Proceedings of the International Symposium
on Software Testing and Analysis, ser. ISSTA ’11. ACM, 2011, pp.
133–143.

[155] A. Bron, E. Farchi, Y. Magid, Y. Nir, and S. Ur, “Applications
of synchronization coverage,” in Proceedings of the Symposium
on Principles and Practice of Parallel Programming, ser. PPoPP ’05.
ACM, 2005, pp. 206–212.

[156] S. Lu, W. Jiang, and Y. Zhou, “A study of interleaving coverage
criteria,” in Proceedings of the European Software Engineering Con-
ference held jointly with the ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. ESEC-FSE companion
’07. ACM, 2007, pp. 533–536.

[157] B. Křena, Z. Letko, and T. Vojnar, “Coverage metrics for
saturation-based and search-based testing of concurrent soft-
ware,” in Proceedings of the International Conference on Runtime
Verification, ser. RV ’12. Springer, 2012, pp. 177–192.

[158] S. Hong, M. Staats, J. Ahn, M. Kim, and G. Rothermel, “The
impact of concurrent coverage metrics on testing effectiveness,”
in Proceedings of the International Conference on Software Testing,
Verification and Validation, ser. ICST ’13. IEEE Computer Society,
2013, pp. 232–241.

[159] Y. Jia and M. Harman, “An analysis and survey of the de-
velopment of mutation testing,” IEEE Transactions on Software
Engineering, vol. 37, no. 5, pp. 649–678, Sep. 2011.

[160] J. S. Bradbury, J. R. Cordy, and J. Dingel, “Mutation operators
for concurrent java (j2se 5.0),” in Proceedings of the Workshop on
Mutation Analysis, ser. MUTATION ’06. IEEE Computer Society,
2006, pp. 11–11.

[161] B. K. Aichernig and C. C. Delgado, “From faults via test purposes
to test cases: On the fault-based testing of concurrent systems,”
in Proceedings of the International Conference on Fundamental Ap-
proaches to Software Engineering, ser. FASE ’06. Springer, 2006,
pp. 324–338.

[162] A. Sen and M. S. Abadir, “Coverage metrics for verification
of concurrent systemc designs using mutation testing,” in Pro-
ceedings of the International High Level Design Validation and Test
Workshop, ser. HLDVT ’10. IEEE Computer Society, 2010, pp.
75–81.

[163] R. H. Carver, “Mutation-based testing of concurrent programs,”
in Proceedings of the International Test Conference, ser. ITC ’93. IEEE
Computer Society, 1993, pp. 845–853.

[164] M. Gligoric, V. Jagannath, and D. Marinov, “Mutmut: Efficient
exploration for mutation testing of multithreaded code,” in Pro-
ceedings of the International Conference on Software Testing, Verifica-
tion and Validation, ser. ICST ’10. IEEE Computer Society, 2010,
pp. 55–64.

[165] M. Gligoric, L. Zhang, C. Pereira, and G. Pokam, “Selective muta-
tion testing for concurrent code,” in Proceedings of the International
Symposium on Software Testing and Analysis, ser. ISSTA ’13. ACM,
2013, pp. 224–234.

[166] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using magpie
for request extraction and workload modelling,” in Proceedings
of the Symposium on Operating Systems Design and Implementation,
ser. OSDI ’04. USENIX Association, 2004, pp. 18–18.

[167] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-
trace: A pervasive network tracing framework,” in Proceedings of
the Conference on Networked Systems Design & Implementation, ser.
NSDI ’07. USENIX Association, 2007, pp. 20–20.

[168] P. Reynolds, C. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah,
and A. Vahdat, “Pip: Detecting the unexpected in distributed
systems,” in Proceedings of the Conference on Networked Systems
Design & Implementation, ser. NSDI ’06. USENIX Association,
2006, pp. 9–9.

[169] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica, “Friday:
Global comprehension for distributed replay,” in Proceedings of
the Conference on Networked Systems Design & Implementation, ser.
NSDI ’07. USENIX Association, 2007, pp. 21–21.

[170] X. Liu, W. Lin, A. Pan, and Z. Zhang, “Wids checker: Combating
bugs in distributed systems,” in Proceedings of the Conference
on Networked Systems Design & Implementation, ser. NSDI ’07.
USENIX Association, 2007, pp. 257–270.

[171] K. Nagaraj, C. Killian, and J. Neville, “Structured comparative
analysis of systems logs to diagnose performance problems,”
in Proceedings of the Conference on Networked Systems Design &
Implementation, ser. NSDI ’12. USENIX Association, 2012, pp.
26–26.

[172] A. Singh, P. Maniatis, T. Roscoe, and P. Druschel, “Using queries
for distributed monitoring and forensics,” in Proceedings of the
ACM SIGOPS EuroSys European Conference on Computer Systems,
ser. EuroSys ’06. ACM, 2006, pp. 389–402.

[173] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu, M. F.
Kaashoek, and Z. Zhang, “D3s: Debugging deployed distributed
systems,” in Proceedings of the Conference on Networked Systems

Design & Implementation, ser. NSDI ’08. USENIX Association,
2008, pp. 423–437.

[174] D. Dao, J. Albrecht, C. Killian, and A. Vahdat, “Live debugging of
distributed systems,” in Proceedings of the International Conference
on Compiler Construction, ser. CC ’09. Springer, 2009, pp. 94–108.

[175] M. Yabandeh, N. Knezevic, D. Kostic, and V. Kuncak, “Crys-
talball: Predicting and preventing inconsistencies in deployed
distributed systems,” in Proceedings of the Conference on Networked
Systems Design & Implementation, ser. NSDI ’09. USENIX Asso-
ciation, 2009, pp. 229–244.

[176] M. Yabandeh, N. Knežević, D. Kostić, and V. Kuncak, “Predicting
and preventing inconsistencies in deployed distributed systems,”
ACM Transactions on Computer Systems, vol. 28, no. 1, pp. 1–49,
2010.

[177] D. R. Engler and K. Ashcraft, “Racerx: effective, static detection
of race conditions and deadlocks,” in Proceedings of the Symposium
on Operating Systems Principles, ser. SOSP ’03. ACM, 2003, pp.
237–252.

[178] C. von Praun and T. R. Gross, “Static detection of atomicity vio-
lations in object-oriented programs,” Journal of Object Technology,
vol. 3, no. 6, pp. 103–122, 2004.

[179] A. Williams, W. Thies, and M. D. Ernst, “Static deadlock detection
for java libraries,” in Proceedings of the European Conference on
Object-Oriented Programming, ser. ECOOP ’05. Springer, 2005,
pp. 602–629.

[180] M. Naik, C. Park, K. Sen, and D. Gay, “Effective static deadlock
detection,” in Proceedings of the International Conference on Software
Engineering, ser. ICSE ’09. IEEE Computer Society, 2009, pp. 386–
396.

[181] D. Marino, C. Hammer, J. Dolby, M. Vaziri, F. Tip, and J. Vitek,
“Detecting deadlock in programs with data-centric synchroniza-
tion,” in Proceedings of the International Conference on Software
Engineering, ser. ICSE ’13. IEEE Computer Society, 2013, pp.
322–331.

[182] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking.
MIT Press, 1999.

[183] E. A. Emerson and E. M. Clarke, “Characterizing correctness
properties of parallel programs using fixpoints,” in Proceedings
of the Colloquium on Automata, Languages and Programming, ser.
ICALP ’80. Springer, 1980, pp. 169–181.

[184] J. P. Queille and J. Sifakis, “Specification and verification of
concurrent systems in cesar.” Springer, 1982, pp. 337–351.

[185] B. Sarikaya and G. V. Bochmann, “Synchronization and specifica-
tion issues in protocol testing,” vol. 32, no. 4, pp. 389–395, 1984.

[186] R. M. Hierons and H. Ural, “The effect of the distributed test
architecture on the power of testing,” The Computer Journal,
vol. 51, no. 4, pp. 497–510, 2008.

[187] E. Brinksma, L. Heerink, and J. Tretmans, “Factorized test gen-
eration for multi-input/output transition systems,” in Testing of
Communicating Systems. Springer, 1998, pp. 67–82.

[188] R. Hierons, M. Merayo, and M. Nez, “Implementation relations
and test generation for systems with distributed interfaces,”
Distributed Computing, vol. 25, no. 1, pp. 35–62, 2012.

[189] G. Bochmann, S. Haar, C. Jard, and G.-V. Jourdan, “Testing
systems specified as partial order input/output automata,” in
Testing of Software and Communicating Systems, ser. Lecture Notes
in Computer Science. Springer, 2008, pp. 169–183.

[190] S. Haar, C. Jard, and G.-V. Jourdan, “Testing input/output partial
order automata,” in Testing of Software and Communicating Sys-
tems. Springer, 2007, pp. 171–185.

[191] H. Ponce de Leòn, S. Haar, and D. Longuet, “Unfolding-based
test selection for concurrent conformance,” in Testing Software and
Systems. Springer, 2013, pp. 98–113.

[192] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon, Parallel Programming in OpenMP. Morgan Kaufmann
Publishers, 2001.

[193] K. Sakamoto and T. Furumoto, Pro Multithreading and Memory
Management for iOS and OS X. Apress, 2012, ch. Grand Central
Dispatch, pp. 139–145.

[194] A. Santhiar, S. Kaleeswaran, and A. Kanade, “Efficient race detec-
tion in the presence of programmatic event loops,” in Proceedings
of the International Symposium on Software Testing and Analysis, ser.
ISSTA 2016. ACM, 2016, pp. 366–376.

[195] C. Campbell, R. Johnson, A. Miller, and S. Toub, Parallel Program-
ming with Microsoft .NET: Design Patterns for Decomposition and
Coordination on Multicore Architectures. Microsoft Press, 2010.

[196] S. Okur, D. L. Hartveld, D. Dig, and A. v. Deursen, “A study and
toolkit for asynchronous programming in c#,” in Proceedings of
the International Conference on Software Engineering, ser. ICSE 2014.
ACM, 2014, pp. 1117–1127.

[197] S. Peyton Jones, A. Gordon, and S. Finne, “Concurrent haskell,”
in Proceedings of the Symposium on Principles of Programming Lan-
guages, ser. POPL ’96. ACM, 1996, pp. 295–308.

[198] J. Dean and S. Ghemawat, “Mapreduce: Simplified data process-
ing on large clusters,” Communications of the ACM, vol. 51, no. 1,
pp. 107–113, 2008.

[199] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica, “Spark: Cluster computing with working sets,” in Proceedings
of the USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’10. USENIX Association, 2010, pp. 10–10.

[200] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske,
A. Heise, O. Kao, M. Leich, U. Leser, V. Markl, F. Naumann,
M. Peters, A. Rheinländer, M. J. Sax, S. Schelter, M. Höger,
K. Tzoumas, and D. Warneke, “The stratosphere platform for big
data analytics,” vol. 23, no. 6, pp. 939–964, 2014.

[201] E. Meijer, “Your mouse is a database,” ACM Queue, vol. 10, no. 3,
pp. 20–33, 2012.

[202] R. Virding, C. Wikström, and M. Williams, Concurrent Program-
ming in ERLANG (2Nd Ed.), J. Armstrong, Ed. Prentice Hall
International (UK) Ltd., 1996.

[203] C. Flanagan and M. Abadi, “Types for safe locking,” in Proceed-
ings of the European Symposium on Programming Languages and
Systems, ser. ESOP ’99. Springer, 1999, pp. 91–108.

[204] N. Kobayashi, “A new type system for deadlock-free processes,”
in Proceedings of the International Conference on Concurrency Theory,
ser. CONCUR ’06. Springer, 2006, pp. 233–247.

[205] C. Flanagan and S. N. Freund, “Type-based race detection for
java,” in Proceedings of the Conference on Programming Language
Design and Implementation, ser. PLDI ’00. ACM, 2000, pp. 219–232.

[206] C. Boyapati and M. Rinard, “A parameterized type system for
race-free java programs,” in Proceedings of the Conference on Object-
Oriented Programming Systems and Applications, ser. OOPSLA ’01.
ACM, 2001, pp. 56–69.

[207] Z. Anderson, D. Gay, R. Ennals, and E. Brewer, “Sharc: Checking
data sharing strategies for multithreaded c,” in Proceedings of the
Conference on Programming Language Design and Implementation,
ser. PLDI ’08. ACM, 2008, pp. 149–158.

[208] C. Flanagan and S. Qadeer, “A type and effect system for atom-
icity,” in Proceedings of the Conference on Programming Language
Design and Implementation, ser. PLDI ’03. ACM, 2003, pp. 338–349.

[209] S. West, S. Nanz, and B. Meyer, “Efficient and reasonable object-
oriented concurrency,” in Proceedings of the Symposium on Princi-
ples and Practice of Parallel Programming, ser. PPoPP 2015. ACM,
2015, pp. 273–274.

[210] S. T. Heumann, V. S. Adve, and S. Wang, “The tasks with effects
model for safe concurrency,” in Proceedings of the Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP ’13.
ACM, 2013, pp. 239–250.

[211] P. Deligiannis, A. F. Donaldson, J. Ketema, A. Lal, and P. Thom-
son, “Asynchronous programming, analysis and testing with
state machines,” in Proceedings of the Conference on Programming
Language Design and Implementation, ser. PLDI 2015. ACM, 2015,
pp. 154–164.

[212] R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve, S. Heumann,
R. Komuravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakil-ian,
“A type and effect system for deterministic parallel java,” in
Proceedings of the Conference on Object-Oriented Programming Systems
and Applications, ser. OOPSLA ’09. ACM, 2009, pp. 97–116.

[213] E. D. Berger, T. Yang, T. Liu, and G. Novark, “Grace:
Safe multithreaded programming for c/c++,” in Proceedings of the
Con-ference on Object-Oriented Programming Systems and
Applications, ser. OOPSLA ’09. ACM, 2009, pp. 81–96.

[214] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman,
“Coredet: A compiler and runtime system for deterministic mul-
tithreaded execution,” in Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS XV. ACM, 2010, pp. 53–64.

[215] T. Liu, C. Curtsinger, and E. D. Berger, “Dthreads:
Efficient deterministic multithreading,” in Proceedings of the
Symposium on Operating Systems Principles, ser. SOSP ’11.

ACM, 2011, pp. 327–336.
[216] A. Aviram, S.-C. Weng, S. Hu, and B. Ford, “Efficient system-

enforced deterministic parallelism,” Communications of the ACM,
vol. 55, no. 5, pp. 111–119, 2012.

