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Abstract-A survey of Reed-Muller (RM) coding is given with 
the goal of establishing a continuity between RM codes and polar 
codes. The focus is mainly on recursive decoding methods for RM 
codes and other ideas that are most relevant to polar coding. 

Index Terms-Reed-Muller codes, polar codes, channel polar­
ization. 

I. RM CODES 

RM codes were discovered by Muller [1] and Reed [2]. 
For every pair of integers 0 :::; r :::; m, there is an RM code, 
denoted RM(r, m), with block-length n = 2m, dimension k = 

L�=o (7), and minimum distance d = 2m-T• For each m 2: 
0, the code RM(O, m) is the repetition code and RM(m, m) 
is the trivial code consisting of all binary n-tuples. All other 
RM codes can be obtained by the Plotkin construction [3], 
also known as the lulu + v i construction, by the recursion 

RM(r, m) = { (u, u + v) :u E RM(r, m -1), 
v E RM(r -I,m -I)}. 

(1) 

A more explicit algebraic description of RM codes is given 
by first specifying a generator matrix for RM(m, m) as 

GRM(m,m) = F®m, F = [� �], (2) 

where F®m denotes the mth Kronecker power of F. Then, for 
o :::; r :::; m, GRM(r, m), the generator matrix of RM(r, m), 
is taken as the submatrix of G RM (m, m) consisting of rows 
with Hamming weights 2: 2m-T• The equivalence of these two 
constructions is well-known (see, e.g. , [4, p. 114]) . 

For example, for m = 3, we have 

1 0 0 0 0 0 0 0 
1 1 0 0 0 0 0 0 
1 0 1 0 0 0 0 0 

GRM(3,3) = 
1 1 1 1 0 0 0 0 
1 0 0 0 1 0 0 0 

(3) 

1 1 0 0 1 1 0 0 
1 0 1 0 1 0 1 0 
1 1 1 1 1 1 1 1 

and RM(l, 3) is the code with generator matrix 

G RM(I, 3) � [l 1 1 1 0 0 0 

] 
1 0 0 1 1 0 
0 1 0 1 0 1 
1 1 1 1 1 1 

(4) 

The encoding operation for all RM codes of a given length 
n = 2m can be represented universally as a transform 

x= dF®m (5) 

where d = (do, ... , dn-1 ) and x = (xo, ... , Xn-l ) represent 
data and code words, respectively. Depending on the order of 
the RM code to be encoded, some of the elements of dare 
fixed to zero. For example, for the RM(l, 3) code, the fixed 
coordinates are do, d1 , d2, and d4. The coordinates that are 
not fixed are free to take on any 0-1 value. 

The universal encoder can be implemented by a circuit of 
complexity O(n log n), as shown in Fig. 1 for n = 8. The 
figure also shows how a codeword x splits into two parts u 

and v, each of which in tum splits again into two parts, and 
so on, until one reaches single data elements di. For example, 
u has the form Irlr+sl, and s has the form Id5Id4+d51. Thus, 
this code has a three-level lulu + v i structure. 

Uo Y4 

Fig. I. Encoding and transmission of data. A codeword x is obtained by a 
circuit that mUltiplies a data word d by F0a. The codeword is sent over a 
memory less channel Wand a channel output y is received. 

The transform (5) can be used as an encoder for a broader 
class of codes than just RM codes. For a given pair of code 
parameters (n, k), there are (�) codes that can be encoded, 
each corresponding to a particular way of choosing the (n -k) 



frozen coordinates (coordinates of d that are fixed as zero) . 
Each code in this class admits a multi-level lulu + vi decom­
position, beginning at x and progressing recursively down to 
individual elements of d. 

Polar codes are members of this class. They choose the 
frozen coordinates using a channel-specific rule, as described 
in [5]. By adapting the code to the channel, polar coding is 
able to achieve the capacity of any symmetric binary-input 
channel. 

Since RM codes and polar codes share a common universal 
encoder, it is natural to expect that they can be decoded 
by similar algorithms. The following survey of decoding 
algorithms for RM codes shows that this is indeed the case. 
Many of the elements of polar coding can be found in the vast 
literature on RM coding. 

II. DECODING OF RM CODES 

We will examine four categories of RM decoders: (i) 
maximum-likelihood (ML) ,  (ii) majority-logic, (iii) recursive, 
and (iv) belief-propagation (BP) decoders. Our emphasis will 
be mainly on recursive decoders with soft-decisions since these 
are the most relevant ones for the purposes of this study. We 
have made no attempt to compile a complete list of references 
on RM decoders since this would be impossible within the 
scope of this brief survey. 

A. ML Decoders 

All known methods of ML decoding for general RM codes 
have exponential complexity. However, for first-order RM 
codes, RM(l, m) , there exist ML decoders of complexity 
O(n log n). Such a decoder was developed by Green [6] and 
applied to the RM(l, 5) code used in NASA's 1972 Mariner 
9 mission to send photographs of Mars. Green's design was 
based on a fast Hadamard transform (FHT) approach and its 
description may be found in [7, p. 419]. For first order RM 
codes, a symbol-by-symbol maximum a-posteriori probability 
(MAP) decoder of complexity O( n log n) has also been found 
[8]. 

Although ML decoding is not a practical alternative for RM 
codes in general, it can be used if the code block-length is 
sufficiently small. The trellis-based approach may be the most 
efficient implementation of ML decoding for RM codes. Trellis 
representations of RM codes have been studied in [9] and RM 
trellis complexity is known [10]. A comparison of RM codes 
and polar codes under trellis-based ML decoding has been 
carried out in [11] using BPSK modulation over an AWGN 
channel. These experiments show that for a given code size 
(n, k), polar codes tend to have smaller trellis complexity; the 
two codes have similar error-rates at low SNR, but RM codes 
perform visibly better at high SNR. This is explained by the 
better minimum distance properties of RM codes compared to 
polar codes [12]. 

A fundamental open problem on this subject is whether 
RM codes are capacity-achieving under ML decoding, at least 
for some channels with sufficient amount of symmetry. Some 
evidence in support of an affirmative answer to this open 

problem is presented in [13, Sect. III-B] based on different 
considerations. 

B. Majority-Logic Decoders 

The first low-complexity decoder for RM codes was the 
one proposed by Reed [2]. Descriptions of Reed's decoder 
can be found in [7, p. 385] and [4, p. 107]. This decoder had 
complexity O(nk) and could correct all error patterns up to 
half the minimum distance, d/2. Later work on Reed's decoder 
[14] showed that, asymptotically as the code length increased, 
it could in fact correct most error patterns of weight less than 
(d In d) /4 for any fixed rate 0 < R < 1 . A soft-decision 
version of Reed's algorithm was introduced in [15], which 
increased the number of correctable errors by a factor of 4/7r. 

Reed's decoder is mainly of historical interest since it 
has been superseded by more powerful and less complex 
decoding algorithms. Historically, it was the first example 
of a "successive cancellation" decoder. It made decisions 
on information bits one at a time and applied cancellation 
(decision feedback) before moving on to the next bit in the 
decoding sequence. Reed's decoder was also the first majority­
logic decoder, a term that came to be used for a more general 
class of of decoders [16]. 

C. Recursive Decoders 

By recursive decoders for RM codes, we mean decoders that 
take advantage of the multi-level lulu + vi structure of RM 
codes. These decoders incorporate multiple decision stages and 
each stage feeds its decision to the next stage. There exist 
such decoders with computational complexity O( n log n) and 
performance better than the majority-logic decoders discussed 
above. 

There appears to be a gap of more than two decades between 
the discovery of RM codes and the introduction of recursive 
decoders for RM codes. The 1977 book [7] by MacWilliams 
and Sloane discusses RM codes in encyclopedic detail but 
does not mention any recursive decoder based on their lulu + 
vi structure. The slow pace of advance in recursive decoding 
techniques for RM codes may have been due to a lack of 
interest in these codes apparently because they were perceived 
inferior to other alternatives.! 

Renewed interest in lulu+vl constructions, and RM codes 
in particular, seems to have been awakened as part of a 
wave of interrelated ideas known as "multi-level coding" [17], 
"generalized concatenated coding" [18], [19], and "trellis­
based representations and decoding of block codes" [20]. 
Examples of papers that treat RM codes from these broader 
perspectives are [9], [21], and [22]. An exposition of this 
line of work on recursive decoders designed for multi-level 
lulu + vi codes, and RM codes in particular, is given in [4, 
Chapter 15]. 

We have not been able to pin-point the first paper where a 
recursive decoder for RM codes was given. For the purposes 
of this survey, the paper [23] by Schnabl and Bossert is a 

I A recent review paper by Costello and Forney [13, Sections m.B and 
IVE] gives a more positive assessment of RM codes. 



good starting point to discuss recursive RM decoders since 
it describes such a decoder explicitly and uses a simple 
setting and notation.2 We will describe the main ideas of 
the decoding algorithm in [23] using a small example. Our 
presentation differs from that in [23] and is designed to show 
the connections to polar coding. 

Consider using the code RM(l, 3) over a discrete memory­
less channel (OMC) W. The system model is that depicted in 
Fig. 1 with the data bits uo, Ul, U2, and U4 set to zero. Given 
a channel output y, the recursive decoding algorithm splits 
the decoding task for x E RM(l, 3) into a first decoding task 
for v E RM(O,2) and a second one for u E RM(1, 2) . In 
decoding for v, the part u is treated as pure binary noise with 
independent Bernoulli(� ) components. This is a simplifying 
assumption, which is actually false in this example. Effec­
tively, the decoding problem for v is now reduced to the case 
shown in Fig. 2. 

Vo Yo 

d1 = 0 Vl Yl 

V2 Y2 

d3 Y3 

noise Uo Y4 

noise Ul Y5 

noise U2 Y6 

noise U3 Y7 

Fig. 2. System model for decoding v E RM(O, 2). The variables u are 
treated as pure noise. 

By straightforward likelihood-ratio combining algebra, the 
decoding problem is simplified further to the form in Fig. 3 
where W- is a OMC with input Vi, output Yi = (Yi, Yi+4), 
and transition probabilities 

1 
W-(Yilvi) = 2"W(Yilvi)W(Yi+410) 

1 
+ 2" W(Yilvi + 1)W(Yi+411). 

(6) 

The decoding problem for v E RM(O,2) is now in the 
form of a general decoding problem for RM codes, as in 
the beginning, only the size of the problem is smaller. So, 
the problem size can be reduced still further by using the 

2We should mention that [24] and [25] are two earlier papers often cited on 
this subject but we have not been able to obtain copies of these two papers. 

Yo 

d1 = 0 Yl 

d2 = 0 
+ 

to Y2 

d3 tl Y3 

Fig. 3. Reduced decoding task for v with an effective channel W- . 

same technique again. However, the particular algorithm in 
[23] stops and applies ML decoding as soon as the code at 
hand is a repetition code RM(O, m') or a single parity-check 
(SPC) code RM(m' - 1, m'), for some m' � m. Since v 

in this example is already a repetition codeword, the decoder 
proceeds with ML decoding, using the model in Fig. 3; it 
generates an estimate d3 of the unknown data bit d3 and an 
estimate v of v. 

The decoding algorithm now returns to the first branching 
point and starts decoding for u armed with the estimate v. 
The algorithm uses the system model in Fig. 4 for carrying out 
this task. This model is not a precise model of the underlying 
system since it assumes that the estimate v is always correct, 
without allowance for chance of error. 

known Vo Yo 

known h Yl 

known V2 Y2 

known V3 Y3 

Uo Y4 

d5 Ul Y5 

d6 ro U2 Y6 

d7 rl U3 Y7 

Fig. 4. System model for decoding u E RM(1,2). The estimates v are 
assumed correct. 

The algorithm simplifies the problem by defining an equiv­
alent channel W+ with input Ui, output yt = (Yi, Yi+4, Vi)' 



and transition probabilities 

W+(yt!Ui) = � W(Yi!Vi + Ui)W(YiH!Ui) (7) 

This reduces the present decoding problem to the case shown 
in Fig. 5. The problem is now in the same form as the 
original RM decoding problem, but the size of the problem is 
smaller. Again, the problem size can be reduced still further by 
recursion. However, in this example, the algorithm proceeds 
with ML decoding at this point since u is already a SPC 
codeword. Estimates d5, d6, d7 of the unknown data bits are 
generated, along with an estimate u of u. The decoding task 
is thus completed. 

Fig. 5. Reduced decoding task for u with an effective channel W+ 

The general form of the recursive decoder should be ap­
parent from the above example. The actual algorithm in [23] 
makes some simplifications in likelihood-ratio calculations 
so as to reduce computational complexity. However, these 
simplifications do not change the asymptotic complexity of 
the recursive decoder; with or without such approximations, 
the asymptotic complexity remains as O( n log n). Further 
refinements and a list-decoding version of this algorithm are 
given in [26], [27]. 

Clearly, the above recursive decoder can be applied to any 
code in the broader class of codes that can be encoded using 
the transform (5) , in particular, to polar codes. It is interesting 
to compare the above recursive decoder with the one in [5], 
which was used to prove the capacity-achieving nature of polar 
codes. Although the two decoders initially look different, on 
closer inspection, it is seen that they are essentially the same 
[28]. A minor difference between the two decoders is that 
the decoder in [5] processes the codeword x and the channel 
output y in bit-reversed index order. Also, for the purposes of 
[5], it was necessary that the decoder there avoid making any 
approximations in calculating likelihood-ratios and continue 
the recursion until reaching individual data bits di, 1 :::; i :::; n. 

Significant advances in the analysis and refinement of the 
recursive RM decoder have been made in the last decade by 
Dumer and his co-authors. In [29], the algorithm in [23] was 
modified by applying ML decoding as soon as a first-order RM 
code is encountered, rather than waiting for a repetition code. 
In the above example, this modified algorithm would apply 

ML decoding to the RM(l, 3) code at the outset, instead of 
splitting the decoding task. Since there exist ML decoders of 
complexity O( n log n) for first-order RM codes, as already 
mentioned above, this modification preserves the O( n log n) 
complexity of the overall algorithm but may improve perfor­
mance significantly, as shown in [29] by examples. 

An idea proposed in [30] and [31] is to combine recursive 
decoding of RM codes with "permutation decoding." The 
recursive RM decoder, as any successive cancellation decoder, 
is sensitive to the order in which the decisions about the 
data bits are made. Since RM codes have a rich group 
of symmetries (automorphism group) under permutation of 
codeword coordinates [7, p. 398], a recursive decoder for 
RM codes can make independent decoding trials on various 
permutations of the received word. Thus, a list of decisions 
can be compiled and the most reliable one in the list can 
be selected as the final decoder decision. As expected, this 
improves the decoder performance. 

An important observation in [29] was that the error prob­
ability of the recursive RM decoder is dominated by the 
probability of false decisions at a small number of weak codes 
in the decoding hierarchy. These weak codes are typically the 
first codes where final decoding decisions are made (such as 
the RM(l, m - r + 1) code in the decoding of RM(r, m)). 
As a remedy, [29] suggests identifying such weak codes and 
fixing their information bits to zero, effectively replacing the 
original RM code with one of its subcodes. It turns out these 
subcodes, if chosen properly, can be far more reliable under 
recursive decoding than the original code, but this comes at 
the expense of a loss in code rate. This idea is studied in [32] 
and [31). 

In more recent work [33], [34], [35], Burnashev and Dumer 
refine the earlier analyses on the probability of error for 
recursive RM decoders. The primary goal in these papers is to 
find analytical bounds on the probability of decision error at 
each terminal code (first-order RM and SPC codes) in the 
decoding hierarchy. The papers succeed in obtaining some 
partial results; however, the general problem remains unsolved. 

In some sense, the problem of estimating the error prob­
ability for a recursive decoder is also the central problem of 
polar coding. This problem has been addressed in [5] by using 
martingale techniques, which were sufficient to prove that 
polar codes are capacity-achieving. In [36], the same problem 
has been approached from a computational perspective using 
density evolution techniques that were originally developed in 
[37]. 

D. BP Decoders 

We close this review by briefly mentioning BP decoders. 
RM codes can be represented by sparse factor graphs as 
shown by Forney [38]. Thus, they can be decoded using 
iterative graph-based decoding algorithms, which we refer to 
collectively as BP decoders. The complexity of BP decoding 
for RM codes is O(n log n) per iteration. The flow of soft­
information in a BP decoder for RM codes is similar to that in 
a recursive RM decoder; however, BP decoders avoid making 



hard decisions prematurely, thus alleviating the problem of 
propagation of decision errors. Simulations reported in [39] 
show that polar codes perform significantly better than RM 
codes under BP decoding. A more extensive study of polar 
coding under variants of BP decoding as well as ML decoding 
is reported in [12]. 

III. CONCLUSIONS 

This survey had the goal of tracing the main ideas of polar 
coding in the RM coding literature. The survey shows that 
polar coding rests on a collection of encoding and decoding 
methods that existed for many years in a vast body of literature 
spanning not only RM codes but more general coding tech­
niques. However, these methods had not been synthesized into 
a capacity-achieving coding technique prior to polar coding. 
Polar coding achieved this synthesis through the "channel 
polarization" method introduced in [5]. 
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