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Abstract: Flash floods are among the most dangerous natural disasters. As climate change and

urbanization advance, an increasing number of people are at risk of flash floods. The application of

remote sensing and geographic information system (GIS) technologies in the study of flash floods has

increased significantly over the last 20 years. In this paper, more than 200 articles published in the last

20 years are summarized and analyzed. First, a visualization analysis of the literature is performed,

including a keyword co-occurrence analysis, time zone chart analysis, keyword burst analysis,

and literature co-citation analysis. Then, the application of remote sensing and GIS technologies

to flash flood disasters is analyzed in terms of aspects such as flash flood forecasting, flash flood

disaster impact assessments, flash flood susceptibility analyses, flash flood risk assessments, and the

identification of flash flood disaster risk areas. Finally, the current research status is summarized, and

the orientation of future research is also discussed.

Keywords: remote sensing; geographic information system; flash floods; visual analysis

1. Introduction

A flash flood is a rapid response to a severe thunderstorm that occurs in a short
period of time (usually only a few minutes) [1]. Rapid snowmelt and sudden releases of
impounded water may also cause flash floods [2]. In recent years, increasingly severe flash
floods have occurred due to increased rainfall caused by climate change [3–5]. Moreover,
the risk of flash floods increases with an increase in the impervious area in a given catch-
ment area. Urbanization and reductions in rural land areas have led to declines in drainage
capacity and increased numbers of flash floods [6]. As population structures change and
the degree of urbanization increases, more people will be exposed to flash floods [7–9].
Many countries have carried out research on flash floods, such as China [10], the United
States [11], Saudi Arabia [1], Egypt [12], and Italy [13].

The current research on flash floods mainly involves flash flood forecasting [14–21],
flash flood disaster impact assessments [22–25], identifications of flash flood hazard ar-
eas [26–35], flash flood susceptibility assessments [36–39], and flash flood risk assess-
ments [40–45]. Therefore, the motivation for our study is to comprehensively review the
major areas related to the application of remote sensing and GIS technologies to flash
flood disasters. Based on the analysis, the literature is classified, the study trends and hot
spots of the current study on the application of remote sensing and GIS to flash floods in
the last 20 years are summarized, and the main scientific progress in the literature is also
summarized. Finally, the whole paper is summarized, commented on, and prospected.
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2. Data and Methods

2.1. Retrieval Strategy

Articles with flash floods and remote sensing as research topics that were published
from 2000 to October 2020 were retrieved, these articles were included in the Web of Science
(WOS) Core Collection. A total of 248 articles were retrieved.

2.2. Literature Visual Analysis

CiteSpace is software developed by Chaomei Chen with an information visualization
function based on the Java environment. Through keywords, authors, institutions, etc., one
can perform visual analysis and generate various knowledge graphs, which can be used
to show current research hotspots and trends to help people better understand research
in a certain field. To date, many people have used CiteSpace for data mining and visual
analysis [46–48]. In this paper, a total of 248 articles were included to generate citation
analysis reports (such as node size, keyword co-occurrence, time zone view, etc.) by
CiteSpace 5.6. R4(64-bit).

(1) First, we conducted a keyword co-occurrence analysis as follows: using the remove
duplicates (WOS) function of CiteSpace to remove duplicates, we merged words
with similar meanings and deleted meaningless words to generate a word cloud
image (keyword co-occurrence network map). The size of the word indicates the
frequency of the keyword, the larger the size of the keyword is, the more frequently
the keyword appears.

(2) Second, we generated a time zone map of keywords appearing in 248 articles, reveal-
ing the dynamic evolution of research hotspots.

(3) Third, we conducted a co-citation analysis of references so that we could obtain
landmark articles in the 248 articles, and could analyze the changes in research trends.
If two articles (A and B) appear in the reference list of the third cited article (C) at the
same time, the two documents constitute a cited relationship. If two articles (A and B)
refer to the same article (C), there is a coupling relationship between the two articles
(A and B).

(4) Fourth, we generated a keyword burst map to find hot words that, in the field of
flash flood research, use remote sensing. We define a keyword with sudden changes
in frequency within a certain period of time as a burst word, which represents the
hotspot of research in that stage.

2.3. Explanation of Visual Map Icons in Maps

(1) Tree ring history: this represents the citation history of an article, and the overall size
of the annual ring reflects the number of times the paper has been cited. The color of
the citation ring indicates the corresponding citation time. The thickness of an annual
ring is proportional to the number of citations in the corresponding time zone.

(2) Node circles: in the author’s coauthored network and the institutional coauthored
network, the size of the node circle represents the number of publications.

(3) In the keyword co-occurrence network, the size of the node circle represents the
frequency of keywords.

(4) Connections between nodes: the connection between nodes indicates that they have a
common copyright or have appeared at the same time, and the color of the connection
indicates the time of the first cooperation or the first common appearance.

(5) Node colors: in the keyword co-occurrence network, the colors of nodes indicate
different years, the color in the center of the node represents the time when the
keyword first appeared, and the thickness of the circle represents the frequency of
the keyword in the corresponding year. The higher the frequency, the more often
it appears.

(6) Cluster#: in this paper, the clusters are based on the generated map, the keywords in
the toolbar are clicked to cluster, and the clusters are marked by the keywords. The
names of the clusters are #0, #1, #2...
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3. Results

3.1. Citation Frequency of Remote Sensing and GIS Applied to Flash Flood

From 2000 to 2020, the citation frequency of articles on remote sensing used in flash
floods increased year by year. Therefore, interest in research hotspots related to flash floods
using remote sensing is increasing year by year (Figure 1).
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Figure 1. Trends in the citation frequency of the 248 included articles from 2000 to 2020.

Representative examples of highly cited articles: the 5 most cited articles from 248 arti-
cles are selected, listed in Table 1. These articles mainly involve rainfall estimation, methods
of determining flood occurrence, and estimating the risk of flash floods.

The first three of these five highly cited articles are review articles. They are about
radar rainfall estimation, flash flood warning systems, and flash flood forecasting modeling
technology, which are all around the key issues of flash floods. The last two articles both
researched a specific watershed in Egypt and used models to predict locations that are
vulnerable to flash floods. The difference lies in the different models used by the two. The
research of Youssef et al. [49] was conducted in a GIS environment. The amount of data is
greater, the research scope is wider, and the parameters used are greater. The research of
Foody et al. [50] has less data and fewer parameters, so the results obtained are less and
simpler compared to Youssef’s research.

The most cited articles are usually landmarks, they are groundbreaking or forward-
looking. The study performed by Krajewski et al. [51] proposed some suggestions, includ-
ing the establishment of long-term monitoring and verification stations to provide detailed
information about precipitation, and believed that radar rain products have great develop-
ment potential in flash flood forecasting. In recent years, radar has been widely used in
precipitation estimation [7,51,52], confirming the prediction of Krajewski et al. [51] One of
the scientific advances proposed by Borga et al. [53] is integrating multiple early warning
methods, which has not been achieved until now. Whether the flash flood forecasting
methods proposed in each research area can be realized in other areas still needs further
discussion and verification [54]. For areas with similar topography, climate, soil, geology,
land use, land cover, etc., it seems possible to use the same method for risk assessment [41].
Since cities have large impervious areas and a large population, once flash floods occur,
they will cause many economic losses and casualties. Therefore, special attention should
be given to flash flood forecasts in urban areas by Hapuarachchi et al. [7].
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Table 1. Hot spot analysis of highly cited articles, classified from 248 articles using remote sensing to study flash floods.

Author Cite Frequency Title Research Contents

Youssef, AM et al. [49] 177

Flash flood risk estimation
along the St. Katherine road,
southern Sinai, Egypt using

GIS based morphometry and
satellite imagery

The biggest influencing factors of flash
flood disasters and key sensitive zones was
discussed, and a detailed map of the most

dangerous sub-basin was drawn.

Giles M. Foody et al. [50] 89
Predicting locations sensitive

to flash flooding in an arid
environment

The hydrological model was used to
predict the location of sites that are

particularly vulnerable to the threat of
flooding, and peak flow was proven.

W.F. Krajewski et al. [51] 344
Radar hydrology: rainfall

estimation

The problems of radar rainfall product
development and the framework of rainfall

estimation based on reflectivity were
discussed, and the theoretical and practical

requirements of radar rainfall maps and
new radar technology were verified.

Marco Borga et al. [53] 192

Hydrogeomorphic response to
extreme rainfall in headwater

systems: flash floods and
debris flows

The latest research on flash floods and
debris flows was comprehensively

summarized, and the progress in three
areas that will produce important results

were proposed.

H. A. P.
Hapuarachchi et al. [7]

178
A review of advances in flash

flood forecasting

The new modeling techniques and data
used in flash flood forecasting from 2000 to

2010 were introduced.

In Youssef’s research [49], GIS software was used to process remote sensing data, as
well as to address terrain and field data to assess the risk of flash floods. Morphometrics
were used to estimate the risk level of flash floods in the research basin. In subsequent
research, there were a large number of articles that referred to the method in this article for
the evaluation of flash flood hazards [1,41,55,56].

The research of Foody was published in 2004 [50]. The study used hydrological
models to predict locations that are particularly vulnerable to flash floods under limited
data conditions. This result has promoted the development of related fields and has guiding
significance for subsequent research on the use of hydrological models to forecast flash
floods [25,57–60].

3.2. Keyword Co-Occurrence

CiteSpace software was used to analyze the 248 selected articles, the software’s own
remove duplicates (WOS) function was used to remove duplicates; one was selected for
time slicing, the keyword node type was used, and pathfinder and pruning sliced were
selected for the pruning option to improve the network readability networks. After merging
words with the same meaning and deleting meaningless words, keywords with a frequency
of more than five times are retained, and a keyword co-occurrence map was generated, as
shown in Figure 2. The list of the frequency of keywords that appear more than 10 times is
shown in Figure 3.

In Figure 2, the larger the word, the more frequently it appears. In Figure 2, it can be
seen that, in addition to remote sensing and flash floods, the size of GIS, model, rainfall,
risk, and other words is larger. The GIS is a method discovered by Correia et al. [61] that
can be used to integrate and investigate information about flood disasters and is widely
used to reproduce the research results of different cases. This is not surprising. As the
tool most frequently used in the research of flash floods using remote sensing data is
GIS, GIS can provide powerful tools for risk assessment and can integrate a variety of
remote sensing data in the GIS environment. To forecast flash floods and evaluate the risk
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value of flash flood disasters, a variety of models are generated and frequently used. It is
worth noting that, because the digital elevation model (DEM) can be used for hydrological
analysis such as rainfall analysis, inundation analysis, and water system network analysis,
the DEM is the most important factor in the hydrological model used to draw the flash
flood disaster index of the study area [62]. The susceptibility of hydraulic modeling results
was influenced by DEM accuracy [63]. DEM is often used in the study of flash floods [64]. 

Figure 2. The keyword co-occurrence map.
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Figure 3. Keywords with more than 10 occurrences in 248 articles.

The most commonly used remote sensing data are Sentinel-1 and radar. People are
paying more attention to flash floods in Egypt. Risk appears more frequently, indicating
that there are more articles on the evaluation of the risk value of flash floods, indicating that
more people are concerned about where flash floods may occur in order to take preventive
measures in advance.

3.3. A Time Zone Map of Keywords

To further explore the dynamic evolution of flash flood research hotspots using remote
sensing from 2000 to 2020, and to understand the key points of international research in
different periods based on the generated keyword co-occurrence map, we use CiteSpace
software and select “Time Zone View” in “Layout” to generate a keyword time zone map,
as shown in Figure 4. (Selected keywords that appear more than five times are displayed
in the figure).
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The abscissa corresponding to the keyword in the figure indicates the year when it
first appeared. The node colors of red, orange, yellow, green, blue, and purple are 2000 to
2020. The color of the line between the nodes indicates the year when the two keywords
first appeared at the same time. Similar to the color of the node, the line colors of red,
orange, yellow, green, blue, and purple correspond to the years 2000 to 2020.

From Figure 4, we can see that, in the study of flash floods using remote sensing, radar
data have been used in the study of flash floods in 2000 or even before 2000, and since
2018, Sentinel-1 has been frequently used in research, the cumulative number of Sentinel-1
appearing in the article has reached six times in just three years. The images collected by
Sentinel-1 can be used to obtain high-resolution images, regardless of weather conditions,
so that they can be used to monitor floods. The synthetic aperture radar (SAR) data were
collected from the Sentinel-1 sensor. Using SAR images, it can be used to distinguish water
from other objects. Therefore, Sentinel-1 has often been used in the research of flash floods
in recent years [65–68].

 
Figure 4. A time zone map of keywords.

The appearance of keywords in the picture can be roughly divided into five stages.
The first stage was from 2000 to 2005. Keywords such as GIS, model, rainfall, runoff, etc.
that appeared in this stage are still hotspots of current research. GIS as a research tool
is effective and reliable. Research using models is also a common method. Among the
factors that cause flash floods, rainfall is the most common cause of flash floods and has
been studied the most. Soil erosion caused by flash floods has always been a concern. The
second stage is from 2006 to 2009. During this stage, few new research hotspots appeared,
and the research hotspots were mainly focused on the previous stage. The third stage is
from 2010 to 2013. In this stage, climate change, risk, catchment, Egypt, etc. have become
new research hotspots. People are beginning to pay attention to the increasing frequency
of flash floods due to the frequent occurrence of extreme weather such as climate change
and heavy rains [69,70]. Egypt is a typical area suffering from severe flash floods [71–74],
this result is the same as Figure 2, but since 2010, the use of remote sensing to study flash
floods has become popular. The fourth stage is from 2014 to 2015. There are few hot words
in this stage, and the research hotspots are still based on previous research hotspots. In the
fifth stage, from 2016 to 2019, research on basins increased, and the use of morphometric
analysis and Sentinel-1 greatly promoted research on flash floods [65–68,75–77].
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3.4. A Map of Burst Keywords from 248 Articles

Figure 5 lists the five keywords with the highest emergence intensity. From the figure,
we can see that there was no keyword emergence before 2011, which means that before
2011, there were no issues that received more attention in the research on flash floods
using remote sensing data. Egypt has the longest burst time. The increase in research on
Egypt from 2011 to 2015 shows that there were more flash flood disasters in Egypt, and
many places were affected by flash floods. The keyword with the strongest burst intensity
is basin. The emergence time is 2017, and the stop time is 2020. This shows that since
2017, people’s attention to the basin has increased. The burst time closest to the current
burst keyword is uncertainty. The existing hydrological forecast chain is affected by many
uncertain factors [78]. In recent years, with the continuous development of remote sensing
technology, the pursuit of nearly real-time accurate simulation is about to become a global
standard to ensure improved flash flood forecast and warning systems and ensure that
models can be used in more areas and reduce the uncertainty of the model’s output value.
N. S. Bartsotas, Rouya Hdeib, and Hossein Mojaddadi Rizeei reduced the error of satellite
precipitation estimation by optimizing algorithms and calibrating models [79–81].

Figure 5. Keywords with the strongest citation bursts in 248 articles.

3.5. Co-cited Results of Cited References

Clustering analysis of the cited references of 248 articles published from 2000 to 2020,
the results can be divided into 8 clusters, using A (Abstract) to extract nominal terms to
name the clusters. The results are shown in Figure 6: #0 eastern desert, #1 debris flow,
#2 Najran area, #5 flood susceptibility map, #6 flash-flood predictor, #8 ground radar, and
#9 flood susceptibility map.

The color of each cluster block represents the year when the co-citation relationship
first appeared in each cluster. The colors of cluster blocks range from gray to purple, blue,
green, yellow, and red, representing the years from 2000 to 2020. The color of each cluster
block indicates the year when the co-citation relationship first appeared in each cluster.
The connecting line between the nodes indicates the path of the reference. The connecting
lines between the nodes indicate the path being cited, and the color of each line indicates
the time when it was first cited. A few references are highly co-cited, so here, we set a
threshold to show them.

The timeline map reveals changes in reference co-citations over time. According to the
generated cluster diagram (Figure 6), a timeline map of cited references can be generated
by the layout function. The Y-axis is defined as the cluster name defined by A (Abstract),
and the X-axis is defined as the year of publication. The timeline chart shows the time span
and research progress of the development and evolution of the eight clusters, as shown
in Figure 7.



Remote Sens. 2021, 13, 1818 8 of 20

 

Figure 6. Reference co-citation network for the 248 included articles (clustered according to in-

dex terms).

Figure 7. Timeline view of the citation trends identified in the 248 included articles.

In the timeline view, the references of the same cluster are placed on the same horizon-
tal line. In the timeline view, the number of references in each cluster can be clearly seen.
More references in the cluster representing the cluster are more important. The cluster
labelling on the right shows the research hotspot category associated with each reference.

The circle in the figure represents the circle of the citation directory tree, the color at the
center of the circle represents the year of the reference publication (the color corresponds
to the year at the top of the view in the figure), and the size of the circle represents the
frequency of citations. The cluster label name on the right indicates the research hotspot
category related to the references in the cluster. Gray represents the earlier publication
year, and red represents the most recent publication year. The longer color line segment
indicates that the citation has a large time span, and its research hotspot is the subject that
people have paid attention to for a long time. The red color at the outermost layer of the
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node’s annual ring indicates that the citation frequency has increased rapidly or continues
to increase rapidly.

Figure 7 shows four highly cited landmark articles, which are authoritative studies in
the corresponding clusters. Research on the eastern desert took a long time, and a landmark
article appeared in this cluster: Youssef et al. [49], which has been introduced before.

Elkhrachy et al. [1] were co-cited 14 times (Figure 8a,b), which is the most co-cited
article among 248 articles. Tehrany et al. [80] were co-cited 10 times (Figure 8c,d), which
is the second most co-cited article among 248 articles. Masoud Bakhtyari Kia et al. were
co-cited six times (Figure 8e,f), and they are very representative articles in the field of flood
susceptibility maps. Elkhrachy et al. [1] provided an accurate assessment by using SPOT
and SRTM DEMs data. The analytical hierarchical process (AHP) was used to determine
the relative impact weight of flash flood causative factors to obtain the composite flood
hazard index (FHI). Finally, all the used data were integrated into ArcMap to generate
the final flood disaster map of the study area. In previous studies, researchers have
proposed many methods to perform flood susceptibility mapping, but these methods have
certain shortcomings. To find a more accurate method, Tehrany et al. [80] proposed a
new integration method that combines weights-of-evidence (WoE) and the support vector
machine (SVM) model, not only solving the shortcomings of WoE but also enhancing the
performance of SVM. The results are compared with the results obtained by using WoE
and SVM alone, and the results obtained through integration are more ideal. Kia et al. [64]
used artificial neural network (ANN) technology, which is one of the machine learning
methods, to develop a flood model using various flood causative factors (including slope,
flow accumulation, rainfall, soil, elevation, geology, and land use) to model and simulate
flood-prone areas in the southern part of peninsular Malaysia. The ANN is more robust
than other statistical and deterministic methods and has high computational efficiency.
However, when using ANN modeling, there may be disadvantages such as errors caused
by the length of the dataset.

Figure 8a,c,e are the pennant diagrams of Elkhrachy et al. [1], Tehrany et al. [80], and
Kia et al. [64], respectively, which can be used to view the information for the references
directly connected to a node. These figures show the distribution of articles that have a
citation relationship with these articles. The closer the position of the reference article
is to the bottom, the more times it has been cited. Figure 8b,d,f show the time trends,
respectively, and show the number of times that Elkhrachy et al. [1], Tehrany et al. [80],
and Kia et al. [64] were co-cited.

Combining Figures 7 and 8, we can see that Elkhrachy et al. [1], Tehrany et al. [80],
and Kia et al. [64] were cited twice in 2016, and then, in 2019–2020, the number of citations
increased suddenly, indicating that in 2016 and from 2019 to 2020, the research on flood
susceptibility maps was relatively concentrated.
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Figure 8. Co-citation status of four representative articles in the #6 flood susceptibility map in

the timeline view. (a,c,e) are the pennant diagrams of Elkhrachy et al. [1], Tehrany et al. [80], and

Kia et al. [64], respectively, which can be used to view the information for the refer-ences directly

connected to a node. (b,d,f) show the time trends, respectively, and show the num-ber of times that

Elkhrachy et al. [1], Tehrany et al. [80], and Kia et al. [64] were co-cited.

4. Main Subfields of Remote Sensing and Geographic Information Systems for
Flash Floods

In the past two decades, due to the continuous development of science and technology,
there have been many subfields in the application of remote sensing and GIS to flash floods.
This article introduces five main subfields of the application of remote sensing and GIS to
flash floods.
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4.1. Flash Flood Forecasting

Since a flash flood may occur suddenly and the time to reach the peak is short,
the accuracy of any early warning of flash floods depends largely on the accuracy of
precipitation monitoring and prediction [14,64].

Accurate and timely measurement of the temporal and spatial distribution of rainfall
is the starting point for flash flood forecasting [64]. Due to the wide coverage of satellites,
satellite data are regarded as an important data source for areas with sparse and uneven
distributions of measurement stations. Satellite data have been widely used in meteorolog-
ical research, and the ability to estimate rainfall directly affects the ability to observe flash
flood time. Table 2 lists six representative studies on the evaluation of satellite precipitation
products in recent years. These studies combined multiple precipitation products and
evaluated them with multiple statistical indicators, abundant precipitation products, and
relatively rich types of research areas covered.

Table 2. For evaluating satellite precipitation products.

Study Product Name Study Area

Haonan Chen et al. [17]

Quantitative precipitation estimation (QPE),
National Weather Service (NWS) single-polarization rainfall

product,
NWS dual-polarization rainfall products

America

N. S. Bartsotas et al. [79]
GSMaP (v.7), Climate Prediction Center morphing method

(CMORPH)
Ethiopia and Italy

Mohamed Salem Nashwan et al.
[81]

Global Satellite Mapping of Precipitation (GSMaP (v. 6)),
Tropical applications of meteorology using satellite data and

ground-based observations (TAMSAT (v. 3)), Precipitation
estimation from remotely sensed information using artificial neural

networks-cloud classification system (PERSIANN-CCS)

Egypt

Mengye Chen et al. [82]
Multi-radar multi-sensor system (MRMS),

Global Precipitation Measurement Mission (GPM),
National Centers for Environmental Prediction (NCEP)

America

Vincenzo Levizzani et al. [83]

Advanced microwave humidity sounder-unit B (AMSU-B) onboard
the National Oceanic Microwave Humidity Sounder (MHS) on

board the EUMETSAT Metop-A satellite and Atmospheric
Administration (NOAA) polar satellites

The Island of Madeira

Ali Behrangi et al. [84]
Rain estimation using forward adjusted-advection of

microwave estimates (REFAME), REFAMEgeo, PERSIANN,
PERSIANN-CCS

America

The performance of precipitation products was evaluated for arid areas, mountain
areas, and urban areas [17,79,81]. Satellite precipitation products can accurately detect and
estimate extreme precipitation events. There are some uncertainties in the results obtained
by using satellite precipitation products [82,83]. On the one hand, the algorithm can be
optimized, and the inherent deviations in the precipitation calculation can be corrected
to reduce the uncertainty. On the other hand, the integration of high-resolution and
multisource precipitation analysis can be considered to compensate for the deficiency of a
single precipitation product [85].

4.2. Impact of Flash Flood Assessment

The analysis of the disaster area after the occurrence of flash floods can better provide
suggestions for regional development, flood prevention, and disaster reduction [33,86].
Table 3 lists four representative studies about the impact of flash flood assessment, which
describe the impact of flash floods in terms of vegetation, agricultural products, topographic
changes, and land cover.
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Table 3. For impact of flash floods.

Study Analytical Method Factors

Mohammed Sadek et al. [22]

Sentinel-1 and Sentinel-2 satellite data, geolocated
terrestrial photos and GIS technology, and

hydrologic and hydraulic modeling were integrated
to evaluate the impact of flash floods.

Catchment slope, relief ratio, drainage
density, basin ruggedness number, land

cover types

Bilal Ahmad Munir et al. [23]

The hydrological engineering center river analysis
system (HEC-RAS) 2D hydraulic modeling was used
to analyses the impact of flash floods in downstream

Piedmont plains.
Personal computer storm water management model

PCSWMM (hydrologic) and HEC-RAS 5.x
(hydraulic) models were integrated to monitor the

flash flood.

Rainfall, peak events discharge, land use,
land cover, soil, curve number, runoff,

water surface elevation, sub-catchment
width, slope, water depth, dry time, lag

time, storm duration

Takahiro Sayama et al. [24]
The backpack-mounted mobile mapping system

(MMS) was used to investigate and estimate
landform changes.

Ground elevation, inundation depths,
ground height, inundation level, latitude,

sediment, rainfall

Joan Estrany et al. [33]

The meteorological, hydrological, geomorphological,
damage, and risk data analyses were integrated to
damage assessment based on field-based remote

sensing and modeling.

Rainfall, runoff, slope, land use/cover,
soil type

It can be concluded from Table 3 that hydrologic and hydraulic modeling are com-
monly used methods to study the effects of flash floods. Modern remote sensing technology
can already use spaceborne imageries, airborne imageries, and unmanned aerial vehicle
(UAV) systems to quickly and accurately map during or after a flood event. Free satellite
data (Sentinel-2 images) were used to determine the impact of flash floods on Ras Ghareb
city and the Wadi EI-Natryn region in Egypt [22,40]. Landsat-8 and MODIS data were used
to describe the impact of flash floods on rice [87,88], Landsat TM data were used to map
the extent of coastal floodplain flooding [89], and multispectral lkonos data were applied to
a land use/land cover classification [90], all of which are useful for assessing the impact of
flash floods. The combination of UAV data and field surveys can be used as observational
data in conjunction with hydraulic models, which greatly promotes the understanding of
the mechanism of flash floods [91]. Different from other studies, the backpack type MMS
has been proven to be used for post-flood surveys and can ideally reproduce the flooding
situation in mountainous areas [24].

4.3. Identification of Flash Flood Hazard Areas

Typically, due to the remote location of the flash flood area and the harsh weather,
it is difficult to arrive at the scene to analyze the behavior of mountain torrents. In GIS
environments, the most commonly used method involves drawing hazard maps of flash
floods using hydrological and hydrodynamic models [30–33]. Table 4 lists five articles that
use hydrological models or hydraulic models to map flash flood hazards.
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Table 4. For identification of flash flood hazard areas.

Study Analytical Method Factors

Aneesha Satya Bandi et al.
[30]

The multiple-criteria decision-making tools were used to
generate the composite flood hazard index (FHI).

Runoff, type of soil, slope percentage,
surface roughness, flow accumulation,
distance to main channel in the stream

network, land use

Jehan Mashaly et al. [34]
The hydrological model and the fused ASTER

multispectral and ALOS-PALSAR synthetic aperture radar
(SAR) data were combined to predict flash flood hazard.

Surface topology variables, land use,
land cover data, soil texture properties,

curve number, lithology, ground
surface type

Hossein Mojaddadi Rizeei
et al. [35]

A 2D high-resolution sub-grid model was performed to
simulate FF probability and hazard. GIS and

physics-based random forest (RF) models optimized by
particle swarm optimization algorithm (PSO-RF) were

used to model pluvial flash flood (PFF) hazard.

Curvature, SPI, TRI, TWI, DSM, surface
slope, surface runoff, maximum

precipitation intensity, LULC

Mohamed Saber et al. [58]
A physics-based distributed hydrological model for flash

floods simulation was proposed.

Rainfall, land use, soil types,
topography, storage amount, inflow,

outflow, curve number, depth of
rainfall, depth of runoff, excess rainfall

Eman Ghoneim et al. [92]
The hydrological response of the study basin to a rainfall
event was explored, and the hydrological model approach
was used to predict flash flood hazard in the research area.

Soil texture, curve number, channel
slope, longest flow path, lag time for

each sub-watershed, rainfall

Hydrological models can be used to predict the spatial ranges, depths, and speeds
of flash flood disasters to determine the areas with high flash flood risks [34]. Two-
dimensional hydrodynamic models are considered to be the most promising model for
accurate flash flood mapping [35], but such models usually require large amounts of
input data. The AHP and soil conservation service curve number (CN) methods are
commonly used methods for drawing flash flood hazard maps. The AHP is used to
assign grades and weights and is usually used to assign weights to the causes of mountain
torrents in the study of flash flood hazards [1,53,93]. The SCS model is commonly used
in distributed hydrological models and research in arid and semiarid regions, which is a
method developed by the U.S. Department of Agriculture (USDA) to estimate runoff and
peak discharge [94]. According to specific circumstances, the hazard factors of flash floods
selected by researchers are not exactly the same, but many hazard factors are recognized as
necessary.

4.4. Flash Flood Susceptibility Assessment

Identifying areas susceptible to flash floods is one of the most effective measures to
reduce losses caused by floods and achieve flood management [95,96]. For large-scale
flash flood susceptibility analysis, machine learning methods, bivariate statistics, and
multicriteria decision-making methods are mainly used [97]. The machine learning method
is considered to be the most advanced and first considered method [36]. Table 5 lists
four representative studies that use machine learning methods, bivariate statistics, and
multicriteria decision-making methods to map susceptibility to flash floods.
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Table 5. For susceptibility mapping of flash flood.

Study Analytical Method Factors

Romulus Costache et al.
[36]

The K-nearest neighbor (kNN) and K-star (KS)
stand-alone models and kNN–AHP and KS–AHP

ensemble models were used to define and calculate FFPI
(flash flood potential index) in flash flood susceptibility

mapping.

Slope, angle, TPI, TWI, curve number,
lithology, profile curvature, plan

curvature, convergence index, modified
Fourier index

Viet-Nghia Nguyen et al.
[37]

The chi-square automatic interaction detector (CHAID)
random subspace, optimized by biogeography-based

optimization (the CHAID-RS-BBO model) was proposed
for the spatial prediction of flash floods.

Land use, land cover, soil type,
lithology, river density, rainfall,

topographic wetness index (TWI),
elevation, slope, curvature, aspect

Khosravi, Khabat et al.
[39].

Three multi-standard decision analysis techniques (vlse
kriterijuska optamizacija I komoromisno resenje (VIKOR),

technique for order preference by similarity to ideal
solution (TOPSIS), and simple additive weighting (SAW)),

and two machine learning methods (naïve Bayes trees
(NBT) and naïve Bayes (NB) were tested for their ability to

model flash flood susceptibility.

NDVI, lithology, land use, distance
from river, curvature, altitude, stream

transport index (STI),
(TWI), SPI, soil type, slope, rainfall

Quang-Thanh Bui et al.
[98]

A hybrid model for susceptibility mapping that combines
swarm intelligence algorithms and deep learning neural

networks was proposed.

Aspect, slope, curvature, TWI, stream
power index (SPI), distance to river,
river density, NDVI, NDBI, rainfall

From Table 5, the conclusion that the flash flood susceptibility mapping technologies
rely on various adjustment factors representing the physical characteristics of the study area
can be obtained. The choice of conditional factors depends on the scale of the studied area
because it is more difficult to obtain data of the same scale or the same resolution. Therefore,
if the study area is larger, the number of factors selected may be smaller, which seems
reasonable. Researchers should select factors for research based on actual conditions. Of
course, using more extensive data and impact factors can more accurately define the flash
flood susceptibility of the study area [99,100]. Land use, slope, rainfall, TWI, and distance to
the river are the most commonly considered factors. Logistic regression, bivariate statistical
analysis, and AHP are the most commonly used methods to calculate factor weights. The
combination of AHP and GIS can also define the flash flood susceptibility zones. The
machine learning method is considered to be the most advanced and first considered
method [101]. The effect of the mixed model is better than that of the single model, as
proven by a large number of examples. The K-nearest neighbor (kNN) and K-star (KS)
stand-alone models and kNN–AHP and KS–AHP ensemble models were used to define
and calculate the FFPI (flash flood potential index) in flash flood susceptibility mapping.
The Bayesian belief network (BBN) model was combined with an extreme learning machine
(ELM) and back propagation (BP) structure to develop a new ensemble learning model
for predicting flash flood susceptibility [102]. This fact has also been emphasized by
Wang et al. [3].

4.5. Flash Flood Risk Assessment

The risk proposed by the United Nations refers to the expected loss of people’s lives,
property, and economic activities caused by a specific natural disaster in a certain area and
a given time period [103]. Therefore, the flash flood risk analysis is obtained by combining
hazard analysis and vulnerability analysis. Different from flash flood susceptibility analysis
and flash flood disaster analysis, some flash flood risk analyses considered the factors
of city and climate change [41–43]. The different geomorphic processes and hydraulic
behaviors of the watershed are controlled by its morphometric characteristics [49]. There-
fore, morphometric analyses are frequently used in flash flood risk analysis [31,44,45].
Table 6 summarizes the representative literature on flash flood risk assessment in terms of
analytical methods and factors.
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Table 6. For flash flood risk assessment.

Study Analytical Method Factors

Ahmed M. Youssef et al.
[43]

The flash flood risk map was generated using GIS based
morphometry and satellite data.

Area, total stream number, total stream
length, elongation ratio, circulation

ratio, shape factor, slope degree, length
of over land flow, ruggedness degree,
relief ratio, drainage density, drainage

frequency, total drainage number

Shuvasish Karmokar et al.
[41]

The flash flood risk map was achieved by the
susceptibility map obtained by analyzing three satellite
images in a GIS environment and using morphometric
parameters to assign the relative susceptibility of flash

floods.

Topography, climatological, soil,
geological, hydrology, land use and

land cover, digitized drainage network,
rainfall, geomorphological map

Ram Nagesh Prasad et al.
[104]

The flash flood risk map was generated by using the
weighted sum analysis (WSA) model results and Snyder

synthetic hydrological parameters.

Basin perimeter, basin length, stream
order, stream length, area, drainage

density, stream frequency, elongation
ratio, circularity ratio, form factor,

shape, basin relief, relief ratio

Sara Abuzied et al. [45]

The Soil Conservation Service (SCS) rainfall-runoff model
was used to estimate the hydrological response of the

catchments, and all risk factors were spatially integrated;
the morphometric and SCS analyses were integrated to

create the risk map.

Basin dimensions, basin shape, basin
surface, drainage network

5. Discussion

In the past 20 years, the application of remote sensing and GIS technology in flash
flood research has made great progress, mainly reflected in the increasingly abundant
multisource remote sensing data sources, GIS strong spatial analysis ability, and coupling
ability with hydrological and hydrodynamic models. However, the uncertainty of the
data and model is still a huge challenge for future research. How to obtain real-time or
quasi-real-time accurate simulations and reduce the uncertainty of data input (such as
precipitation, land use, evaluation unit division, etc.) and model output is the goal of
future research. To date, in many areas, through remote sensing data sources, GIS, and
hydrological coupling models, a large number of studies and analyses have been carried
out on flash flood susceptibility analysis, flash flood disaster impact assessment, and flash
flood hazard identification. Most of the experimental results show that the established or
improved model is effective for the experimental area, but as to whether the model can be
applied in other areas, the universality of the model needs further verification.

For flash flood forecasting, with the development of meteorological satellite technology
and radar-based rainfall forecast technology, more accurate and real-time precipitation data
can be used in flash flood forecasting, and after precipitation data from multiple sources
are acquired, the precipitation data can be corrected via the correction model.

For the impact of flash flood disaster assessment, with the development of data
association analysis and multimodel coupling technology, the impact of flash floods on the
regional ecology and environment can be rapidly and quantitatively assessed.

For flash flood susceptibility assessment, at present, most of the susceptibility zoning
maps belong to static mapping and cannot show the inundation depth and advance
speed. Future studies should combine machine learning with the hydrodynamic model to
complete the dynamic susceptibility mapping of flash flood disasters. Then, a 2D model
will be researched and developed to obtain the inundation depth and advance speed.

For flash flood risk assessment and hazard area identification, mapping flash flood
disaster maps and flash flood risk maps relies on various adjustment factors that represent
the physical characteristics of the study area. Due to the influence of data precision,
data volume, size of the study area, and the authors’ subjective choices, there are some
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differences among the adjustment factors selected in these papers, and the weights of
the adjustment factors are not always the same. Even in regions with similar geological
conditions, whether the adjustment factors selected in other areas can be used and their
weights need to be further discussed and verified. It is hoped that there will be a set of
systematic rules in the future so that adjustment factors and corresponding weights can be
selected for regions with different sizes and different physical characteristics, according to
their conditions, to obtain better results.

6. Conclusions

In this study, the related literature on remote sensing and GIS applied in the field
of flash flood disasters was systematically analyzed. Then, a visualization analysis of
the literature was adopted to perform keyword co-occurrence analysis, time zone chart
analysis, keyword burst analysis, and literature co-citation analysis. Finally, several main
subfields of the application of remote sensing and GIS in flash floods were summarized,
including flash flood forecasting, the impact of flash flood assessment, flash flood suscepti-
bility assessment, flash flood risk assessment, and the identification of flash flood hazard
areas, which makes our study different from the previous review of remote sensing and
geographical information application to natural disasters. The main conclusions are as
follows: (1) through the analysis of the time zone map, the appearance of keywords can be
roughly divided into five stages. (2) Analyzing the burst of keywords in 248 articles, we
found that current research focuses on reducing uncertainty, and reducing the uncertainty
of flash flood forecasting is the basis for real-time accurate simulation. (3) Through the
co-cited analysis of 248 articles, 7 clusters were obtained. Among them, there were three
highly co-cited articles from 2012 to 2015, which are landmark studies. Therefore, from
this review, various applications of remote sensing and GIS in the field of flash floods and
specific opportunities and challenges in different fields can be found.
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