
A Survey of Research in Deliberative
Real-Time Artificial Intelligence1

Alan Garvey and Victor Lesser
Department of Computer Science

University of Massachusetts

UMass Computer Science Technical Report 93–84
November 19, 1993

Abstract

This paper surveys recent research in deliberative real-time artificial intelligence (AI). Major areas of
study have been anytime algorithms, approximate processing, and large system architectures. We describe
several systems in each of these areas, focusing both on progress within the field, and the costs, benefits
and interactions among different problem and algorithm complexity limitations used in the surveyed
work.

1This is an invited paper that will appear in the journal Real-Time Systems in 1994. This material is based
upon work supported by the National Science Foundation under Grant No. IRI-9208920, NSF contract
CDA 8922572, DARPA under ONR contract N00014-92-J-1698 and ONR contract N00014-92-J-1450. The
content of the information does not necessarily reflect the position or the policy of the Government and no official
endorsement should be inferred.

1 Introduction

Historically, the field of AI has not been particularly concerned with real-time performance. The
problems tackled by AI systems are generally very difficult and the focus has been on showing how
particular difficult problems can be solved using complex algorithms that often have search as a major
component. The dependence on search can often lead to unpredictable performance, because of the
difficulty of predicting how much of the search space will need to be examined to find a solution.
One example of this difficulty has been in the area of planning. Progressively more difficult real
world planning situations have been dealt with by progressively more sophisticated planners with
correspondingly larger search spaces and more complex search operators. However, with the increasing
complexity it became less clear that the performance of such planners would allow them to be used in
actual applications.

A realization of this problem, along with a pressing desire to embed AI systems in larger applications
(such as robots) led to the development of reactive AI systems [Agre and Chapman, 1987, Brooks, 1986,
Firby, 1987]. The goal of the reactive AI systems work (at least initially) was to investigate how close
you could come to an intelligent agent with just hardwired reactions to the actual external environment.
Obviously such agents are able to react very quickly to changes in the environment. However, some
balance between quick responses to environmental change and time for deliberation to allow reasoning
about what actions to perform seems to offer the best hope for truly adaptive, intelligent agents. One
approach is to have two or more very different, asynchronous subsystems (e.g., one highly reactive
and one highly deliberative) and combine their responses, for example work on Phoenix [Howe et al.,
1990], Guardian [Hayes-Roth, 1990] and CIRCA [Musliner et al., 1993]. An alternative is to take
a more integrated approach where there is a single architecture and a range of responses are possible
given the time criticality of the required response. Approaches in this area include flexible computation
[Horvitz and Rutledge, 1991], deliberation scheduling [Boddy and Dean, 1993], compilation of anytime
algorithms [Zilberstein, 1993] and design-to-time real-time scheduling [Garvey and Lesser, 1993]. Both
of these approaches are known as deliberative, because they deliberate to determine how to act (rather
than just reacting).

The second alternative is based on the use of approximate algorithms for solving problems. At least
two broadly different kinds of approximation algorithms have been used in real-time AI research. They
are:

� Anytime algorithms—an iterative refinement approach where an imprecise answer is generated
quickly and refined through some number of iterations.

� Multiple and approximate methods—where a number of different algorithms are available for
a task, each of which is capable of generating solutions having different characteristics. These
algorithms may be more or less appropriate for different characteristics of the problem, and may
make tradeoffs of solution quality versus time.

A strict definition of real-time is that the system guarantees that tasks will receive up to their
worst-case runtime and resource requirements, which presumably means that tasks will produce the
best possible results (highest quality results). In real-time AI the focus is usually on high-level goal
achievement, rather than worst-case requirements. For this reason, often in real-time AI less strict
definitions of real-time are used. One common (and usually implicit) definition is that the system will
statistically (e.g., on average) achieve the required quality value by the required time, but no guarantee
is made about any particular task. Additionally, the anytime algorithm and approximate processing
approaches have the characteristic that the system nearly always produces some quality value for tasks,
although the value achieved may or may not be useful, given the criteria for high-level goal achievement.

1

Because of the difficulties in predicting the expected performance of algorithms for solving AI
problems, the (often intractable) worst-case performance of those algorithms, and the cost of scheduling
AI task structures, some limitations in complexity are required in real-time AI problem solving. These
complexity limitations take the form of reducing the set of problems that can be represented and/or
using solution methods that are designed to produce satisficing solutions when there is not sufficient
time to produce optimal solutions. One way of explaining the research described in this survey is that it
is a study of various kinds of complexity limitations: what can be potentially gained by overcoming the
limitation, what the cost of overcoming the limitation is, what tradeoffs can be made among various
limitations, and conversely what is gained by making particular limiting assumptions. For example,
some real-time AI approaches assume that tasks are independent, i.e, how one task is solved has no
effect on how other tasks can be solved. This complexity-reducing assumption often allows much more
efficient (sometimes optimal) decision procedures for deciding how to allocate time to each task to
maximize overall system performance, but reduces the general applicability of those procedures.

Our goal here is to describe some of the more specific complexity-limiting techniques that real-time
AI researchers have found to be practically useful. Many of them seem to take the form of a priori
limitations in the kind of problems that can be represented1. This contrasts with a recent paper on
real-time AI by Strosnider and Paul [Strosnider and Paul, 1993] that categorizes these systems based on
the approaches they use to make search more predictable. The approaches they examine are pruning
(reducing the search space), ordering (considering elements in a heuristic order), approximating (not
considering all search states, possibly by combining groups of them together), and scoping (focusing
search in particular time- and/or space-constrained parts of the search space).

Several areas of progress have been identified in real-time AI research including extensions to the
kinds of problems that can be solved in real-time, a focus on the issues of embedding real-time AI
components in larger applications, and a movement toward dynamic real-time performance at runtime.
Initial work in real-time AI examined techniques for achieving real-time performance in particular
components of AI systems, while ignoring (or at least deemphasizing) other components. More
recently, the emphasis has been on making all (or at least most) components of a system real-time. As
we describe many existing real-time AI systems, we will attempt to balance an understanding of the
complexity limitations used by systems with descriptions of progress in the field.

This paper first discusses work that uses the anytime algorithm approach, then describes work
involving the use of multiple approximate methods. Next, work is examined that combines these and
other ideas together to form larger systems. Finally a summary describes several complexity limitations
used by these real-time AI systems, what the potential advantages of those using these limitations are,
and how they can be overcome if necessary.

2 Anytime algorithms

An anytime algorithm is an iterative refinement algorithm that can be interrupted and asked to provide
an answer at any time. It is expected that the quality of the answer will increase as the anytime algorithm
is given increasing runtime (up to some maximum quality). The term “anytime algorithm” was coined
by Dean and Boddy in the late ’80s [Dean and Boddy, 1988], but iterative refinement algorithms with
anytime characteristics have been studied in many areas including numerical approximation, heuristic
search, dynamic programming, Monte Carlo algorithms, and database query handling. Associated with
each anytime algorithm is a performance profile, which is a function that maps from the time given to an

1It should be noted that most of these complexity limitations are also apparent in systems-oriented real-
time work, often accompanied by even stronger simplifications (e.g., all computations must have predictable,
polynomial-time worst-case performance).

2

ANYTIME-TSP(V, iter)
1 Tour� INITIAL-TOUR(V)
2 cost� COST(Tour)
3 REGISTER-RESULT(Tour)
4 for i� 1 to iter
5 e1 � RANDOM-EDGE(Tour)
6 e2 � RANDOM-EDGE(Tour)
7 � � COST(Tour)� COST(SWITCH(Tour, e1, e2))
8 if � � 0 then
9 Tour� SWITCH(Tour, e1, e2)
10 cost � cost � �

11 REGISTER-RESULT(Tour)
12 SIGNAL(TERMINATION)
13 HALT

Figure 1: An anytime traveling salesman algorithm

anytime algorithm (and in some cases input quality) to the value (quality) produced by that algorithm.

Figures 1, 2 and 3 and Table 1 provide a detailed example from Zilberstein [Zilberstein, 1993]
of what an anytime algorithm is and how performance profiles can be constructed. Figure 1 is a
simple anytime algorithm for solving the Traveling Salesman Problem (TSP). This algorithm quickly
constructs an initial tour, registers that result (making it available should the algorithm be halted), then
repeatedly chooses two random edges and evaluates whether switching them results in a better tour,
and if it does updates the registered solution to that new tour. Figure 2 shows the runtime and quality
results obtained by running this algorithm on randomly generated inputs and stopping it at a randomly
generated time. Figure 3 shows the expected performance profile generated directly from the map data
(the weighted means of the quality at discrete times). Table 1 shows the performance distribution profile
for this algorithm. Here different values in a row indicate discrete probabilities that such a quality will
be achieved in such a runtime. These are the actual values used in most of Zilberstein’s compilation
algorithms. Somewhat related to the idea of a performance profile is earlier systems-oriented work on
scheduling non-anytime tasks where each task has a value function associated with finishing it by a
particular time [Jensen et al., 1985]. The goal in this work was to build a schedule that optimized value
by finishing tasks at appropriate times.

Anytime algorithms have the advantage of always having an answer at hand, so they can respond
quickly to changing environmental situations. They also provide maximum flexibility to control
mechanisms, by allowing any incremental amount of extra work to result in a incrementally improved
result. These features make anytime algorithms particularly useful in many real-time situations.

Another potential advantage of anytime algorithms is that there is usually one anytime algorithm
for each type of task the system has to perform, whereas in multiple method work there may be several
methods for each task. Thus only one method has to be encoded, potentially reducing the programming
time and reducing the likelihood of errors.

Closely related to work on anytime algorithms is research within the systems community on imprecise
computation. Imprecise computation is an approach to real-time problem solving that assumes that tasks
have a mandatory part and an optional part. The mandatory part is an uninterruptible computation
that must be executed completely to ensure correct performance of the system. The optional part is

3

Qual-map

quality

time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.00 0.50 1.00 1.50 2.00 2.50 3.00

Figure 2: The mapping of quality versus runtime for many runs of a TSP algorithm.

time0.0 0.5 1.0 1.5 2.0 2.5

quality

0.10

0.20

0.30

0.40

0.50

0.00

Figure 3: The expected performance profile of the TSP algorithm.

Table 1: The performance distribution profile of the TSP algorithm
quality

time .025 .075 .125 .175 .225 .275 .325 .375 .425 .475 .525 .575

0.0 1.00
0.2 0.02 0.30 0.48 0.16 0.04
0.4 0.04 0.12 0.24 0.36 0.24
0.6 0.04 0.10 0.30 0.34 0.22
0.8 0.02 0.16 0.34 0.30 0.14 0.04
1.0 0.02 0.18 0.38 0.26 0.16
1.2 0.06 0.24 0.40 0.28 0.02
1.4 0.10 0.40 0.42 0.08
1.6 0.04 0.30 0.44 0.20 0.02
1.8 0.10 0.54 0.32 0.04
2.0 0.44 0.48 0.08
2.2 0.28 0.52 0.18 0.02
2.4 0.16 0.50 0.30 0.04

4

(presumably) an iterative refinement algorithm that improves the quality of the result generated by
the mandatory part. There is a very large body of work related to scheduling algorithms within this
model with various assumptions about characteristics of the tasks to be scheduled [Chung et al., 1990,
Marlin et al., 1990, Kenny and Lin, 1991, Shih et al., 1991, Liu et al., 1991a, Liu et al., 1991b,
Leung et al., 1992, Ho et al., 1992, Dey et al., 1993].

The emphasis in most of this work has been on finding optimal polynomial-time scheduling
algorithms for strongly circumscribed problems within this area. Examples of problems for which such
reasonable-performing algorithms have been found include:

� Minimize total error (defined to be the total amount of optional part time not executed) when
all task weights are equal and tasks have no mandatory parts.

� Minimize the number of unexecuted optional parts under the 0/1 constraint2 in the special case
where all optional tasks have equal processing time.

� Minimize the number of unexecuted optional parts (again under the 0/1 constraint) when all
tasks have the same ready time.

One issue of major importance in imprecise computation research is finding simplifying assumptions
that still allow interesting, complex problems to be represented.

Within this section we first present Dean and Boddy’s initial work on anytime algorithms [Dean
and Boddy, 1988, Boddy and Dean, 1989, Boddy, 1991, Dean and Wellman, 1991, Boddy and Dean,
1993], including their deliberation scheduling algorithms, then we describe Russell and Zilberstein’s
work on compiling anytime algorithms [Russell and Zilberstein, 1991, Zilberstein and Russell, 1992a,
Zilberstein and Russell, 1992b, Zilberstein, 1993]. Next we discuss several projects that use anytime
algorithms to solve particular problems, including Horvitz’s work on using anytime algorithms in
various parts of a decision-theoretic problem-solver [Horvitz, 1988, Horvitz, 1989, Horvitz et al., 1989,
Horvitz and Rutledge, 1991], Korf ’s approach to real-time A* search [Korf, 1990], Collinot and Hayes-
Roth’s satisficing blackboard control loop [Collinot and Hayes-Roth, 1990, Hayes-Roth and Collinot,
1991], and Ash and Hayes-Roth’s anytime diagnosis system [Ash and Hayes-Roth, 1993].

2.1 Dean and Boddy’s work

The focus of Dean and Boddy’s work in this area has been on what they call deliberation scheduling
applied to time-dependent planning problems. Deliberation scheduling is the explicit allocation of
resources to tasks (in most cases anytime algorithms) so as to maximize the total value of an agent’s
computation. Time-dependent planning problems are defined to be planning problems where the time
available for responding to events varies from situation to situation.

In Dean and Boddy’s terminology a time-dependent planning problem consists of a set of event
types, a set of action types, one anytime algorithm decision procedure for each event type to determine
the appropriate action to take, and a value function. More time given to the anytime decision procedure
that chooses which action to take will result in a more highly valued action being chosen (up to some
maximum value). An agent has knowledge of future events, including the types of those events and the
time at which they are expected to occur. The agent constructs a schedule that allocates some amount
of time to some of the decision procedures, not allocating any time to decision procedures after the
“deadline” of the occurrence of the associated event. The goal is to maximize the sum of the values of
the responses to the events. The null response is assumed to have zero value (as opposed to a penalty
for missing a deadline). Values of responses are assumed to be independent of one another.

2A schedule satisfies the 0/1 constraint if every optional task is either executed to completion or not executed
at all.

5

Given these assumptions, Dean and Boddy describe a pair of algorithms for finding optimal
schedules [Boddy, 1991]. (A slightly updated version of these algorithms can be found in a later
paper [Boddy and Dean, 1993]). These algorithms primarily differ in their assumptions about the
performance profiles. Note that similar, but slightly more general algorithms have been developed
independently by Dey et al. [Dey et al., 1993].

The first algorithm (known as DS-1), assumes only that the gain for a performance profile at any
particular time is available. This algorithm schedules backwards from the latest deadline to the current
time, in fixed increments of size �. It simply assigns each increment to the executable task with the
largest gain. After each � has been assigned, the scheduler goes back and gives each task a contiguous
block of time. They show that for any � � 0, there is a � � 0 such that DS-1 constructs a schedule
within � of optimal.

The second algorithm (known as DS-2), assumes that the performance profiles can be described in
terms of certain known functions. This algorithm also schedules backward from the last deadline to the
current time; this time an increment is the time back to the previous deadline. Within each increment,
time is allocated to each task according to the solution to a set of linear equations. The exact structure
of the equations depends on the form of the performance profile functions. Examples are given for
performance profiles of the form:

f�x� � ��1� e��x�� � � 0

f�x� �

�
� logx� x � x�

� logx�� x � x�

f�x� � any general piecewise linear function

In this work, at least in part because of the complexity-limiting assumption of independence of
tasks, Dean and Boddy are able to find scheduling algorithms that are computationally inexpensive
and have predictable performance. Thus, they do not factor the cost of scheduling into their analysis
(although any actual application would have to allow time for scheduling to occur).

2.2 Compilation of anytime algorithms

The focus of Russell and Zilberstein work [Russell and Zilberstein, 1991, Zilberstein, 1993] is based
on structuring a computation as the combination of anytime algorithms, where the results of a set
of anytime algorithms are inputs to another anytime algorithm. In this framework, the performance
profiles for tasks are conditional on the quality of their inputs, allowing dependencies between tasks to
be explicitly represented. Their goal is given a specific deadline to decide how to allocate time among
the individual anytime algorithms so that the expected value of the computation is optimized. They
call such compiled programs contract anytime algorithms. More generally, a contract anytime algorithm
is an algorithm that returns increased value as it is given more time, but must be told in advance how
much time it is going to get and may not return any answer if it is given less time than prescribed.

They also extend the concept of performance profile by defining three types of profiles that better
represent the uncertainty inherent in such information. Their three types of performance profiles are:

� The performance distribution profile (PDP) of an algorithm is a function that maps computation
time to a probability distribution of the quality of the results. Often this is represented as a table
that maps time allocations to expected qualities with discrete probabilities. Table 1 is an example
of a performance distribution profile.

� The expected performance profile (PEP) of an algorithm is a function that maps computation
time to the expected quality of the results.

6

� The performance interval profile (PIP) of an algorithm is a function that maps computation time
to the upper and lower bounds of the quality of the results.

Zilberstein [Russell and Zilberstein, 1991, Zilberstein, 1993] describes several algorithms for com-
piling anytime algorithms. These algorithms all take a set of dependent (contract or interruptible)
anytime algorithms (i.e., a program composed of anytime algorithms) and from them construct a con-
tract anytime algorithm that optimizes system performance for a given amount of available time. These
algorithms differ in their assumptions about the form of the dependencies described by the conditional
performance profiles. When the dependencies are unrestricted (i.e., the dependencies form a directed
acyclic graph) the problem is NP-Complete in a strong sense, and in order to solve such problems he
describes three heuristic algorithms that perform adequately in the problems that he has investigated.
In the cases of a linear composition of anytime algorithms or tree-structured inputs (i.e., the output
of an anytime algorithm is used as input by exactly one other anytime algorithm) he shows that local
compilation produces globally optimal results. Local compilation involves optimizing the quality of
an anytime algorithm by considering only the performance profiles of the anytime algorithms that
produce its inputs. Local compilation is analogous to the KNAPSACK problem, which has known
pseudo-polynomial time solutions [Zilberstein, 1993]. Pseudo-polynomial time solutions are available
for local compilation under the assumption that the tree has bounded degree, (i.e., the number of inputs
to each anytime algorithm is bounded). The solutions produced are optimal if each of the conditional
performance profiles is a monotonic non-decreasing function of input quality, (i.e., the quality of an
anytime algorithm never decreases as its input quality increases).

They also prove that an interruptible algorithm can be constructed from any contract algorithm
with the caveat that the quality that the contract algorithm can achieve in time t might take up to
4t in the interruptible algorithm. Contract anytime algorithms are useful, because constructing them
using compilation is much easier than constructing interruptible anytime algorithms. The result of the
compilation process is a contract anytime algorithm that gives specified amounts of runtime to each
of its component (contract or interruptible) anytime algorithms. Because the amounts of runtime are
directly controlled, the constructed anytime algorithm will never run past its deadline, but, because
of uncertainty and unpredictability, it may fail to achieve the quality level required. With different
available runtimes passed to the compiler the result could be considered to be multiple approximate
methods for meeting a high level goal. For example, a design-to-time scheduler (see Section 3.2) could
choose among different compiled contract algorithms at runtime, depending on the current situation.

2.3 Practical applications of anytime algorithms

2.3.1 Horvitz’s flexible decision theoretic reasoning

Horvitz [Horvitz, 1988, Horvitz, 1989, Horvitz et al., 1989, Horvitz and Breese, 1990, Horvitz and
Rutledge, 1991] has been primarily interested in using anytime algorithms (he refers to them as flexible
computations) in all aspects of decision-theoretic problem-solving. In decision theory, probabilistic
information about the possible outcomes of actions together with knowledge about the utility of those
outcomes are used to make the “best” decision possible, where best means the decision most likely to
have the highest utility value. Horvitz’s work has three main facets:

� determining how to assign utility values to the incomplete partial results returned by an anytime
algorithm

� finding anytime algorithms to implement decision-theoretic reasoning about what action to
perform next

7

� finding an optimum balance between time spent doing metareasoning and time spent solving
actual problems

As a simple example of how Horvitz assigns utilities to partial results, he considers the problem of
sorting [Horvitz, 1988]. Normally, sorting is not considered to be a real-time problem, but consider a
sorting algorithm that is part of a larger algorithm that assigns priorities to items in a schedule and wants
to order them by priority. In situations where not enough time is available to do the complete sort, it
might be useful to use a sorting algorithm that, for example, results in a list that has the first elements of
the list (corresponding to the first elements of the schedule) correctly sorted and the later elements less
accurately sorted. Horvitz defines a set of dimensions that can be useful in characterizing the value of a
partial sort, such as disorder (the average distance between current locations and expected final locations
for elements), high/low-end completion (the contiguous length of positions that contain elements that
are in their correct positions), and bounded disorder (an upper bound on the distance between current
and final position for any element in the list). Using these measures of utility, he shows that Shellsort is
excellent at refining bounded disorder and selection sort excels at refining low-end completion. When
the particular utility measure used involves low-end completion (as in the real-time situation mentioned
above), it is often the case that selection sort has a higher expected utility than, say mergesort, for a
large range of expected resource availabilities, despite the worst-case performance of selection sort being
O�N 2� versus O�N logN� for mergesort. That is, the utility of using selection sort can be higher than
the utility of using mergesort, if sorting must sometimes stop before completion.

Based on such an approach to assigning utilities to partial and incomplete computations, Horvitz
has been developing anytime algorithms for doing decision-theoretic metareasoning. He describes
desirable properties that such inference techniques would possess including:

� Flexibility—meaning the ability to react gracefully to a broad range of resource availabilities and
problems. Aspects of flexibility include value continuity (the value of the decision returned by a
decision procedure should continuously range from 0 to 1 depending on the resource allocation
to that procedure), value monotonicity (the value of the decision returned by a decision procedure
should be a monotonically increasing function of the amount of resource the procedure is given),
convergence (the value of the decision returned by the procedure should converge on the optimal
complete value given enough resources), and value dominance (procedures should have ranges
of time over which the value of the decision returned increases monotonically as the amount of
resource increases—termed value-dominant intervals).

� Bounded Optimality—meaning the optimization of utility given assumptions about expected
problems and limitations on available resources. In particular he expects a reasoning system to
have a repertoire of strategies to choose from, and defines bounded strategic optimality to be the
application of strategies from this repertoire so as to maximize expected utility, given probability
distributions of the costs and benefits of applying various strategies.

Traditional decision theory has the desirable property that it finds provably optimal solutions to
problems. Unfortunately the updating of beliefs using probabilistic inference is NP-Hard [Cooper,
1990], making traditional decision theory unsuitable for most real-time situations. Horvitz describes
several approaches for approximating the probabilistic inference component of decision-theoretic prob-
lem solving. Many of these approximations have the characteristic of providing better answers as they
are given additional runtime (i.e., they are flexible computations). These include:

� bound calculation and propagation—finding upper and lower bounds on probabilities rather than
traditional point values.

8

� stochastic simulation—techniques for characterizing probability distributions by a process of
weighted random sampling.

� completeness modulation—reasoning about what aspects of the entire problem model to include
in reasoning. For example, dependencies in a belief network can be assigned importance val-
ues that capture the usefulness of including these dependencies in belief calculations. Only
those dependencies above some dynamically-calculated importance threshold are included in
calculations.

� abstraction modulation—use different problem models that represent the problem at different
levels of abstraction. Presumably it is more efficient to reason at higher levels of abstraction.

� local reformulation—modify specific troublesome topologies in a belief network. This is probably
most useful at design-time.

� default reasoning and compilation—having canned solutions that may be indexed by specific
problem attributes. These are expected to be useful mainly in extremely time-constrained
situations.

One example of this work in practice is described by Horvitz and Rutledge [Horvitz and Rutledge,
1991]. An approach known as bounded conditioning is used to approximate the propagation of beliefs
through a belief network. They describe experiments using this technique to compute probabilities in
a belief network from a medical application. They show that their system can balance the expected
value of solving additional simple network problems with the cost of delaying taking action; the exact
behavior in a particular situation depends on the relative utilities of the outcomes.

Horvitz has also looked at the general problem of partitioning resources between metareasoning
and base-level problem solving [Horvitz and Breese, 1990]. In particular he examines how much
time to devote to solution planning for utility-directed problems where both planning and base-level
computation is carried out using anytime algorithms. He first considers the case of what he calls ideal
reflection where you can optimally calculate the amount of time to compute before acting, given an
anytime algorithm that increases the utility value over time and a function that describes the cost of
delay. He shows how this problem can be solved using simple mathematics when the performance
profile of the anytime algorithm and the cost of delay functions have particular forms. He then extends
his model to represent a metareasoning process that can modify the performance profile of the anytime
algorithm (i.e., reduce the time that it takes the anytime algorithm to improve the utility value to a
particular level). He finds solutions to this problem as well, making assumptions about the functional
descriptions. Finally he looks at the special case of minimizing the amount of time required to reach a
predefined utility value. Again he finds mathematical solutions, assuming particular forms for the various
functions. In all of these cases what might be called the metametareasoning costs (the costs of making
the calculations about how much time to spend metareasoning versus base-level reasoning) are a small
constant, because they simply involve plugging particular values into a simple mathematical function,
where which mathematical function to use depends on the forms of the various functions. In general
he is able to show that calculations concerning the partitioning of resources between metareasoning and
base-level problem solving are quite simple in at least the situations he describes. (Of course, obtaining
functions that have the characteristics he assumes may be much more difficult.)3

3Russell and Wefald [Russell and Wefald, 1991] investigate similar problems (partitioning resources between
metareasoning and base-level problem solving) without assuming the availability of anytime algorithms in either
the metareasoning or base-level computations. They avoid the metameta- problem by making what they call
a meta-greedy assumption of just choosing the next single step with the highest utility (rather than considering

9

2.3.2 Real-time A* search

RTA* [Korf, 1990] is a real-time search algorithm that effectively solves normal state-space search
problems using a contract anytime approach. The basic idea is to interleave moving down what appears
to be the best path so far with refining the idea of what the best path is. The refining of the best
path is done using a simple search algorithm that searches to a fixed depth. The fixed depth is chosen
depending on the amount of time allowed for each move, which is determined using a heuristic estimate
of the number of moves required to get to a goal state and the total amount of time allowed. The result
is that the total search time and the search time per move are tightly controlled, but the quality of the
result depends crucially on the accuracy of the heuristics used to estimate distance from a goal state and
the ability of limited depth search to recommend moves in the direction of a goal state.

2.3.3 Satisficing anytime blackboard control

Guardian [Hayes-Roth, 1990] is a medical monitoring application built in a blackboard architecture
(BB*), and, as such, has an agenda-based control mechanism. However, the standard BB* control cycle is
not well-suited to real-time performance. It chooses the best action to perform by elaborating all possible
actions, rating each of those against all rating heuristics, then choosing the one with the highest rating.
This can take a long time, and will vary in duration depending on the number of actions being considered
and the complexity of the control heuristics. Collinot and Hayes-Roth [Collinot and Hayes-Roth, 1990,
Hayes-Roth and Collinot, 1991] have devised a satisficing anytime control cycle to replace the standard
cycle. In the satisficing cycle, actions most likely to be rated highly are processed first, and as soon as an
action is found that is good enough or the time limit for control reasoning has run out the best action
found so far is recommended. They experimented with this cycle in the Guardian system and showed
that it significantly improved the runtime performance of the control cycle, with only occasional bad
outcomes relating to choosing a satisficing rather than optimally chosen action.

2.3.4 Anytime diagnosis

One of the high level tasks of the Guardian system is diagnosing and recommending treatment for
medical conditions in the patients being monitored. To perform this task Guardian has an anytime
diagnosis component [Ash et al., 1993, Ash and Hayes-Roth, 1993]. This work defines action-based
hierarchies, which are similar in structure to decision trees. Each node in a hierarchy is a collection of
faults, with an associated action to take. Links to subnodes are based on tests that discriminate among
faults. Processing starts at the root of the tree with all known possible faults and some default action,
and progressively moves down the tree refining the set of faults by performing tests. At anytime this
procedure can be interrupted and will return the action associated with the most specific diagnosis
currently available. If enough processing time is allowed, the system should zero in on the particular set
of actual current faults and the best recommended action for those faults.

3 Multiple Methods

In the multiple method approach, instead of having a single anytime algorithm that produces better
results as it is given additional time, a set of methods is used that makes tradeoffs in duration versus
quality and may have different performance characteristics in different environmental situations. This
approach was originally elucidated in the late ’80s by Lesser [Lesser et al., 1988] and termed approximate
processing.

sequences of computations). They argue that the resulting decision-theoretic metalevel exhibits anytime algorithm
behavior.

10

and

and

or

G
1 G

2 G3

S7S1 S
4S2

S5S3 S6

and

vehicle level
1.0

1.01.01.0

0.6

0.9
1.0

1.0
0.8

0.20.70.7

1.0

0.9
1.0 1.0

and

0.8
xor

signal level

group level

0.9

V1

S7S1 S
4S2

S5S3 S6

vehicle level

signal level

V1

f

Figure 4: Both complete (on the left) and approximating (on the right) grammars describing the hypotheses
necessary to identify a vehicle of type V1 in a sensor interpretation application.

Figure 4 provides an example from Decker et al. [Decker et al., 1993] of multiple methods
for a sensor interpretation application. This figure shows two grammars describing characteristics of
hypotheses necessary to identify a particular vehicle type. In the case on the left a number of intermediate
objects are hypothesized from the low level sensor data, then combined together to hypothesize a vehicle
object. In the case on the right, the intermediate level is bypassed and a vehicle is hypothesized based
just on the low level sensor data. This second method is able to hypothesize the vehicle more quickly,
but with reduced certainty and precision.

The multiple method approach has at least two potential advantages over an anytime algorithm
approach. One is that it does not rely on the existence of iterative refinement algorithms that produce
incrementally improving solutions as they are given increasing amounts of runtime. Clearly such
algorithms exist for some classes of problems, but just as certainly there are problems that will be
difficult if not impossible to solve in an anytime fashion. The difficulty is in finding algorithms whose
expected quality improves in a predictable, monotonic fashion.

Another potential advantage of the multiple method approach is that multiple methods do not just
make quality/duration tradeoffs, they can be entirely different approaches to solving the problem. These
approaches can have very different characteristics depending on particular environmental situations.
That is, the quality/duration tradeoffs made by multiple methods can be very different in different
environmental situations. Alternatively, in most anytime algorithm work, the assumption is made that
one anytime algorithm is available that is expected to work effectively in all environmental situations.

The multiple method approach has been examined in at least two contexts in the systems-oriented
real-time community. One is in imprecise computation work with the 0/1 constraint (where the
optional part has to be executed to completion or not at all). This is equivalent to having two methods,
one that executes just the mandatory part and one that executes both the mandatory and optional parts.
The other place where multiple methods appear in systems-oriented real-time work is in error handlers,
which have been discussed as a way to recover when tasks cannot be scheduled. In this case there are
also two methods, one that performs a task normally and one that does some (presumably very fast)
recovery when a task cannot be executed normally.

Less work has been done on the multiple method approach, probably because of its less obviously
appealing theoretical properties (i.e., its discrete rather than linear performance characteristics.) This
section first describes work by Lesser et al. on approximate processing [Lesser et al., 1988, Decker et al.,
1990, Decker et al., 1993], then moves on to later work by Lesser and Garvey on design-to-time real-time
scheduling [Garvey et al., 1993, Garvey and Lesser, 1993]. Next work is described by Bonissone and
Halverson on solving dynamic classification problems [Bonissone and Halverson, 1990] and Etzioni
[Etzioni, 1991] on the usefulness of marginal utility in scheduling. Finally work on the ABE/RT

11

real-time system building tool is described [Lark et al., 1990].

3.1 Approximate processing

Approximate processing is an approach to real-time problem solving in situations where satisficing
answers are acceptable and some combination of data, knowledge, and control approximations are
available. For approximate processing to be successful it necessary to have useful approximations
with predictable effects for the application of interest, a problem solving architecture that allows these
approximations to be represented reasonably, and control mechanisms for making decisions about which
approximations to use. One important aspect of approximate processing is having a representation that
allows approximations to be interoperable (i.e., allows approximations to be mixed and matched, rather
than each approximation having its own representation that is incompatible with the others).

Initial work on approximate processing [Lesser et al., 1988] focused on generating approximations
in a disciplined way in an existing application. This work describes several approximations for use in
doing complex signal interpretation tasks. These approximations are categorized as approximate search
strategies, data approximations and knowledge approximations. They examine the usefulness of these
approximations in the Distributed Vehicle Monitoring Testbed (DVMT).

Decker et al. [Decker et al., 1990] describe extensions to a standard blackboard architecture to
support approximate processing. These extensions include ways to represent data approximations by
clustering data points together, parameterizing of knowledge sources to allow them to be used for
approximate and complete processing, representations for belief and uncertainty of data, and a new,
more explicitly controllable low-level control loop containing filters to allow data to be filtered from
one step to another, mappings to control how hypotheses map to goals and goals map to knowledge
sources, and mergings that control how similar blackboard objects are merged together. Together these
mechanisms allow DVMT approximations to be constructed that have significantly reduced durations
and well-understood, fairly predictable effects on solution quality (for this work a combination of
certainty of beliefs and likelihood of correctness.)

Decker et al. [Decker et al., 1993] provide additional features for the DVMT real-time blackboard
application. One new addition is a channelized architecture where each separable part of problem
solving has its own channel (thread of control) that can be controlled separately from other channels
using the parameterized low-level control loop described above. This allows different channels to be
running different approximations without interference. Also added is a real-time scheduling component
that projects work into the future and tries to avoid overloads by using approximations for tasks and/or
postponing parts or all of less important, less time-constrained tasks into the future. This allows the
DVMT to achieve predictable real-time performance (including in hard deadline situations), although
the issue of the cost of control is not completely addressed.

3.2 Design-to-time real-time scheduling

Design-to-time [Garvey et al., 1993, Garvey and Lesser, 1993] is a generalization of the approximate
processing approach where the existence of multiple methods for many tasks is assumed and the problem
is to design a solution to a problem that uses all available resources to maximize solution quality within
the available time. This work uses a model of computational tasks known as TÆMS [Decker and Lesser,
1993] that models problems as consisting of independent task groups that contain possibly dependent
tasks. The task/subtask relationship among tasks within a task group forms a directed acyclic graph
and is used to calculate the quality of a task (i.e, the quality of a task is a function of the qualities of
its subtasks.) At the leaves of this graph are executable methods, which represent actual computations
that can be performed by the system. Besides task/subtask relationships, tasks may also have other
interdependencies with other tasks in their task group (e.g., the execution of one method enabling

12

the execution of another, or the use of a rough approximation by one method negatively affecting
(hindering) the performance of a method that uses its result.) These interdependencies can have a
quantitative effect on the quality and duration of affected methods. This is similar to the effect of
the quality of the inputs on performance profiles in Zilberstein’s compilation of anytime algorithms
[Russell and Zilberstein, 1991]. An example of a TÆMS task structure that models a multi-agent sensor
interpretation problem is shown in Figure 5.

faulty sensor method

T
min

task with quality
accrual function min

subtask relationship

enables relationship

method (executable task)

VCM
A T

min
T

min

T
min

VCM
B

VTM
A

VTM
B

VTM
A

VTM
B

VLM
A (LH)

VLM
B

VLM
A

VLM
B (LH)

VLM
A (LH)

TVLM

max

VLM
A

VLM
B

VLM
B (LH)

TVLM

max
TVLM

max

TVTM

max
TVTM

max

TVCM

max

1

2,31,2

2 3

1,2,3

type
agent

Figure 5: A TÆMS task structure modeling a multi-agent sensor interpretation problem. VLM methods process
data for a particular vehicle at a particular location (point in time). VTM methods combine VLM results into
tracks. VCM methods complete processing for a vehicle.

The methodology is known as design-to-time because it advocates the use of all available time to
generate the best solutions possible. It is a problem-solving method of the type described by D’Ambrosio
[D’Ambrosio, 1989] as those that “given a time bound, dynamically construct and execute a problem
solving procedure which will (probably) produce a reasonable answer within (approximately) the time
available.”

Design-to-time can only be successful if the duration and quality associated with methods is fairly
predictable. The predictability issue was investigated in detail [Garvey and Lesser, 1993] with the result
that the predictability necessary for execution times is based on a complex set of factors that include how
heavy the agent’s workload is (because in light workload situations it is often acceptable for methods to
take longer than expected because slack time is available, whereas in heavy workload situations if a task
does not perform as expected it could adversely affect many other tasks) and how difficult it is for the
agent to determine when a method is not performing as expected (because if the cost of this monitoring
outweighs the potential benefit, then it clearly is not useful). An agent can tolerate uncertainty in its
predictions if

� monitoring can be done quickly and accurately, so that when a task will not meet its deadline
enough time remains to execute a faster method, or

� intermediate results can be shared among methods, so that when it is necessary to switch to a
faster method the intermediate results generated by the previous method can be used, or

� there exists a fast fall back method that quickly generates a minimally acceptable solution.

13

Garvey and Lesser [Garvey et al., 1993] present an algorithm for finding optimal solutions to a
particularly circumscribed design-to-time scheduling problem where:

� The task/subtask relationship forms a tree, rather than a general directed acyclic graph.

� Tasks quality functions are one of minimum (AND) or maximum (OR).

� Enables relationships may exist among the subtasks of tasks that accumulate quality using min-
imum. The enables relationships are mutually consistent (i.e., there are no cycles). This
corresponds to the situation where there is a body of work that must be completed to satisfy a
task and this work must be done in a particular order.

� Hinders relationships may exist in situations where enables may exist and an enabling subtask has
a maximum quality accumulation function. In this situation there may be a hinders relationship
from the lowest quality method for solving the subtask to the tasks that the subtask enables.
This corresponds to the situation where using a crude approximation for a task can have negative
effects on the behavior of tasks that use the result of the approximated task.

Figure 6 is an example of such a task structure. The quantitative effects of the hinders relationship
are the opposite of those of the facilitates relationship [Decker and Lesser, 1993]. Associated with
each facilitates/hinders relationship are a pair of parameters that define the power of the effect on the
duration and quality of the affected method. Facilitates/hinders increases/decreases the quality of the
affected method by a percentage and decreases/increases its duration by a percentage.

These environmental characteristics closely model characteristics seen in a sensor interpretation
application. In particular, the enables relationships appear as requirements that low level data be
processed before high level interpretations of that data are made, and the hinders relationships appear
in the situation where fast, imprecise approximations of low level data processing can both increase the
duration and decrease the precision of high level results [Garvey and Lesser, 1993, Lesser and Corkill,
1983].

Task A

Task Group 1

Task B

Method A2 Method A3 Method B1 Method B2Method A1

Task C

Task Group 2

Task D

Method C2 Method D1 Method D2Method C1

D(TG2) = 35

D(TG1) = 25

Figure 6: An example task structure consisting of two task groups of the form the optimal design-to-time algorithm
can schedule. The dark lines indicate subtask relationships. The thin gray lines represent enables constraints. The
thick gray line represents a hinders constraint.

The algorithm essentially involves generating all sets of methods that can solve the problem, pruning
those that are superseded by other sets of methods that generate greater or equal quality in equal or less

14

time. Performance results for the algorithm are given and suggest that the average performance of the
algorithm is near linear for fairly small task sets, but that it probably will not scale as task size increases
and likelihood of relationships increases. One other interesting result is that the number of schedules to
be considered is limited by the number of distinct quality values that methods have (because minimum
and maximum do not create new values, but just return one of the values they are given), so the runtime
of the scheduler can be reduced by reducing the number of distinct quality values, for example, by
clustering similar values together. This tradeoff between schedule precision and scheduler runtime has
a contract anytime algorithm character.

This algorithm was developed and tested using TÆMS [Decker and Lesser, 1993], allowing it to be
studied both analytically and in a simulation environment. More recent design-to-time research has
focused on heuristic scheduling techniques and on the interface between a design-to-time scheduler and
the application that it is embedded in. For another perspective on the problem of real-time scheduling
of AI tasks see Stankovic et al. [Stankovic et al., 1989].

3.3 Time-constrained reasoning under uncertainty

������

��������

�	 �

�� ��

�������

��	��

�����

	�	�

����
����	�

�������

������

�	

�

�

�� �	��

��

��

�	

��

�� ��

��

��

�� �	

��

��

��

��

��

�	�
 �

����	�
����

�

��

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �� � ��

�

� �

�

� �
�������� � 	
 ��

�

Figure 7: An example of a set of plans from Bonissone and Halverson’s system. One the left is the entire set of
plans; on the right are four individual plans with different runtimes and expected values.

The work of Bonissone and Halverson [Bonissone and Halverson, 1990] looks at solving dynamic
classification problems which are classification problems in which the rate of change of the environment
is as fast as the time to do a diagnosis—meaning that some of the data on which a diagnosis is based
might have changed by the time the diagnosis is completed. Their approach involves generating a set of
plans at compile time by pre-evaluating plan usefulness and caching this information. Figure 7 shows
an example of a set of plans. At runtime they select some or all of the plans that can handle a particular
query, based on how much time is available to answer the query. These plans can be thought of as
multiple methods for satisfying a particular goal. Their control mechanism executes plans in the order
of expected utility and may opportunistically change the order based on the actual values produced
by earlier plans. They assume that higher priority queries may interrupt execution on a given query,
and this is taken into account when deciding in what order to execute plans. This emphasis on doing
as much as possible at design time recurs in real-time AI research (as in systems-oriented real-time
research), especially in work that emphasizes actual applications.

15

3.4 Etzioni’s marginal utility heuristic

Etzioni [Etzioni, 1991] looks at the control problem for a time-constrained agent in economic terms.
When the use of a resource (such as time) for one action precludes that resource being used by another
action, the executed action is said to have an opportunity cost. When several actions contend for the
same resource, each action has an opportunity cost that is the maximum of the utilities of the other
actions. Marginal utility is defined as the derivative of the utility function with respect to a cost variable
(e.g., time). Etzioni examines the usefulness of what he calls the MU heuristic, which says to always
execute the action that has the highest marginal utility4.

The particular control problem that Etzioni focuses on is one in which there are a number of
independent goals, each with some number of associated methods. Each of these methods has expected
utility and runtime values. The utility of a method is related to how well the method is expected
to satisfy the goal, as well as how likely the method is to satisfy the goal. The control problem is
to maximize the total additive value returned by satisfying the goals. He shows that this problem is
NP-hard and for that reason he uses his MU heuristic to determine which actions to execute. This
reduces the complexity of the control problem to linear (or even sublinear per action decision if you
assume that the utility and runtime of an action do not change due to the execution of other actions).

One interesting aspect of Etzioni’s work is that he doesn’t assume that completely accurate utility
and runtime values are available initially for all actions in all states. He describes a learning mechanism
that calculates expected means for utility and runtime through repeated executions of the system. When
the variance in these expected means for an action is too high his system uses an ID3-like mechanism to
find some attribute distinguishing sets of states in which the expected utility and runtime means differ
significantly. He uses this information to construct a classification tree (also known as a decision tree)
of utility and runtime means for each goal type. Then, the next time a goal of that type appears he
traverses the tree, deciding which branch to follow based on current attributes of the environment. This
means that his estimates of utility and runtime will become increasingly accurate as problem solving
progresses. Of course, in many real-time situations it may not be acceptable to not perform adequately
in real-time initially and gradually learn to do so at runtime. In these situations the learning mechanism
could be used at design-time to construct a system that performs adequately in real-time.

3.5 ABE/RT architecture

ABE [Lark et al., 1990] is essentially a CASE tool for building software applications with major AI
components. ABE has several frameworks that support different ways of combining component modules
to build applications. Often these component modules are themselves built in ABE, possibly using many
different frameworks. At the base are so-called black box modules that are built in regular programming
languages (Common Lisp, C, etc).

ABE has a real-time framework (ABE/RT) that allows users to build real-time applications (e.g., a
prototype of the Pilot’s Associate was built in the ABE/RT framework [Lark et al., 1990]). The ABE/RT
framework differs from other ABE frameworks in that it requires information about the runtime of
modules, not just their input/output behavior. ABE/RT allows modules to be viewed from three
perspectives. One perspective describes the flow of events through the module. Events may be sent to
many internal modules; the only restriction is that the flow of events be acyclic. A second perspective
describes what are known as event processing plans (EPPs). EPPs are particular paths of event flow

4This heuristic is closely related to Boddy and Dean’s [Boddy, 1991] scheduling method that gives runtime
to the anytime algorithm with the highest gradient in its expected performance profile. Both are what Russell
calls meta-greedy algorithms [Russell and Wefald, 1991] i.e., they choose the action appearing to have the highest
immediate benefit.

16

through a module. Each EPP can be thought of as one of a set of methods for responding to a particular
input event. Associated with an EPP is detailed information about its resource requirements, including
its worst-case runtime. ABE/RT provides tools to help designers determine these requirements, but
most of this is done empirically rather than through analysis. The third perspective describes what
resources to give to which EPPs in particular circumstances. One part of the definition of an ABE/RT
application is a set of modes of the system. Modes define the priorities of the system and change based
on perceived changes in the environmental situation. For example, a system that assists a pilot in flight
might have different modes for different parts of a flight scenario (take-off, ascending, descending,
landing) and for different contingencies in flight (one engine out, enemy pursuing,). The third
ABE/RT perspective describes how to allocate resources among EPPs for each mode of the system. That
is, this third perspective statically allocates resources to particular methods in a particular mode under
maximum event arrival assumptions.

The intended usage of the ABE/RT framework is to build applications that can respond to real-time
events, reacting differently depending on the dynamically changing priorities associated with the a
particular situation. Presumably several different EPPs are available to respond to a particular event and
which one is chosen depends on the mode of the system. These EPPs differ in the way they solve the
problem, the assumptions they make about which component systems are available, and the resources
they need to execute. Constructing the mapping that describes which EPPs are used in which mode
is a multiple method scheduling problem that is solved statically by hand at design time (with the
assistance of online tools) rather than dynamically by a computational component. This decision was
made because it was assumed that there would not be enough time at runtime to solve the problem,
and because of a need to show that an acceptable solution is always possible.

4 System Architectures

One research direction in real-time AI has been in building large applications or architectures that
embody real-time concerns in many components. With all of these projects the eventual goal is to
have overall real-time performance through several interacting components, although often not all of
these components have initially been concerned with real-time performance. Often these large systems
combine fast-acting reactive components with more deliberative cognitive components.

System architectures to be discussed include Guardian [Hayes-Roth, 1990, Hayes-Roth et al., 1992,
Washington and Hayes-Roth, 1989], Phoenix [Howe et al., 1990], PRS [Ingrand and Georgeff, 1990,
Ingrand et al., 1992] and CIRCA [Musliner et al., 1993]. Both the ABE/RT system and the real-
time DVMT architecture as discussed in detail above fit into this category as well. Although we do
not discuss it in detail here, Brooks’ work on the subsumption architecture [Brooks, 1986] (which is
generally considered to be reactive) can be thought of as a layered architecture where the higher layers
are deliberative and the lower layers are reactive, which makes it clear that the exact distinctions between
reactive and deliberative are somewhat fuzzy and hard to define.

4.1 Guardian application

Guardian [Hayes-Roth, 1990, Hayes-Roth et al., 1992, Washington and Hayes-Roth, 1989] is a medical
monitoring application built in a blackboard architecture (BB*). Real-time aspects of this work include
a separate input manager that filters and processes inputs [Washington and Hayes-Roth, 1989], a
satisficing control cycle to bound the amount of time spent doing metalevel reasoning [Collinot and
Hayes-Roth, 1990, Hayes-Roth and Collinot, 1991], and an anytime diagnosis component [Ash and
Hayes-Roth, 1993]. Figure 8 shows an overview of the agent architecture used by Guardian.

17

 Driver

Environment

Sensor Effector

I/O Buffers I/O Buffers

 Driver Preprocessor

Communication
 Interface

Agenda

Control
 Plan

 Next
 Operation

Executor
Agenda
Manager

Scheduler

Reasoning Results

Knowledge

Cognition

Perception Action

Cognitive &
 I/O Events

Figure 8: The agent architecture used by Guardian. Curved boxes represent blackboard data structures. Rectan-
gular boxes represent concurrently executing processes. Information flow is indicated by the directional arrows.

18

In the Guardian medical monitoring application, large amounts of input data arrive at the system.
Much of this is low level data that just confirms current patterns, but occasionally important or
unexpected information arrives. Filtering of this data is necessary, but this filtering needs to be dynamic
and intelligent to avoid both overburdening the cognitive component with needless detail and not
informing it of important new information. Washington and Hayes-Roth [Washington and Hayes-
Roth, 1989] describe how Guardian’s cognitive component dynamically builds and modifies filters to
perform this task as problem solving progresses. The input data is processed on a separate I/O processor
that filters the data using the dynamically-defined filters as controlled by the cognitive component. Thus
the cognitive component is able to dynamically control its I/O load. They emphasize that such dynamic
construction is necessary because of the changing requirements of the filters in different problem solving
situations.

The satisficing control cycle and anytime diagnosis component are discussed in detail in Sec-
tions 2.3.3 and 2.3.4, respectively. Together these components give Guardian the ability to be reactive
in situations that require it, by using input filters to separate out important data, and a satisficing control
cycle to quickly determine how to respond to it. As work on Guardian has progressed, more and more
components of the system have achieved real-time performance. Guardian is a good example of a system
that combines several of the techniques described in this paper (satisficing control, anytime algorithms,
dynamic filtering) in appropriate components of the system to achieve overall real-time performance.

4.2 Real-time work in Phoenix

The Phoenix project [Howe et al., 1990] is investigating the design of autonomous agents. The two
main components of the project are a simulator that simulates the spread of forest fires and provides
tools to allow the fires to be fought, and an agent architecture that is used to instantiate agents that
are tested in the simulated environment. The main real-time related contribution of Phoenix is in
its examination of the necessity for a reactive component in an otherwise deliberative AI system. In
essence, the reactive component reacts to immediate problems in the environment (in the Phoenix case
this is nearby fires, changes in terrain,) and the cognitive component plans to solve the high-level
problems presented to the agent (such as how to put out a particular fire, what path to take from one
point to another,). The basic idea of having reactive and cognitive components within an agent
architecture is one way that AI systems can work effectively in domains with soft real-time constraints.

4.3 PRS architecture

The Procedural Reasoning System (PRS) [Ingrand and Georgeff, 1990, Ingrand et al., 1992] is an
architecture for embedded real-time systems that need to deliberate in real-time. A PRS agent consists
of a database containing the systems current beliefs, a set of current goals, a library of plans (called
knowledge areas KAs) that describe sequences of actions and tests that can be performed to meet a goal or
react to a situation, and an intention structure that consists of a partially ordered set of those plans chosen
for execution. An interpreter works with these components to select an appropriate plan (KA) based
on beliefs and goals, place that plan in the intention structure and execute it. Metalevel KAs are used
to decide among multiple applicable domain KAs in a particular situation, reason about the failure to
satisfy goals, and manage the flow of control among intentions (including determining when to continue
applying metalevel KAs versus executing the current domain-level plan). KAs are interruptible when
external events cause changes to the database, thus allowing rapid response to changing environmental
situations. Ingrand and Georgeff [Ingrand and Georgeff, 1990] describe the results of experiments that
look at the response time of a PRS system to external events (e.g., the time from when an event arrives
at the system until the system has decided how to respond to it). They show that PRS can be configured
to notice (begin to respond to) world events within a bounded amount of time. At this time PRS cannot

19

guarantee to respond to events within a bounded time, because it does not completely ignore other
incoming events. These results suggest that PRS might be useful, at least for soft real-time applications.

4.4 CIRCA architecture

CIRCA [Musliner et al., 1993] is an architecture intended to support applications that combine real-
time and AI components. At a high level its is very similar to the Phoenix approach. In CIRCA there
is a real-time component (corresponding to the Phoenix reactive component) and an AI component
(corresponding to the Phoenix cognitive component.) The CIRCA work assumes that AI software
is inherently unpredictable, so no assumptions can be made about its performance. The real-time
component repeatedly executes a periodic schedule consisting of simple test-action pairs (called TAPs).
TAPs are intended both to achieve short-term goals and to maintain the system in a safe state. These
TAP schedules guarantee that each TAP will receive up to its worst-case execution time (using traditional
cyclic scheduling techniques). In that sense the system “guarantees” real-time performance. There is no
guarantee that the TAPs will always satisfy all system goals, only that the TAPs will always be run when
they are scheduled. It is the responsibility of the AI component to generate TAP schedules to respond to
the current problem-solving situation. In a sense the AI component is dynamically constructing simple
reactive systems to satisfy system goals in the current problem solving situation. Hendler and Agrawala
[Hendler and Agrawala, 1990] have done similar work on combining a real-time reactive component
with higher level AI planning, all implemented in the MARUTI real-time operating system.

5 Summary of research directions

The dual goals of this survey have been to show the progress that is being made in the field of real-time
AI and to illustrate the fundamental tradeoffs that are necessary because of inherent limitations imposed
by time constraints. This section summarizes our thoughts on these conflicting drives within real-time
AI and suggests possible future research directions for the field.

5.1 Recent progress in real-time AI

One major area of progress has been in the integration of real-time components for all aspects of a
problem-solving system. Early work in real-time AI focused on defining and elucidating particular useful
techniques (e.g., anytime algorithms). These techniques are the backbone on which real-time AI must be
built, but on their own they are not very useful for building actual real-time applications. More recently
work has focused on ways to combine these techniques together to build larger systems. Research has
focused on homogeneously combining low level instances of a technique (e.g., compilation of anytime
algorithms and design-to-time scheduling of multiple methods) and on heterogeneously using different
techniques in different components of a larger application (e.g., combining anytime algorithms with
satisficing control and filtering in Guardian).

Another area of progress has been in building real-time AI components intended to fit into larger real-
time application systems. Some initial work in real-time AI explored techniques for solving particular
problems in real-time, but did not worry about embedding those solutions in larger applications.
Embedding of this form requires AI systems that allow their behavior to be guided by outside influences.
Examples of systems that do this are the CIRCA and Phoenix systems where the cognitive AI component
works along with a reactive component to achieve overall real-time performance. Clearly large, practical
real-time systems that work in dynamic domains are going to benefit from some kind of cognitive
component that can respond to unexpected situations, even in critical hard real-time situations where

20

at least some real-time behavior will probably require guarantees made using standard systems-oriented
real-time techniques.

An area where progress is beginning to be made is in the integrating of anytime algorithm and
multiple method approaches to create hybrid systems. For example, the compilation techniques of
Zilberstein [Russell and Zilberstein, 1991] can be used to compile programs consisting of both anytime
and traditional algorithms (where the performance profile of a traditional algorithm is presumably a
single step function). Alternatively, an anytime algorithm can be thought of as multiple methods where
a small set of discrete runtime allocations with their expected qualities (according to the performance
profile) define a set of methods that can be scheduled using, for example, design-to-time scheduling
techniques. Such hybrid systems could combine the best features of both approaches and avoid trying
to unnaturally fit algorithms of one type into the requirements of the other approach.

Progress has also been made in moving cognitive reasoning from compile/design time to runtime,
while still maintaining overall real-time performance. From the beginning of real-time AI research,
at least some of the work has focused on making dynamic, runtime decisions, but often this work
ignored the cost of control reasoning. More recently work has focused on either limiting the cost of
control by using simple algorithms with known worst-case performance (e.g., Etzioni’s MU heuristic),
or using sophisticated meta-reasoning to make tradeoffs in the cost of continued control reasoning versus
performing the current best action (e.g., Horvitz’s work on partitioning resources among metareasoning
and domain tasks).

5.2 Problem and method complexity limitations used in real-time AI

In order to solve difficult problems in real-time it is necessary to place some limitations on the complexity
of problem-solving. One way to consider the different real-time AI approaches described above is to
examine how they have limited the complexity of the problem in some way so as to allow reasonable
system performance. These complexity limitations can be in the representation of the problem to be
solved and/or in the solution methods used by the approach.

One possible definition of real-time AI is that it involves attempting to build real-time systems that
solve problems normally thought to require intelligence. Often these problems have some characteristics
(such as extensive use of search) that make solving them using traditional real-time techniques difficult
if not impossible (e.g., because of very large worst-case response times.) Given that, how can real-time
AI systems continue to get away with making so many complexity-reducing assumptions? The answer
is that without some limitations on the complexity of problem-solving, no real-time solution is possible
(which is why systems-oriented real-time researchers have mostly avoided these kinds of problems.)
The long term goal is to understand how each of these complexity limitations can be avoided (possibly
by making complexity-simplifying assumptions in other parts of the problem) and what is potentially
gained by doing so. It is understanding the tradeoffs among different complexity limitations (i.e., what
is lost in one dimension while something is gained in another) that motivate much of this work.

Complexity limitations explored in real-time AI systems fall into a few broad categories including
limitations in the structure of the computation, the criteria for solution acceptability, the relative costs of
control versus domain reasoning, and the predictability of tasks. More specifically, complexity limitation
categories include:

� structure of the computation—This approach to reducing complexity involves limiting the
kinds of computations that the system can perform or making assumptions about the forms these
computations take. Note that because of the reduced complexity of the problem representation, it
is sometimes possible to make optimal decisions in the constrained problems. Examples include:

– task independence—Many real-time AI systems assume that individual tasks are indepen-

21

dent, i.e., how one task is solved has no effect on possible solutions to other tasks, except
in reducing available time to solve the other tasks. Assumptions of task independence
generally significantly reduce the complexity of solution algorithms, usually by allowing
separate subproblems to be solved independently without worrying about interactions. Ex-
amples of work that avoid this limitation include systems-oriented work on scheduling that
incorporates resources [Zhao et al., 1987], compilation of anytime algorithms [Zilberstein,
1993], and design-to-time scheduling [Garvey et al., 1993].

– anytime algorithms—Some work in both systems-oriented [Liu et al., 1991b] and AI
real-time [Dean and Boddy, 1988, Russell and Zilberstein, 1991] assumes that many or
all problems are to be solved using anytime algorithms (i.e., algorithms that always have
an answer at hand and provide higher quality answers if they are given more time up to
some maximum quality). It is probable that not all problems have anytime algorithm
solutions. The expected advantages of anytime algorithms are that they respond gracefully
to unpredictability and provide acceptable solutions quickly in time-constrained situations.
One step in the direction of avoiding the construction problem is Zilberstein’s work on
compiling anytime algorithms [Zilberstein, 1993] that shows how composite anytime
algorithms can be constructed from simpler anytime algorithms.

– soft deadlines—Some of the work in real-time AI assumes that deadlines are soft (i.e., it
is okay to finish work after a deadline), and that missing any particular deadline is not
catastrophic (i.e., some tasks with deadlines can be ignored completely). One example of
this is systems that on average meet deadlines, while not making any guarantees about any
particular deadline. Most systems-oriented real-time research does not have this limitation.
This is one of the dimensions that real-time AI often compromises to try to gain advantages
elsewhere.

� criteria for solution acceptability—Much work in real-time AI makes the assumption that
satisficing rather than optimal solutions are acceptable in many situations. Satisficing solutions
can be approximate in precision, completeness and/or certainty. Often satisficing takes the form
of using heuristic problem solving techniques that may not always find an optimal solution, such
as the TSP algorithm shown in Figure 1. Satisficing is useful only if nonoptimal, acceptable
solutions exist for subproblems (which might not always be the case, for example in yes/no
situations) and the use of a satisficing solution for some subproblems does not cause other
subproblems to increase in difficulty and thus overwhelm the benefit.

� relative cost of control versus domain reasoning—Much of the work in real-time AI assumes
that the cost of control is negligible and can safely be ignored. This assumption can be justified
if the cost of control is a predictable polynomial function of the size of the problem and the
grain-size of control subproblems is small relative to domain subproblems. This has the effect
of limiting the kinds of applications to which the techniques can be applied. More recently,
some work in real-time AI has avoided making this limiting assumption by explicitly taking
real-time constraints into account in a real-time control component [Hayes-Roth et al., 1992]
or by explicitly reasoning about the expected value of control versus domain reasoning [Horvitz
and Breese, 1990, Ingrand and Georgeff, 1990, Russell and Wefald, 1991].

� predictability of tasks—All real-time work has to make some assumptions about the accuracy and
completeness of information about tasks to be performed. Some work assumes that information
is predictable enough to allow static (sometimes even design-time) solutions to be generated.
This has the advantage of avoiding excessive runtime control costs, at the expense of either

22

occasionally using inaccurate predictions (and thus not performing as expected) or using worst-
case performance information and not using resources very efficiently. Even dynamic, runtime
problem solvers have to make assumptions about the predictability of task information. One
approach to this problem is to monitor the performance of tasks and adjust behavior when
performance is not as expected [Garvey and Lesser, 1993]. Anytime algorithms make assumptions
about the accuracy of performance profile information, but, in general, they should perform
better in unpredictable situations, because they always have an answer at hand. Note that even
in situations where accurate and complete information is available, uncertainty due to problem
complexity may prevent static solutions (e.g., chess).

Another real-time AI solution to the requirement for agents that respond dynamically to a
changing environment has been to build reactive AI systems [Agre and Chapman, 1987, Firby,
1987] that do not deliberate at all, but react directly to inputs. While this survey focuses on
deliberative real-time AI, at some level of required reaction time, the only reasonable solution
method is reactive. Some work in deliberative real-time AI has looked at having a reactive
component in an otherwise deliberative system [Howe et al., 1990, Musliner et al., 1993].
Another approach to this problem is to assume that the real-time AI system is just a component
that is embedded in a larger application system, and that the larger application will only pass
appropriate problems on to the AI component.

As this survey shows, real-time AI has made significant progress in the last few years, but it
still has a lot of work to do in systematically examining the costs, benefits and tradeoffs of different
complexity-reducing assumptions. Another important area for future research is the integration of
different approaches to take advantage of strengths and minimize the effects of weaknesses. This could
take the form of a layered architecture that uses, for example, a hard real-time scheduler at the base
and AI reasoning techniques at higher levels, or a more component-oriented architecture that uses
different approaches in different situations, for example, depending on the predictability of tasks and
the tightness of deadlines.

Acknowledgments

We would like to thank Shlomo Zilberstein, Piero Bonissone, Peter Halverson, Barbara Hayes-Roth
and Keith Decker for the use of figures that appear in this paper.

References

[Agre and Chapman, 1987] Philip E. Agre and David Chapman. Pengi: An implementation of a
theory of activity. In Proceedings of the Sixth National Conference on Artificial Intelligence, pages
268–272, Seattle, WA, July 1987.

[Ash and Hayes-Roth, 1993] David Ash and Barbara Hayes-Roth. A comparison of action-based
hierarchies and decision trees for real-time performance. In Proceedings of the Eleventh National
Conference on Artificial Intelligence, pages 568–573, Washington, D.C., July 1993.

[Ash et al., 1993] D. Ash, G. Gold, A. Seiver, and B. Hayes-Roth. Guaranteeing real-time response
with limited resources. Artificial Intelligence in Medicine, 5:49–66, 1993.

[Boddy and Dean, 1989] Mark Boddy and Thomas Dean. Solving time-dependent planning problems.
In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, Detroit, MI,
August 1989.

23

[Boddy and Dean, 1993] Mark Boddy and Thomas Dean. Deliberation scheduling for problem solving
in time-constrained environments. Artificial Intelligence, 1993. To appear.

[Boddy, 1991] Mark Boddy. Solving time-dependent problems: A decision-theoretic approach to plan-
ning in dynamic environments. Ph.D. Dissertation CS-91-06, Department of Computer Science,
Brown University, Providence, RI, 1991.

[Bonissone and Halverson, 1990] Piero P. Bonissone and Peter C. Halverson. Time-constrained rea-
soning under uncertainty. The Journal of Real-Time Systems, 2(1/2):25–45, 1990.

[Brooks, 1986] Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation, RA-2(1):14–23, March 1986.

[Chung et al., 1990] J. Y. Chung, J. W. S. Liu, and K. J. Lin. Scheduling periodic jobs that allow
imprecise results. IEEE Transactions on Computers, 39:1156–1173, 1990.

[Collinot and Hayes-Roth, 1990] Anne Collinot and Barbara Hayes-Roth. Real-time control of rea-
soning: Experiments with two control models. In Proceedings of the Workshop on Innovative Approaches
to Planning, Scheduling and Control, pages 263–270, November 1990.

[Cooper, 1990] G. F. Cooper. The computational complexity of probabilistic inference using Bayesian
belief networks. Artificial Intelligence, 42(2/3):393, 1990.

[D’Ambrosio, 1989] Bruce D’Ambrosio. Resource bounded-agents in an uncertain world. In Pro-
ceedings of the Workshop on Real-Time Artificial Intelligence Problems, IJCAI-89, Detroit, August
1989.

[Dean and Boddy, 1988] T. Dean and M. Boddy. An analysis of time-dependent planning. In Proceed-
ings of the Seventh National Conference on Artificial Intelligence, pages 49–54, St. Paul, Minnesota,
August 1988.

[Dean and Wellman, 1991] Thomas Dean and Michael Wellman. Planning and Control. Morgan
Kaufmann Publishers, San Mateo, CA, 1991.

[Decker and Lesser, 1993] Keith S. Decker and Victor R. Lesser. Quantitative modeling of complex
computational task environments. In Proceedings of the Eleventh National Conference on Artificial
Intelligence, pages 217–224, Washington, July 1993.

[Decker et al., 1990] Keith S. Decker, Victor R. Lesser, and Robert C. Whitehair. Extending a black-
board architecture for approximate processing. The Journal of Real-Time Systems, 2(1/2):47–79,
1990.

[Decker et al., 1993] Keith S. Decker, Alan J. Garvey, Marty A. Humphrey, and Victor R. Lesser. A
real-time control architecture for an approximate processing blackboard system. International Journal
of Pattern Recognition and Artificial Intelligence, 7(2):265–284, 1993.

[Dey et al., 1993] J.K. Dey, James Kurose, and Don Towsley. On-line processor scheduling for a
class of IRIS (increasing reward with increasing time) real-time tasks. CS Technical Report 93–09,
University of Massachusetts, 1993.

[Etzioni, 1991] Oren Etzioni. Embedding decision-analytic control in a learning architecture. Artificial
Intelligence, 49:129–159, 1991.

24

[Firby, 1987] R. James Firby. An investigation into reactive planning in complex domains. In Proceedings
of the Sixth National Conference on Artificial Intelligence, pages 202–206, Seattle, WA, July 1987.

[Garvey and Lesser, 1993] Alan Garvey and Victor Lesser. Design-to-time real-time scheduling. IEEE
Transactions on Systems, Man and Cybernetics, 23(6), 1993. To appear.

[Garvey et al., 1993] Alan Garvey, Marty Humphrey, and Victor Lesser. Task interdependencies in
design-to-time real-time scheduling. In Proceedings of the Eleventh National Conference on Artificial
Intelligence, pages 580–585, Washington, D.C., July 1993.

[Hayes-Roth and Collinot, 1991] Barbara Hayes-Roth and Anne Collinot. Scalability of real-time
reasoning in intelligent agents. Technical Report KSL 91-08, Knowledge Systems Laboratory,
Stanford University, 1991.

[Hayes-Roth et al., 1992] B. Hayes-Roth, R. Washington, D. Ash, A. Collinot, A. Vina, and A. Seiver.
Guardian: A prototype intensive-care monitoring agent. Artificial Intelligence in Medicine, 4:165–
185, 1992.

[Hayes-Roth, 1990] Barbara Hayes-Roth. Architectural foundations for real-time performance in
intelligent agents. The Journal of Real-Time Systems, 2(1/2):99–125, 1990.

[Hendler and Agrawala, 1990] James Hendler and Ashok Agrawala. Mission critical planning: AI on
the MARUTI real-time operating system. In Proceedings of the Workshop on Innovative Approaches to
Planning, Scheduling and Control, pages 77–84, November 1990.

[Ho et al., 1992] Kevin I-J. Ho, Joseph Y-T. Leung, and W-D. Wei. Scheduling imprecise computation
tasks with 0/1-constraint. Technical Report UNL–CSE–92–16, University of Nebraska-Lincoln,
1992.

[Horvitz and Breese, 1990] Eric J. Horvitz and John S. Breese. Ideal partition of resources for metar-
easoning. Technical report KSL-90-26, Knowledge Systems Laboratory, Stanford University, March
1990.

[Horvitz and Rutledge, 1991] Eric J. Horvitz and Geoffrey Rutledge. Time-dependent utility and
action under uncertainty. In Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence,
Los Angeles, CA, July 1991.

[Horvitz et al., 1989] Eric J. Horvitz, Gregory F. Cooper, and David E. Heckerman. Reflection and
action under scarce resources: Theoretical principles and empirical study. In Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence, pages 1121–1127, Detroit, MI, August 1989.

[Horvitz, 1988] Eric J. Horvitz. Reasoning under varying and uncertain resource constraints. In
Proceedings of the Seventh National Conference on Artificial Intelligence, pages 111–116, St. Paul, MN,
August 1988.

[Horvitz, 1989] Eric J. Horvitz. Reasoning about beliefs and actions under computational resource
constraints. In L. N. Kanal, T. S. Levitt, and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence
3. Elsevier Science Publishers, 1989.

[Howe et al., 1990] Adele E. Howe, David M. Hart, and Paul R. Cohen. Addressing real-time con-
straints in the design of autonomous agents. The Journal of Real-Time Systems, 2(1/2):81–97, 1990.

25

[Ingrand and Georgeff, 1990] F. F. Ingrand and M. P. Georgeff. Managing deliberation and reasoning
in real-time AI systems. In Proceedings of the Workshop on Innovative Approaches to Planning, Scheduling
and Control, pages 284–291, November 1990.

[Ingrand et al., 1992] Francois F. Ingrand, Michael P. Georgeff, and Anand S. Rao. An architecture for
real-time reasoning and system control. IEEE Expert, pages 34–44, December 1992.

[Jensen et al., 1985] E. Douglas Jensen, C. Douglass Locke, and Hideyuki Tokuda. A time-driven
scheduling model for real-time operating systems. In Proceedings of the 1985 Real-time Systems
Symposium, pages 112–122, December 1985.

[Kenny and Lin, 1991] Kevin B. Kenny and Kwei-Jay Lin. Building flexible real-time systems using
the Flex language. IEEE Computer, 24(5):70–78, May 1991.

[Korf, 1990] Richard E. Korf. Depth-limited search for real-time problem solving. The Journal of
Real-Time Systems, 2(1/2):7–24, 1990.

[Lark et al., 1990] Jay S. Lark, Lee D. Erman, Stephanie Forrest, Kim P. Gostelow, Frederick Hayes-
Roth, and David M. Smith. Concepts, methods, and languages for building timely intelligent
systems. The Journal of Real-Time Systems, 2(1/2):127–148, 1990.

[Lesser and Corkill, 1983] Victor R. Lesser and Daniel D. Corkill. The distributed vehicle monitoring
testbed. AI Magazine, 4(3):63–109, Fall 1983.

[Lesser et al., 1988] Victor R. Lesser, Jasmina Pavlin, and Edmund Durfee. Approximate processing in
real-time problem solving. AI Magazine, 9(1):49–61, Spring 1988.

[Leung et al., 1992] Joseph Y-T. Leung, Vincent K.M. Yu, and W-D. Wei. Minimizing the weighted
number of tardy task units. Technical report, University of Nebraska-Lincoln, 1992.

[Liu et al., 1991a] J. W. S. Liu, K. J. Lin, W. K. Shih, A. C. Yu, J. Y. Chung, and W. Zhao. Algorithms
for scheduling imprecise computations. In Andr’e M. van Tilborg and Gary M. Koob, editors, Foun-
dations of Real-Time Computing: Scheduling and Resource Management. Kluwer Academic Publishers,
1991.

[Liu et al., 1991b] J. W. S. Liu, K. J. Lin, W. K. Shih, A. C. Yu, J. Y. Chung, and W. Zhao. Algorithms
for scheduling imprecise computations. IEEE Computer, 24(5):58–68, May 1991.

[Marlin et al., 1990] Chris Marlin, Wei Zhao, Graeme Doherty, and Andrew Bohonis. GARTL: A real-
time programming language based on multi-version computation. In Proceedings of the International
Conference on Computer Languages, pages 107–115, New Orleans, LA, March 1990.

[Musliner et al., 1993] David J. Musliner, Edmund H. Durfee, and Kang G. Shin. CIRCA: A cooper-
ative intelligent real-time control architecture. IEEE Transactions on Systems, Man and Cybernetics,
23(6), 1993. To appear.

[Russell and Wefald, 1991] Stuart Russell and Eric Wefald. Do the Right Thing: Studies in Limited
Rationality. MIT Press, Cambridge, MA, 1991.

[Russell and Zilberstein, 1991] Stuart J. Russell and Shlomo Zilberstein. Composing real-time systems.
In Proceedings of the Twelfth International Joint Conference on Artificial Intelligence, pages 212–217,
Sydney, Australia, August 1991.

26

[Shih et al., 1991] Wei-Kuan Shih, Jane W. S. Liu, and Jen-Yao Chung. Algorithms for scheduling
imprecise computations with timing constraints. SIAM Journal on Computing, 20(3):537–552, June
1991.

[Stankovic et al., 1989] J. A. Stankovic, K. Ramamritham, and D. Niehaus. On using the Spring kernel
to support real-time AI applications. In Proceedings of the EuroMicro Workshop on Real-time Systems,
1989.

[Strosnider and Paul, 1993] Jay K. Strosnider and C. J. Paul. A structured view of real-time problem
solving. Technical report, Carnegie Mellon University, Department of Electrical and Computer
Engineering, 1993.

[Washington and Hayes-Roth, 1989] Richard Washington and Barbara Hayes-Roth. Input data man-
agement in real-time AI systems. In Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence, pages 250–255, Detroit, MI, August 1989.

[Zhao et al., 1987] W. Zhao, K. Ramamritham, and J. A. Stankovic. Scheduling tasks with resource
requirements in hard real-time systems. IEEE Transactions on Software Engineering, May 1987.

[Zilberstein and Russell, 1992a] Shlomo Zilberstein and Stuart J. Russell. Constructing utility-driven
real-time systems using anytime algorithms. In Proceedings of the IEEE Workshop on Imprecise and
Approximate Computation, pages 6–10, Phoenix, AZ, December 1992.

[Zilberstein and Russell, 1992b] Shlomo Zilberstein and Stuart J. Russell. Efficient resource-bounded
reasoning in AT-RALPH. In Proceedings of the First International Conference on AI Planning Systems,
College Park, Maryland, June 1992.

[Zilberstein, 1993] Shlomo Zilberstein. Operational rationality through compilation of anytime algo-
rithms. Ph.D. Dissertation, Department of Computer Science, University of California at Berkeley,
Berkeley, CA, 1993.

27

