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Abstract: This survey is a presentation of the �ve lectures on Riemannian contact geometry that the author
gave at the conference “RIEMain in Contact”, 18-22 June 2018 in Cagliari, Sardinia. The author was particu-
larly pleased to be asked to give this presentation and appreciated the organizers’ kindness in dedicating the
conference to him.
Georges Reeb oncemade the comment that themere existence of a contact formon amanifold should in some
sense “tighten up” themanifold. The statement seemed quite pertinent for a conference that brought together
both geometers and topologists working on contact manifolds, whether in terms of “tight” vs. “overtwisted”
or whether an associated metric should have some positive curvature.
The �rst section will lay down the basic de�nitions and examples of the subject of contact metric manifolds.
The second section will be a continuation of the �rst discussing tangent sphere bundles, contact structures
on 3-dimensional Lie groups and a brief treatment of submanifolds. Section III will be devoted to the cur-
vature of contact metric manifolds. Section IV will discuss complex contact manifolds and some older style
topology. Section V treats curvature functionals and Ricci solitons. A sixth section has been added giving a
discussion of the question of whether a Riemannian metric g can be an associated metric for more than one
contact structure; at the conference this was an addendum to the third lecture.

1 Introduction and Examples
Most of the basic material on contact manifolds is well known, so we start with these just to set the termi-
nology and notation. By a contact manifold we mean a C∞ manifold M2n+1 together with a 1-form η such
that

η ∧ (dη)n = ̸ 0.

It is well known that given η there exists a unique vector �eld Zη, often denoted by geometers by ξ , such that

dη(X, Zη) = 0 and η(Zη) = 1.

The vector �eld Zη is known as theReeb vector �eld of the contact form η. Denote byDη the contact subbundle
de�ned by

{X ∈ TmM : η(X) = 0};

this is often denoted by topologists by ξ . Roughly speaking themeaning of the contact condition η∧(dη)n ≠ 0
is that the contact subbundle is as far from being integrable as possible. In fact the maximum dimension of
an integral submanifold ofDη is only n. A one-dimensional integral submanifold ofDη is called an Legendre
curve.

A di�eomorphism f ofM2n+1 (or between open subsets) is called a contact transformation if f *η = Fη for
some non-vanishing function F on the domain of f . If F ≡ 1, f is called a strict contact transformation. There
are many characterizations of contact transformations, for example:

f is a contact transformation if and only if X ∈ Dη implies f*X ∈ Dη.
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f maps Legendre curves to Legendre curves.
f maps r-dimensional integral submanifolds to r-dimensional integral submanifolds.

The simplest contact manifold is R2n+1(x1, . . . , xn , y1, . . . , yn , z) with the form

η = dz −
n∑
i=1

yidxi

or η = dt −
∑n

i=1 p
idqi thinking terms of classical mechanics. The classical theorem Darboux says that given

any contact form η one can always �nd local coordinates such that η takes this form. For example, on the
3-dimensional torus, T3, consider the contact form η = cos θ3dθ1 + sin θ3dθ2, then for

x = −θ3, y = θ1 sin θ3 − θ2 cos θ3, z = θ1 cos θ3 + θ2 sin θ3

we have η = dz − ydx. In general, for a given contact form, it is di�cult to solve the necessary PDEs to obtain
such local coordinates.

There is also the notion of a contact structure or contact structure in thewider sensewhich is used bymany
topologists and can be de�ned in a number of ways. For example, one can put the emphasis on the �eld of
2n-planes D and to de�ne the structure as a hyperplane �eld de�ned locally by a contact form, and in the
overlap of coordinate neighborhoods U ∩ U′, η′ = Fη and hence dη′ = dF ∧ η + Fdη from which

η′ ∧ (dη′)n = Fn+1η ∧ (dη)n ≠ 0.

Alternatively a contact manifold in the wider sense is a manifold with a di�erentiable structure modeled on
the pseudogroup of contact transformations on R2n+1.

The name contact (Berührungstransformation) seems to be due to Sophus Lie in 1890 [78] and is natural
in view of the simple example of Huygens’ principle published in 1690 [65].

Consider a wave front in the xy-plane and regard each of its points as a source. The envelope of all circles
centered at these points with radius commensurate with the speed of propagation is a new wave front. It is
determined by the points of the original curve and the slopes p at these points. Plotting the corresponding
curves in xyp-space, the mapping of tangent wave fronts to tangent wave fronts is a contact transformation,
the contact form being dy − pdx and in xyp-space the wave fronts become Legendre curves.

Before continuing let us brie�y deal with a couple of notational matters. Regarding exterior algebra and
di�erentiation and for the curvature tensor we adopt the standard conventions as given by Kobayashi and
Nomizu in Volume 1 of their famous treatise [71]. For two 1-forms, α and β, the evaluation of their exterior
product is given by

α ∧ β(X, Y) = 1
2
(
α(X)β(Y) − α(Y)β(X)

)
.

The coboundary formula for the exterior derivative of a 1-form is

dα(X, Y) = 1
2
(
Xα(Y) − Yα(X) − α([X, Y])

)
.

Also we will generally precede the coordinate expression of a contact form by a factor of 1
2 . Finally for the

curvature tensor
RXYZ = ∇X∇YZ −∇Y∇XZ −∇[X,Y]Z.

Asmentioned already the contact condition implies themaximumdegree of non-integrability of the con-
tact subbundle. One can also think of the contact condition as meaning that the corresponding hyperplane
�eld rotates as one moves around on the manifold. So one can think of associated metrics as providing a
measure of this rotation or of the corresponding Reeb vector �eld. An associatedmetric also provides contact
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geometry with a geometric structure analogous to that of an almost complex structure and Hermitian metric
in symplectic geometry, i.e. an almost Kähler structure.

A Riemannian metric g is an associated metric for a contact form η if, �rst of all,

η(X) = g(X, Zη)

and secondly, there exists a �eld of endomorphisms ϕ such that

ϕ2 = −I + η ⊗ Zη and dη(X, Y) = g(X, ϕY).

In particular the contact subbundle is orthogonal to the Reeb vector �eld, ϕZη = 0, η ◦ ϕ = 0 and ϕ acts as
an almost complex structure on Dη. Notice the similarity to an almost Hermitian structure on a symplectic
manifold.We refer to (ϕ, Zη , η, g) as a contact metric structure and toM2n+1 with such a structure as a contact
metric manifold.

We will also need an additional tensor �eld that plays a fundamental role, namely

h = 1
2$Zηϕ

where $ denotes Lie di�erentiation. The operator h is a symmetric, it anti-commutes with ϕ, hZη = 0 and
vanishes if and only if the Reeb vector �eld is Killing. An important property of h is the following

∇XZη = −ϕX − ϕhX

which re�ects the rotation of the Reeb vector �eld and in turn, by orthogonality, of the contact subbundle.
An immediate consequence is that the integral curves of Zη are geodesics.

Associatedmetrics can be constructed in the followingmanner. Let ¯̄g be anyRiemannianmetric onM2n+1

and de�ne a metric ḡ by

ḡ(X, Y) = ¯̄g(−X + η(X)Zη , −Y + η(Y)Zη) + η(X)η(Y).

Then ḡ(X, Zη) = η(X). Now choose a local ḡ-orthonormal basis {X1, . . . , X2n} ofDη and evaluate dη on these
vectors. This gives a 2n ×2n non-singular matrix, Aij = dη(XI , Xj) which by polarization can be written as the
product of an orthogonal matrix F and a positive de�nite symmetric matrix G. De�ne an associated metric g
and almost complex structure ϕ on Dη by g(Xi , Xj) = Gij and ϕXi = Fi jXj and extend to all tangent vectors
by g(X, Zη) = η(X) and ϕZη = 0. If now {Y1, . . . , Y2n} is another ḡ-orthonormal basis ofDη, There exists an
orthogonal matrix P such that

Bij = dη(Yi , Yj) = dη(Pk iXk , Pl jXl) = (PAP−1)ij .

If B = ΦΓ is the polar decomposition of B, ΦΓ = PFP−1PGP−1 and so by the uniqueness of the polar decom-
position Φ = PFP−1 and Γ = PGP−1 and we have that g and ϕ are globally de�ned. Now AT = GFT = −FG
and hence G = −FFFTGF. But FTGF is positive de�nite symmetric and by the uniqueness of the polar decom-
position F2 = −I and F = −FT . This construction is due to Hatakayama [60] in the course of which he proved
the analyticity of the polar decomposition.

Since the metric ¯̄g is totally arbitrary, the procedure can become overly complicated. A variation of
this idea is that if the form is presented explicitly enough, one might try to construct 2n local vector �elds
{X1, . . . , X2n} spanning Dη over a neighborhood U and such that the matrix dη(Xi , Xj) is relatively simple
to polarize. Then in the above procedure de�ne the initial metric by declaring {X1, . . . , X2n} together with
Zη to be orthonormal and use this as ḡ giving an associated metric g locally. Then ḡ can be extended and
the above procedure used to give a global associated metric which would agree with g on at worst a smaller
neighborhood contained in U.

The spaceA of all associatedmetrics for a given contact form is in�nite dimensional, so they are far from
unique but they do all have the same volume element which will play a role in Section V.
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For future use we de�ne a ϕ-basis. Let U be a coordinate neighborhood onM2n+1 and X1 any unit vector
�eld onU orthogonal to Zη. Then X1* = ϕX1 is a unit vector �eld orthogonal to both X1 and Zη. Now choose a
unit vector �eld X2 orthogonal to Zη, X1 and X1* . Then ϕX2 is also a unit vector �eld orthogonal to Zη, X1, X1*

and X2. Proceeding in this way we obtain a local orthonormal basis {Xi , Xi* = ϕXi , Zη}, i = 1, . . . , n, called
a ϕ-basis.

An almost contact structure consists of a �eld of endomorphisms ϕ, a 1-form η and a vector �eld Zη sat-
isfying

ϕ2 = −I + η ⊗ Zη and η(Zη) = 1.

A Riemannian metric g is said to be compatible if

g(ϕX, ϕY) = g(X, Y) − η(X)η(Y)

and we refer to all of this as an almost contact metric structure. This is equivalent to the reduction of the
structural group to U(n) × 1.

We remark that it is possible to have an almost contact metric structure (ϕ, Zη , η, g) with η a contact
form and Zη its Reeb vector �eld but which is not a contact metric structure. A hypersurface of an almost
Hermitian manifold inherits an almost contact structure. Thus for example, the standard contact structure
on S5 can be obtained by considering it as a hypersurface of Cn; S5 also inherits an almost contact structure
as the equatorial hypersurface of the nearly Kähler manifold S6 which not strictly a contact metric structure
(details can be found in example (4.5.3) in [10]).

The product M2n+1 ×R carries a natural almost complex structure de�ned by

J(X, f ddt ) = (ϕX − fZη , η(X) ddt )

where f is a function on M2n+1 × R. The underlying almost contact structure is said to be normal if J is inte-
grable. The normality condition can be expressed as N = 0 where N is de�ned by

N(X, Y) = [ϕ, ϕ](X, Y) + 2dη(X, Y)Zη ,

[ϕ, ϕ] being the Nijenhuis tensor of ϕ.

De�nition: A Sasakian manifold is a normal contact metric manifold.

A common alternate approach to this de�nition is the following. Let (Mm , g) be a Riemannian manifold,
R+ the positive reals and

C(Mm) = (R+ ×Mm , dr2 + r2g)

the cone overMm. Then (Mm , g) is Sasakian if and only if the holonomy group of C(Mm) reduces to a subgroup
of U(m+1

2 ). Thus (R+ ×Mm , dr2 + r2g) is Kähler and m = 2n + 1, n ≥ 1.
In terms of the covariant derivative of ϕ the Sasakian condition is

(∇Xϕ)Y = g(X, Y)Zη − η(Y)X

which can be viewed as a contact metric analogue of the Kähler condition,∇J = 0. In terms of the curvature
tensor a contact metric structure is Sasakian if and only if

RXYZη = η(Y)X − η(X)Y .

A contact metric structure for which Zη is a Killing vector �eld is said to be K-contact and it is easy to see
that a Sasakian manifold is K-contact. In dimension 3 the K-contact condition implies that the manifold is
Sasakian but this is not true in higher dimensions.

As mentioned before, the simplest contact manifold is R2n+1(x1, . . . , xn , y1, . . . , yn , z) with the form

η = 1
2 (dz −

n∑
i=1

yidxi).
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The Reeb vector �eld Zη is 2 ∂
∂z and the contact subbundle Dη is spanned by Xi = ∂

∂xi + yi ∂∂z , Xn+i = ∂
∂yi ,

i = 1, . . . , n. The Riemannian metric

g = η ⊗ η + 1
4

n∑
i=1

((dxi)2 + (dyi)2)

gives a contact metric structure on R2n+1. The tensor �eld ϕ is given by the matrix 0 δij 0
−δij 0 0

0 yj 0


and the vector �elds Xi = 2 ∂

∂yi , Xn+i = 2
( ∂
∂xi + yi ∂∂z

)
, i = 1, . . . , n and Zη form a ϕ-basis for the contact metric

structure.
This Riemannianmetric has the following properties. The structure is Sasakian, so in particular the Reeb

vector �eld Zη is a Killing vector �eld. The sectional curvature of any plane section containing Zη is equal to
1. The sectional curvature of a plane section spanned by a vector X orthogonal to Zη and ϕX is equal to −3;
for this reason this example is often denoted R2n+1(−3).

In dimension 3 this example is often identi�ed with the Heisenberg group

HR =


 1 y z

0 1 x
0 0 1

 ∣∣∣∣∣ x, y, z ∈ R

 ;

left translation preserves η and g is a left invariant metric on HR.

In some sense, the beginning of the modern theory of contact manifolds is the celebrated Boothby-Wang
�bration of 1958 [23]. Earlier, of course, there were many results in classical mechanics related to contact
transformations and some results by Reeb [96], Chern [28] and J. Gray [54] in the 1950s were also signi�cant.
To describe the Boothby-Wang Theorem �rst recall that a vector �eld on a manifold is regular if every point
has a neighborhood such that any integral curve of the vector �eld passing through the neighborhood, passes
through only once. Two well known examples of non-regular vector �elds are the irrational �ow on a torus
and the �ow around a Möbius band.

Theorem 1. Let (M2n+1, η′) be a compact regular contact manifold, then there exists a contact form η = τη′

for some non-vanishing function τ whose Reeb vector �eld Zη generates a free e�ective S1 action on M2n+1.
MoreoverM2n+1 is the bundle space of a principal circle bundle π : M2n+1 −→ M2n over a symplectic manifold
M2n whose symplectic form Ω determines an integral cocycle on M2n and η is a connection form on the bundle
with curvature form dη = π*Ω.

A particular example is that of the Hopf �bration S2n+1 −→ PCn which gives a natural Sasakian structure on
an odd-dimensional sphere of constant curvature +1. More generally if the base manifold is Kähler, then the
bundle space will be Sasakian.

Before leaving the topic of Sasakian manifolds let us remark that Hansjörg Geiges [47] has a nice result
here which will be mentioned again in Section V.

Theorem 2. A compact 3-dimensional manifold admits a Sasakian structure if and only if it is di�eomorphic
to a left invariant quotient of SU(2), the Heisenberg group or S̃L(2,R) by a discrete group.

We should not leave the topic of normality without discussing the relation between contact metric structures
(& almost contact structures) and CR-structures. Let N be an m(= 2n + k)-dimensional C∞ manifold and H

be a C∞ complex subbundle of the complexi�ed tangent bundle of complex dimension n. A CR-manifold, as
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introduced by Green�eld [55], of real dimensionm and CR-dimension n is a pair (N,H) such thatHp∩H̄p = 0
andH is involutive, i.e. for vector �elds X, Y ∈ H, [X, Y] ∈ H. Then there exists a unique subbundleD of TN
such thatDC = H ⊕ H̄, and a unique bundle map J : D −→ D such that J2 = −I andH = {X − iJX|X ∈ D}.

Now let (M,H)be aCR-manifoldwithM of real dimension2n+1 andH of complexdimension n. Consider
the space of all covectors in T*xM such thatD lies in their kernel. This de�nes a real line bundle F ⊂ T*M. IfM
is orientable, then F −→ M admits a global nowhere vanishing section η which is called a pseudo-Hermitian
structure and (M,H, η) is called a pseudo-Hermitian manifold. The Levi form is de�ned by

Lη(X, Y) = −dη(X, JY), X, Y ∈ D.

If Lη is non-degenerate, then η is a contact form and its Reeb vector �eld Zη is transverse to D. (M,H, η) is
said to be strongly pseudo-convex if Lη is positive de�nite.

Using the direct sum decomposition TM = D⊕ {Zη}wemay extend Lη to a Riemannian metric gη onM,
called the Webster metric, by gη(Zη , Zη) = 1, gη(Zη , X) = 0 for X ∈ D and gη(X, Y) = Lη(X, Y) for X, Y ∈ D.
Moreover we may extend J to a tensor �eld ϕ on M by ϕZη = 0 and ϕX = JX for X ∈ D. Therefore a strongly
pseudo-convex CR manifold (M,H, η), carries a contact metric structure (ϕ, Zη , η, gη).

Turning to the case of almost contact structures, consider an almost contact manifold M2n+1 with struc-
ture tensors (ϕ, Zη , η). Since ϕ2 = −I +η⊗Zη and ϕZη = 0, the eigenvalues of ϕ are 0 and ±i each withmulti-
plicity n; in particular ϕ is an almost complex structure on the subbundleD de�ned by η = 0. Thus the com-
plexi�cation ofDp is decomposable asD′

p ⊕D′′
p whereD′

p = {X − iϕX|X ∈ Dp} andD′′
p = {X + iϕX|X ∈ Dp},

the eigenspaces of ±i respectively.
We now present a theorem due to Ianus [66] that a normal almost contact manifold is a CR-manifold. The

converse is not true and we will see below a necessary and su�cient condition for a contact metric manifold
to be a CR-manifold.

Theorem 3. If M2n+1(ϕ, Zη , η, g) is a normal almost contact manifold, then (M2n+1,D′) is a CR-manifold.

For the proof, note �rst that D̄′
p = D′′

p andD′
p ∩D′′

p = 0; thus the proof is to show that [X − iϕX, Y − iϕY] ∈ D′

for X, Y ∈ D. The normality condition, [ϕ, ϕ] + 2dη⊗ Zη = 0, then provides the necessary ingredients for the
computation.

On a contact metric manifold M2n+1, (M2n+1,D′) might be CR without the structure being normal and
Tanno [108] gave a necessary and su�cient condition for a contact metric manifold to be a CR-manifold; note
the operator h in this theorem.

Theorem 4. Let (M2n+1, η, g) be a contact metric manifold. Then the pair (M2n+1,D′) is a (strongly pseudo-
convex) CR-manifold if and only if

(∇Xϕ)Y = g(X + hX, Y)Zη − η(Y)(X + hX).

Before going on we should include the idea of aD-homothetic deformation. Given a contact metric structure
(ϕ, Zη , η, g), consider the deformed structure

η̄ = aη, Z̄η̄ = 1
a Zη , ϕ̄ = ϕ, ḡ = ag + a(a − 1)η ⊗ η

where a is a positive constant. Such a deformation is called a D-homothetic deformation, since the metrics
restricted to the contact subbundle D are homothetic. This deformation was introduced by Tanno [106] and
has many applications. Such a change preserves the states of being contact metric, K-contact, Sasakian and
strongly pseudo-convex CR.

Finally we should mention the important result of Martinet [81] that a compact orientable 3-dimensional
manifold always admits a contact form. Gonzalo [53] showed that there are three independent contact forms.
A nice generalization of this to higher dimensions was given by Geiges and Gonzalo [49].
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Theorem 5. If a compact contact manifold M2n+1 admits k everywhere linearly independent vector �elds be-
longing to the contact subbundle, thenM2n+1 admits (k+1) everywhere linearly independent contact forms with
everywhere linearly independent Reeb vector �elds.

In the author’s view there is a signi�cant di�erence between dimension 3 and dimensions ≥ 5 in both contact
geometry and contact topology; the author hopes that both dimensional settings will be treated by geometers
and topologists in their future research.

2 Tangent Sphere Bundles, Lie Groups, and Submanifolds

2.1 Tangent Sphere Bundles

A second large class of contact metric manifolds is that of the tangent sphere bundles, T1M. Despite the
example of T1S2 ∼= RP3, the standard contact metric structures on tangent sphere bundles are almost never
Sasakian. In fact the standard contactmetric structure on the tangent sphere bundle is K-contact if and only if
the basemanifold has positive constant curvature +1 (Tashiro [110]). However, in general, the tangent sphere
bundles are classically an important class of contact manifolds.

To describe the structure of interest here, we �rst review the geometry of the tangent bundle. Let M be
an (n+1)-dimensional C∞ manifold and π̄ : TM −→ M its tangent bundle. If (x1, . . . , xn+1) are local coordi-
nates on M, set qi = xi ◦ π̄; then (q1, . . . , qn+1) together with the �bre coordinates (v1, . . . , vn+1) form local
coordinates on TM.

If X is a vector �eld on M, its vertical lift XV on TM is the vector �eld de�ned by XVω = ω(X) ◦ π̄ where
ω is a 1-form on M, which on the left side of this equation is regarded as a function on TM. For an a�ne
connection D onM, the horizontal lift XH of X is de�ned by XHω = DXω andwe then have the connectionmap
K : TTM −→ TM de�ned by

KXH = 0, KXVt = Xπ̄(t), t ∈ TM.

TM admits an almost complex structure J de�ned by

JXH = XV , JXV = −XH .

Computing the Nijenhuis torsion of J one can easily see that J is integrable if and only if D has vanishing
curvature and torsion (Hsu [62], Dombrowski [39]).

If now G is a Riemannian metric on M and D its Levi-Civita connection, we de�ne a Riemannian metric
gs on TM called the Sasaki metric (not to be confused with a Sasakian structure), by

gs(X, Y) =
(
G(π̄*X, π̄*Y) + G(KX, KY)

)
◦ π̄

where X and Y are vector �elds on TM. Since π̄*◦ J = −K and K◦ J = π̄*, gs is Hermitian for the almost complex
structure J.

On TM de�ne the Liouville form β by β(X)t = G(t, π̄*X), t ∈ TM or equivalently by the local expression
β =

∑
Gijvidqj. Then dβ is a symplectic structure on TM and in particular 2dβ is the fundamental 2-form of

the almost Hermitian structure (J, gs). Thus TM has an almost Kähler structure; it is Kählerian if and only if
(M, G) is �at (Tachibana and Okumura [102]).

The tangent sphere bundle, π : T1M −→ M, is the hypersurface of TM de�ned by∑
Gijvivj = 1.

The vector �eld ν = vi ∂∂vi is a unit normal as well as the position vector for a point t ∈ T1M. Denote by g′ the
Riemannian metric induced on T1M from the Sasaki metric gs on TM.
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Weknow that as a hypersurface of the almost Kählermanifold TM, T1M inherits an almost contactmetric
structure. Following usual procedures we de�ne ϕ′, Z′ and η′ by on T1M by

Z′ = −Jν, JX = ϕ′X + η′(X)ν.

(ϕ′, Z′, η′, g′) is then an almost contact metric structure. Moreover η′ is the form on T1M induced from the
Liouville form β on TM, for

η′(X) = gs(ν, JX) = 2dβ(ν, X) = 2
∑

d(Gijvj) ∧ dqi(vk
∂
∂vk

, X) =
∑

Gijvjdqi(X) = β(X).

However g′(X, ϕ′Y) = 2dη′(X, Y), so strictly speaking (ϕ′, Z, η′, g′) is not a contactmetric structure.Of course
the di�culty is easily recti�ed and

η = 1
2η

′, Zη = 2Z′, ϕ = ϕ′, g = 1
4 g

′

is taken as the standard contact metric structure on T1M.
Two simple examples are En+1 × Sn(4), the tangent sphere bundle of Euclidean space, and S3 × S2 as the

tangent sphere bundle of S3 but not with the productmetric; S3×S2 with its standard contactmetric structure
is, however, a very nice example of a Sasakian Einstein manifold.

We remark that
Zη = 2vi( ∂∂xi )

H

and that the vector �eld vi( ∂
∂xi )

H is the well-known geodesic �ow on T1M.

2.2 Lie Groups

We have already seen the Sasakian structures on the Heisenberg group and on the unit 3-sphere. We will see
that the 3-sphere also carries non-Sasakian contact metric structures as we discuss Lie groups.

In a celebrated work, John Milnor [82] gave a complete classi�cation of 3-dimensional Lie groups, their
left invariant metrics and the relation of the structure constants to the Ricci curvature.

On a 3-dimensional Lie group G we have a Lie algebra structure of the form

[e2, e3] = c1e1, [e3, e1] = c2e2, [e1, e2] = c3e3.

De�ne a Riemannian metric by g(ei , ej) = δij at the identity and extend to all of G by left translation. If some
ci is non-zero, the dual 1-form ωi is a contact form and the left invariant vector �eld determined by ei is its
Reeb vector �eld. However, for the Riemannian metric g to be an associated metric we must have ci = 2.

For example, the Lie group Sol, or equivalently the group E(1, 1) of rigidmotions of theMinkowski plane,
is topologically R3 and given by matrices of the form ey 0 z

0 e−y x
0 0 1

 .

The underlying Lie algebra structure is

[e2, e3] = 2e1, [e3, e1] = −2λe2, [e1, e2] = 0, λ > 0.

For the Lie algebra consider the three simple matrices 0 0 1
0 0 1
0 0 0

 ,

 0 0 −1√
λ

0 0 1√
λ

0 0 0

 ,

 2
√
λ 0 0

0 −2
√
λ 0

0 0 0
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spanning it. However, let us use think in terms of the identi�cation of the Lie algebra with TIE(1, 1) ∼=
R3(z, x, y) with basis  1

1
0

 ,


−1√
λ

1√
λ

0

 ,

 0
0

2
√
λ

 .

Consider left translation by

 ey 0 z
0 e−y x
0 0 1

 and its di�erential

 ey 0 0
0 e−y 0
0 0 1

; applying this to the ba-

sis vectors gives the vector �elds

Z1 = e−y ∂∂x + ey ∂∂z , Z2 = 1√
λ

(
e−y ∂∂x − e

y ∂
∂z
)
, Z3 = 2

√
λ ∂∂y

whose Lie brackets satisfy the Lie algebra structure equations. With Z1 as the Reeb vector �eld and Z2, Z3 ∈
Dη, the contact form becomes

η = 1
2
(
eydx + e−ydz

)
and the associated left invariant metric is

g = 1
4
(

(1 + λ)e2ydx2 + 2(1 − λ)dxdz + (1 + λ)e−2ydz2 + 1
λ dy

2).
This metric will appear again in Section V with λ = 1.

The Lie group SL(2,R), or its universal cover S̃L(2,R), has the above Lie algebra structure with two of
the structure constants positive and one negative. Taking ω1 as the contact form we write the structure as

[e2, e3] = 2e1, [e3, e1] = (1 − λ)e2, [e1, e2] = (1 + λ)e3, λ > 1.

Similarly the Lie group SU(2) ∼ S3 has the above Lie algebra structure with all three structure constants
positive. Again taking ω1 as the contact form the structure take the form

[e2, e3] = 2e1, [e3, e1] = (1 − λ)e2 [e1, e2] = (1 + λ)e3

where now 0 ≤ λ < 1. Even for λ = 0, which gives a Sasakian structure, this di�ers as an algebraic structure
from the standard Lie algebra structure on S3 where each structure constant is 2. For 0 < λ < 1 the structure
is non-Sasakian.

Finally the Lie group E(2) of rigid motions of the Euclidean plane is given by matrices of the form cos y − sin y z
sin y cos y x

0 0 1


and the underlying Lie algebra structure is

[e2, e3] = 2e1, [e3, e1] = 0, [e1, e2] = 2λe3, λ > 0.

To illustrate the relation of these Lie groups as contact metric manifolds to curvature, let us state a result
of Domenico Perrone [92]. Denote by τ the scalar curvature and by

W = 1
8 (τ − Ric(Zη) + 4)

the Webster scalar curvature which we need not dwell on here.

Theorem 1. Let (M3, η, g) be a simply connected homogeneous contact metric manifold. ThenM is a Lie group
G and both g and η are left invariant. More precisely we have the following classi�cation:
(1) If G is unimodular, then it is one of the following Lie groups:
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1. The Heisenberg group whenW = |$Zηg| = 0;
2. SU(2) when 4

√
2W > |$Zηg|;

3. the universal covering of the group of rigid motions of the Euclidean plane when 4
√

2W = |$Zηg| > 0;
4. the universal covering of SL(2,R) when −|$Zη ig| = ̸ 4

√
2W < |$Zηg|;

5. the group of rigid motions of the Minkowski plane when 4
√

2W = −|$Zηg| < 0.
(2) If G is non-unimodular, its Lie algebra is given by

[e1, e2] = αe2 + 2Zη , [e1, Zη] = γe2, [e2, Zη] = 0,

where α = ̸ 0, e1, e2 = ϕe1 ∈ Dη and 4
√

2W < |$Zηg|. Moreover, if γ = 0, the structure is Sasakian andW = − α
2

4 .

2.3 Submanifolds

Recall that a 1-dimensional integral submanifold of a contact manifold is a Legendre curve and we begin with
an elementary property of Legendre curves in (R3, η = dz−ydx). The projection γ* of a closed Legendre curve
γ in R3 to the xy-plane must have self-intersections; moreover the algebraic (signed) area enclosed by γ* is
zero. Since dz − ydx = 0 along γ, this follows from the elementary formula for the area enclosed by a curve
given by Green’s theorem,

0 = −
∫
γ

dz =
∫
γ*

−ydx = area,

the area being + for γ* traversed counterclockwise and − for clockwise. Now one can think of the pair of γ
and its projection γ* in the following terms. Suppose that γ itself does not have self-intersections and regard
γ* as a Lagrangian submanifold in R2 ∼= C with self-intersections; then think of going from γ* to γ as a way
of removing the singularity but preserving the “Lagrangian-Legendre” property.

For example the map of the circle u2 + v2 = 1 into R2 given by

(u, v) −→ (v, 2uv)

has a double point, viz. (±1, 0) → (0, 0). On the other hand the map of the circle u2 + v2 = 1 into (R3, η =
dz − ydx) given by

(u, v) −→ (2uv, v, 2u − 4
3u

3)

is an embedding and is a Legendre curve. This is the presentation in the literature; note the interchange of v
and 2uv, but (0, 0, 0) is still above the double point (0, 0).

A well known result of Gromov [56] is that the sphere Sn can not be embedded inCn as a Lagrangian sub-
manifold, sowhat is the next best thing? A generalization of the above example and an important Lagrangian
submanifold of R2n ∼= Cn is the Whitney sphere. Let Ω =

∑n
i=1 dx

i ∧ dyi be the standard symplectic form on
R2n and consider the sphere Sn in Rn+1 given by

∑n
i=0(ui)2 = 1 immersed in R2n by

(u0, . . . , un) −→ (u1, . . . , un , 2u0u1, . . . , 2u0un).

Again notice the double point (±1, 0, . . . , 0) and it is easy to check that this immersed sphere is a Lagrangian
submanifold of R2n.

The Whitney sphere is often presented in another form, which, though slightly more complicated, lends
itself to natural geometric characterization. For theWhitney sphereMn as a Lagrangian submanifold ofR2n ∼=
Cn, the immersion is

(u0, . . . , un) −→ 1
1 + (u0)2 (u1, . . . , un , u0u1, . . . , u0un).

This submanifold satis�es the relation
|H|2 = n + 2

n2(n − 1) τ
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whereH is the mean curvature vector and τ the scalar curvature ofMn. This equality characterizes the Whit-
ney sphere as a Lagrangian submanifold of Cn. More precisely Borrelli, Chen and Morvan [24] proved that if
Mn is a Lagrangian submanifold ofCn, then |H|2 ≥ n + 2

n2(n − 1) τ with equality if and only ifMn is either totally
geodesic or a (piece of a) Whitney sphere.

Now embed
∑n

i=0(ui)2 = 1 in the contact manifold R2n+1 with its standard contact metric structure by

(u0, . . . , un) −→ (2u0u1, . . . , 2u0un , u1, . . . , un , 2u0 − 4
3 (u0)3)

giving an embedded sphere as an integral submanifold of the standard contact structure. We refer to this
sphere as a contact Whitney sphere.

In the contact manifold R2n+1 with its standard contact metric structure we also have a second presen-
tation of the contact Whitney sphere as an embedded sphere and an integral submanifold of the contact
structure, namely

(u0, . . . , un) −→ 1
1 + (u0)2

(
u0u1, . . . , u0un , u1, . . . , un , u0

1 + (u0)2

)
which can be viewed as the lift of theWhitney sphere inCn. For an integral submanifoldMn ofR2n+1 we also
have |H|2 ≥ n + 2

n2(n − 1) τ with equality if and only ifMn is either totally geodesic or a (piece of a) contact Whit-

ney sphere (Carriazo and B. [11]). Note the segment of the z-axis or chord joining the points (0, . . . , 0, ±1
4 )

(or (0, . . . , 0, ±2
3 ) in the �rst presentation). This reminds us of the Arnold Chord Conjecture [2] concerning

integral curves of the Reeb vector �eld joining points of a Legendre submanifold. More precisely, Arnold con-
jectured that every closed Legendre curve in S3 with its standard contact subbundle has a Reeb chord for any
contact form de�ning it. This was proved by Mohnke [84] for spheres S2n+1 with their standard contact sub-
bundles. More recently Hutchings and Taubes [63],[64] have extended and proved the conjecture for general
contact 3-manifolds.

Before going further let us present brie�y the notation of submanifold theory. For a submanifold M of a
Riemannian manifold (M̃, g̃) we denote the induced metric by g. Then the Levi-Civita connection∇ of g and
the second fundamental form σ are related to the ambient Levi-Civita connection ∇̃ by

∇̃XY = ∇XY + σ(X, Y).

For a normal vector �eld ν we denote by Aν the corresponding Weingarten map and we denote by ∇⊥ the
connection in the normal bundle; in particular Aν and∇⊥ are de�ned by

∇̃Xν = −AνX +∇⊥
X ν.

The Gauss equation is

R̃(X, Y , Z,W) = R(X, Y , Z,W) + g̃(σ(X, Z), σ(Y ,W)) − g̃(σ(Y , Z), σ(X,W)).

De�ning the covariant derivative of σ by (∇′σ)(X, Y , Z) = ∇⊥
X σ(Y , Z) − σ(∇XY , Z) − σ(Y ,∇XZ) the Codazzi

equation is
(R̃X YZ)⊥ = (∇′σ)(X, Y , Z) − (∇′σ)(Y , X, Z).

Finally for normal vector �elds ν and ζ the equation of Ricci-Kühne is

R̃(X, Y , ν, ζ ) = R⊥(X, Y , ν, ζ ) − g([Aν , Aζ ]X, Y).

Again recall that a submanifold Mr of M2n+1 is an integral submanifold if η(X) = 0 for every tangent
vector X. It is clear then that for any pair of tangent vector �elds we have

dη(X, Y) = 1
2
(
Xη(Y) − Yη(X) − η([X, Y])

)
= 0.
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Thus in terms of associated metrics, g(X, ϕY) = 0, in particular ϕ maps tangent vectors to normal vectors;
also since Zη is a normal vector, the dimension r can be at most n. On the other hand by the Darboux theorem
we have local coordinates (x1, . . . , xn , y1, . . . , yn , z) with respect to which η = dz −

∑n
i=1 y

idxi. Therefore
xi = const., z = const. de�ne an n-dimensional integral submanifold. Since g(X, ϕY) = 0 integral sub-
manifolds are sometimes called C-totally real submanifolds and if the integral submanifold has dimension n,
it is sometimes called a Legendre (or Legendrian) submanifold in analogy with Lagrangian submanifolds in
symplectic geometry.

Turning to speci�c results we �rst mention the following result of Van Lindt, Verheyen and Verstraelen
[111] because of the nice technique used in the proof which is due to A. Ros [97].

Theorem 2. Let Mn be a compact integral submanifold minimally immersed in a Sasakian space form
(M̃2n+1(c), ϕ̃, Z̃η̃ , η̃, g̃) with c > −3. If the sectional curvature K of Mn is positive, then it is totally geodesic.

The idea is to de�ne a real-valued function f on the unit tangent bundle T1Mn by

f (V) = g̃(σ(V , V), ϕ̃V).

Since T1Mn is compact, f attains its maximum at a unit tangent vector V at some point p ∈ Mn. Then for
any tangent vector U at p, let γ(t) be the geodesic in Mn with γ(0) = p and γ′(0) = U. Let V(t) be the parallel
translate of V along γ. Then

0 = d
dt f (V(t))

∣∣
t=0 and 0 ≥ d2

dt2 f (V(t))
∣∣
t=0.

The analysis of these relations using the equations of Gauss, Codazzi and Ricci-Kühne is quite involved but
interesting and gives the result.

If the sectional curvature is only ≥ 0, one can do better in dimension 7, namely, we have the following
result of Dillen and Vrancken [37].

Theorem 3. Let M3 be a compact integral submanifold of the standard Sasakian structure on S7(1) which is
minimally immersed. If K ≥ 0, then either M3 is totally geodesic, M3 is a covering of the 3-torus or M3 is a
covering of S1( 1√

3 ) × S2( 4
3 ).

In this theorem 0 ≤ K ≤ 4
3 and both extreme values are attained in the last case. On the other hand, note the

later result of Dillen and Vrancken [38].

Theorem 4. IfMn is a compact minimal integral submanifold of S2n+1(1) and if 0 ≤ K ≤ 1, then K is identically
0 or 1.

There aremany other results along these lines in the literature. There are alsomany results concerning invari-
ant submanifolds which we do not have time to discuss, so we only give the de�nition and a few remarks. For
a contact metric manifold M̃2n+1 with structure tensors (ϕ̃, Z̃η , η̃, g̃) a submanifoldM is said to be invariant if
ϕ̃TpM ⊂ TpM. Some authors also require that Z̃η be tangent toM but this is a consequence. An invariant sub-
manifold inherits a contact metric structure by restriction. Moreover for the induced structure (ϕ, Zη , η, g)
we have h = h̃|M as well. Also for the second fundamental form we have

σ(Zη , X) = ∇̃X Z̃η −∇XZη = −ϕ̃X − ϕ̃h̃X − (−ϕX − ϕhX) = 0.

A result of Chinea [30] and independently of Endo [41] is the following, similar to the fact that an invariant
submanifold of a Kähler manifold is minimal.

Theorem 5. An invariant submanifold of a contact metric manifold is minimal.
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It is also known and not di�cult to prove that an invariant submanifold of a K-contact (resp. Sasakian) man-
ifold is K-contact (resp. Sasakian). Moreover, invariant submanifolds respect the Boothby-Wang �bration; in
particular we have the following result of Harada [58].

Theorem 6. LetM be a compact invariant submanifold of a compact regular Sasakian manifold M̃. ThenM is
regular and M/Zη is a Kähler (invariant) submanifold of M̃/Zη.

For example consider the complex quadric Qn−1 inCPn together with the Hopf �bration S2n+1 −→ CPn. Then
the set of �bres over Qn−1 form a codimension 2 invariant submanifold of the Sasakian structure on S2n+1.

3 Curvature of Contact Metric Manifolds

In this section we discuss several aspects of the curvature of contact metric manifolds. LetM2n+1 be a contact
metric manifold with structure tensors (ϕ, Zη , η, g) and recall the important tensor �eld h = 1

2$Zηϕ. We have
already noted that

∇XZη = −ϕX − ϕhX.

Di�erentiating this with respect to Zη we can compute RZη XZη. This yields the following formulas

(∇Zηh)X = ϕX − h2ϕX − ϕRX ZηZη ,

1
2 (RX ZηZη − ϕRϕX ZηZη) = −ϕ2X − h2X.

From the second formula one has as an easy corollary

Ric(Zη) = 2n − trh2

and we see immediately that a contact metric manifold is K-contact if and only if

Ric(Zη) = 2n.

One also sees from these formulas that a contact metric manifold is K-contact if and only if the sectional
curvature of all plane sections containing Zη are equal to +1. We remarked earlier that the Sasakian condition
can be written as,

(∇Xϕ)Y = g(X, Y)Zη − η(Y)X, and as, RXYZη = η(Y)X − η(X)Y .

An early result (B. [6]) is that in dimension ≥ 5 there are no �at associated metrics. This was generalized
by Olszak [90] to the following.

Theorem 1. If a contact metric manifold M2n+1 is of constant curvature c and dimension ≥ 5, then c = +1 and
the structure is Sasakian. In dimension 3, constant curvature arises only for c = 0, 1 and again the latter case
is Sasakian.

I conjecture that the proper generalization of non-�atness is that, aside from the �at 3-dimen-sional case, a
contact metric manifold should have some positive curvature. Strictly speaking, in dimension 3 this is false
by virtue of an example due to Krouglov [77] of a 3-dimensional contact metric manifold which is negatively
curved on some neighborhood as we will see below, but which is not globally of non-positive curvature. Let
us �rst however give a result of Rukimbira [98] based on work of Zeghib [117]. If the manifold is compact and
we ask for strictly negative curvature we can answer this question in the negative using the following deep
result of A. Zeghib on geodesic plane �elds. Recall that a k-dimensional plane �eld on an n-dimensional
Riemannian manifold is said to be geodesic if any geodesic tangent to the plane �eld at one point is tangent
to it at every point. Zeghib’s result is the following.
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Theorem 2. A compact negatively curved Riemannian manifold has no C1 geodesic plane �eld.

Since for any contact metric structure the integral curves of Zη are geodesics, Zη determines a geodesic line
�eld to which we can apply the theorem of Zeghib as was pointed out by Rukimbira. Thus we have the fol-
lowing theorem.

Theorem 3. On a compact contact manifold, there is no associated metric of strictly negative curvature.

The fact that hyperbolic spacehasmany 1-dimensional totally geodesic foliations, doesnot violate thepositive
curvature conjecture, since the hyperbolic metric cannot be an associated metric of any contact structure by
the above theorem of Olszak.

A contact manifold is said to be homogenous if it admits a transitive Lie group of di�eomorphisms which
preserving the contact form. A contact metric manifold is said to be homogenous if it admits a transitive Lie
group of di�eomorphisms which preserves the structure tensors (ϕ, Zη , η, g). We now have the following
results of A. Lotta [79].

Theorem 4. In dimensions ≥ 5 there are no homogeneous, simply connected contact manifolds which admit
a Riemannian metric of non-positive curvature and for which the Reeb vector �eld is orthogonal to the contact
sub-bundle.

Theorem 5. LetM2n+1 be a homogeneous, simply connected contactmetricmanifold of non-positive curvature.
Then themanifold is3-dimensional, �at and equivalent to the universal cover of E(2)with a left invariant contact
metric structure.

In [77] V. Krouglov gave the following example of a contact metric structure on R3 which we present with a
few notational modi�cations. Consider the standard Darboux form η = 1

2 (dz − ydx) and its Reeb vector �eld
Zη = 2 ∂

∂z . The associated metric that he chose is essentially

g = 1
4


√

2 e−z + y2 −1 −y
−1

√
2 ez 0

−y 0 1

 .

The vector �elds

X =
√

2 ez/2√√
2 − 1

 1
e−z

y

 , Y =
√

2 ez/2√√
2 + 1

 1
−e−z

y


together with Zη form an orthonormal basis. Now let

U = αX + βY + γZη , V = λX + µY + νZη

be two independent vector �elds. Then by direct computation

R(U, V , V , U) = −(αµ − βλ)2(1 + 2
√

2 y2ez) − (αν − γλ)2 − (βν − γµ)2

−4
√

1 +
√

2 (αµ − βλ)(αν − γλ)yez/2 + 4√
1 +
√

2
(αµ − βλ)(βν − γµ)yez/2

which is negative at the origin and therefore negative on a neighborhood of the origin. This neighborhood
would then be a contact metric manifold of negative curvature even though it is not complete. For α = µ =
ν = 1 and β = γ = λ = 0

R(X, Y + Zη , Y + Zη , X) = −(1 + 2
√

2 y2ez) − 1 − 4
√

1 +
√

2 yez/2.

At y = −1, z = 0 this is positive, so R3 with the standard Darboux form and this metric has some positive
curvature.
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There is amore general class of contact metric manifolds than the Sasakian ones, called (κ, µ)-manifolds
which has turned out to be of more interest than one might have originally anticipated. Let us begin with the
following theorem (B. [7]).

Theorem 6. A contact metric manifoldM2n+1 satisfying RX YZη = 0 is locally isometric to En+1×Sn(4) for n > 1
and �at for n = 1.

The structure is the standard contact metric structure as described earlier on the tangent sphere bundle of
Euclidean space, En+1 × S2(4).

Themis Koufogiorgos observed that the condition RX YZη = 0 is not D-homothetic invariant unlike a
number of other conditions we have mentioned, rather it takes the form

RX YZη = κ(η(Y)X − η(X)Y) + µ(η(Y)hX − η(X)hY) (*)

for constants κ and µ. This form, however, is D-homothetic invariant, that is, for the deformed metric ḡ =
ag + a(a − 1)η ⊗ η, R̄X Y Z̄η takes this form with

κ̄ = κ + a2 − 1
a2 , µ̄ = µ + 2a − 2

a .

A contact metric manifold satisfying (*) is called a (κ, µ)-manifold as introduced and developed as an inter-
esting class of contact metric manifolds by Koufogiorgos, Papatoniou, and the author in [14].

It is known that κ is always ≤ 1 and if κ = 1, the structure is Sasakian. Moreover if κ < 1, the (κ, µ)
condition determines the curvature of M2n+1 completely. Also a (κ, µ)-manifold is a strongly pseudoconvex
CR-manifold.

Furthermore, if κ < 1, the non-zero eigenvalues of h are ±
√

1 − κ each with multiplicty n. Let λ be the
positive eigenvalue. Then M2n+1 admits three mutually orthogonal subbundlesD(0),D(λ) andD(−λ) which
are integrable. The subbundles D(λ) and D(−λ) were further studied as Legendre foliations by Cappelletti
Montano and Di Terlizzi [27].

For a non-Sasakian (κ, µ)-manifold M, Boeckx [16] introduced an invariant

IM =
1 − µ

2√
1 − κ

and showed that for two non-Sasakian (κ, µ)-manifolds (Mi , ϕi , ξi , ηi , gi), i = 1, 2, we have IM1 = IM2 if and
only if up to a D-homothetic deformation, the two spaces are locally isometric as contact metric manifolds.
Thus we know all non-Sasakian (κ, µ)-manifolds locally as soon as we have for every odd dimension 2n + 1
and for every possible value of the invariant I, one (κ, µ)-manifold (M, ϕ, ξ , η, g) with IM = I. The standard
contact metric structure on the tangent sphere bundle of a manifold of constant curvature c ≠ 1, I = 1+c

|1−c| .
Therefore as c varies, I takes on every value > −1. Boeckx now gives an example for any odd dimension and
value of I ≤ −1; his construction is as follows.

Let g be a (2n + 1)-dimensional Lie algebra, n ≥ 2. Introduce a basis for g,

{Z, X1, . . . , Xn , Y1, . . . , Yn},

and for real numbers α and β de�ne the Lie bracket by

[Z, X1] = −αβ2 X2 −
α2

2 Y1, [Z, X2] = αβ
2 X1 −

α2

2 Y2, [Z, Xi] = −α
2

2 Yi , i ≥ 3,

[Z, Y1] = β2

2 X1 −
αβ
2 Y2, [Z, Y2] = β2

2 X2 + αβ
2 Y1, [Z, Yi] = β2

2 Xi , i ≥ 3,

[X1, Xi] = αXi , i = ̸ 1, [Xi , Xj] = 0, i, j = ̸ 1,

[Y2, Yi] = βYi , i ≠ 2, [Yi , Yj] = 0, i, j ≠ 2,

[X1, Y1] = −βX2 + 2Z, [X1, Yi] = 0, i ≥ 2,
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[X2, Y1] = βX1 − αY2, [X2, Y2] = αY1 + 2Z, [X2, Yi] = βXi , i ≥ 3,

[Xi , Y1] = −αYi , i ≥ 3, [Xi , Y2] = 0, i ≥ 3,

[Xi , Yj] = δij(−βX2 + αY1 + 2Z), i, j ≥ 3.

The associated Lie group G is not unimodular if not both α and β are equal to zero. Now de�ne a metric on G
by left translation of the basis {Z, X1, . . . , Xn , Y1, . . . , Yn}, taken as orthonormal at the identity. Then taking
η as the metric dual of Z and de�ning ϕ by ϕZ = 0, ϕXi = Yi and ϕYi = −Xi, we have a contact metric
structure on G. Now for the present purpose suppose that β2 > α2. G is a non-Sasakian (κ, µ)-manifold and

IG = −β
2 + α2

β2 − α2 ≤ −1;

thus for appropriate choices of β > α ≥ 0, IG attains any value ≤ −1.
For the 3-dimensional case, consider the Lie algebra

[Z, X] = −α
2

2 Y , [Z, Y] = β2

2 X, [X, Y] = 2Z

which corresponds to a unimodular Lie group. Boeckx points out that for appropriate values of α and β we
obtain left invariant contact metric structures with values of the invariant IG as follows: ISU(2) > 1, IE(2) = 1,
−1 < ISL(2,R) < 1, IE(1,1) = −1 and ISL(2,R) < −1.

The Lie group of rigid motions of the Minkowski plane, E(1, 1), carries a (0, 4)-structure and will be
discussed further in Section V.

In [76] Koufogiorgos and Tsichlias considered the question of contact metric manifolds for which Zη sat-
is�es the (κ, µ) condition but where κ and µ are functions rather than constants and called these spaces
generalized (κ, µ)-manifolds. They showed that in dimensions ≥ 5, κ and µ must be constant and in dimen-
sion 3 gave an example where κ and µ are not constants. Moreover this idea is closely related to the question
of the Reeb vector �eld as a map into the tangent sphere bundle being a harmonic map.

Next let us discuss the notion of ϕ-sectional curvature. This idea plays the role in Sasakian geometry that
holomorphic sectional curvature plays in Kähler geometry. A plane section in TmM2n+1 is called a ϕ-section
if there exists a vector X ∈ TmM2n+1 orthogonal to Zη such that {X, ϕX} span the section. The sectional
curvature K(X, ϕX) is called ϕ-sectional curvature.

Recall that the sectional curvatures of a Riemannian manifold determine the curvature transformation
RX YZ. It is also well known that the holomorphic sectional curvatures of a Kähler manifold determine the
curvature completely. Moskal [85] showed that on a Sasakian manifold the ϕ-sectional curvatures determine
the curvature completely. Ogiue [88] proved the following result giving rise to the concept of a Sasakian space
form.

Theorem 7. If the ϕ-sectional curvature at any point of a Sasakian manifold of dimension ≥ 5 is independent
of the choice of ϕ-section at the point, then it is constant on the manifold and the curvature tensor is given by

RX YZ = c + 3
4 (g(Y , Z)X − g(X, Z)Y)

+ c − 1
4 (η(X)η(Z)Y − η(Y)η(Z)X + g(X, Z)η(Y)Zη − g(Y , Z)η(X)Zη

+dη(Z, Y)ϕX − dη(Z, X)ϕY + 2dη(X, Y)ϕZ)

where c is the constant ϕ-sectional curvature.

AD-homothetic deformation of a Sasakian space form is again a Sasakian space form. For example, the odd-
dimensional unit sphere with its standard Sasakian structure can be deformed to a Sasakian space form of
constant ϕ-secitonal curvature c = 4

a − 3 giving any c > −3. In Section I we brie�y mentioned the Sasakian
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space form R2n+1(−3). If Bn is a simply connected, bounded domain in Cn, Bn × R has a Sasakian structure
of constant ϕ-sectional curvature < −3.

Th. Koufogiorgos [75] studied (κ, µ)-manifolds of dimension ≥ 5 for which the ϕ-sectional curvature at
any point is independent of the choice of ϕ-section at the point. He proved that the ϕ-sectional curvature is
constant and obtained the curvature tensor explicitly.

In the general context of contactmetricmanifolds J. T. Cho [31] introduced the notion of a contact Rieman-
nian space form.We get at this notion in the followingway.Mitric [83] and Tanno [109] showed hat the tangent
sphere bundle with its standard contact metric structure is a CR-manifold if and only if the base manifold is
of constant curvature. Cho �rst computes the covariant derivative of h in this case obtaining

(∇Xh)Y = g((h − h2)ϕX, Y)ξ + η(Y)(h − h2)ϕX − µη(X)hϕY

where µ is a constant. He then abstracts this idea and de�nes the classQ of contact metric CR-manifolds for
which the covariant derivative of h satis�es the above condition.We remark that in the study of contactmetric
manifolds in general, lack of control of the covariant derivative of h is often an obstacle to further results, so
this is a welcome consideration.

Now for a contact metric manifoldM2n+1 with n > 1 in the classQ for which the ϕ-sectional curvature is
independent of the choice of ϕ-section, Cho shows that the ϕ-sectional curvature is constant on M2n+1 and
computes the curvature tensor explicitly. He then de�nes a contact Riemannian space form to be a complete,
simply connected contact metric manifold of classQ of constant ϕ-sectional curvature. Cho also gave a num-
ber of non-Sasakian examples and showed that a contact Riemannian space form is locally homogeneous
and is strongly locally ϕ-symmetric, a notion that we will discuss shortly.

Another natural curvature question to ask is whenmight a contact metric manifold be locally symmetric.
In 1962 Okumura [89] showed that a locally symmetric Sasakian manifold is locally isometric to S2n+1(1) and
it took until 2006 before Boeckx and Cho [20] could show that a locally symmetric contact metric manifold
is locally isometric to S2n+1(1) or En+1 × Sn(4). Recall that the latter structure is that of the contact metric
structure on the tangent sphere bundle of Euclidean space. In particular, the product metric on S3 × S2 is
not an associated metric; S3 × S2 does, however, carry a Sasakian Einstein structure (Tanno [107]). Perrone
and Vanhecke [95] proved that the only 5-dimensional compact, simply connected, homogeneous contact
manifolds are di�eomorphic to S5 or S3 × S2.

These results can be regarded as saying that the idea of being locally symmetric is too strong. This was
already recognized in the Sasakian case by T. Takahashi [105] and he introduced the notion of a locally ϕ-
symmetric space. A Sasakian manifold is said to be a Sasakian locally ϕ-symmetric space if

ϕ2(∇VR)X YZ = 0

for all vector �elds V , X, Y , Z orthogonal to Zη. It is easy to check that Sasakian space forms are locally ϕ-
symmetric spaces.

Note that on a SasakianmanifoldM, ormore generally on aK-contactmanifold, a geodesic that is initially
orthogonal to Zη remains orthogonal to Zη. We call such a geodesic a ϕ-geodesic. A local di�eomorphism sm
of M, m ∈ M, is a ϕ-geodesic symmetry if its domain contains a (possibly) smaller domain U such that for
every ϕ-geodesic γ(s) parametrized by arc length such that γ(0) is in the intersection of U and the integral
curve of Zη through m and

(sm ◦ γ)(s) = γ(−s)

for all s with γ(±s) ∈ U.
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Takahashi de�nes a Sasakianmanifold to be a Sasakian globally ϕ-symmetric space by requiring that any
ϕ-geodesic symmetry can be extended to a global automorphism of the structure and that the Killing vector
�eld Zη generates a 1-parameter group of global transformations. Among the main results of Takahashi are
the following three theorems.

Theorem 8. A Sasakian locally ϕ-symmetric space is locally isometric to a Sasakian globally ϕ-symmetric
space and a complete, connected, simply-connected Sasakian locally ϕ-symmetric space is globally ϕ-
symmetric.

Theorem 9. A Sasakianmanifold is locallyϕ-symmetric if and only if it admits aϕ-geodesic symmetry at every
point which is a local automorphism of the structure.

Now suppose thatU is a neighborhood onM on which Zη is regular, then sinceM is Sasakian, the projection
π : U −→ V = U/Zη gives a Kähler structure on V. Furthermore if sπ(m) denotes the geodesic symmetry on V

at π(m), then sπ(m) ◦ π = π ◦ sm.

Theorem 10. A Sasakian manifold is locally ϕ-symmetric if and only if each Kähler manifold which is the base
of a local �bering is a Hermitian locally symmetric space.

In the spirit of the fact that a Riemannian manifold is locally symmetric if and only if the local geodesic
symmetries are isometries and in view of the above results of Takahashi, we state the following extension
due to L. Vanhecke and his school in the late 1980s.

Theorem 11. OnaSasakian locallyϕ-symmetric space, localϕ-geodesic symmetries are isometries. Conversely
if on a K-contact manifold the local ϕ-geodesic symmetries are isometries, the manifold is a Sasakian locally
ϕ-symmetric space.

Without the K-contact property one loses the fact that a geodesic, initially orthogonal to Zη remains orthog-
onal to Zη and until the late 1990s it was not clear what local ϕ-symmetry should mean for a general contact
metric manifold. We have seen that in the Sasakian case local ϕ-symmetry is equivalent to re�ections in the
integral curves of the Reeb vector �eld being isometries. In [19] Boeckx, Bueken and Vanhecke formalized
two notions. A contact metric manifold is a weakly locally ϕ-symmetric space if it satis�es ϕ2(∇VR)X YZ = 0
for all vector �elds V , X, Y , Z orthogonal to Zη as in the Sasakian case. A contact metric manifold is a strongly
locally ϕ-symmetric space if re�ections in the integral curves of the Reeb vector �eld are isometries.

Calvaruso, Perrone and Vanhecke [26] showed that in dimensional 3, a strongly locally ϕ-symmetric
space is either K-contact with constant scalar curvature or is a (κ, µ)-manifold with κ < 1. They also showed
that a 3-dimensional contact metric manifold is a strongly locally ϕ-symmetric space if and only if it is lo-
cally contact homogeneous i.e. the pseudo-group of local automorphisms of the contact metric structure acts
transitively on themanifold, and Zη is an eigenvector of theRicci operator. Boeckx also showed [16] that anon-
Sasakian (κ, µ)-manifold is strongly locally ϕ-symmetric and also locally contact homogeneous. Conversely
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in [17] Boeckx showed that a strongly locally ϕ-symmetric, locally contact homogeneous contact metric man-
ifold must be a (κ, µ)-manifold.

Examples of strongly locally ϕ-symmetric spaces include the non-Sasakian (κ, µ)-manifolds. Special
cases of these are the non-abelian 3-dimensional unimodular Lie groups with left-invariant contact metric
structures. Boeckx, Bueken and Vanhecke [19] also gave an example of a non-unimodular Lie group with a
weakly locally ϕ-symmetric contact metric structure which is not strongly locally ϕ-symmetric.

Finally there is the matter of conformally �at contact metric manifolds, a topic on which little is known.
In dimension 3 there exist conformally �at contact metric manifolds which are not of constant curvature.
However, in dimensions ≥ 5 it is an open question as to whether there exist conformally �at contact metric
manifolds other than the constant curvature +1, Sasakian case. A discuss of this and other conformally �at
questions can be found in the essay by K. Bang and the author [3].

4 Complex Contact Manifolds and Some Older Style Topology

4.1 Complex Contact Manifolds

The study of complex contact manifolds is almost as old as the modern theory of real contact manifolds, that
is, just shortly after the Boothby-Wang �bration. In particular, this study begins with the work of Kobayashi
[70] andBoothby [21], [22]. Shortly thereafter J. A.Wolf [112] studiedhomogeneous complex contactmanifolds.
Here we will give a brief introduction to this subject from a geometric point of view.

A complex contact manifold (or more properly a holomorphic contact manifold, see the contribution of D.
Kotschick in this volume) is a complex manifold of odd complex dimension 2n + 1 together with an open
covering {Oα} by coordinate neighborhoods such that:

1. On each Oα there is a holomorphic 1-form θα such that

θα ∧ (dθα)n ≠ 0.

2. On Oα ∩ Oβ ≠ ∅ there is a non-vanishing holomorphic function fαβ such that θα = fαβθβ.

The subspaces {X ∈ TmOα : θα(X) = 0} de�ne a non-integrable holomorphic subbundle H of complex
dimension 2n called the complex contact subbundle or horizontal subbundle. The quotient L = TM/H is a
complex line bundle overM. Kobayashi [70] proved that c1(M) = (n+1)c1(L) andhence for a compact complex
contact manifold, a complex contact structure is given by a global 1-form if and only if its �rst Chern class
vanishes. It is for this reason that our de�nition of complex contact structure is analogous to that of a contact
structure (in the wider sense). Even for the most canonical example of a complex contact manifold, CP2n+1,
the structure is not given by a global form.

Examples complex contact metric manifolds include the complex Heisenberg group HC and the odd-
dimensional complex projective space as we have mentioned and which can also be viewed as the twistor
space of quaternionic projective space.

The manifold Cn+1 × CPn(16) as a complex contact manifold was studied by B. Korkmaz [72] and as the
complex analogue of the real contactmetric structure on the tangent sphere bundle of Euclidean, En+1×Sn(4).

A complex contact Lie group is a (2n+ 1)-dimensional complex Lie group G with a left-invariant holomor-
phic 1-form θ such that θ ∧ (dθ)n = ̸ 0 on the complex manifold G. De�ne Z in the Lie algebra g by dθ(Z, ·) = 0
and θ(Z) = 1. Then g = V⊕H with V = 〈Z〉C; Z is called the Reeb vector �eld of θ and one studies the adjoint
representation of V.

In [42] B. Foreman studied 3-dimensional complex homogeneous, complex contact manifolds with a
global complex contact form and obtained the following classi�cation.
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Theorem 1. IfM is a 3-dimensional complex homogeneous, complex contact manifolds with a global complex
contact form, then M is of the form M = G/Γ where G is a simply connected 3-dimensional complex Lie group
and Γ ⊂ G is a discrete subgroup.

If G is unimodular, then G is one of the following:

(a) SL(2,C), if rk(ad(V)) = 2,
(b) The universal cover of the group of rigid motions of the complex Euclidean plane, if

rk(ad(V)) = 1,
(c) HC, if rk(ad(V)) = 0.

If G is not unimodular, then G is solvable; rk(ad(V)) = 1; and G is one of the following complex Lie groups:

(a) The semi-direct product Gα = C ×τα C2, for any α ∈ C*\1, where τα is the representation

of C in GL(2,C) given by τα(t) =
(
e−t 0
0 e−αt

)
,

(b) G =


 et tet u

0 et v
0 0 1

∣∣∣t, u, v ∈ C

.

In [44] Foreman obtained the following higher dimensional result.

Theorem 2. Let (G, θ) be a (2n + 1)-dimensional complex contact Lie group G such that ad(Z) : g −→ g is
diagonalizable. If n > 1, then the universal cover group of G is the semi-direct product C2n ×Ω C where Ω is the
standard symplectic form on C2n.

Since a holomorphic p-form on a compact Kähler manifold is closed, no compact Kähler manifold has a com-
plex contact structure given by a global contact form. Moreover, Y.-G.Ye [116] showed that a compact Kähler
manifold with vanishing �rst Chern class has no complex contact structure. There are however interesting
examples of complex contact manifolds with global complex contact forms, called strict complex contact
manifolds.

Concerning strict complex contact manifolds, there is a complex Boothby-Wang theorem. First recall that
a complex symplectic manifold or holomorphic symplectic manifold is a complex manifold of complex dimen-
sion 2n together with a closed holomorphic 2-form Ω such that Ωn ≠ 0. It is important to note that this is not
a Kähler manifold and should not be thought of as a manifold that is both complex and symplectic. The key
di�erence here is that the 2-form is holomorphic where as a Kähler form is of bidegree (1,1).

The study of a complex Boothby-Wang theorem was given by B. Foreman [43] who proved the following
theorem and its converse.

Theorem 3. Let M be a complex symplectic manifold with a complex symplectic form Ω = Ω1 + iΩ2 such that
both Ω1 and Ω2 determine integral classes. Then the (S1 × S1)-bundle de�ned by ([Ω1], [Ω2]) ∈ H2(M,Z) ⊕
H2(M,Z) has a complex contact structure given by a holomorphic connection form whose curvature form is Ω.

Theorem 4. Let P be a (2n + 1)-dimensional compact complex contact manifold with a global form θ = u − iv
such that the corresponding vertical vector �elds U and V are regular. Then θ generates a free (S1 × S1)-action
on P and p : P −→ M is a principal (S1 × S1)-bundle over a complex symplectic manifold M such that θ is a
connection form for this �bration and the complex symplectic form Ω on M is given by p*Ω = dθ.

Standard examples include ones for which the base complex symplectic manifold is a complex torus of even
complex dimension.
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A complex contact manifold M admits a complex almost contact metric structure, i.e. local real 1-forms
u, v = u ◦ J, (1, 1)-tensors G, H = GJ, unit vector �elds U and V = −JU and a Hermitian metric g such that

H2 = G2 = −I + u ⊗ U + v ⊗ V ,
g(GX, Y) = −g(X, GY), g(U, X) = u(X),

GJ = −JG, GU = 0, u(U) = 1,

and on the overlaps, the above tensors transform as

u′ = au − bv, v′ = bu + av,
G′ = aG − bH, H′ = bG + aH,

for some functions a, b de�ned on the overlaps with a2 + b2 = 1. The local contact form θ is u − iv to within
a nonvanishing complex-valued function multiple.

Moreover, given a complex contact manifold, a complex almost contact metric structure can be chosen
such that

du(X, Y) = g(X, GY) + (σ ∧ v)(X, Y),

dv(X, Y) = g(X, HY) − (σ ∧ u)(X, Y)

for some 1-form σ. In this case we say that M has a complex contact metric structure.
On a complex contact metric manifold M, we can write TM = H ⊕ V, where V is the vertical subbundle

on M, locally spanned by U and V = −JU, and is usually assumed to be integrable. In this case σ(X) =
g(∇XU, V). From now on, we will work with a complex contact metric manifold M with structure tensors
(u, v, U, V , G, H, g) and complex structure J. In the case of a strict complex contact structure, u and vmay be
taken globally such that θ = u − iv and σ = 0.

There are twonotions of normality in the literature for complex contactmanifolds and involve the use of a
complex almost contact structure and its several structure tensors. The�rst is due to Ishihara andKonishi [67],
[68]. However their notion seems to be too strong; among its implications is that the underlying Hermitian
manifold (M, g) is Kähler. Thus while indeed one of the canonical examples of a complex contact manifold,
the odd-dimensional complex projective space, is normal in this sense, the complexHeisenberg group, is not.
B. Korkmaz in her thesis (see [73]) generalized the notion of normality and with this notion of normality both
odd-dimensional complex projective space and the complex Heisenberg group with their standard complex
contact metric structures are normal.

Ishihara and Konishi [67], [68] introduced a notion of normality for complex contact structures. Their
notion is the vanishing of the two tensor �elds S and T given by

S(X, Y) = [G, G](X, Y)

+2g(X, GY)U − 2g(X, HY)V + 2(v(Y)HX − v(X)HY)

+σ(GY)HX − σ(GX)HY + σ(X)GHY − σ(Y)GHX,

T(X, Y) = [H, H](X, Y)

−2g(X, GY)U + 2g(X, HY)V + 2(u(Y)GX − u(X)GY)

+σ(HX)GY − σ(HY)GX + σ(X)GHY − σ(Y)GHX.

B. Korkmaz’s generalized notion of normality is the following and we adopt her de�nition here. A com-
plex contact metric structure is normal if

S(X, Y) = T(X, Y) = 0, for every X, Y ∈ H,

S(U, X) = T(V , X) = 0, for every X.
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Even though the de�nition appears to depend on the special nature of U and V, it respects the change in over-
laps,Oα ∩Oβ, and is a global notion. With this notion of normality both odd-dimensional complex projective
space and the complex Heisenberg group with their standard complex contact metric structures are normal.

Turning to curvature, for a unit vector X ∈ Hm the plane in TmM spanned by X and

Y = aGX + bHX, a, b ∈ R, a2 + b2 = 1

is called a GH-plane section and its sectional curvature, K(X, Y), the GH-sectional curvature of the plane
section. For a given vector X, K(X, Y) is independent of the vector Y in the plane of GX and HX if and only if
K(X, GX) = K(X, HX) and g(RXGXHX, X) = 0.

LetM be a normal complex contact metric manifold; if the GH-sectional curvature is independent of the
choice of GH-section at each point, it is constant on the manifold and we say that M is a complex contact
space form. Odd-dimensional complex projective space with the Fubini-Study metric of constant holomor-
phic curvature 4 is of constant GH-sectional curvature 1. The complex Heisenberg group has holomorphic
curvature 0 for horizontal and vertical holomorphic sections and constant GH-sectional curvature −3. The
curvature tensor and the following theorems were obtained by Korkmaz [73].

Theorem 5. LetM be a normal complex contact metric manifold. ThenM has constant GH-sectional curvature
c, if and only if for X horizontal, the holomorphic sectional curvature of the plane spanned by X and JX is c + 3.

Theorem 6. Let M be a normal complex contact metric manifold of constant GH-sectional curvature +1 and
satisfying dσ(V , U) = 2, thenM has constant holomorphic curvature 4. If, in addition,M is complete and simply
connected, then M is isometric to CP2n+1 with the Fubini-Study metric of constant holomorphic curvature 4.

Korkmaz also introduced the idea of anH-homothetic deformation of a complex contact metric structure and
proved the following results.

Theorem 7. Complex projective spaceCP2n+1 carries a normal complex contact metric structure with constant
GH-section curvature 4

a − 3 for every a > 0.

Theorem 8. A normal complex contact metric manifold with metric g̃ of constant GH-sectional curvature c̃ >
−3 isH-homothetic to a normal complex contactmetricmanifoldwithmetric g of constantGH-section curvature

c = 1. Moreover, if dσ(Ṽ , Ũ) = (c̃ + 3)2

8 , the metric g is Kähler and has constant holomorphic curvature 4.

In [74] Korkmaz continued her study of the curvature of complex contact metric manifolds and of H-
homothetic deformations; in particular she developed a theory of complex (κ, µ)-spaces. Since that time there
has been considerable further work by many authors involving curvature, homogeneity, symmetry, etc. of
complex contact manifolds.

4.2 Some Older Style Topology

In [87] S. B.Myers proved that a completeRiemannianManifold forwhichRic ≥ δ > 0 is compact andhas�nite
fundamental group. In [59] Hasegawa and Seino proved that a K-contact manifold for which Ric ≥ δ > −2 is
compact.

Theorem 9. A K-contact manifold M2n+1 with Ric ≥ δ > −2 is compact.

To prove this, let θ be the in�mum of the eigenvalues of the Ricci tensor of g. If θ > 0, M is compact, so
assume 0 ≥ θ > −2 and consider the quadratic 2nt2 + 2t − (θ + 2) = 0. Solutions t1, t2 satisfy t1 < 0 < t2 <
θ+2

2 ≤ 1. Choosing a > 0 such that t2 ≤ a < θ+2
2 ≤ 1 one computes the Ricci tensor for the corresponding

D-homothetically deformed metric. This is positive and the result follows from Myers’ theorem.
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The classical sphere theorem states that a compact, simply connected Riemannian manifold whose sec-
tional curvature satis�es 1

4 < sec(g) ≤ 1 is homeomorphic to a sphere (Berger [4] for even dimensions and
Klingenberg [69] for odd dimensions). Hamilton [57], by means of Ricci �ow techniques, extended the result
in the 3-dimensional case to pinching by any positive constant and up to di�eomorphism. Ge and Huang [46]
studied this question terms of contact geometry and obtained the following results.

Theorem 10. 1) If the sectional curvature of a closed 3-dimensional contact metric manifold satis�es 1
4 <

sec(g) ≤ 1, then the universal cover with the lifted contact structure is contactomorphic S3 with its standard
Sasakian structure.

2) Let M be an open contact metric 3-manifold of nonnegative sectional curvature and positive sectional
curvature on M\K where K is a compact subset of M. Then the contact structure is tight.

Some topological results were known much earlier. For example, it is known that a complete, simply con-
nected, Sasakian manifold of Riemannian pinching > 0 and of constant scalar curvature is D-homothethic
to the unit sphere, Moskal [85]. Also Tanno showed that a compact Sasakian manifold of sectional curvature
> −3 is a homology sphere. Proofs of these two results can be found in the lecture notes “Almost Contact
Manifolds” by Sasaki [99] along with a number of other noteworthy results.

In the 1960s a great deal of work was done on the topology of compact Sasakian manifolds. The idea
was to see how much a compact Sasakian manifold must be like a sphere by studying its Betti numbers. In
the case of a compact Kähler manifold, the even-dimensional Betti numbers are di�erent from zero and the
odd-dimensional Betti numbers are even. Furthermore the Betti numbers bp of a compact Kähler manifold of
positive constant holomorphic curvature are equal to 1 for p even and vanish for p odd, properties which are
enjoyed by complex projective space..

The main idea behind the proofs of such results is the Hodge–de Rham theory which we describe brie�y
here. Let M be a compact orientable manifold without boundary. Recall that for the exterior di�erential op-
erator on di�erential forms one has d2 = 0 which leads to the de Rham p-dimensional cohomology group of
closed p-forms modulo exact p-forms. We denote this group by Dp(Mn). The de Rham theorem asserts that
for any 0 ≤ p ≤ n, the de Rham cohomology groups are isomorphic to the p-th cohomology group, Hp(Mn ,R),
of the manifold.

On a compact orientable Riemannian manifold without boundary Mn one �rst has an inner product of
p-forms

(α, β) =
∫
Mn

α ∧ *β

where * is the Hodge star isomorphism.We also have the co-di�erential acting on p-forms, δ = (−1)np+n+1 *d*
which depends on themetric since * does and the Laplacian, ∆ = dδ+ δd. A p-form α is said to be harmonic if
∆α = 0. Next we have the Hodge deomposition theorem that for a compact orientable Riemannian manifold
without boundary and with Ωp denoting the space of di�erential p-forms

Ωp = dΩp−1 ⊕ δΩp+1 ⊕ Hp

where Hp is the space of harmonic p-forms.
The important upshot of all this is that we have the following isomorphisms

Hp(Mn ,R) ∼= Dp(Mn) ∼= Hp

and hence the dimension of these groups is the p-th Betti number of Mn.
The Laplacian acting on p-forms depends highly on the curvature. Note the curvature terms in the local

expression of the Lapacian on a p-form α.

(∆α)i1···ip = −gij∇j∇iαi1···ip +
p∑
q=1

αi1···iq−1 jiq+1···ipR
j
iq + 1

2

p∑
r=1

p∑
q=1

αi1···iq−1 jiq+1···ir−1 iir+1···ipR
ij
iq ir
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Tachibana [101] proved that the �rst Betti number of a compact Sasakian manifoldM2n+1 is zero or even.
This is proved by �rst showing that on a compact K-contact manifold, a harmonic 1-form ω is orthogonal to
the contact form η. Then letting ω̃ = ω ◦ ϕ and computing the Laplacian of ω̃ one obtains the harmonicity of
ω̃ as well. Thus the number of independent harmonic 1-forms is even. The computation uses the fact that on
a Sasakian manifold the Ricci operator commutes with ϕ. More generally the p-th Betti number is even for p
odd and 1 ≤ p ≤ n and by duality for p even and n + 1 ≤ p ≤ 2n (Fujitani [45]; Goldberg and B. [12]).

Considerable attention has been given to the vanishing of the second Betti number under some curva-
ture restrictions as well as being isometric to the unit sphere under stronger conditions. A compact Sasakian
manifold of strictly positive curvature has vanishing second Betti number, Moskal [85]. A compact, simply-
connected Sasakian Einstein space of strictly positive curvature is isometric to the unit sphere (Moskal [85]).
Pinching theorems have been obtained by Tanno [106] including an analogue of holomorphic pinching.

In [52] Goldberg showed that a compact simply-connected regular SasakianmanifoldM of strictly positive
curvature is homeomorphic to a sphere. Goldberg had shown earlier [51] that if in addition, M has constant
scalar curvature, then M is isometric to a sphere, but not necessarily with a constant curvature metric.

Allowing some negative curvature, Tanno [106] showed that if M2n+1 is a compact K-contact manifold
with sectional curvature greater than −3

2n−1 , then b1 = 0. Similarly if the Ricci tensor ρ is such that ρ + 2g is
positive de�nite, then b1 = 0. By duality in dimension 3, one also has b2 = 0.

In dimension 5, Perrone [91] showed that ifM5 is a compact simply-connected regular Sasakianmanifold
with b2 = 0 and with scalar curvature τ > −4, then M5 is homeomorphic to a sphere. If, in addition, M5 has
constant scalar curvature, M is isometric to a sphere (but not necessarily with a constant curvature metric).

5 Curvature Functionals and Ricci Solitons

The study of the integral of the scalar curvature, A(g) =
∫
M τ dVg, as a functional on the set M1 of all Rie-

mannian metrics of the same total volume on a compact orientable manifoldM is now classical, dating back
to Hilbert [61]. A Riemannian metric g is a critical point of A(g) if and only if g is an Einstein metric.

Other functions of the curvature have been taken as integrands as well, most notably B(g) =
∫
M τ

2 dVg,
C(g) =

∫
M |ρ|

2 dVg where ρ is the Ricci tensor, and D(g) =
∫
M |Rkjih|

2 dVg; the critical point conditions for
these have been computed by Berger [5]. From the critical point conditions it is easy to see that Einstein met-
rics are critical for B(g) and C(g). However for C(g) there exist non-Einstein critical metrics, Yamaguchi and
Chūman [114]. In the case of B(g), Yamaguchi and Chūman showed that a Sasakian critical point is Einstein.

Metrics of constant curvature and Kähler metrics of constant holomorphic curvature are critical for D(g),
Muto [86]; also a Sasakian manifold of dimension 2n + 1 and constant ϕ-sectional curvature 2(3n + 1) is
critical for D(g), Yamaguchi and Chūman [114].

Since there are so many Riemannian metrics on a manifold, one can regard, philosophically, the �nding
of critical metrics as an approach to searching for the best metric for the givenmanifold.While there seems to
be limited success in actually �nding the critical metrics, many people have suggested a Ricci �ow approach.
For example, R. Ye [115] proved that suitably Ricci pinched stable Riemannianmetrics on a compactmanifold
can be deformed to Einstein metrics by means of the Ricci �ow.

Here we �rst consider curvature functionals restricted to spaces of associated metrics rather than the
larger class of metrics of the same total volume and then discuss Ricci solitons which several authors have
studied in the context of contact metric geometry.

This section will also, at least to some extent, deal with the symplectic case. To set the notation, we write
Ω(X, Y) = g(X, JY) where Ω is the symplectic form; the associated metric g and almost complex structure J
can be created by polarization as discussed in Section I.We also remark that, as in the contact case, the space
A of associated metrics is in�nite dimensional.
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We will often denote by the same letter a tensor �eld of type (0,2) and its corresponding types (1,1) and
(2,0) determined by the metric under consideration, e.g. we may write trTD = T i jDj i = T ijDji.

The approach to these critical point problems is to di�erentiate the functional in question along a path
of metrics in the setM1 or for us the setA of associated metrics. Let g(t) be a path of metrics inM1 orA and

Dij =
∂gij
∂t

∣∣∣∣
t=0

its tangent vector at g = g(0). De�ne two other tensor �elds by

Dji h = 1
2 (∇jDi h +∇iDj h −∇hDji)

Dkjih = ∇kDji h −∇jDkih

where∇ denotes the Levi-Civita connection of g(0) and we note that

Dji h =
∂Γji h

∂t

∣∣∣∣
t=0

, Dkjih =
∂Rkjih

∂t

∣∣∣∣
t=0

where Γji h and Rkjih denote the Christo�el symbols and curvature tensor of g(t).
We will consider integral functionals de�ned on the set of metrics associated to a symplectic or contact

form. A symmetric tensor �eld D is tangent to a path inA at g if and only if

DJ + JD = 0

in the symplectic case, J being the corresponding almost complex structure, and

DZη = 0, Dϕ + ϕD = 0

in the contact case. For critical point problems onA the following lemma is important.

Lemma 1. Let T be a second order symmetric tensor �eld onM. Then
∫
M T

ijDij dV = 0 for all symmetric tensor
�elds D satisfying DJ + JD = 0 in the symplectic case and DZη = 0, Dϕ + ϕD = 0 in the contact case if and only
if TJ = JT in the symplectic case and ϕT − Tϕ = η ⊗ ϕTZη − (η ◦ Tϕ) ⊗ Zη in the contact case (i.e. ϕ and T
commute when restricted to the contact subbundle).

Now if we consider the functional A(g) restricted to the setA and seek the critical point condition, sinceA is
a smaller set of metrics thanM1, we expect a weaker critical point condition than that of being Einstein. The
critical point condition is that the Ricci operator commuteswith the corresponding almost complex structure,
still a very natural condition. In particular we have the following result of S. Ianus and the author [13].

Theorem 1. Let M be a compact symplectic manifold and A the set of metrics associated to the symplectic
form. Then g ∈ A is a critical point of A(g) =

∫
M τ dVg restricted to A if and only if the Ricci operator Q of g

commutes with the almost complex structure corresponding to g.

The proof is to compute dA
dt at t = 0 for a path g(t) in A. Since all associated metrics have the same volume

element, this is easier than in the Riemannian case. In particular we have,

dA
dt

∣∣∣∣
t=0

= d
dt

∫
M

Rkji kgji dVg
∣∣∣∣
t=0

=
∫
M

Dkji kgji − ρjiDji dVg

= −
∫
M

ρjiDji dVg ,
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since Dkji kgji = (∇kDji k)gji = ∇k(Dji kgji) which is a divergence; note that trD = 0 and hence Dkik = 0. Setting
dA
dt
∣∣
t=0 = 0, the result follows from the lemma.

In almost Hermitian geometry we have the *-Ricci tensor and the *-scalar curvature de�ned by

ρ*ij = RikltJklJj t , τ* = ρ*i i .

On a Kähler manifold ρ*ij = ρij. The most important property of τ* on an almost Kähler manifold is

τ − τ* = −1
2 |∇J|

2.

Therefore τ − τ* ≤ 0 with equality holding if and only if the metric is Kähler. Thus for M compact, Kähler
metrics are maxima of the functional

K(g) =
∫
M

τ − τ* dV

on A and hence it is natural to ask for the critical point condition in general. This was the main question
considered in [13]; the critical point condition for K(g) turns out to be the same as for A(g) onA.

Theorem 2. Let M be a compact symplectic manifold and A the set of metrics associated to the symplectic
form. Then g ∈ A is a critical point of K(g) if and only if QJ = JQ.

It is also natural to ask whether Kähler metrics are the only critical points of K(g); the answer to this is neg-
ative and a counterexample was given on the twistor space of a compact Einstein, self-dual 4-manifold with
negative scalar curvature by Davidov and Mus̆karov [35].

At �rst it may seem surprising that A(g) and K(g) have the same critical point condition but we will see
in the course of our discussion that this is natural. The proof of Theorem 2 is then an easy consequence of
Theorem 1 and Theorem 3 below though this is not the original proof. The original proof and some work with
D. Perrone led the author to consider the “total scalar curvature”

I(g) =
∫
M

τ + τ* dV .

Theorem 3. Let M2n be a compact symplectic manifold. Then
∫
M2n τ + τ* dV is a symplectic invariant and to

within a constant is the cup product
(c1(M2n) ∪ [Ω]n−1)([M2n])

where c1(M2n) is the �rst Chern class of M2n.

Let us brie�y indicate the proof. The generalized Chern form is given by

8πγij = −4Jk jρ*ik − Jkl(∇jJhk)∇iJlh .

Now on an almost Kähler manifold (∇kJip)Jj p = (∇pJij)Jkp; this is the condition for an almost Hermitian
structure to be quasi-Kähler. Using this, direct computation yields

8πγijJ ji = 4τ* − |∇J|2,

but τ − τ* = −1
2 |∇J|

2 and hence 2(τ + τ*) = 8πγijJ ji. Thus the “total scalar curvature” of an associated metric
becomes I(g) = 4π

∫
M γijJ ji dV and integration gives Theorem 3.

Nowwriting τ−τ* as 2τ−(τ+τ*) we see that A(g) and K(g) have the same critical point condition proving
Theorem 2.

In contact geometry the *-Ricci tensor ρ* and *-scalar curvature τ* are de�ned by

ρ*ij = Riklmϕklϕjm , τ* = ρ* i i

and Z. Olszak [90] proved the following theorem.
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Theorem 4. On a contact metric manifold M2n+1

τ* − τ + 4n2 = trh2 + 1
2 (|∇ϕ|2 − 4n) ≥ 0

with equality if and only if M2n+1 is Sasakian.

The study of
∫
M τ + τ* dV in symplectic geometry was motivated by the corresponding study in contact ge-

ometry. It is interesting to remark that many results in contact and Sasakian geometry were motivated by the
corresponding ones in symplectic and Kähler geometry. Here we have an example of a result in contact ge-
ometry preceding its symplectic analogue. In contact geometry the functional I(g) =

∫
M τ + τ* dV is not an

invariant and gives a critical point problemwhose critical point condition gives the class of K-contactmetrics.
The proof of this by D. Perrone and the author [15] follows the earlier proof of Theorem 2.

Theorem 5. LetM be a compact contactmanifold andA the set of metrics associated to the contact form. Then
g ∈ A is a critical point of I(g) =

∫
M τ + τ* dV if and only if g is K-contact.

There are a few other results concerning the functional A(g) in the contact case, but let’s now turn to another
functional.

The integral, L(g) =
∫
M Ric(Zη) dV was studied in general dimension as the author’s �rst excursion into

this area [8] and independently by Chern and Hamilton [29] in the 3-dimensional case. Recall that Ric(Zη) =
2n − trh2; thus K-contact metrics, when they occur, are maxima for L(g) on A. Moreover the critical point
question for L(g) is the same as that for

∫
M |h|

2 dV or
∫
M |T|

2 dV where T(X, Y) = ($Zηg)(X, Y) = 2g(X, hϕY).
It is the integral E(g) =

∫
M |T|

2 dV that was studied by Chern and Hamilton on A regarded as the set of CR-
structures on M.

Theorem 6. Let M be a compact regular contact manifold and A the set of metrics associated to the contact
form. Then g ∈ A is a critical point of L(g) =

∫
M Ric(Zη) dV if and only if g is K-contact.

Onemight conjecture this result without the regularity, however we have the following counterexample: The
standard contact metric structure on the tangent sphere bundle of a compact manifold of constant curvature
−1 is a critical point of L but is not K-contact. On the other hand Tashiro [110], showed that the standard
contact metric structure on the tangent sphere bundle of a Riemannian manifold is K-contact if and only if
the base manifold is of constant curvature +1. Let’s note the following result.

Theorem 7. Let T1M be the tangent sphere bundle of a compact Riemannian manifold (M, G) andA the set of
all Riemannian metrics associated to its standard contact structure. Then the standard associated metric is a
critical point of the functional L(g) if and only if (M, G) is of constant curvature +1 or −1.

In [36] S. Deng studied the second variation of the functional L(g) or equivalently, of E(g) =
∫
M |T|

2 dV, and
proved the following.

Theorem 8. Let g ∈ A be a critical point of E(g), then g is a minimum.

Oneoften encounters the condition that Zη is an eigenvector of theRicci operatorQ. Oneof themore important
interpretations of this condition is that of an H-contact manifold as introduced by D. Perrone [93]. First, on
a compact m-dimensional Riemannian manifold (M, g), a unit vector �eld X is said to be a harmonic vector
�eld (C. M. Wood [113]) if it is a critical point of the energy functional

E(X) = m
2 vol(M, g) + 1

2

∫
M

||∇X||2 dV

on the space of all unit vector �elds. Perrone de�nes an H-contact manifold to be a contact metric manifold
for which the Reeb vector �eld Zη is a harmonic vector �eld, though he just uses the corresponding critical
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point condition; this condition is often referred to as the tension of a harmonic map or harmonic vector �eld.
He therefore does not need compactness in the following theorem.

Theorem 9. A contact metric manifold is an H-contact manifold if and only if its Reeb vector �eld is an eigen-
vector of the Ricci operator.

Note that from∇XZη = −ϕX − ϕhX, if we consider the energy E as a functional onA for a �xed contact form,
and hence a �xed unit vector �eld Zη, then g ∈ A is critical for E if and only if it is critical for the functional
L. Perrone also proves the following.

Theorem 10. Let (M2n+1, η, g) be a compact H-contact manifold such that g is critical for L. If ρ+cg is positive
de�nite for some constant c < 2 − |τ|√

2n , the �rst Betti number of M2n+1 vanishes.

Furthermore in dimension 3, Perrone showed that a compact H-contact 3-manifold such that g is critical for
L is either Sasakian or locally isometric to a non-Sasakian left invariant contact metric structure on SL(2,R)
and conversely. In particular, using the classi�cation of Geiges mentioned in Section I, Perrone showed that
a compact H-contact 3-manifold such that g is critical for L is di�eomorphic to a left invariant quotient of
SU(2), the Heisenberg group or S̃L(2,R) by a discrete group.

Ever since the work of Hamilton and especially Perelman’s proof of the Poincaré conjecture, there has
been considerable interest in the Ricci �ow and its applications. A number of people have raised the question
of how interesting thismight be in the context of contactmetric geometry. There have been anumber of results
on Ricci solitons. We will give a brief introduction to this topic here.

One starts with a Riemannian manifold (M, g0) and seeks to evolve the metric to a path or 1-parameter
family g(t), g(0) = g0, satisfying

∂g(t)
∂t = −2ρ,

that is the metric evolves at a rate proportional to its Ricci tensor ρ. A path g(t) is a self-similar solution of the
Ricci �owevolution equation if there exist scalars σ(t) anddi�eomorphismsψt ofM such that g(t) = σ(t)ψ*t g0.

Now consider a Riemannian manifold (M, g0) such that

−2ρ0 = $Xg0 + 2λg0

holds for some constant λ and some complete vector �eld X on M. In this case g0 is said to be a Ricci soliton;
some authors regard the manifold with such a metric as the Ricci solition and we will often take this point of
view here. By rescaling onemay assume that λ ∈ {−1, 0, 1}; these three cases correspond to shrinking, steady
and expanding Ricci solitons.

In the case that the vector �eld X is the gradient of a potential function −f , one has

∇∇f = ρ + λg

and g0 is said to be a gradient Ricci soliton. A gradient Ricci soliton is said to be rigid if it is isometric to a
quotient of N × Ek where N is an Einstein manifold and f (x) = λ

2 |x|
2 on the Euclidean factor. Euclidean space

En gives a trivial steady Ricci soliton by taking X = 0. Also En can be regarded as an expanding gradient Ricci
soliton, called the Gaussian soliton, by taking λ = 1 and choosing the potential function. f (x) = 1

2 |x|
2.

The key proposition is the following; a proof can be found in the book of B. Chow and D. Knopf ([34] p.
23).

Proposition 1. If (M, g(t)) is a self-similar solution of the Ricci �ow equation, then there exists a vector �eld X
onM such that (M, g0, X) is a Ricci solition. Conversely, given a Ricci soliton (M, g0, X), there exists 1-parameter
families of scalars σ(t) and di�eomorphisms ψt such (M, g(t)) is a solution of the Ricci �ow equation of the form
g(t) = σ(t)ψ*t g0.
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In our discussion of Lie groups we considered in some detail the Lie group of rigid motions of Minkowski
plane and in the section on curvature we spent a fair amount of time on (κ, µ)-manifolds. Setting λ = 1 in that
discussion, we have the associated metric

g = 1
4
(

2e2ydx2 + dy2 + 2e−2ydz2)
for the contact form

η = 1
2
(
eydx + e−ydz

)
.

Direct computation of the curvature shows that E(1, 1) with this structure is a (0, 4)-manifold. Then for the
vector �eld X = −8x ∂

∂x − 8z ∂∂z we have
$Xg + 2ρ + 16g = 0.

Therefore
(
E(1, 1), g, X

)
is a Ricci soliton.With this example inmind, let us state the following theoremwhich

is a combination of results by Ghosh and Sharma [50] and of Cho, Hashinaga, Kubo, Taketomi, Tamaru [33].

Theorem 11. Let (M2n+1, η, g)bea connected, simply connected, complete non-Sasakian (κ, µ)-manifold. Then
(M2n+1, η, g) is a Ricci soliton if and only if it is the 3-dimensional Gaussian soliton, the gradient shrinking Ricci
soliton En+1×Sn(4)or anon-gradient expandingRicci soliton ona (0, 4)-manifold. The latter case canbe realized
as a homogeneous real hypersurface of the Grassmannian G*2(Rn+3).

J. T. Cho [32] also introduces a contact Ricci soliton as a solution to a contact Ricci �ow problem. The resulting
equation is

$Zηg + 2ρ − 2λg = 0.;

Cho then proves that a contact Ricci soliton is shrinking and is Einstein K-contact. Now Boyer and Galicki
[25] proved that a compact Einstein K-contact manifold is Sasakian; therefore we have as a corollary that a
compact contact Ricci solition is Sasakian Einstein.

We should also return to theSasakian case anddiscuss some recentworkon theSasakianEinsteinmetrics
using the idea of a transverse Ricci �ow. This idea was introduced by Smoczyk, Wang and Zhang [100]. Their
notation is quite di�erent than what we have been using; we will continue to use ρ for the Ricci tensor. First
of all a contact metric structure is said to be η-Einstein if its Ricci tensor ρ is of the form ρ = αg+ βη⊗ η where
α and β are constants. De�ne a transverse metric gT by

gT = g − η ⊗ η.

Let π : D⊕RZη −→ D be the natural projection and de�ne a transverse Levi-Civita connection∇T by

∇TXY =
{
π(∇XY) if X ∈ Γ(D)
π([X, Y]) if X ∈ Γ(RZη).

Let RTXYZ denote the corresponding curvature tensor and ρT the transverse Ricci tensor, i.e.

ρT(X, Y) = g(RTX ei ei , Y)

for X, Y ∈ TM and where {ei} is an orthonormal basis ofD.
In the context of transverse Riemannian foliations, Lovrić, Min-Oo and Ruh [80] introduced a transverse

Ricci �ow by
∂g(t)T
∂t = −ρT

which could be considered in the Sasakian setting. However, it is not easy to check directly that the �ow
preserves the Sasakian character. Therefore Smoczyk, Wang and Zhang introduce a Sasakian Ricci �ow by

∂g(t)T
∂t = −(ρT − κgT).

This �rst leads to the following theorem.
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Theorem 12. Let M2n+1 be a compact Sasakian manifold with structure tensors, (ϕ, Zη , η, g). Then there is a
family of Sasakian structures (ϕ(t), Zη(t), η(t), g(t)), t ∈ [0, T) for some constant T with Zη(t) = Zη constituting
a Sasakian Ricci �ow and initial condition (ϕ(0), η(0), g(0)) = (ϕ, η, g).

The main result of Smoczyk, Wang and Zhang, which involves some quite di�cult analysis, is the following.

Theorem 13. For the Sasakian Ricci �ow on a compact manifold we have long-time existence of the solution.
Moreover when the basic �rst Chern class is negative or null, the Sasakian Ricci �ow converges to an η-Einstein
metric.

A Sasakian manifold M2n+1 is a gradient Sasakian Ricci soliton if there exists a basic function f (i.e. Zη f = 0)
satisfying

ρT + HessT f = (2n + 2)gT .

H. Tadano [104] gave a number of results characterizing Sasakian Einstein manifolds; for example we have
the following.

Theorem 14. Let M be a (2n+1)-dimensional compact gradient Sasakian Ricci soliton. Then M is a Sasakian
Einstein manifold if and only if

ρTmax − 2n(2n + 2) ≤
(

1 + 1
n
)
F

where F = 1
volM

∫
M ||∇

T f ||2dV is the Sasakian Futaki invariant.

6 Associated Metrics for more than one Contact Form

It is sometimes asked if a Riemannianmetric g canbe anassociatedmetric formore thanone contact structure
and we have the following result of Tachibana and Yu [103].

Theorem 1. If (M2n+1, g) is a complete Riemannian manifold which admits two Sasakian structures (η, g) and
(η′, g) with η ≠ ±η′, then either (M2n+1, g) is covered by the standard Sasakian structure on S2n+1 or n = 2k +
1, (M4k+3, g) is 3-Sasakian and (η, η′) belong to an S2-family of Sasakian structures with g as their common
associated metric. Moreover if the angle function of the two Reeb vector �elds, g(Zη , Zη′ ) is non-constant then
only the �rst case can occur.

An other result in this style is result of Apostolov, Draghici and Moroianu [1], namely

Theorem 2. Let (M2n+1, η, g) be a Sasakian Einstein manifold. Then any contact metric structure, (η′, g), with
Reeb vector �eld Zη′ and the samemetric is Sasakian. Moreover if Zη′ ≠ Zη, then either (M2n+1, g) is covered by
a round sphere or it admits a 3-Sasakian structure.

More recently Draghici and Rukimbira proved the following three theorems [40].

Theorem 3. Let (M3, g) be a connected Riemannian manifold of constant scalar curvature. Assume that
(M3, g) admits a Sasakian structure (η, g) and another contact metric structure (η′, g) with η ≠ ±η′. Then either
(η′, g) is also Sasakian and (M3, g) is the standard unit sphere or (η′, g) is not Sasakian with η and η′ inducing
opposite orientations and (M3, g) is locally isometric to the Lie group S̃L(2,R).

The structure on S̃L(2,R) used in this theorem is slightly di�erent from that we discussed earlier.
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Theorem 4. Let (M2n+1, η, g) be a compact Sasakian manifold which admits another K-contact structure
(η′, g) with [Zη , Zη′ ] = 0. Set f = g(Zη , Zη′ ) and assume that f −1(1) or f −1(−1) has codimension 2. Then (η′, g)
is also Sasakian and is covered by a round sphere.

In dimension 5, Draghici and Rukimbira give the following generalization of the theorem of Tachibana and
Yu.

Theorem 5. Suppose (M5, η, g) is a complete Sasakianmanifold admitting another K-contact structure (η′, g).
Then (η′, g) is also Sasakian and if Zη ≠ ±Zη′ , then (M5, g) is covered by a round sphere.

Instead of just treating two contact forms, we should also discuss contact circles, especially taut contact met-
ric circles as introduced recently by D. Perrone [94]. First, however, a pair {η1, η2} of contact forms on a
3-dimensional manifold is called a contact circle if for every a = (a1, a2) ∈ S1 ⊂ R2, ηa = a1η1 + a2η2 is also
a contact form, Geiges and Gonzalo [48]. If the volume forms ηa ∧ (dηa)n are equal for all a ∈ S1, the pair
{η1, η2} is called a taut contact circle. A taut contact circle is called a Cartan structure if both η1 ∧ dη2 and
η2 ∧ dη1 vanish.

Perrone then de�nes a taut contact metric circle to be a triple (η1, η2, g) where (η1, η2) is taut and g is an
associated metric for both η1 and η2. Perrone also introduces the notion of a bi-contact metric structure as a
triple (η1, η2, g) where (η1, η2) is a pair of contact forms and g is an associated metric for both of them and
such that the corresponding almost contact structures satisfy

ϕ1ϕ2 + εη1 ⊗ Zη2 = −(ϕ2ϕ1 + εη2 ⊗ Zη1 )

where ε = ±1 is de�ned by ϕ2Zη1 = εϕ1Zη2 . We now have the following results from Perrone [94].

Theorem 6. Let (η1, η2)be a pair of contact forms and g aRiemannianmetric on a 3-manifold. Then (η1, η2, g)
is a taut contact metric circle if and only if it is a bi-contact metric structure with ε = −1.

Theorem 7. Let (η1, η2) be a pair of contact forms on a 3-manifold. Then (η1, η2) is a Cartan structure if and
only if there exists a Riemannian metric g such that (η1, η2, g) is a taut contact metric circle.

In his paper Perrone also classi�es simply connected 3-manifolds admititng bi-H-contact metric structures
(i.e. both structures are H-contact, see section 5); these are the Lie groups SU(2), S̃L(2,R), Ẽ(2), E(1, 1). As
in Theorem 3 above the orientation of the forms η1 and η2 plays a role. In particular, if η1 and η2 induce
the same orientation, the Lie groups SU(2), S̃L(2,R), Ẽ(2) arise; if the opposite orientation is induced only
S̃L(2,R) and E(1, 1) occur. It is interesting to note that in the case of opposite orientations, the vector cross
product Zη1 × Zη2 , which de�nes the common kernel of η1 and η2, induces a conformally Anosov �ow on any
compact quotient of S̃L(2,R) and E(1, 1).
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