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A Survev of Sensor Planning in Commter Vision 

Konstantinos A. Tarabanis, Peter K. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Abstract-A survey of research in the area of vision sensor plan- 

ning is presented. The problem can be summarized as follows: 
Given information about the environment (e.g., the object under 
observation, the available sensors) as well as information about 
the task that the vision system is to accomplish (i.e., detection of 
certain object features, object recognition, scene reconstruction, 
object manipulation), develop strategies to automatically deter- 
mine sensor parameter values that achieve this task with a certain 
degree of satisfaction. With such strategies, sensor parameters 
values can be selected and can be purposefully changed in order 
to effectively perform the task at hand. Sensory systems are then 
able to operate more flexibly, autonomously, and reliably. This 
problem has recently become an active area of study with a 
number of researchers addressing various aspects of the problem. 
The focus here is on vision sensor planning for the task of robustly 
detecting object features. For this task, camera and illumination 
parameters such as position, orientation, and optical settings are 
determined so that object features are, for example, visible, in 
focus, within the sensor field of view, magnified as required, 
and imaged with sufficient contrast. References to, and a brief 
description of, representative sensing strategies for the tasks of 
object recognition and scene reconstruction are also presented. 
For these tasks, sensor configurations are sought that will prove 
most useful when trying to identify an object or reconstruct a 
scene. 

I. SENSOR PLANNING 

A. Motivation 

ENSOR planning in computer vision is an emerging S research area that tries to understand and quantify the 

relationship between objects to be viewed and the sensors 

observing them in a model-based, task directed way (see Fig. 

1). The importance of the viewpoint in this object-viewer 

relationship is evident. It is the viewpoint, for the most 

part, that creates the quality of the resulting image [43], 
determining the feasibility of the vision task and facilitating 

its execution. Previous work in computer vision, however, has 

generally placed an emphasis on the object being observed [26] 

assuming that the viewpoint is given, suitable for the task, and 

not controlled. The issues related to determining viewpoints 

that will be most suitable for the vision task at hand have 

received considerably less attention. This latter area includes 

questions such as “What should the observer pose be?’ or 
“What values should other observer attributes have?’ 

Even in currently employed vision systems that observe 

known objects in known poses (e.g., visual inspection, surveil- 

lance, or monitoring systems), appropriate sensor parameter 
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Fig. 1. Sensor planning for computer vision 

values are determined by often laborious and time-consuming 

techniques. Generally, a trial-and-error approach involving 

human interaction is taken. Sensor locations and settings are 

chosen and then tested in order to verify whether they meet 

the requirements of the task at hand. The resulting parameter 

values are valid for only a specific setup and can potentially 

become unsatisfactory when errors (e.g., robot inaccuracy) 

alter the environment. Such procedures constitute a major 

bottleneck in system installation and result in a design cost 

which often exceeds that of the equipment. As a result, 

these applications are costly and have limited intelligence and 

flexibility. 

Sensing strategies are also required for vision systems that 

perform object recognition since a single sensor configuration 

may not always result in a sufficiently informative view. For 

instance, in the cases of occlusion and near-symmetrical or 
similar objects, more than one interpretation may be consistent 

with the sensory data. As a result, additional sensor configu- 

rations are needed from which observed details of the scene 

can help recognize the unknown objects by disambiguating 

among multiple interpretations. 

In addition to the sensor parameters themselves, another 

set of key parameters in reconfigurable vision systems that 

can be controlled, and thus may need to be planned, are 

those associated with the illumination of the scene. If the 

interaction between lighting and the object surface to be 

imaged is carefully considered, the image quality can be 

substantially improved, leading to more informative images 

and making later processing of the image much easier. For 

instance, by planning the illumination in a visual inspection 

application, features of interest can be made to appear more 

prominent, noise due to extraneous features can be reduced or 

eliminated, and the accuracy with which an object is measured, 

can be increased. While techniques that vary the illumination 
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(e.g., illuminator location, polarization of illumination, etc.) 

have been employed in several vision systems, illumination 

planning has been overlooked to a great extent. Since image 

acquisition is much less costly than the subsequent image 

analysis, it seems advantageous to dedicate computational 

effort to determine appropriate values for both the viewpoint 

and the illumination parameters. 

Sensor planning is pertinent to a number of areas of robotics 

and computer vision that have been studied extensively in 

the past. For instance, the general problem of task planning 

in robotics and its component areas of motion planning, 

grasp planning, and assembly planning can be viewed as 

different facets of the sensor planning problem. In addition, 

recent research has underlined the importance of an area 

very much related to sensor planning, namely, that of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAactive 
sensing. In active sensing sensor parameters are controlled 

in response to the requirements of the task 171, [70]. It has 

been shown in 141 that active sensing can take ill-posed vision 

problems and render them well posed through constraints 

introduced by the dynamic nature of the sensor. Also, by 

actively reconfiguring a sensor system its effective scope is 

increased, and as a result, a range of sensing situations can 

be accommodated. For example, the field of view of a mobile 

observer is far more extensive than that of a stationary one, 

while required object detail can be resolved by either reducing 

the viewer-object distance or, when possible, by modifying 

the associated lens settings. In order to purposefully alter 

sensor configurations, active sensing requires a sensor plan- 

ning component that determines appropriate sensor parameter 

values. 

The goal of sensor planning is to automatically, rather than 

manually, generate appropriate sensor configurations based on 

any a priori known information that is often available. For 

instance, the required geometric and physical information of 

objects can be extracted from CAD/CAM models which are 

often available in today’s manufacturing environment. Camera 

and illumination models approximating their physical and geo- 

metric properties can also provide the planning system with the 

required sensor and illumination characteristics. The planning 

algorithms can use this model information and augment it with 

knowledge regarding the functions the system is to perform. In 

this way, the sensor-based system will be able to reason about 

its own configuration in order to achieve the task at hand. 

B. Applications 

Several researchers have recognized the importance of such 

a planning component for a new generation of automated 
visual inspection systems 1561, 1781, 1841. In 1781 a system 

is defined to automatically generate dimensional measurement 

applications from CAD models of parts. In 1561 a concept- 

based inspection system is outlined in which a model-based 

inspection system would be augmented with a generic set 

of principles in order to determine appropriate and flexible 

behavior in new situations. The need for machine vision 

development tools that will assist machine vision designers 

and allow less specialized labor to be employed is underlined 

in [84]. The tool proposed would automatically generate the 

configuration of a machine vision system by selecting sensors, 

illumination, optics, and image processing algorithms. 

Vision sensor planning is also useful for robot-controlled 
vision systems in which cameras and light sources are mounted 

on robot manipulators (e.g., [ l  11, 1831). In order for these 

systems to perform their task reliably (e.g., vision-guided 

remote assembly/disassembly or manipulation of objects in 

space or in hazardous environments), selection of the proper 

vision sensor parameter values is critical. The developed 

sensor planning techniques could be used to automatically 

position and orient the cameras and light sources as well as 

to control the camera optics (e.g., controlling the zoom, focus, 

and aperture settings of programmable zoom lenses). 

Sensor planning techniques are also applicable to areas 

such as the automatic synthesis of vision programs from 

task specifications and model information 1291, [401, [501. 

For example, a vision program to inspect an object can 

be automatically generated, to a certain extent, based on 

sensor planning techniques that determine appropriate camera 

and illuminator poses, optical settings, and image processing 

algorithms. 

It is important to note that planning techniques developed 

for vision sensors can prove useful in other areas of au- 

tomation, such as the automated machining and dimensional 

inspection of mechanical parts 1181, [67], 1711. For instance, 

planning for accessibility of a surface in order to machine or 
probe it by tactile means is equivalent to planning for visibility 

of this surface assuming orthographic projection. In these 

latter domains of automation, parameters such as workpiece 

and probe orientation, machine selection and cutter, or probe- 

type selection are determined by the planning systems. Vision 

sensor planning techniques can also be used in the area of 

computer graphics for the automatic generation of viewing 

specifications that result in scene renderings that achieve a 

certain intent [64]. 

By employing a sensor planning component in these appli- 

cation domains: 

1) The development cycle and thus the cost of a sensor 

system is reduced since sensor configuration can be done 

automatically; 

2) Sensor parameter values can be found that are robust 
(i.e., satisfying the task requirements at hand even in the 

presence of uncertainty); 

3) Sensor parameter values can be determined that optimize 

the sensor output with respect to a given task criterion, 

(e.g., camera and illuminator poses that enhance the con- 

trast between task relevant features and the background); 

4) A sensor-based system can adaptively reconfigure itself 

to accommodate variations in the workplace. 

C. Scope of this Survey 

In an attempt to limit the scope of this survey, we have 

focused on sensor planning for vision sensors (e.g., cameras, 

range finders, illuminators, etc.). Furthermore, within the area 

of vision sensing, we have tried to limit our study to systems 

using higher-level model-based approaches as opposed to 

pixel-level active vision. We are concerned with finding a 



88 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11,  NO. I ,  FEBRUARY 1995 

generalized viewpoint that includes sensor parameters other 

than camera placement (e.g., focus, aperture, illumination 

placement). Active vision systems that vary their parameters 

by an assumed a priori schedule-randomly or heuristically 

rather than in a knowledge-based manner with an identifiable 

selection criterion-is outside the scope of this survey. 

Following the approach of Maver and Bajcsy [54], we can 

classify the approaches to the sensor planning problem by 

the vision task to be achieved or similarly by the amount 

of a priori known information about the scene. This allows 

us to identify three distinct areas of research: object feature 

detection, model-based object recognition and localization, and 

scene reconstruction. 

The first area, object feature detection, seeks to automat- 

ically determine vision sensor parameter values for which 

particular features of a known object in a known pose satisfy 

particular constraints when imaged [6], [SI, [231, 1241, 1401, 

[45], [57]-1601, [62], [72], 1741, [75], [ S I .  For example, 

the features are required to appear in the image as being 

visible, in-focus, and magnified to a given specification. These 

planning techniques draw on the considerable amount of a 

priori knowledge of the environment, the sensors, and the 

task requirements. Because the identities and poses of the 

viewed objects are known, the sensor parameters are usually 

preplanned off-line and then used on-line when the object is 

actually observed. Our own interest is in this first area, and 

this survey reflects this interest as well as our belief that it is 

an important emerging research area. In the remainder of this 

section references to, and a brief description of, the other two 

areas is presented. 

The second area is concerned with developing sensing 

strategies for the tasks of model-based object recognition 

and localization [16], 1171, [30], [37], 1401, 1441, 1511. Here, 

sensing operations are chosen that will prove most useful when 

trying to identify an object or determine its pose. In this work, 

the a priori known information about the world in the form of 

models of possible objects, sensor models, and information ac- 

quired to this point are compiled into recognitiodocalization 

strategies (see Fig. 1). Most approaches in this area follow a 

common theme. Namely, a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsearch is performed in the space 

of object identitieslposes employing the hypothesize-and-verify 
paradigm: 

1) Hypotheses are formed regarding the object identities 

and poses; 

2) These hypotheses are assessed according to certain met- 

rics; 

3) New sensing configurations are proposed based on a 

given criterion until a stopping condition is met. 

Since after the first step in the above approach the identities 

and poses of the objects in the scene have been hypothesized, 

the sensor planning techniques of the first area are also 

applicable in this second area. 

In order to limit the search of sensor parameter space in this 

hypothesize-and-verify paradigm, a discrete approximation of 

this space is commonly employed. For example in [30], sensor 

configurations are only chosen from a known finite set. In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 151, 

[37] a discrete approximation of viewing space based on the 

aspect graph representation of the object is used. The individ- 

ual approaches following this general methodology basically 

differ in the hypothesis evaluation metrics, the criterion for the 

next sensing operation or the stopping condition. 

1) The quality of the match between image and scene 

features is evaluated by Cameron in [16] using a cross- 

correlation measure. In the work by Hutchinson and Kak [37], 

confidence in matches between model and scene features are 

based on the similarity of the area and the 3D shape attributes 

of the surfaces. 

2) In forming the hypotheses, Magee [51] takes a theorem- 

proving approach to establish a symbolic correspondence 

between scene and image points, while in Kim’s work, the 

correspondence between object images from one view to the 

next is determined by employing correspondence techniques 

used in stereo. In the work by Grimson [30], a set of possible 

interpretations of the original sensory data is assumed to have 

been determined by some other means. 

3) The criterion for the next sensing operation is based 

on optimally verifying the current hypotheses according to 

a metric. A very similar metric is employed in most of the 

approaches. For example, in [37] this metric involves reducing 

the maximum uncertainty of the hypothesis set, while in [ 161, 

[30], [44], [51] it entails viewing particular disambiguating 

features. 

Similar to the aforementioned sensor planning work for 

object recognition, there has also been work [12], [13], [28], 

[33], [38], [40] in automatically determining strategies that 
guide the search for matching image and scene features in 

Step 2 of the hypothesize-and-verify paradigm. In this work, 

however, sensing configurations are not planned, but rather, for 

whatever the sensing configuration happens to be, a strategy is 

given to match image and scene features based on this initial 

set of sensory data without often acquiring additional sensory 

data. 

The third area addresses the problem of determining sensing 

strategies for the purpose of scene reconstruction [l] ,  1141, 

[191, [211, 1311, 1531, [66], [81], [MI. In this case, a model 
of the scene is incrementally built by successively sensing the 

unknown world from effective sensor configurations using the 

information acquired about the world to this point. At each step 

of the algorithm, new sensor configurations are chosen based 

on a particular criterion (e.g., ability to explore the largest area 

of unknown space). The sensory information acquired at each 

step is then integrated into a partially constructed model of 

the scene and new sensor configurations are generated until 

the entire scene has been explored. While there is no a priori 

known scene information that can be used in this problem, 

the iterative sensing is guided by the information acquired 

to each stage. With respect to the planning component of 

this work, the various approaches differ in the criterion with 

which a new sensor configuration is chosen. The approaches 

also differ in the way the multiple views are integrated into 

a scene model. The work described in [3], [34], [52] is 

related in that it addresses the problem of reconstructing 

a scene from multiple views, however, the viewpoints are 

predefined (i.e., assumed to be given) and are not planned 

in any manner. 
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11. SENSOR PLANNING FOR FEATURE DETECTABILITY 

This review now focuses on vision sensor planning where 

the sensing task is image acquisition for robust feature detec- 

tion. The techniques that are discussed are mostly applicable to 

vision systems that observe known objects in known poses; for 

example, in visual inspection systems, surveillance systems, 

or monitoring systems. 

In the following sections, common themes are initially un- 

derlined in the various approaches in order to allow grouping 

and high-level contrast of methodologies. An in-depth analysis 

of the problem and a critical review of each approach follows. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Overview of Research in Sensor Planning 
for the Task of Feature Detectability 

This problem is fairly new in the area of computer vision 

but has recently received considerable interest. Several vision 

planning systems are being developed that draw on the a 

priori known information regarding the observed object and 

the employed sensors in order to automatically determine 

vision sensor parameter values that satisfy certain feature 

detectability constraints. The developed techniques differ in 

their general approach to determining sensor parameter val- 

ues. 

Several systems [59], [601, [62], [63], [87], [88] take a 

generate-and-test approach, in which sensor configurations are 

generated and then evaluated with respect to the task con- 

straints. In order to limit the number of sensor configurations 

that are considered, the domain of sensor configurations is 

discretized. The viewing space discretization in these systems 

is performed by surrounding the object with a tesselated 

viewing sphere and limiting the possible sensor locations to 

either groups or individual tessels on the sphere. Determination 

of the sensor parameter values is formulated as a search over 

this discretized domain of sensor configurations guided by 

task-related heuristics. 

The sensor planding methods described in [5], [6], 

[22]-[24], [72], [74], [75] take a synthesis approach. In this 
approach, the task requirements are characterized analytically 

and the sensor parameter values that satisfy the task constraints 

are directly determined from these analytical relationships. 

There has also been work related to sensor planning in the 

area of sensor simulation systems [36], [41], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[W. In such 

systems, a scene is visualized given the description of the 

objects, sensors, and light sources. These systems provide a 

framework for planning of sensor configurations. For instance, 

by taking a generate-and-test approach, satisfactory sensor 

configurations can be found by creating a simulated view of 

the scene and evaluating the task constraints in the simulated 

image. 

Finally, there has been related work that follows the expert 
systems paradigm [8], [45], [57]. In such systems, expert 

knowledge of viewing and illumination techniques is incor- 

porated into an expert system rule base. After acquiring 

information regarding the particular object to be observed, 

the expert system provides advice regarding the appropriate 

sensor configuration. 

B. DeJning the Problem 

In this section we describe the problem of sensor planning 

for feature detectability in more detail. In Section I the problem 

was summarized as automatically determining camera and 

illumination parameters (e.g., position, orientation, settings) 

that satisfy certain feature detectability task requirements (e.g. 

visibility, focus, contrast) by drawing on the knowledge of 

the environment, the sensors, and the task requirements them- 

selves. From this description, it can be seen that the problem is 

model based and task driven. The models include information 

of the objects in the environment and the employed sensors. 

This a priori knowledge, together with knowledge of the task 

requirements that need to be satisfied, are incorporated into 

the planning algorithms. 

In the following sections, we discuss each of the above 

mentioned components of the problem. These are 

1) The sensor parameters, 

2) The sensor and object models, and 

3) The feature detectability constraints. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I )  Sensor Parameters: The parameters that need to be de- 

termined for vision sensors are basically associated with the 

point from which the scene is observed (i.e., viewpoint) and 

the point from which the scene is illuminated. Customarily, 

a viewpoint is considered to be the viewer location alone. 

However, it is useful to define the concept of a viewpoint in a 

broader sense that includes not only the viewer orientation, but 

also the optical settings associated with the viewpoint. These 

settings are also observer attributes affecting the resulting 

image of the scene. 

This broader definition, then, identifies two types of sensor 

parameters: geometric and optical. The geometric parameters 

are independent of any of the lens optics. Parameters of this 

type the following: 

The three positional degrees of freedom of the sensor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy? 2)-this parameter is the position vector of a point 

associated with the sensor. An example of a convenient 

point for this purpose is a point on the C-mount surface of 

the lens since the relationship between the C-mount and 

the sensor does not vary. The characteristic points of the 

lens itself (e.g., the principal points, the nodal points, the 

pupils, etc.) can also be used. However, since these points 

are not rigidly fixed to the sensor, the relative movement 

of these points as the optical settings of the lens vary 

must be accounted for. 

The three orientational degrees of freedom of the sen- 

sor-this parameter can be specified by the pan, tilt, and 

swing angles of a vector rigidly attached to the sensor. An 

example of a convenient vector of this type is a unit vector 

along the viewing direction (i.e., optical axis). While the 

characteristic points of the lens change as the optical 

settings of the lens vary, the viewing direction remains 

constant. 

The optical parameters, on the other hand, depend on the 

lens settings. Parameters of this type include the following: 
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The back principal point' to image plane distance, &-this 

parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd is varied in the several focus control mech- 

anisms that are employed in lenses in order to achieve 

a focused image. Also, d is the image distance that 

is employed in the Gaussian lens formula governing 

focusing of a lens. 

of the lens-the entrance 

pupil diameter depends on the size of the aperture (con- 

trolled by the aperture setting of the lens) and the lens 

optics that image the aperture. Among other things, the 

aperture, and hence the entrance pupil, affect the focus 

and the brightness of the image. 

The focal length f of the lens-the focal length is a 
fundamental property of a lens and it provides a measure 

of its refractive ability. In cases where it can be varied 

(e.g., zoom lenses) the focal length is a sensor parameter; 

otherwise, it is a sensor constant. 

Other optical camera parameters that can also be controlled 

in some cases [6S] include the following: 

1) The exposure time of the sensor, which determines how 

long the sensor will be exposed to light from the scene; 

2) The gain of the video signal by the camera amplifier; 

3) Parameters adjusting the spectral responsivity of the 

imaging system (e.g., the spectral transmittance of a 

fi 1 ter) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 

The illumination parameters are also of two types: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgeometric 
and radiometric. The geometric parameters are independent 

of any of the physical characteristics of the illumination. 

Parameters of this type include the following: 

The three positional degrees of freedom of the illumina- 

tor-this parameter is similarly the position vector of a 

point associated with the illuminator. For example, in the 

case of a point light source, this parameter can obviously 

be the location of the point light source itself. 

The three orientational degrees of freedom of the illu- 

minator in the case of directional illuminational-this 

parameter can be specified by the pan, tilt, and swing 

angles of a vector rigidly fixed to the illuminator. An 

example of a convenient vector of this type is the unit 

vector along the axis of symmetry of the illumination 

beam. 

The geometric characteristics of the illumination beam- 

for example, the illumination beam may have the shape 

of a conical solid angle with a constant or variable apex 

angle. 

The radiometric parameters depend on the physical and optical 

characteristics of the illumination. Parameters of this type 

include the following: 

The radiant intensity-this parameter describes the power 

The entrance pupil diameter2 , 

output of the light source. 

' The principal points of an optical system are two conjugate points on the 
optical axis such that planes drawn perpendicular to the optical axis through 
these points are planes of unit magnification. For the case of a thin lens camera 
model, the principal points coincide at a single point. 

2The entrance pupil of a lens is the image of its aperture with respect to 
all elements preceding it in the lens system. 

The spatial distribution of intensity-for example, the 

above parameter is the most important characteristic of 

the illumination in the case of structured lighting. 

The spectral distribution of intensity-this parameter can 

be varied by employing spectral filters with a certain 

spectral transmittance. 

Parameters describing the polarization of the illumina- 

tion-the polarization state of the illumination can be 

controlled by employing polarizers. 

Thus, in the most general case, planning of camera, lens, and 

illumination parameters is to be done in a high-dimensional 

imaging space [6S]. As will be seen in Section 11-D, however, 

only a subset of the above set of sensor and illumination 

parameters is typically considered in any of the existing sensor 

planning systems. For example, in many systems the camera 

is assumed to be located at a fixed distance away from the 

object or the optical axis is assumed to pass through a fixed 

point on the object. 

2) Sensor and Object Models: The sensor models, camera, 

lens, and illuminator, embody information that characterizes 

the operation of the sensor. Such information includes the 

following: 

The sensor and illumination parameters and con- 

stants-for example, the field-of-view angle of the sensor, 

the sensor pixel size, the lens focal length, the sensor 

noise, the spatial extent of illumination, its intensity 

distribution within this extent, etc. 

The governing relationships between the sensor param- 

eters and the sensor constants-for example, the per- 

spective projection imaging model, the lens formula for 

focusing, etc. 

Object models that are commonly used (e.g., CAD/CAM 

models) contain geometric and topological information, which 

may be sufficient for some aspects of the sensor planning prob- 

lem. However, the photometric properties of the object, such as 

color and reflectivity of its surface, are needed for illumination 

planning in order to accurately model the interaction between 

light and the object surface and then approximate the resulting 

image. In this case, currently used object models need to be 

augmented to include such information. 

3 )  Feature Detectability Constraints: The feature detectabil- 

ity constraints discussed in this section are fairly generic to 

most vision tasks. An initial set of such constraints for sensor 

planning was introduced by Cowan et al. in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[22], [24]. Similar 

to the way sensor parameters have been classified in Section II- 
B. 1 ,  the feature detectability constraints can also be collected 

into two groups depending on whether the illumination source 

plays a role in the constraint or not. 

The first group consists of the purely sensor constraints for 

which illumination is not a factor. Such constraints include 

the following: 

Visibility-for a feature to be detectable by the sensor, 

it must first be visible to the sensor. This means that 

all lines of sight from the camera to each point of the 

feature are not obstructed (i.e., occluded) by anything in 

the environment. 

Field of view-while the visibility constraint requires that 

the rays of light from the feature reach the sensor, the 
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field-of-view constraint requires that these rays must then 

image the features onto the active area of the sensor. If 

this does not happen, the image of the features will either 

be clipped by, or will lie outside, the active sensor area 

and thus will not be observable. 

Focus-the goal of this constraint is to guarantee that 

the features are in focus. While there is only one object 

distance for which points are in perfect focus, there is a 

tolerance in position for which a feature is still considered 

acceptably focused based on the resolution of the image 

sensor. This tolerance is referred to as depth of field. Thus 

the focus constraint requires that the features of interest 

lie within the depth of field of the lens. 

Magnification or pixel resolution-this constraint governs 

the size of the feature images. Often, a linear feature is 

required to appear in the image with a certain length 

(e.g., 5 pixels). This constraint is referred to as the 

magnification constraint. A related constraint is that of 

resolution for which any two points of the feature must 

be imaged by distinct pixels on the sensor plane. 

Perspective distortion-in many applications (e.g., graph- 

ics) the images of a scene are considered undesirable 

when the scene is severely distorted under the projec- 

tion. In such applications a constraint that minimizes the 

perspective distortion of features is appropriate. 

The second group of feature detectability constraints de- 

pends on the illumination. These constraints are referred to 

as illumination or radiometric constraints and include the 

following: 

Illuminability-for a feature to be detectable by the 

sensor, it is not sufficient that i t  be visible to the sensor 

alone. It is also necessary that the feature be visible to 

at least some point of the light source as well. If this is 

not the case, the feature will not be illuminated and as a 

result, it cannot be detected. If a feature point is visible to 

only some but not all points of the light source, it will be 

illuminated by these points and will either be back-facing 

or in shadow for the remaining part of the light source. 

A related constraint is shadow avoidance. For example, 

such a constraint is important in photometric stereo (see 

Section 11-C. 1)  and-in cases where shadows cast over 

the feature-may be mistakenly interpreted as the feature 

itself. 

Dynamic range of the sensor-an object point will also 

not be detectable in the image when the image irradiance 

from that object point is outside the dynamic range of the 

sensor. For instance, the image irradiance from an object 

point may be too weak to sensitize the corresponding 

photoreceptor cells and as a result will appear black in 

the image, On the other hand, the image irradiance from 

an object point may be too high and thus may saturate the 

photoreceptor area. In both cases, the object point will be 

considered undetectable. 

Contrastdetectability of an edge feature in a scene is 

often determined by the edge contrast in the image, that 

is, the disparity in image intensity values at points in the 

neighborhood of the image of the edge. For example, an 

edge feature may not be detected in the image when the 

contrast between its adjacent faces is not sufficient for 

the edge operator at hand. 

The above constraints can be further classified as geometric 
and optical constraints. Geometric constraints depend only on 

the geometric sensor and illumination parameters. Examples 

of such constraints are visibility and illuminability, where 

these depend only on the geometric parameter of position. 

Optical constraints depend on both the geometric and the op- 

tical parameters. Examples of such sensor constraints include 

resolution, focus, field of view, dynamic range, and contrast. 

It is important to note that when the sensor and radio- 

metric constraints are formulated in terms of the sensor and 

illumination parameters, the sensor constraints involve only 

sensor parameters, while in general the radiometric constraints 

include both sensor and illumination parameters. For example, 

the sensor parameter of aperture is involved in both the sensor 

constraint of focus and the radiometric constraint regarding 

the dynamic range of the sensor. This coupling of sensor 

and illumination parameters can also be seen in the case in 

which the reflectance model of the object surface includes 

a specular component or when lens collection’ is taken into 

account. In both cases, the sensor location is coupled into 

the image irradiance equation. This coupling results from the 

bidirectional reflectance distribution function in the former 

case, and in the latter from the fourth power law for the 

cosine of the off-axis angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[35]. There are cases in which 

such couplings can be neglected. For example, in the case of 

a diffuse object, the scene radiance is the same irrespective of 

the camera position. Similarly, if the field of view is narrow, 

the dependence of the image irradiance on the off-axis angle 

is negligible. In general, however, the sensor and illumination 

planning problems are not separable. 

C. Review zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Work Taking the Generate-and-Test Approach 

I )  The HEAVEN System: HEAVEN incorporates work by 

Sakane et al. [59], [61]-[63] in sensor and illumination plan- 

ning and is the precursor to the V I 0  system that is discussed in 

the next section. HEAVEN uses a spherical representation that 

is both simple and efficient to model sensor configurations. A 

geodesic dome is created around the object, tesselating the 

sphere with an icosahedron that is further subdivided in a 

hierarchical fashion by recursively splitting each triangular 

face into 4 new faces. This process can be implemented at 

whatever level of detail is needed for the task at hand at 

the cost of increased processing time. The viewing sphere 

is centered on the object and its radius is equal to an a 

priori chosen distance from the vision sensor to the target 

object. This serves as a simple resolution constraint (although 

different features on the object will be imaged at different 

resolutions due to the variation in their distance and orientation 

with respect to the sensor). See Figs. 2 and 3. 
Given this spherical representation, a method is needed to 

determine the visibility of a target point from each facet of 

the spherical dome. By projecting a ray from the target point 

of the object (located at the sphere’s center) to the center of 

3Lens collection [35]  relates scene radiance to image irradiance. 
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Fig. 3. The HEAVEN system (from [62] )  

the facet being processed, all intersections of object faces with 

the ray can be computed. Depth buffering can then be used to 

determine if the facet is occluded or not. This approach can be 

quite costly, since its complexity is proportional to the product 

of the number of object faces and the number of facets. To 

alleviate this, bounding box representations of the objects to 

be tested are intersected with the pyramid volume consisting 

of the facet and the center of the dome. If these tests show 

an intersection, then the test is applied to the bounding boxes 

of the next level of the recursive facet tesselation. For linear 

features, a method has been devised to take the convex hull of 

the two regions on the geodesic dome that correspond to the 

visibility of the endpoints as the occlusion-free region. 

A distance method criterion has been developed to rank 

each facet within an occlusion-free region. The idea is that 

facets close to a border with an occluded region are possibly 

poor choices for sensor location, as noise or small errors in 

calibration may cause the occlusion-free facet to be occluded. 

The distance used in this criterion is the negated inner product 

of the ray from the center of the chosen facet to the center 

of the nearest occluded facet. This simple test allows each 

facet to be sorted by its distance transformation. To compute 

this distance, an iterative neighbor growing scheme on the 

tesselated sphere is used, propagating from the chosen facet 

via each of its three adjacent neighbors, until all paths to the 

occluded region are computed. 

The final step in determining placement for a sensor (in 

this case, a camera mounted on a robot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm or "eye-in-hand" 

configuration) is taken as the intersection of the candidate 

facets (sorted by distance), any possible user-chosen locations, 

and the workspace of the manipulator encoded as regions on 

the geodesic dome also. 

The occlusion-free regions for camera placement are also 

regions where a point light source can be placed without 

casting shadows on the target. This is made use of in HEAVEN 
when light source position planning is performed for a photo- 

metric stereo system. In order to address the case where the 

camera occludes the illuminator or vice-versa, the camera and 

illuminators are also considered as part of the scene. Since 

shadows caused by surrounding objects need to be avoided in 

a photometric stereo system, HEAVEN first computes these 

shadow-free facets and then ranks them based on two criteria: 

1) Reliability for recovering the surface normal vectors, and 

2 )  Detectability of the surface by the camera and the 

For the first criterion, the photometric stereo problem is 

posed in a least squares setting and a singular value decom- 

position analysis is applied. The reliability criterion of the 

illuminator configuration Cl is formulated as the inverse of 

the condition number of the matrix related to the light-source 

positions: 

illuminators. 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM, is the matrix that represents the unit vectors directed 

from the object surface to the light sources. Such a criterion 

favors the most stable light position in terms of accuracy in 

estimating the surface normal vectors. 

On the other hand, the detectability criterion C, is defined 

as the range of surface normal vectors that can be detected by 

the photometric stereo setup. A viewing illuminating direction 

is considered to detect a surface normal vector if the two 

make an angle less than 90". (Similar detectability criteria 

are employed in the VANTAGE system that is discussed in 

Section 11-F. 1 .) In addition to the three light source locations, 

the criterion C2 takes into account the camera position which 

is also controllable. C, is expressed as the area of intersection 

of four hemispheres on the spherical viewinghlluminating 
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surface. Each hemisphere corresponds to the range of surface 

normal vectors that can be detected if a camera or illuminator 

is positioned at the center of the hemisphere. 

A composite criterion is formulated that combines C1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C2. Initially, each criterion is required to satisfy a certain 

minimum value: 

C1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> TH1; C2 > TH2. (2) 

The composite criterion C is formulated as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c = tc, + (1 - t)Cz (3) 

where t is the weight that controls the relative importance 

of the criteria. The composite criterion is evaluated for all 

combinations of occlusion-free positions of the camera and 

shadow-free position triplets of the illuminator. The setup with 

the highest value of the composite criterion is chosen by the 

system. HEAVEN also incorporates planning of the window 

layout for a visual feedback control task by again formulating 

the problem in a singular value decomposition framework. 

2 )  The V I 0  System: The vision illumination object (VIO) 

system, developed by R. Niepold and S. Sakane [60], plans 

the setup of both a camera and a point light-source. Given in- 

formation regarding the environment (i.e., the objects, sensors, 

and illuminators) and the task at hand, their system determines 

1) The position of the camera, 

2 )  The position of a point light-source, 

3 )  A list of most suitable edge features to monitor on the 

4) A quantitative assessment of each sensor setup. 

target object, and 

The object features to be observed are not fixed in VIO, but 

may vary as different features are more suitable in different 

object-sensor-illuminator configurations. V I 0  also assigns to 

each configuration a number describing the degree of its 

suitability to the task at hand based on some chosen criteria. 

The camera and illuminator positions are again taken to lie 

on the surface of a sphere of a chosen radius and centered at 

an object reference point. In addition, the camera optical axis 

is assumed to point at the object reference point. The V I 0  

system thus considers two of the five (three positional and two 

rotational) degrees of freedom for camera placement and two 

of the three positional degrees of freedom of the illuminator. 

The objects are polyhedral with Lambertian reflectance. There 

is no spatial variation of brightness within a polyhedral face 

since the illumination source is taken as a point distant 

from the object, and interreflections and shadow effects are 

neglected. 

Similar to the HEAVEN system discussed in the previous 

section, sensor illuminator configurations in V I 0  are generated 

on an adaptively tesselated spherical surface and evaluated 

according to the task criteria. V I 0  first calculates an image 

representation of the expected scene for each pair of camera 

and illuminator locations, and then evaluates chosen image 

feature attributes (e.g., edge visibility, edge contrast) to assess 

the goodness of each such pair. Threshold values are specified 

for each image feature attribute so that camera-illuminator 

pairs that do not meet this threshold condition are eliminated 

from further consideration. 

Facets on the tesselated sphere that are associated with 

views containing the same edges, are grouped into regions. 

region is then evaluated based on the following criteria: 

Robustness against potential object placement iincer- 

tainty: number of region facets/total number of tesselated 

sphere facets; 

Edge visibility; number of edges visible in a regionhotal 

number of object edges; 

Edge occlusion: 1-(number of occluded edgedtotal num- 

ber of object edges); and 

Contrast: average facet contrast over all facets in this 

region, where facet contrast is the normalized sum of all 

edge contrast values when the illuminator is placed at 

this facet. 

The suitability value associated with a region on the viewing 

sphere is calculated as a normalized sum of the above attribute 

values. Regions that do not meet a specified threshold value 

are eliminated. Each camera and illuminator location is given 

a suitability value equal to that of the region in which it lies. 

The previous evaluation of camera and illuminator loca- 

tions does not consider the coupling between the two in an 

actual sensing situation. For this reason, the V I 0  system also 

evaluates the camera-illuminator setup as a pair. In order to 

limit the number of camera-illuminator combinations, only 

those that satisfy a set of constraints are considered (e.g., 

the number of visible edges common to both the camera 

and illuminator locations must exceed a preselected value, the 

camera cannot be placed in front of the illuminator and vice 

versa). Camera-illuminator pairs that meet these constraints 

are then ranked based on another set of attributes associated 

with image features and their combination in the scene. The 

image feature attributes considered were 

The length of the feature edge in the image, 

Its contrast, 

The angle formed between an object edge corresponding 

to an edge in the image and an expected displacement 

direction in the case of location uncertainty of the target 

object, and 

The angular disparity of object edges: this angular dis- 

parity is computed as the normalized sum of angles 

between all pairs of object edges corresponding to the 

feature edges in the image. 

All this information regarding a particular sensing situation 

is collected in a V I 0  cell, which is a data frame representation 

containing all the characteristics of a setup proposal. The 

camera and illuminator suitability values, as well as the 

suitability value of their combination, are combined to obtain 

the global V I 0  processability value of the setup. Based on 

this criterion, setups are ranked and the setup with the highest 

processability value is taken to be the best choice. 

In addition to stationary objects, V I 0  also plans a sensor 

setup for moving target objects by taking into account the 

previous and future sensor configurations and attempting to 

minimize changes in the camera or illumination setup as the 

target object moves. 

Overall, the V I 0  system has the advantage of providing 

both sensor and illumination planning components in a unified 
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framework. Furthermore, V I 0  generates a set of candidate 

camera-illuminator setups along with a quantitative assess- 

ment of each. However, by taking an all-possible-combinations 

strategy at various stages of the algorithm, V I 0  may be 

confronted by combinatorial problems. The many thresholds 

that are employed to mitigate this problem may not work in 

some cases as they are preselected in an ad hoc manner. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3)  The ICE System: The illumination control expert (ICE) 

system was developed at the University of Washington 

[86]-[88] to achieve automatic sensor and illumination 

placement planning for machine vision tasks. 

Similar to both V I 0  and HEAVEN, ICE takes a generate- 

and-test approach. Camera and light positions are generated 

and then evaluated based on selected criteria. In ICE, as in 

V I 0  and HEAVEN, the camera points at an object reference 

point, and the camera and light source are placed on the 

surface of a sphere with its center at the origin of the object 

coordinate system. This spherical surface is then approximated 

by a discrete number of points in such a way that the distance 

between any two neighboring points is approximately the 

same. 

Overall, the ICE system places emphasis on the illumination 

placement planning component of the problem. For the camera 

placement planning component, the task constraint considered 

in ICE is edge visibility. The optimal sensor position is 

considered to be that from which certain feature edges appear 

least occluded. This criterion is evaluated based on the aspect 

graph representation of the object [46], [69]. The regions of 

camera positions that are found using this approach are such 

that the set of object edges of interest is either fully or partially 

visible. These sensor viewpoints are then assessed based on the 

ratios of the unoccluded portion of these edges, as seen from a 

particular viewpoint, to their actual edge lengths. This metric, 

however, varies within an aspect graph cell. Consequently, 

the finer spatial subdivision (i.e., tesselation) of the spherical 

viewing surface, discussed earlier, is used when evaluating 

this metric. 

The illumination planning problem is posed in an optimiza- 

tion setting with edge contrast as the criterion to be optimized. 

Illuminator locations are assessed based on 

1) The ratio of the length of an edge for which a given 

contrast threshold is exceeded to the total edge length 

and 

2)  The amount by which the predicted edge contrast ex- 

ceeds this threshold over a certain percentage of the 

length of the edge. 

The above optimality criteria are evaluated by simulating 

placement of the illuminator at points on the discrete approxi- 

mation of the spherical viewing surface (see Fig. 4), while the 

camera is placed at the one location that was independently 

determined. The contrast at an edge point is obtained from a 

prediction of the image based on the image intensity equation 

and is computed as the difference between intensities of the 

reflected light from two neighboring small patches, one on 

each of the faces that meet at this edge. The image intensities 

are computed based on the illumination and sensor parameters 

and the bidirectional reflectance function. Contrast for the 

CONTRAST 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Contrast criterion in ICE (from [SS]). 

entire edge is evaluated on a finite number of points along the 

edge and then fitted with piecewise continuous polynomials 

producing what is defined as the contrast graph for this edge. 

This graph describes how contrast varies spatially along an 
edge and is used to determine the distribution of contrast. 

The contrast distribution function is then used to evaluate the 

optimality criteria for illuminator placement that were itemized 

above. 

On the whole, the ICE system has the advantage of pro- 

viding an illumination planning system that deals with objects 

with both a general geometry and general reflectance char- 

acteristics. For instance, objects bounded by curved surfaces 

and modeled by a hybrid reflectance model can be han- 

dled. The reflectance model used in ICE is based on the 

Torrance-Sparrow reflectance model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[77] with modifications 

made to the specularly reflected component so that polarization 

can be taken into account. However, in the actual examples 

given of ICE, the effect of polarization of the incident or 

reflected light is not taken into account and thus its importance 

for illumination placement planning is not clear. 

In ICE the sensor placement planning problem is addressed 

independently of that for illuminator placement. An optimal 

camera location is found without considering where the light 

source will be placed, and the light source placement prob- 

lem is then posed given the sensor location. However, as 

was discussed in Section 11-B.3, these two problems are not 

generally separable. Even though specular reflection is taken 

into account in ICE, the camera placement planning problem is 

posed independently of the illuminator location and, therefore, 

the solution obtained may be suboptimal for the combined 

sensor and illuminator planning problem. 

4)  Remarks on the Generate-and-Test Approach: The 

generate-and-test method is appealing as an initial solution 

to the sensor planning problem because it draws from some 

well known techniques for discretizing spaces and efficiently 

searching them. Several positive attributes of this approach 

are listed below. 

1) Generate and test uses a relatively straightforward ap- 

proach to the occlusion problem, performing a search over the 

facets of the dome. It is simple to implement algorithmically. 

2)  The tesselation of the sphere is a hierarchical procedure 

that can be used to make search more efficient, since search 

over this sphere is at the heart of the method. 

3) Intersecting multiple constraints posed as regions on the 

sphere to find a feasible region is straightforward. 
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4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALighting constraints can be modeled with the same 

representation as visibility constraints. 

There are a number of potential problems with generate 

and test, however, that will require ongoing research. These 

are listed below. 

1) The computational cost of finely tesselating high dimen- 

sional parameter spaces and then searching them is high. While 

the hierarchical approach can guide this search, i t  still may 

require an exhaustive search (e.g., over all combinations of 

facets and possible occluding objects). 

2) The solution space assumes a viewpoint in the center 

of each facet. This approximation may not be useful, for 

example, in characterizing an entire facet’s visibility. The 

general question of scale (i.e., sampling rate) remains for these 

methods. 

3) The generate-and-test methods work well for point fea- 

tures; however, they do not extend easily to extended features 

such as lines and planar faces. With more complex features, 

the method may become computationally burdensome as well 

as overly conservative in its solutions. 

4) A number of generalized viewpoint parameters are either 

ignored or assumed fixed in the generate-and-test approach. 

In particular, sensor resolution is posed as a global radius 

on the object feature, which causes difficulties with multiple 

feature observation. Field-of-view constraints are also difficult 

since this encompasses either extended features or multiple 

features. In addition, camera orientation parameters are usually 

not solved for; they are assumed to be pointing to a designated 

location on the feature. 

D. Review zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Work Taking a Synthesis Approach 

An alternative to the discrete approach is to model the 

constraints as analytic functions. This is somewhat intimi- 

dating because the function spaces are of high dimension (8 
dimensions in the case of a generalized viewpoint that includes 

camera location, orientation, and the optical parameters of 

focal length, aperture, and focus). However, by characterizing 

these spaces (or subspaces formed by restricting the number 

of parameters) as analytic functions, a number of benefits are 

derived. 

I )  The Automatic Sensor and Illuminator Positioning Work 
of SRI: An important early work in this area is the work of 

Cowan and Kovesi [22], [24] in which camera locations were 

automatically generated satisfying several of the geometric 

constraints discussed in Section 11-B.3; that is, chosen features 

of polyhedral objects are visible, in focus, within the sensor 

field of view, and spatially resolvable to a given specification. 

This work was then later extended by Cowan and Bergman 

[23]  to include planning of illuminator placement. 

The general approach is to formulate both problems as con- 

straint satisfaction problems. Each task requirement generates 

an equivalent geometric constraint which in turn is satisfied in 

a domain of admissible locations in three-dimensional space 

(see Fig. 5). The admissible domains obtained for each task 

requirement are then intersected in order to determine locations 

that satisfy all constraints simultaneously. 

As discussed in Section 11-B.3, the general camera and 

illuminator planning problem involves a parametric space of 

Fig. 5.  
resolution, field-of-view, and depth-of-field constraints from [24]. 

From left to right, examples of the admissible regions for the 

dimension higher than three. However, by considering a subset 

of the sensor parameters, Cowan and Kovesi were able to 

intersect admissible domains of individual constraints in three- 

dimensional space. For instance, the camera orientation is not 

explicitly taken as a parameter to be planned, but rather is 

assumed to take on an implicit value (e.g., in the field-of- 

view analysis, the camera viewing direction is taken from 

the viewpoint to the center of the sphere circumscribing all 

features of interest). Similarly, parameters associated with the 

lens optical settings are not planned for the most part. This 

approach has the difficulty that the chosen values for such 

parameters need to be at least admissible for all constraints. 

While a globally admissible value for the camera orientation 

is determined, the image plane to perspective center distance 

is found for each constraint separately and not in a manner 

that guarantees satisfaction of all constraints. 

For the visibility constraint, Cowan and Kovesi initially 

computed the three-dimensional region from where a convex 

target can be viewed entirely from above a convex occluding 

polygon (the same approach is taken later in [49] in their 

work in automatic grasping). For the case where the occluding 

object is not a convex polygon but rather a polyhedron, 

the total occluded region is obtained as the union of the 

component occluded regions of the faces of the occluding 

polyhedron. The faces that are concave or contain holes 

must be decomposed into convex shapes for their method 

to be applied. Their algorithm for convex occluding and 

target polygons, as described, has quadratic computational 

complexity in the number of edges, which can be improved 

to linear as discussed in [80]. 

A general comment about the resolution, focus, and field- 

of-view constraints is that although they are characterized 

by functional relationships, iterative techniques are then used 

to solve for the sensor parameters, even when closed-form 

solutions are obtainable. 

For the resolution constraint, Cowan and Kovesi defined 

resolution to be the minimum angle subtended by a given 

incremental surface length at the perspective center of the 

lens, rather than the minimum number of pixels per surface 

length which is commonly used. This definition can be shown 

to be more conservative than the one customarily used. In 

addition, it has the advantage of formulating the resolution 

constraint independently of the viewing orientation since the 

angle subtended at the viewpoint does not depend on the view- 

ing orientation. As a result, the number of sensor parameters 

involved is reduced and the resolution satisfying domains of 

individual features can be intersected in a lower dimensional 

parametric space, when globally admissible resolution regions 

are sought. 
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Cowan and Kovesi also determined the permissible region 

for camera placement such that all points of the features to 

be observed are in focus. They made use of a depth-of-field 

formula developed by Krotkov zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[48] that gives the range of 

distances of feature points that are in focus (i.e., their blur 

circle diameter is less than the minimum pixel dimension). 

The set of viewpoints for which a feature has its farthest point 

at a distance equal to the upper limit of this range, and its 

closest point at a distance equal to the lower limit defines 

the boundary of the locus of admissible viewpoints for this 

constraint. Although these distances (as any object distances 

governed by the Gaussian lens law) need be measured along 

the optical axis, Cowan and Kovesi measured them radially, 

that is, from the perspective center of the lens to each feature 

point. With such a distance definition they developed an 

iterative procedure to initially obtain the domain of viewpoints 

that satisfy the focus constraint for a line segment. For this, 

it is assumed that the camera optical axis passes through 

the line segment midpoint. In three dimensions, a similar 

iterative approach is used to solve the focus constraint at small 

increments of azimuth and elevation. The camera optical axis 

is assumed to pass through the center of a circumscribing circle 

or sphere of the features depending, respectively, on whether 

they are coplanar or not. As a result, the orientational degrees 

of freedom of the sensor are omitted and the discretization of 

sensor configuration space migrates from a genuine synthesis 

approach. The sensor planning system has been tested on a 
piece of sheet metal with a number of different size slots and 

holes as well as on a tray of three-dimensional parts. 

The analytical framework set up by the SRI group also 

has the advantage of including other constraints on imag- 

ing such as illumination. Cowan and Bergman [23] have 

extended the results of the sensor planning described above 

by computing the appropriate range of lens aperture settings 

and the three-dimensional region where a point-source light 

may be placed to illuminate the scene. Including illumination 

in the planning component is difficult, since it increases the 

number of controllable parameters greatly (i.e., position and 

orientation of the light source, kind of sourcePxtended or 

point-and source energy). Cowan and Bergman have made 

some reasonable assumptions about the imaging and lighting 

in a robotic work cell to show the viability of both camera 

and illumination planning. In their work, the reflectance of a 
surface is modeled as having a diffuse component that follows 

Lambert’s cosine law and a specular component forming a 
lobe within an angular tolerance of the perfect specular angle. 

Interreflections are ignored and viewing of the surface is 

assumed to be on-axis of the camera. Their analysis shows 

that the dynamic range constraint of the sensor (i.e., the 

brightness-no surface in the scene is too dark or too light) 

from the diffuse component of reflection lies between two 

closed curves that are proportional to the incident angle of the 

illumination. The specular region of the reflectance can also 

be computed and is subtracted from the region bounded by the 

closed curves to yield a set of admissible regions that satisfy 

the illumination constraints. The illumination planning system 

has been demonstrated with a camera on a robot arm and a 
point-source mounted on a second robot arm. A multicolored 

planar surface with patches of different reflectance values 

was used as a test object. The camera was then placed in 

the position computed by the sensor planning system without 

illumination constraints. Given this location of the camera, the 

illuminator was moved to positions along the constraint curves 

of minimum and maximum brightness and the resulting images 

were consistent with the expected values (within roughly zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5%)). 
This work has recently been extended to include constraints 

on illumination for forming edges (gradients in images) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 25 ] .  
By planning regions of acceptable viewing and illumination 

parameters to form edges, a feature based object recognition 

strategy can be generated that plans new viewing locations 

of an unknown object. The new viewing position is selected 

to maximize the number of features (edges) that can be 

seen, given certain strong assumptions about illumination and 

reflectance. 

2) The MVP System: The authors are developing a vision 

planning system, machine vision planner (MVP), that automat- 

ically determines vision sensor parameter values that satisfy 

several of the sensor constraints discussed in Section 11-B.3 

[72], [73], [75], [79], [SO]. MVP takes as input the object 
geometry information from a CAD database, as well as models 

of the camera and lens, and determines camera poses and 

settings for which features of interest of polyhedral objects 

are visible (occlusion-free positions of the sensor), contained 

entirely in the sensor field of view, in focus, and resolvable 

by the sensor to a given specification. At this stage the MVP 

system does not include illumination planning. 

The parameters that are determined include the three po- 

sitional degrees of freedom of the sensor-r,,(:c, y. 2)-and 

the two orientational degrees of freedom-pan and tilt an- 

glesdescr ibed by a unit vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU along the viewing direction. 

Rotation with respect to the optical axis is not considered. In 

addition, the three optical parameters-the back principal point 

to image plane distance d, the focal length f ,  and the aperture 

of the lens (&-are taken into account. Thus, planning is done 

in eight-dimensional imaging space and a point in this space 

is defined as a generulized viewpoint V ( r o ,  U, d. f ,  a) .  
In MVP all task constraints are formulated analytically. 

Using concepts from geometry, illumination, and optics, each 

task requirement is modeled by an equivalent analytical rela- 

tionship which in turn is satisfied in a domain of admissible 

values in the space of parameters to be planned. Generally 

speaking, for each constraint the admissible domain for sensor 

placement and setting is a region in eight-dimensional imaging 

space bounded by the hypersurfaces that are determined by 

these analytical relationships. The component admissible do- 

mains obtained for each task requirement are then combined 

in order to find parameter values that satisfy all constraints 

simultaneously. For this purpose, the problem is posed in 

an optimization setting in which a globally admissible eight- 

dimensional viewpoint is sought that is central to the admis- 

sible domain; that is, distant from the bounding hypersurfaces 

described by the constraint equations. Such a generalized 

viewpoint is considered desirable since it is robust in the 

event of inaccuracy of either sensor placement or setting. The 

analytical relationships for each task constraint provide the 

constraints of the optimization, while the objective function is 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. 
edges to be observed (from [74]). 

CAD model of the object used in the MVP system with the feature 

chosen so as to characterize the distance between a generalized 

viewpoint and the bounding hypersurfaces. 

Once a central generalized viewpoint is determined from 

the optimization, it then needs to be realized in the actual 

sensor setup. While the task constraints are expressed in 

terms of the generalized viewpoint, the parameters that can 

be controlled in an actual sensor setup are generally different. 

In order to achieve these planned sensor parameter values, a 
mapping is established between the planned parameters (e.g., 

camera pose and optical settings) and the parameters that 

can be controlled (e.g., end effector pose, zoom, and focus 

settings). This mapping between the two parameter spaces is 

provided by calibration models that embody knowledge of the 

geometric relationships of the manipulator, sensor, illuminator, 

and optical relationships of the lenses. 

Objects in MVP are modeled as general polyhedra with 

concave and convex faces, with or without holes. The visibility 

planning algorithm of MVP first considers a sufficient subset 

of the faces of the observed polyhedron as polygons in 

three-dimensional space that are potentially occluding the 

feature to be observed. The algorithm then determines the 

three-dimensional occluded regions between these occluding 

polygons and each target feature. The individual occluded 

regions of these faces are unioned in order to generate the 

occluded region of the target feature for the polyhedron as a 
whole. The complement of the occluded region is the visibility 

region from where the entire target feature can be viewed. The 

visibility region is polyhedral and defines a piecewise analytic 

constraint for viewpoint placement. The visibility region for 

the object features of Fig. 6 is shown in Fig. 7. In this case, 

the visibility region consists of two connected components that 

correspond to viewing the edge features through the small hole zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S H  and the large hole LH of the object (see Fig 6). 

The resolution, depth of field, and field of view constraints 

are characterized by analytic closed-form relationships. These 

relationships are derived using the geometry of perspective 

transformation and concepts from optics. The locus of gen- 

eralized viewpoints that satisfies each constraint separately is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ytz 0 

Fig. 7. Visibility region for both feature edges (from [74]) 

expressed as follows: 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI = 1 for the resolution constraint, I = 2a, 2b for the 

near and far limits of the depth-of-field constraint and z = 3 
for the field-of-view constraint. It should be noted that there is 

a g1 relationship for each linear feature to be resolved, while 

for the depth-of-field and field-of-view constraints there is a 
unique set of relationships g 2 0 ,  g211, and g3 for all features. In 

addition to the above inequality constraints, there is also an 

auxiliary equality constraint g, = 0 which expresses the unit 

vector condition for the viewing vector. 

While the constraints address the admissibility of the com- 

puted solution, the optimization function is constructed in a 

way that characterizes the robustness of the computed solution. 

The measure used to assess the robustness of a solution 

with respect to the resolution, field-of-view, and depth-of-field 

constraints is the value of each constraint relationship g l ,  I = 
1, 2n, 2h, 3. This is appropriate since a large positive value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g2 indicates that the constraint is satisfied comfortably, a small 

positive value indicates marginal satisfaction, and inadmissible 

solutions give rise to negative values. Similarly, for the 

visibility constraint a measure of this type is also formulated. 

For this purpose, the minimum distance cl,, from the viewpoint 

to the polyhedron describing the visibility region is chosen: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g4 = fd,,,  where +d7, or -d,> depending on whether the 

point is inside or outside the visibility volume, respectively. 

The optimization function is taken to be a weighted sum of 

the above component criteria, each of which characterizes 

the quality of the solution with respect to each associated 

requirement separately. Thus, the optimization function is 

written as 

f = max ( ( k l c / l  + ( t 2 a 9 2 a  + f f26(12b + (tJb!].3 + (?4.(14) ( 5 )  

subject to 9, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0, I = 1. 2(1, 2b. 3 ,  4 and ~5 = 0, where ( Y ? ,  

are the weights. These weights are currently chosen so that 

the contribution of each constraint to the objective function 

is of the same order of magnitude and prevents a subset 

of the constraints from dictating the optimization. Given the 

above formulation, the optimization starts with an initial point 

in the domain of possible generalized viewpoints and then 

, 
/' 
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Fig. 8. 
MVP system (from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[74]). 

Camera view of the features from viewpoint I-,, computed by the 

generates a generalized viewpoint that is globally admissible 

and locally optimal, as described by the optimization function. 

For this computed viewpoint, all constraints are satisfied with 

the largest margin in the neighborhood of the initial point. 

As an example, for the object and the edge features shown 

in Fig. 6, the two initial viewpoints that are chosen to start 

the optimization, I& and K 2 ,  and the corresponding camera 

viewpoints that are computed by the MVP system, Vf1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Vf2, are shown in Fig. 7 along with their associated viewing 

vectors. It can be seen from Fig. 7 that the initial guess 

viewpoint V,l is chosen to lie inside the visibility region 

with a viewing vector in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-2  direction. For V,, the field- 

of-view and focus constraints are violated. The initial guess 

viewpoint zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVL2 is chosen to lie outside the visibility region 

with a viewing vector again in the --z direction. For &2 all 

constraints are violated. The viewpoints f l  and Vf, that are 

determined by the MVP system can be seen in Fig. 7 to lie 

inside the visibility region with viewing vectors in the direction 

of the features. Camera views taken by a robot vision system 

from the computed viewpoints and with the computed optical 

settings, verify that the constraints are indeed satisfied. The 

view of the object taken by the robot vision system from the 

computed viewpoint Vf2 is shown in Fig. 8. 
With this global optimization formulation of the problem, 

the MVP system provides a framework in which individual 

constraints can be combined and other constraints can be 

* incorporated. However, further work is needed in order to 

study the convergence of the method, the dependence of the 

method on the quality of the initial guess, and the selection of 

appropriate weight settings. 

The MVP system is notable for its generality of handling 

general viewing configurations (e.g., nonorthogonal viewing, 

general convex, and concave polyhedral objects) and determin- 

ing a complete set of imaging sensor parameters as described 

by its concept of a generalized viewpoint, Another advantage 

of the MVP system is that it addresses the associated sensor 

modeling problems (e.g., in [79], models for a programmable 

zoom lens are described). Together with the SRI system of 

Cowan and Kovesi, MVP studies the broadest range of feature 

detectability constraints. 

3) Automatic Determination of Viewer Orientation by Ander- 
son: Anderson [5 ] ,  [6] describes algorithms for the automatic 

‘ determination of the viewing direction which will render 

visible an entire object, whenever this is possible, and will 

minimize the maximum local distortion in the image due to 

perspective projection. An object point is considered visible 

in this analysis if and only if it lies in front of the observer; 

that is, occlusion is not considered and there are no field of 

view limits. As a result, the viewing direction that is sought 

is such that all object points are in front of the viewpoint and 

perspective distortion is minimized. The viewpoint location is 

assumed to be known. This is often the case in many graphics 

applications, where the viewpoint and the object are fixed and 

an orientation is sought for which the object is centered in the 

field of view. 

Anderson proposes this viewing direction rather than view- 

ing directions through the center of mass or the center of 

the smallest box containing the object, since the latter are 

ad hoc and are often inadequate when the viewpoint is 

close to the object. Anderson shows [SI that minimizing the 

maximum perspective distortion is equivalent to minimizing 

the maximum value of the off-axis angle of any object point 

(i.e., the angle between the viewing direction and the vector 

from the viewpoint to an object point). Consequently, the 

computed viewing direction corresponds to the axis of the 

narrowest circular cone emanating from the viewpoint and 

containing the object. By considering that the viewpoint can 

be taken as the origin and that the vectors to the object 

points can be normalized to unit length without affecting the 

solution, the problem can be reduced to a problem in spherical 

geometry. More specifically, the narrowest cone enclosing the 

object points is generated by finding the smallest circle on the 

unit sphere that encloses the object point projections onto this 

sphere. 

Anderson provides an algorithm in [SI to find the narrowest 

circular cone directly and several more efficient algorithms 

in [6] that are based on the aforementioned reduction of 

the original problem to a problem in spherical geometry. 

These latter algorithms are based on existing algorithms for 

analogous plane geometry problems (e.g., finding the spherical 

convex hull of a set of points and the spherical Voronoi 

diagram of a set of points). 

In summary, in this work by Anderson the viewing direction 

for the constraint of minimizing perspective distortion is deter- 

mined. Requirements such as magnifying the object features, 

having them in focus, and avoiding occlusion of the features 

are not considered. 

4 )  Remarks on the Synthesis Approach: On the whole, the 

synthesis approach forces an understanding of the causal 

relationships between the parameters to be planned and the 

goals to be achieved. In this way an insight is provided to 

the problem, rather than just blindly applying search. To this 

end, the task constraint are modeled analytically, bringing to 

bear a powerful characterization that can be utilized to answer 

more questions (e.g., “Using a quantitative measure, how 

comfortably does the computed viewpoint satisfy the depth- 

of-field constraint?’) As discussed in Section 11-D.2, with such 

an analytical formulation of the problem, techniques such as 

optimization can be used as a framework in which several task 

constraints can be combined. Or if globally admissible values 

can be generally determined for a subset of the parameters, 
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the method discussed in Section 11-D.1 has the advantage of 

reducing the dimensionality of the search space and providing 

approximations of the entire admissible space of solutions in 

the dimensions that it considers. In addition, the accuracy of 

the techniques taking the synthesis approach can be directly 

computed from the analytical relationships and easily adjusted 

to the specifications of the task. 

E. Review of Work Taking an Expert Systems Approach 

I )  The Lighting Advisor: Batchelor [8], [9] has built an 

expert system that suggests possible lighting and viewing 

configurations to the designer of a machine vision system 

for industrial inspection. This expert system includes the 

LIGHTING ADVISOR which provides advice regarding what 

lighting configurations are required in given circumstances. 

Two other advisors which will provide advice about the camera 

and the lens are also being developed. 

The program asks a series of questions regarding the object 

to be inspected and the inspection task to be performed; for 

example, information regarding the reflectance characteristics 

of the object (specular, diffuse, opaque, transparent, translu- 

cent) as well as the type of feature or defect that is to be 

highlighted. The program then displays a line drawing which 

shows a sketch of the recommended lighting configuration. 

Batchelor intends to incorporate more rules in the LIGHT- 

ING ADVISOR in order to actually implement the lighting 

arrangement that has been recommended by automatically 

controlling the illumination in a flexible inspection cell. This 

cell provides facilities such as a pick-and-place zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm, a 3- 
degree-of-freedom ( : E ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 )  table, and computer-controlled 

lighting with which a wide range of illumination and viewing 

techniques can be implemented. With these additional expert 

system rules, the recommended illumination will be converted 

into a set of control signals for the lamps. 

2 )  Other Expert Systems for Sensor Planning: Along simi- 

lar lines to the expert system approach of Batchelor, there 

has been work by Penn Video, Inc., a subsidiary of the Ball 

Corporation, that sells a lighting advisor program described by 

Novini in [57]. In [45] another expert system is presented for 

the design of vision algorithms. This system provides advice 

on the selection of effective features and the image processing 

operations to extract the chosen features. In addition, the 

Industrial Technology Institute in Dearbom, MI, has compiled 

a database of lighting and viewing techniques as described in 

1201. 
3)  Remarks on the Expert Systems Approach: The systems 

following an expert system approach address the high-level 

aspects of the problem in which a particular viewing and 

illumination technique is chosen from a catalogue [lo], for in- 

stance, whether front or back illumination is more appropriate 

for the particular object and feature to be observed. However, 

these qualitative approaches need to be extended in order to 

represent and determine the exact spatial relationships between 

the sensor, the illuminator, and the object. 

F. Review of Related Work in Sensor Simulation Systems 

Several sensor simulation systems have been developed and 

have been used as tools to plan new robot workcell installa- 

tions and test modifications to existing ones. Most of the early 

systems [55] modeled simple distance and tactile sensors by 

employing the solid modeling operation of intersection in order 

to detect contact between the sensor (e.g., the robot gripper 

surface or the light beam of a noncontact distance sensor) 

and objects in the robot workcell. More recently, sensor 

simulation systems have been built that include simulation of 

more complex sensors such as cameras in conjunction with 

light sources. In this section, we shall discuss two such sensor 

simulation systems: VANTAGE and ROSI. 
1 )  The VANTAGE System: VANTAGE [40], [41] is a geo- 

metric and sensor modeler for model-based vision systems. 

In general, vision systems deal with two-dimensional appear- 

ances of an object and these appearances are determined by 

both the object itself (e.g., its geometric and photometric 

properties) and the sensor used to observe it. Typically, the 

object properties are part of the geometric models that are 

used in model-based vision systems. However, the sensory 

information that also determines the object appearances is 

not included in such modelers. VANTAGE provides sensory 

information such as the feature types that a sensor detects, the 

particular object features that are detectable at a given sensor 

configuration, and the reliability with which the detectable 

features can be observed. 

In VANTAGE, a feature configuration space is first defined 

in order to represent the spatial relationship between the 

sensor and the feature. In this representation only the angular 

relationship between the sensor and feature coordinate systems 

is considered. A way to then specify sensor detectability and 

sensor reliability over this space is given. On the one hand, 

sensor detectability specifies what features can be detected for 

a given sensor configuration, while sensor reliability specifies 

the expected uncertainty in sensory measurement and the 

uncertainty of the scene features that are derived from this 

measurement. 

Both illuminators and detectors are considered in a uni- 

form manner as generulized sources with two properties: the 

illumination direction and the illumination configurations. For 

light sources, the illumination direction is the direction of 

the light source, while the illuminated configurations are the 

collection of features that can be illuminated for the particular 

illuminator pose, assuming that the illumination direction is 

not occluded. In the case of detectors, these terms correspond, 

respectively, to the viewing direction of the detector and the 

set of features that are visible to the detector. With these 

properties, feature detectability with respect to a generalized 

source can be characterized as follows: A feature is illuminated 

by a generalized source if the feature coordinate system lies 

in the illuminated configurations of the illuminator and the 

illumination direction is not occluded. 

Feature detectability for a general vision sensor is decom- 

posed into such illumination conditions of its component 

generalized sources and Boolean operations between them. 

This decomposition defines the sensor composition tree in 

VANTAGE. For example, as shown in Fig. 9, a light-stripe 

range finder can detect the portions of an object surface onto 

which the illuminator projects light directly and which the 

camera can observe. Thus, the detectability of such a vision 
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(b) 

Fig. 9. 
nator pair from VANTAGE [41]. 

Sensor detectability conditions for a camera and light stripe illumi- 

sensor is decomposed into two generalized source illumination 

conditions and Boolean AND operation between them as 

shown in the sensor composition tree of Fig. 9. Faces which 

are both illuminated by the light source and observable by 

the camera are then projected (PROJ operation in Fig. 9) 

onto the image plane in order to generate the two-dimensional 

appearance of the object. 

VANTAGE also takes into consideration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsensor noise when 

determining feature detectability. This is required because 

sensor noise may interfere with detectability even if the above 

detectability constraints are satisfied. Since most vision sensors 

detect features based on brightness values, detectability of a 

feature will depend on the distribution of feature brightness. In 

VANTAGE a feature is taken to be detectable if its brightness 

is above a threshold. Thus, the feature brightness distribution 

is modeled as the probability of the feature brightness being 

above this threshold. Feature brightness is computed by as- 

‘suming that the object surface is Lambertian and adding a 

zero-mean Gaussian noise term. 

In addition to sensor detectability, sensor reliability is also 

modeled in the VANTAGE system. Sensor reliability addresses 

the uncertainty in sensory measurement and its propagation 

to uncertainty of the scene features. The sources of such 

uncertainty include the variance in brightness values and the 

variance in light source direction. These two variances are, 

respectively, the major causes of uncertainty for vision sensors. 

The uncertainty in sensory measurement for a light-stripe 

range finder and a photometric-stereo sensor is characterized 

in [40]. In addition, for the case of the light-stripe range 

finder the propagation of uncertainty from a two-dimensional 

region image feature to a three-dimensional feature area is 

modeled. 

Appearances of the object when observed by the sensor 

at hand can be generated using the object geometry and 

this sensor detectability information, and applying the sensor 

composition tree to the scene. This is done in three steps: 

The three-dimensional face segments that are illuminated 

by each component generalized source are determined, 

These segments are then combined according to the 

Boolean operations of the sensor composition tree, and 

finally, 

The three-dimensional face segments that have been 

determined to be visible and either illuminated or in 

shadow are projected onto the image plane in order to 

generate the two-dimensional appearance of the object. 

The ability of VANTAGE to predict the two-dimensional 

appearances of objects when viewed by a sensor can be 

readily employed as the kernel of a tool that plans sensor 

configurations. Alternatively, in [39], VANTAGE is used to au- 

tomatically generate object recognition programs. The various 

appearances of objects are generated and then categorized into 

possible aspects, where each aspect is defined to have the same 

combination of detected two-dimensional faces. The recog- 

nition strategy is then comprised of an aspect classification 

component which is represented as an interpretation tree, and 

a linear shape change component which is generated by using 

correspondences between image regions and model faces. This 

recognition strategy is then converted into a program using an 

object library. 

2 )  The ROSI Sensor Simulation System: Raczkowsky et al. 

[36], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[58] have developed ROSI, a sensor simulation system 

for robotic applications that includes simulation of a camera 

in conjunction with light sources. In the ROSI system, an 

industrial scene can be visualized with a simulated camera 

given: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1) The geometric description of the cell objects, 

2) The optical properties of their surfaces, 

3) The physical and geometric description of the light 

4) The physical and geometric properties of the sensors. 

The geometric description of an object is given by a 

polyhedral boundary representation based on CAD generated 

data. The surface optical properties include the coefficient 

of diffuse reflectance, the index of refraction of the surface 

material, the ratio of diffuse to specular reflectance, and a 

factor describing the rms slope of the distribution function 

of the reflectance. These properties are used in the bidi- 

rectional reflection model of Torrance and Sparrow [77]. 
Inter-reflections are not considered. The light sources are 

modeled as Lambertian, emitting light evenly, and are defined 

by the center point, the area, the normal vector, and the spectral 

radiation density of the emitting surface. The camera model 

consists of three parts: geometric information regarding the 

camera pose, parameters that describe the lens system, and 

parameters describing the electronic hardware. In particular, 

the lens system is modeled by a thin lens with an aperture 

diaphragm. The parameters characterizing the lens system are 

the focal length, the aperture setting, and the distance (i.e., 

focus setting) of the lens. This last parameter is equivalent 

to the back nodal point to image plane distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, which 

is discussed in Section 11-B. 1. The electronic hardware is 

sources, and 
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described by the number of rows and columns of pixels, the 

dimensions of the rows and columns, and the sensitivity of 

the sensor. 

For the given configuration of the camera and the light 

sources, and with the object and sensor model information, 

the system: 

Performs a hidden-surface removal to determine the 

surfaces of the scene visible to the camera, 

Performs a similar hidden-surface removal, with the light 

source as the viewpoint, in order to determine the light 

sources illuminating the individual visible surfaces, 

Clips all visible surfaces to the view volume of each 

individual pixel in order to determine the list zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof polygons 

illuminating each pixel, 

Determines the radiation flux illuminating the individ- 

ual pixels of the sensor plane using the Torrance and 

Sparrow reflectance model, 

Generates the corresponding gray or color levels of 

the pixels based on the incoming radiation flux, the 

minimum and maximum irradiance of a pixel, and its 

relative spectral sensitivity. 

The ROSI sensor simulation system has been used as a tool 

to support the planning process of robot cells. While it does 

not synthetically determine robot cell configurations that are 

suitable for a particular task, ROSI provides the capability of 

varying camera and light-source parameters in order to search 

for a satisfactory simulated view of the scene. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3) Remarks on the Sensor Simulation Systems: The sys- 

tems in this category have many commonalities with various 

approaches taken to the general graphics problem. While 

concurrent work in the computer graphics community has 

looked at the realistic rendering of scenes, the algorithms 

employed have a high computational cost (i.e., ray tracing) 

which may make them infeasible for this application. Also, 

sensor models like those developed in VANTAGE are outside 

the scope of research in computer graphics. These issues are 

essential, however, for sensor simulation systems since their 

goal is to simulate real-world sensors in order to determine 

and evaluate a sensor system and its operation. 

Compared with the other approaches reviewed previously, 

the sensor simulation systems use much more illumination 

information. However, both these systems and the systems tak- 

ing a generate-and-test approach can easily incorporate more 

complete reflectance and illumination models (e.g., mutual 

reflections, area light sources) much in the same way that work 

in computer graphics has done. 

111. CONCLUSIONS AND FUTURE DIRECTIONS IN 

SENSOR PLANNING FOR FEATURE DETECTABILITY 

The area of sensor planning for machine vision tasks re- 

mains a very rich research area that spans several fields 

of study: computer vision, robotics, optics, geometry, and 

computer graphics. The methods presented in this survey 

represent, in most cases, the initial efforts of researchers to 

attack a difficult problem with many degrees of freedom. 

For the task of feature detectability, one family of solutions 

to this problem has attempted to discretize space and either 

fix or assume some of the necessary sensor parameters, per- 

forming an efficient search of the remaining parameter space 

for feasible solutions. The other family of solutions has tried 

to analytically model the task constraints (using a variety of 

assumptions about parameters) and then find an analytical 

description of the feasible solutions. In the latter case, the high 

dimensionality of these constraint surfaces requires a nonlinear 

optimization approach, which is also a form of efficient search. 

It is not clear which of these methods is currently more viable. 

The simplicity of the discrete space approach is appealing, 

as is its hierarchical implementation. On the other hand, the 

inaccuracy of the tesselations, assumption of certain viewing 

parameters and inability to easily deal with multiple features 

make it less desirable. The analytical approach is elegant and 

extensible to multiple features and off-axis viewing, albeit at 

the cost of constrained nonlinear optimization. 

While both methods will continue to be used by researchers, 

further work is needed in order to achieve robust and gen- 

eral purpose camera and illumination planning strategies and 

systems. There are common open problems that need to be 

addressed by future systems. We include a partial list of these 

areas that we believe are fruitful for future research. 

A. Modeling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand Incorporating Other Constraints 

The sensor planning systems that have been developed 

have chosen a subset of the feature detectability constraints 

discussed in Section 11-B.3. However, there are several other 

feature-detectability constraints as well as a broad range of 

constraints that arise in other sensing tasks, which could be 

modeled and incorporated in sensor planning systems. 

An example of a constraint that arises in all sensor planning 

systems involving movement as part of sensor reconfiguration 

is collision avoidance. The values of the sensor parameters 

resulting from planning must be such that the sensor can be 

positioned without collision with the environment. Similarly, 

no point in the path to the final sensor configuration should 

lead to collision with the environment. One way to address 

this constraint would be to draw on previous work in path 

planning in order to model collision-free space, and then treat 

collision-free space in a manner similar to the way visibility 

regions are dealt with in the MVP system. 

If the environment, the features of interest, or both, move 

in time along paths that in some cases are known in advance, 

this gives rise to a family of time-dependent constraints for 

dynamic sensor planning. With the exception of the initial 

work in the V I 0  system, the methods presented in this survey 

deal mostly with planning of parameters for static scenes. The 

sensor planning capabilities of the MVP system have recently 

been extended [2 ]  to function in environments where objects 

in the environment move in a way that is known a priori, 

but the features to be observed are not moving. The problem 

of dynamic sensor planning is of importance because many 

sensing environments in practice are more often dynamic than 

not. Thus, the usefulness of these systems will be increased 

greatly if planning can be done in a dynamic fashion to 

include moving sensors, light sources, targets, and obstacles. 

If planning can be done efficiently and cheaply, then complex zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

/ , 
/ 
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tasks such as assembly can be monitored in real-time using 

these methods. 

An example of a constraint that is generic to all sensor 

planning systems is the constraint associated with the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoper- 
ating range of the employed sensor. If such constraints are 

ignored, it is often the case that the computed sensor parameter 

values are not achievable by the sensor at hand. For example, 

the optical parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, and a discussed in Section 11-B.l 

often cannot simultaneously assume the planned values for a 

given lens. Techniques to characterize the operating range of 

a general lens fall in the area of sensor modeling which is 

discussed at the end of this section. 

B. Modeling and Incorporating Other Sensors 

While this survey has focused on planning using vision 

sensors, a host of other sensors are currently being used in 

many robotics and manufacturing applications. These include 

tactile sensors, three-dimensional range sensors, force-torque 

sensors, and acoustic sensors. Some of the techniques de- 

scribed above extend nicely for planning with these sensors 

(e.g., the visibility line of sight can be thought of as an 

approach vector for a tactile probe). However, further work 

needs to be done to properly integrate these sensors and their 

unique constraints into the overall planning system. 

C. Relaxing Some of the Assumptions Made 
in Current Approaches 

1) Feature Uncertainty: Underlying most of the work done 

in this area of sensor planning has been the assumption that 

the environment is known. This is often not the case in 

actual sensing situations. As a first step towards relaxing this 

assumption, sensor planning systems could investigate how 

to incorporate feature uncertainty. One approach to address 

feature uncertainty could attempt to combine the deterministic 

sensor planning techniques with approaches that use a decision 

theoretic framework [15], [31] in order to address the inherent 

uncertainty in sensing. In this respect, deterministic sensor 

planning systems adopting a synthesis approach provide the 

advantage of including analytical relationships that character- 

ize the admissible loci. When feature uncertainty is included, 

these relationships can be used in order to compute the 

variation of the admissible loci based on known perturbations 

of the features and the environment. 

2 )  Accuracy: The previously proposed extension leads to 

the related problem regarding the accuracy of the solutions 

for sensor parameter values. In the case of the discrete state 

approach, characterization of the error induced by the dis- 

cretization is needed. In the analytic approach, creating tol- 

erance constraint volumes (as in geometric tolerancing with 

CAD/CAM systems) may be useful in determining how robust 

a solution may be to sensor and calibration error. 

3)  Complex Object Models: Most of the current work has 

considered polyhedral objects and polyhedral type features. 

Objects with curved surfaces and their corresponding object 

features need to be included as well. As a first step in this 

direction, the approach of posing the problem in terms of 

polyhedral approximations of objects with curved surfaces 

needs to be investigated. Polyhedral approximations may often 

be sufficient, since in many cases the resulting sensor param- 

eter values may be robust enough to be admissible for the 

constraints of the original object as well. Recent work by [27], 

[47], [68] in analyzing the visibility of more complex shapes, 

such as generalized cylinders, may be useful in extending the 

planning systems to include curved surface objects. 

4 )  Constraint Integration: Techniques that combine the ad- 

missible domains of individual constraints in order to deter- 

mine globally admissible solutions need to be investigated 

further. Optimization, used in MVP and ICE, provides one 

such framework. However, further work is needed in order 

to study convergence properties, appropriate weight values, 

and the dependence of the final solution on the quality of 

the initial guess. Also, the optimization formulation employed 

currently constitutes a simple integration scheme based on 

the assumption that multiple and coupled objectives can be 

combined in an additive sense into a single global objective. 

Such a formulation has inherent problems with conflicting 

objectives. Alternative optimization schemes such as multiple 

objective optimization should also be explored with each task 

constraint constituting an individual objective. 

Techniques that determine admissible regions rather than an 

optimal point; should also be investigated. A generalization 

of the method discussed in Section 11-D.l could yield the 

admissible space of solutions for a subset of the parameters 

having first determined globally admissible values for the other 

parameters. In order to approximate the admissible region 

of all constraints, interval-based techniques for solving large 

systems of nonlinear constraints such as those described in 

[32] will prove useful. 

The question of weighting constraints according to the 

importance of each in the general planning objective is a 

notable one. It may be more important to have a feature 

visible at a poor resolution than not being visible at all. In 

determining solutions to parameter values, feasible solutions 

may be found but ranking them as to suitability is a more 

difficult task. While this may be somewhat task dependent, it 

may be important to isolate some parameters and solve for 

them alone. When optimization is used for integration, this 

amounts to determining the weights on each of the constraints 

that make up the objective function that needs to be optimized. 

E. Illumination Planning 

While some of the systems mentioned previously have 

either explicitly or implicitly dealt with planning of lighting 

parameters, current work in illumination planning is quite 

restricted. It should be recognized, however, that the problem 

of planning of general lighting for machine vision is extremely 

difficult. Most of the work has used point sources of light that 

are incident on convex Lambertian surfaces. These models, 

while useful, are not analogous to actual lighting conditions 

seen in current applications. Higher order lightingheflectance 

models that include such phenomena as multiple sources (both 

point and extended), specularity, and interreflections from 

concave surfaces need to be found to properly plan lighting 

parameters. 
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F. Sensor and Illumination Modeling [I51 A. Cameron and H. Durrant-Whyte, “A Bayesian approach to optimal 
sensor placement,” Rept. OUEL 1759/89, Department of Engineering 
Science. Oxford Universitv. Oxford. UK. 1989. A subtle, but important problem in this area is that of 

modeling the sensors and mapping the planned sensor pa- 

rameters to real hardware systems. The coupling between the 

sensor planning and modeling problems becomes apparent 

when the planned parameters that have been determined by 

some means are to be achieved in an actual setup. For 

this, the planned parameter values need to be mapped to 

controllable sensor settings using the sensor models. For 

some parameters (camera location and orientation) this can 

be relatively straightforward. However, parameters such as 

entrance pupil diameter, focal length, and image plane to back 

principal point distance can be difficult to automatically set 

without extensive calibration effort. This is particularly true for 

zoom lens cameras, which provide more degrees of freedom 

for general imaging situations but at the cost of mapping 

planned parameters to their actual settings zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[76], [82]. A related 

problem is the creation of accurate sensor noise models that 

can be combined with the other known imaging constraints to 

accurately predict correct parameters. 

While sensor modeling can utilize much of the work that 

has been done in camera and lens calibration, there has been 

very little previous work in the area of illumination modeling. 

Much in the same way that research in camera modeling 

has developed calibration methods in order to position and 

set cameras and their lenses, work in illumination modeling 

will also need to develop similar calibration methods with 

which to characterize the attributes of an illumination source 

[I61 A. Cameron and H. L. ‘Wu, “Identifying and localizing electrical 
components: A case study of adaptive goal-directed sensing,” Tech. Note 
TN-90-085, Philips Laboratories, Briarcliff, NY, 1990. 

[I71 0. I. Camps, L. G. Shapiro, and R. M. Haralick, “PREMIO: An 
overview,” in Proc. IEEE Workshop zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon Directions in Automat. CAD- 
Based Vision, 1991, pp. 11-21, 

[ 181 L. L. Chin and T. C. Woo, “Computational geometry on the sphere with 
application to automated machining,” Tech. Rept. TR 89-30, Industrial 
and Operations Engineering, Univ. of Michigan, Ann Arbor, MI, Aug. 
1989. 

[I91 J. J. Clark and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN. J. Fenier, “Modal control of an attentive vision 
system,” in Int. Con$ Comput. Vision, 1988, pp. 514-523. 

[20] M. Coletta and K. Hading, “Picking the right lighting,” MVMSME’s 
Vision Technol. Quart., pp. 1-3, Jan. 1990. 

[21] C. I. Connolly, “The determination of next best views,” in Proc. 1985 
IEEE Int. Conf Robotics and Automat., 1985, pp. 432435. 

[22] C. K. Cowan, “Model based synthesis of sensor location,” in Proc. 1988 
IEEE Int. Con$ Robotics and Automat., 1988, pp. 900-905. 

[23] C. K. Cowan and A. Bergman, “Determining the camera and light 
source location for a visual task,” in Proc. IEEE Int. Conf Robotics 
and Automat., pp. 509-14, 1989. 

[24] C. K. Cowan and P. D. Kovesi, “Automatic sensor placement from 
vision task requirements,” IEEE Trans. Putt. Anal. Mach. Intell., vol. 
10, pp. 407-16, May 1988. 

[25] C. K. Cowan and B. Modayur, “Edge-based placement of camera and 
light-source for object recognition and location,” in Proc. 1993 IEEE 
Int. Con$ Robotics and Automat., 1993. 

[26] R. I. D. Cowie, “The viewer’s place in the theories of vision,” in Int. 
Joint Cant Artificial Intell., 1983, pp. 952-958. 

[27] D. Eggert and K. Bowyer, “Computing the orthographic projection as- 
pect graph of solids of revolution,” in Proc. Workshop on Interpretation 
o f 3 D  Scenes, 1990, pp. 102-108. 

[28] C. Goad, “Special purpose, automatic programming for 3D model-based 
vision,” in Proc. DARPA Image Understanding Workshop, 1983, pp. 
94-104 

and to position illuminators in light-in-hand arrangements. 

For this purpose, drawing On the wide body Of 

in photometry and radiometry [42] will prove useful. 

[29] J. L. Gordillo and A. LUX, “Synthesizing vision programs from robot 
task specifications,” in 3rd In?. Symp. Robotics Res., 1985, pp. 149-154. 

[30] W. E. L. Grimson, “Sensing strategies for disambiguating among 
multiple objects in known poses,” ZEEE J.  Robot. Automat., vol. RA-2, 
no. 4, Dec. 1986. 

[31] G. D. Hager, Task Directed Sensor Fusion and Planning. Norwell, MA: 
Kluwer Academic Publishers, 1990. 
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