
1

A Survey of Service Composition in Ambient Intelligence
Environments

Thanos G. Stavropoulos1,2 • Dimitris Vrakas1 • Ioannis Vlahavas1,2
1Aristotle University of Thessaloniki

2International Hellenic University

Abstract This article presents a comparative review of systems performing service composition in Ambient
Intelligence Environments. Such environments should comply to ubiquitous or pervasive computing guidelines by
sensing the user needs or wishes and offering intuitive human-computer interaction and a comfortable non-intrusive
experience. To achieve this goal service orientation is widely used and tightly linked with AmI systems. Some of these
employ the Web Service technology, which involves well-defined web technologies and standards that facilitate
interoperable machine to machine interaction. Other systems regard services of different technologies (e.g. UPnP,
OSGi etc) or generally as abstractions of various actions. Service operations are sometimes implemented as software
based functions or actions over hardware equipment (e.g. UPnP players). However, a single service satisfies an atomic
only user need, so services need to be composed (i.e. combined), in order to provide the usually requested complex
tasks. Since manual service composition is obviously a hassle for the user, ambient systems struggle to automate this
process by applying various methods. The approaches that have been adopted during the last years vary widely in
many aspects, like domain of application, modeling of services, composition method, knowledge representation and
interfaces. This work presents a comparative view of these approaches revealing similarities and differences, while
providing additional information.

Keywords web services, service composition, ambient intelligence, ubiquitous computing

1 Introduction

Ubiquitous or pervasive computing (UbiComp, PerComp) is one of the technological

paradigms of the future also referred to as the third wave of computing. As Mark Weiser coined

the term, such systems are able to perceive user needs and interface with them in an intuitive way

(Weiser 1999). The computer fades in the background and interfaces with the user through

everyday life physical objects (e.g. wearable devices, electronic appliances). As a result, users do

not have to enter the computer’s environment but computers fit the user space instead, without

requiring his full attention.

The vision of Ambient Intelligence (AmI) slightly extends these ideas by incorporating

intrinsic intelligence in pervasive systems. Human-computer interaction then, becomes even more

hassle-free and non-intrusive by automations.

Another paradigm, tightly linked with AmI systems, is Service Oriented Computing (SOC).

Service orientation is in essence the practice of using abstractions of data and functions into

2

services which users or applications can consume in a universal way. The corresponding setting

derived from SOC is the Service Oriented Architecture (SOA) which further entails additional

well-defined web standards. These technologies greatly contribute to the reuse of existing

implementations and remote collaboration between different enterprises. Most importantly, they

offer the required abstractions for high-level sophisticated AmI systems. SOA has become so

interconnected with AmI systems that it is almost considered as a requirement. Meanwhile, as

devices and sensors required in AmI become more compact and woven into everyday-life objects,

services again come in handy as they expose their data and functions, forming the so-called

Internet of Things. Thus, a large amount of information and functions become available and the

need for efficient discovery, selection and composition of those services arises. Obviously, manual

browsing and selecting from a large service registry is a huge hassle for users that contradicts the

AmI vision. In addition to that, users most of the time, require complex tasks instead of the simple

ones offered by atomic services. In other words, they need to combine two or more atomic services

together in order to form sequence of services (composite service) that achieves sophisticated

tasks.

Meanwhile, the Semantic Web technologies have emerged and greatly contributed to

automating these tasks. Although primarily designed for the Web, ontologies can aid in

semantically describing services and contribute in realizing AmI systems. Semantic annotations

for services render their descriptions machine interpretable and enable the automatic discovery and

selection even through reasoning.

AmI systems venture to automate the composition process to enhance user experience. This

task essentially disintegrates to the tasks of automatic discovery and selection of services. Many

known systems employ different technologies and methodologies resulting in end-products with

widely different aspects. Most of the systems indeed use semantic annotations for services but

even so, different modeling languages result in systems with different aspects. Technologies have

yet to converge and standardize. There are more than one service and composite service

description languages, different ontologies have been designed resulting in different vocabularies,

thwarting true semantic interoperability. As technologies try to converge, it is interesting to

observe which technologies and methodologies are employed by current AmI systems and what

kind of results are presented by them.

The work presented in this article extends the review paper by Urbietta (2008). The review is

extended in both terms of investigated aspects and number of systems.

3

The rest of the article is organized as follows: The next section reviews Service Composition

in detail. The third section presents a comparative review of AmI systems, also detailing their

aspects. Finally, conclusions from the comparisons are drawn and presented in the final section.

2 Overview of Service Composition
The service oriented approach is so interconnected with AmI systems that it can be

considered an essential element. Services offer universal and remote access, extensibility,

collaboration and reuse of existing functionality. Particularly, the idea of considering data and

functions as services is well suited for AmI. Users and high-level applications need to be deprived

of the hassle to manage low-level functions and data. Services offer the required abstraction so that

users can transparently accomplish at least atomic tasks by calling (consuming) a service. In other

cases, a middleware is formed (Park 2011) that can also be service-based. Another notion is Task-

oriented computing, where users are presented with solutions to desired tasks rather than the

methods (services) to manually accomplish tasks and the actual workflow can be transparent to the

user. A similar notion is the one of Activity Oriented Computing where software systems are built

and configured based on models of user activities (Sousa 2006).

However, user needs can rarely be satisfied by atomic tasks only. In practice, services are

combined, either in a serial manner or even asynchronously (their workflows are woven together).

Users manually browse available services in repositories, discover desired services and feed them

with the required inputs. They also have to manually control the dataflow among the various

services. This hassle increases along with the number of available services.

AmI systems strive to automate this process by automatic service discovery, selection,

matching, composition and execution of the composite service. Known systems propose

methodologies for all or focus on some of these stages. As the proposed methodologies range and

make use of different standards the resulting systems can share a lot of aspects in some stages and

widely differ in others.

The rest of this section details the most dominant implementation of Services which is the

Web Service technology, Semantic Web Services or simply the use of Semantic annotations and

ontologies and finally presents the problem of Service Composition.

2.1 Web Services
Web Services are a specialization of the notion of Services that entails well-defined web

standards. The term generally refers to any given web portal offering some service, but strictly

speaking, it refers to specific implementations incorporating standard web protocols (i.e. WSDL,

4

SOAP, UDDI), most of which are XML-based. In SOA, there has to be provisioning by a Service

Broker, clients or Service Consumers do not directly browse servers or Service Providers but only

after the Broker intermediates between them. On the other hand, generic Services include Web

Services and more technologies e.g. UPnP1. Generic services most of the time are not meant, by

nature, to operate over Web e.g. UPnP targets home use and functions in a local network of UPnP

devices. AmI Systems mostly regard Web Services, benefiting from universal standards in

descriptions and less often from remote function.

Atomic web services are the building blocks for the composition process. Each service

carries out an atomic task, and is much similar to a Remote Procedure Call (RPC). There are many

frameworks that help realize web services like JAX-WS2, WCF3, OSGi4 etc.

Fortunately, technology convergence has emerged as the W3C standardized the Web Service

Description Language or WSDL5. WSDL is an XML language that syntactically defines web

services, by type-defining their operations, along with their inputs and outputs, and bindings to

their implementations. In WSDL 2.0, the interfaces of a service (portTypes in WSDL 1.1) are

initially abstractly defined, having many operations of typed inputs and outputs. The concrete

section or grounding of the service defines one or more bindings for each interface so that the

service can actually be called and executed (i.e. consumed). Bindings inherently support HTTP,

SOAP and Java but can be extended to any given implementation. Finally, the service has

endpoints that assign URIs to each binding so that implementations can be sought.

Services in SOA are typically published on a suitable meta-data registry, the so-called

Service Broker. Such centralized registries are UDDI and Jini. UDDI registries are XML-based

and widely used, also as means for Business to Business communication. They provide clients

with the WSDL descriptions of services, and hence with the means to call the desired service. Jini6

is a service-oriented programming model that extends Java technology. It offers a flat service

registry, the so-called Jini Lookup Service, which enables service discovery by matching Java data

types and attributes of services. Other service discovery mechanisms, that consider dynamicity, are

passive e.g. use multicast, where clients instantly get notified of new or obsolete services.

Typically, service browsing is a manual process which introduces a hassle for the user that scales

badly. Additionaly (syntactic only) descriptions naturally make sense to humans only so this

1 Universal Plug and Play Forum (UPnP) - http://www.upnp.org/
2 Java API for XML Web Services (JAX-WS), JSR 224 - http://www.jcp.org/en/jsr/detail?id=224
3 Windows Communication Foundation (WCF) - http://msdn.microsoft.com/en-us/netframework/aa663324
4 Open Services Gateway initiative (OSGi) - http://www.osgi.org/
5 Web Service Description Language (WSDL) - http://www.w3.org/TR/wsdl
6 Jini - http://www.jini.org/

5

process cannot be automated. Semantic annotations can tackle this problem by rendering

descriptions machine-readable.

2.2 Semantic Web Services
Semantic Web technologies have emerged to reform and organize the vast Web

infrastructure. The Web contains a massive amount of unorganized data scattered around web

pages that has to be discovered manually, traditionally through the keyword-search approach. In

the absence of other means, information can only be sought and appreciated by human users.

Semantic Web technologies strive to provide a uniform machine-interpretable representation for

this data in order to automate the process of discovery and interpretation. XML-based languages,

like RDF7 and OWL8, enable the design of taxonomies of concepts for this data to achieve that

goal. As a result, semantically annotated data on the Web can be sought, parsed and reasoned upon

by software agents in reference to one or more ontologies. Mishra (2011) provides a survey of

reasoners for that purpose.

Web services are now a vital part of the Web itself and widely used by common web users as

well as the industry. Much ongoing work tries to define standards to apply Semantic Web

technologies on web services i.e. semantically annotate their descriptions. The so-called semantic

web services provide semantic descriptions for many of their aspects (e.g. operations, inputs,

outputs and even preconditions and results) in reference to some ontology, as opposed to syntactic

descriptions e.g. WSDL. The main advantage of this methodology is the high level of automation

in web service discovery, invocation and composition using semantic matching.

An initial attempt at a standardized technology was DAML-S9, that later evolved into OWL-

S9. OWL-S is an upper ontology for services that disambiguates common aspects and is focused to

achieve the aforementioned goals. As the OWL-S definition states, the semantic web focuses on

providing automations for knowledge discovery, while OWL-S focuses on getting things done i.e.

services.

OWL-S contains three main classes that can be related to a service: Service Profile, Service

Process Model and Service Grounding. The Service Profile is a (sometimes abstract) description of

what the service accomplishes, its inputs and outputs. However, services usually accomplish tasks

by taking some actions that have effects or some preconditions. OWL-S also defines preconditions

and results (i.e. effects) for services. This quadruple of data is referred to as IOPR (Inputs,

7 Resource Description Framework (RDF) - http://www.w3.org/RDF/
8 Web Ontology Language (OWL) - http://www.w3.org/2004/OWL/
9 DAML-S and OWL-S - http://www.daml.org/services/

6

Outputs, Preconditions and Results) or IOPE (for Effects). The Process Model details the

workflow of the service’s operation so that consumers of the service can analyze it, monitor its

execution or more interestingly coordinate its workflow with that of another service (i.e. intertwine

the execution of more than one services e.g. in Thomson 2008). The Process Model can also be

used to describe composite services. Finally, the Service Grounding offers a concrete form of the

service so that it can actually be invoked – instantiated. OWL-S inherently offers a WSDL

grounding/mapping, but can be extended to support any other technology as well. All in all, OWL-

S and WSDL are much alike: the Service Grounding term is similar to WSDL’s binding: Input and

Output descriptions are similar to WSDL’s message (WSDL 1.1) and type descriptions and

processes to operations. However, even if OWL-S and WSDL overlap, they are actually

complementary, since WSDL offers syntactic only descriptions and OWL-S doesn’t contain a

binding to actually invoke a service unless there is Grounding to e.g. WSDL. OWL-S conforms to

the SOA architecture where services are primarily advertised by a broker in a service registry and

discovered then by clients-consumers. It is compatible with any known service registry (e.g.

UDDI) but clients and service developers have to share a common ontology reference for efficient

matching of concepts. Another approach to semantic annotations of services is SAWSDL10, which

directly extends WSDL, without the need of a mapping.

2.3 Web Service Composition
Service Composition entails many problems mainly due to dynamicity and vague service

descriptions. Since the World Wide Web is dynamic by nature, web services cannot be treated as

static objects. They are created, altered and destroyed in a dynamic manner and therefore the

composer needs to adapt and find alternatives or substitutes to missing services. The same goes for

smart environments as service providers enter and leave it. In addition, service descriptions are

mostly fully comprehensive by humans only, although semantic annotations contribute in this area.

After all, a composite service solution can only be evaluated by the user who originally needs it.

An inherent property of service composition is service adaptation. Adaptation refers to the

ability of dynamically adjusting to available services only, providing the user with less optimal

solutions instead of no solution at all. In other words, when services are missing from the

environment, a settlement in user requirements can be met and less preferable services can be

used. This functionality is mainly required in dynamic systems (where services come and go), and

enhances the reliability of the system. Adaptation and composition can happen in a way

10 Semantic Annotations for WSDL (SAWSDL) - http://www.w3.org/2002/ws/sawsdl/

7

transparent to the user or not. In the latter case, the user is presented with a set of alternative

solutions – suggestions to choose from.

Approaches to composition mainly employ A.I. Planning or service selection/matching.

There are also some deviations or variations e.g. entailing Multi-Agent systems.

Planning inherently fits the service composition problem, as it aims to find a series of actions

to transform an initial state to a state containing goal predicates. Although not explicitly mentioned

in its definition, OWL-S descriptions are ideal for the application of Planning techniques. The

descriptions of IOPR or IOPE, can serve directly in Planning by regarding services as actions. In

other words, the problem of finding a series of services with well-defined IOPRs for a composite

service is transformed into the problem of finding a series of actions with the same IOPRs that

reaches a goal state. The advantage of this method is the reuse of a library of known planning

algorithms.

Matching or simple service selection is the brute force approach of iteratively checking each

service trying to match with the required functionality. Finding a series of services for the

composite service includes matching atomic services at each step. Naturally, syntactic matching

across standard service descriptions is a broad matching criterion and results in many meaningless

composite services that finally can be accepted or turned down by the user. On the other hand,

semantic descriptions enable semantic discovery and matching of the services that greatly

improves and automates the process.

3 Comparison of Systems
This section overviews the most important systems that perform service composition in

Ambient Intelligence environments. In order to present the systems in a uniform way that

facilitates comparison among them and drawing of significant conclusions, all systems are

presented following five common views/aspects that are further decomposed in a larger number of

features that are also used as comparison criteria. Namely these views are: the environmental

setting of the application, the formulation of the composition problem, the use of semantics, the

composition process and finally end-product features. Each of these views is discussed in detail in

the next sections and an indicative number of systems are presented in tables 1 to 5 respectively.

3.1 Environmental Setting
The first view that was investigated, namely environmental setting, concerns the

environment in which the systems are embedded or applied. In other words, we investigate the

nature of the application domain, the types of devices (sensors and actuators) that are present in it

8

and the exact role of the services in the system. Table 1 presents an indicative number of systems

and their environmental settings. The application domain, the role of services and the devices used

are presented in columns 2,3 and 4 respectively.

System Application Domain Role Of Services Devices

Paluska 2008 Entertainment,
Communication Video Streaming Multimedia, Mobile

Phones

Sousa 2006 PC applications Video Streaming, Web Browsing
Text Editing PCs

Mokhtar 2007 Entertainment,
Information Video/Audio Streaming Multimedia

Thomson 2008 Entertainment Video/Audio Streaming, User Control Multimedia (UPnP)

Ranganathan 2004 Smart Environments Video/Audio Streaming, Presentations,
Videoconferencing, Messaging

Multimedia, Biometric,
Wearable’s, e.t.c.

Beauches 2008 e-Shopping Online Payments, e-Book Searching,
e-Book Downloading PCs

Messer 2006 Entertainment Video/Audio Streaming Image Handling Multimedia (UPnP)

Preuveneers 2005 Communications

Video/Audio Streaming
Transcoding

Multimedia

Bottaro 2007 Communication Text Display (TV), Text to speech
Lamp Adjustment (Color, Brightness)

PCs, Multimedia,
Lighting

Iacob 2008 Information Localization (GPS, GSM) GPS, Mobile phones

Hesselman 2006 Entertainment,
Information Video/Audio Streaming, Transcoding Car multimedia,

Mobile phone

Yokohata 2006 Entertainment Video/Audio Streaming Multimedia (UPnP),
Mobile phones

Lagesse 2010 Traffic Control Video/Audio Streaming
Transcoding

Traffic Cameras,
PDAs,

Mobile Phones, PCs,

Davidyuk 2010 Smart Environments Video/Audio Streaming
File Hosting

Multimedia,
RFID, Mobile Phones

Vukovic 2007 Entertainment
Information

Restaurant Searching, Routing
Translation, Speech Synthesizing GPS, Mobile phones

Lee 2007 e-Shopping Product Browser, Localization (RFID)
Shopping List from Fridge

RFID, PDAs,
Embedded PCs

Kaefer 2006 Entertainment Video/Audio Streaming
Transcoding

Multimedia
Mobile phones

Lee 2006 Smart Environments Video/Audio Streaming
Switching on/off Lamp

Multimedia
Lighting

Maamar 2005 Travel Flight, Hotel, Car Booking, Attraction
Search -

Bellur 2005 Health Medical Exams Sharing (X-rays, MRIs) PDAs, Embedded PCs
Mostefaoui 2003 AAL Video/Audio Streaming Embedded PCs
Sheshagiri 2004 e-Shopping Localization (IP), Online Orders PDAs

Masuoka 2003 Smart Environments Information Sharing, File Hosting,
Presentation, Routing PDAs

Paolucci 2009 Travel Flight, Hotel Booking -

Ibrahim 2009a Smart Environments Image management, File
hosting/compressing

PCs

Robinson 2004 Smart Environments Heating/Telephone Control, Scheduling,
Localization, File Printing Location

PCs, Peripherals,
Home Appliances

Santofimia 2011 Smart Environments Intruder Identification (fingerprints, iris,
face) Biometric

Table 1. Environmental Setting

9

3.1.1 Domain of Application

This field shows the main field of application of the corresponding AmI system. Some

systems retain their generality and do not define a particular domain of application. Indicative

systems of an abstract domain of application are (Carey 2004), (Qiu 2006) and (Chakraborty

2005). Some systems only indicate a domain as an example for reference. Some regard their

systems domain-independent but implement services for a particular domain as a showcase. After

all, some of the proposed algorithms can be just as effective for other problems except service

composition. Paluska (2008) for example applies his planning approach in non-pervasive problems

as well e.g. crisis management, recipes and hardware design. The methods themselves are indeed

domain-independent, so any system could possibly be adapted by developing the proper

middleware. However, there is no telling if a system would perform just as well, in all domains.

Domains of application mainly range from Multimedia (or generally Entertainment), Smart

Rooms/Offices (i.e. Smart Environments) and transportation to news services. Other examples

include Aspect Oriented Programming (Cottenier 2005).

Entertainment primarily concerns Multimedia and gathers the most interest. Systems on this

domain mostly employ UPnP/DLNA technologies. DLNA compliant TVs and Set-Top-boxes

offer services for streaming audio and/or video to them (act as Media Renderers) or controlling

their playback and pulling audio/video streams (act as Media Players). Devices where the media is

stored act as Media Servers like PCs or NAS (Networked-attached storage) which is basically a

networked hard drive. Then, the same or different devices like Smartphones or PCs can control the

flow of media streams from storage to renderers (act as Media Controllers). Naturally, these

systems do not necessarily employ Web Services, but rather compose DLNA functions (Messer

2006). Preuveneers 2005 regards services that aid peer to peer broadband communications in

forms of speech, audio and video in any combination. Thus, this approach has elements that can be

met in systems of the Multimedia and Communication domains. Davidyuk 2010 system mostly

forms multimedia applications as well. Iacob 2008 considers Multimedia and location awareness

only as a motivating scenario for design.

Smart Environments include Smart Homes and Smart Offices/Meeting Rooms etc. Smart

Offices include streaming presentations from laptops or Smartphones to a dynamically selected

projector, transferring data and contacts between collaborators and remote printing (e.g. in

Masuoka 2003). Informational services can be employed in a number of cases where informative

data like the weather, news, local points of interest, local viewings etc. are required. Ranganathan

2004 enables videoconferencing, messaging and presentations (in addition to playing music or

10

video files). Thus, the Smart Office domain shares elements with the Multimedia domain (and

UPnP devices can serve both domains).

3.1.2 Role of Services

This criterion is tightly linked to the previous one, as the domain of application more or less

dictates the nature of available services. Such a list is useful for previewing what kind of services a

system provides and has been experimented with. Services have syntactically and sometimes

semantically, well-defined input and output data. In practice, multimedia services are often

PlayMovie(File Movie), PlayAudio, Print(File document), etc. Communication services can be

Send message to somebody, start videoconference, Display Presentation, Play Music, Play Video

(Ranganathan 2004).

Preuveneers (2005) uses a component-driven approach where services have many

components that in turn have ports. Other than that, these concepts are very similar to standard

WSDL ones: Services have Components, Components have Ports and Ports exchange Messages of

specific types. Finally, the services demonstrated are a Communication Service, that incorporates a

Video Filter (used to adjust frame rate and size), an Audio Encoder/Decoder for speech, a Video

Encoder and a Controller component that (de-)multiplexes text, speech and video and

sends/receives the combined data stream.

Iacob (2008) develops a prototype that concerns Context (location and time) awareness.

Services getUserLocation, getUserCell and getGeoLocation are shown on the prototype run.

Santofimia (2011) targets a Smart Room, but in its implementation focuses on intruder

detection. Services considered in this approach are consequently intruder identification by

fingerprints or biometric data.

3.1.3 Devices

Devices used in an AmI system greatly affect user experience in the system. They indicate

the level of integration, diversity, mobility and thus user comfort in the system. Naturally,

smartphones gather the most interest, being compact computational devices. Other than that, UPnP

Multimedia is widely used along with Printers, RFID tags and more ambient devices e.g.

touchscreens, lighting and sensors.

Davidyuk (2010) incorporates RFID tags and readers for user input and multimedia devices

offering audio and video services. Ranganathan (2004) presents a system that is implemented on

top of the GAIA pervasive infrastructure. GAIA incorporates a huge variety of devices. In

categories, GAIA input devices include touch screens and microphones, authentication devices

11

like fingerprint sensors and smart card readers, handheld devices and wearable devices like smart

watches and smart rings. Output devices include large plasma screens and video walls.

A system can employ a range of devices, not only for offering services and interfaces. A

mobile device can also perform the composition itself and relieve the server from computational

load. Specifically, a mobile device associated with its user can enter the environment and

independently compose available services. In that case, the computational load of the composition

procedure is transferred from the main system to individual devices. Hence, systems with many

users and/or many requests can be salvaged from large loads of composition requests. Davidyuk

(2010) uses a mobile phone not only for user input (RFID reader) but also for performing the

composition. Other examples of systems explicitly performing composition on mobiles are

(Yokohata 2006), (Davidyuk 2010), on PDA (Masuoka 2003), on a gateway/embedded PC (Lee

2007). Mostefaoui (2003) presents a system that runs the composing service on embedded PCs on

shopping carts to aid disabled people. Finally, Messer (2006) has developed a Java digital TV

prototype that can compose other UPnP services in range.

3.2 Problem Formulation

The second aspect of the comparative presentation concerns representational issues. More

specifically it is about how the problem of service composition is modeled and presented in a

formal way. The modeling of the problem involves the representation of the available services, the

user-defined goals and finally the solution to the problem (i.e. the composite service). The values

for these criteria for a number of systems are presented in Table 2.

3.2.1 Service Representation

Modeling Language of atomic services is one of the most indicative aspects of a system.

Languages can be classified as the ones for syntactic descriptions and the ones for semantic

descriptions. Most of recent AmI systems have settled in using the OWL-S language. However,

the minimal upper OWL-S ontology leaves out domain specific objects, and also Groundings for

other service technologies like UPnP. Consequently many authors have developed OWL-S

extensions i.e. more varied and domain specific ontologies. Such examples are Amigo-S in

(Thomson 2008), OWL-SC in (Qiu 2006), COCOA-L in (Mokhtar 2006, 2007). The rest of the

systems employing OWL-S, separately define a suitable ontology and reference it in service

descriptions. Ibrahim (2009a) defines a custom service model but not as an OWL-S extension.

12

System Service Descriptions Goal Description Solution
Representation

Paluska 2008 Script language Simple Service Script
Mokhtar 2007 OWL-S (ext.) Workflow OWL-S
Thomson 2008 OWL-S (ext. – AMIGO-S) Workflow BPEL

Ranganathan 2004 DAML+OIL Simple Service Lisp
Beauches 2008 YAWL Workflow YAWL
Messer 2006 XML + OWL/RDF Simple Service XML

Preuveneers 2005 OWL-S Composite Service Internal Representation
Iacob 2008 OWL-S Composite Service Ecore metamodel in Eclipse

Hesselman 2006 OWL-S Workflow Internal Representation
Vukovic 2007 OWL-S Simple Service BPEL4WS

Kalofonos 2006 WSDL, UPnP Workflow Scripts
Carey 2004 OWL-S Composite FSM OWL-S Process

Cottenier 2005 WSDL Workflow Executable Choreography
Language

Vukovic 2004 WSDL Context information + Goal BPEL4WS
Bottaro 2007 Key-Value pairs Workflow Internal Representation

Qiu 2006 OWL-S (ext. OWL-SC) Simple Service DirectedAcyclic Graph (DAG)
Lee 2007 Key-Value pairs Workflow XML

Mingkhwan 2006 OWL-S Workflow XML
Qasem 2004 OWL-S Workflow Internal Representation

Kaefer 2006 UPnP Workflow Functional Task Description
(FTD)

Pourezza 2006 OWL-S Workflow OWL-S Process
Maamar 2005 WDSL Workflow State Chart Diagrams
Bellur 2005 WDSL Message Sequence Charts BPEL4WS

Mostefaoui 2003 WDSL Simple Services Internal Representation
Sheshagiri 2004 OWL-S Workflow OWL-S Process
Mokhtar 2006 OWL-S (ext. COCOA-L) Workflow COCOA-L (OWL-S)

Chakraborty 2004 DAML-S Workflow Description-level Ser. Flow
(DAML-S)

Masuoka 2003 OWL-S Workflow Internal Representation
Ni 2005 OWL-S Predicate logic Internal Representation

Vallée 2005 DAML-S Predicate logic Internal Representation
Paolucci 2009 BPEL Simple Service Plan Solution
Ibrahim 2009a Custom Composite Service Custom
Robinson 2004 Script Composite Service Script

Santofimia 2011 DOBS Middleware JADEX Goals Internal Representation

Table 2. Problem Formulation

Davidyuk (2010) also uses such an extension, named AmIi, for service descriptions,

matching and discovery. The AmIi service description model enables Profile and Grounding

descriptions (like OWL-S). Each service can have a behaviour description, functional properties

(inputs and outputs), non-functional properties especially useful for providing QoS and semantic

annotations referenced by an ontology. This model provides mapping to legacy services and

standard languages like WSDL or UPnP, enabling interoperability with the majority of existing

13

services. Other than that, older systems use the OWL-S predecessor, DAML-S, for semantic

annotations. Even plain DAML+OIL has been used (which of course is not meant for services).

WSDL is the only W3C recommendation in that field and still holds a standard place among

developer preferences. After all, OWL-S descriptions have to map to WSDL services most of the

time to gain actual functionality.

3.2.2 Goal Description

Systems that do not automatically sense user needs, have to receive some user goal

description in order to provide a solution for it. Users mainly enter an abstract goal, or sentence

(e.g. PlayVideo) that can also be regarded as a Simple Service. The system and the user have to

share a goal vocabulary or use templates in order for the goal to be interpreted. In planning-based

systems, the goal is usually converted in predicates, which are then used to find planning goal

states. Ni (2005) skips this process as users directly enter predicates. Otherwise, users enter a

detailed workflow of the desired functionality or a Composite Service whose atomic constructs

have to be selected and instantiated.

3.2.3 Solution Representation

The final product is a composite service that is naturally consumable by the users. Usually

composite services are formed in a universal representation format so that they can be re-

discovered and executed in the future (this saves re-composition time). Such frameworks for

representing compositions are YAWL11, BPEL4WS (or just BPEL)12, the OWL-S Process model

and WS-CDL (Choreography Description Language)13. However some systems (Preuveneers 2005,

Hesselman 2006, Bottaro 2007, Qasem 2004, Mostefaoui 2003, Masuoka 2003, Ni 2005,

Santofimia 2011) do not explicitly export and save the resulting composite service in a universal

reusable format but rather execute it on-the-fly. Equivalently, the service remains internally

represented and consumed. It cannot be discovered or reused in the future.

3.3 Semantics
The next field of interest concerns the presence of semantics for the services. The findings of

the review concerning this view are presented in Table 3. The criteria used for the comparison

present whether the systems embody semantic annotations apart from syntactic ones, the language

used for the representation of the ontology and which features the ontology includes. These

11 YAWL - http://yawlfoundation.org/
12 BPEL - http://www.oasis-open.org/committees/wsbpel/
13 WS-CDL - http://www.w3.org/TR/ws-cdl-10/

14

features are organized in categories, such as quality of service, context, functionality and

underlying hardware details.

System Semantic
Annotations Ontology Language QoS Context Functionality Hardware

Paluska 2008 Syntactic × × × × ×
Sousa 2006 Syntactic × × × × ×

Mokhtar 2007 Semantic OWL - -
Thomson 2008 Semantic OWL -

Ranganathan 2004 Semantic DAML+OIL -
Beauches 2008 Semantic Not Specified - - -
Messer 2006 Semantic OWL/RDF - -

Preuveneers 2005 Semantic OWL -
Bottaro 2007 Semantic OWL - - -
Rouvoy 2009 Syntactic × × × × ×

Takemoto 2004 Syntactic × × × × ×
Iacob 2008 Semantic OWL - -

Hesselman 2006 Semantic OWL - -
Chantzara 2006 Syntactic XML - - -
Davidyuk 2010 Semantic XML - -
Vukovic 2007 Semantic Not Specified - - -

Qiu 2006 Semantic OWL - - -
Lee 2006 Semantic Not Specified -

Bellur 2005 Semantic OWL
Maffioletti 2006 Syntactic OWL -
Sheshagiri 2004 Semantic OWL - - -

Chakraborty 2005 Semantic DAML - - -
Masuoka 2003 Semantic OWL - - -

Ni 2005 Semantic OWL - - -
Vallée 2005 Semantic OWL - -

Ibrahim 2009a Semantic OWL - -
Santofimia 2011 Semantic OWL -

Table 3. Semantics

3.3.1 Semantic Annotations

Service descriptions can either have or do not have semantic annotations. Examples of

systems with semantic annotations are the ones presented in (Davidyuk 2010), (Preuveneers 2005)

and (Iacob 2008). What seems initially unorthodox is that two systems do not semantically

annotate services but they do design ontologies. Namely, in (Chantzara 2006) and (Maffioletti

2006) the systems use XML service descriptions and consume their ontologies internally.

15

3.3.2 Ontology Contents

Some systems employ ontologies to define taxonomies and relationships between concepts

in their domain of interest. After that, service descriptions are annotated and reference these

ontologies. Ontologies usually disambiguate context parameters like location, time and

environmental conditions. Some ontologies also strive to describe QoS properties of services e.g.

latency, response time, CPU load etc. That would result in QoS optimized compositions useful for

cases of limited resources (e.g. mobile use on-the-go).

A main goal for ontologies is describing the functionality of services, namely their inputs

and outputs. Additionally, services can also have preconditions and effects that also need to be

type-defined. After all, OWL-S is such an ontology that sets the basis for defining IOPEs. Finally,

given the vast variety of AmI hardware, many ontologies also define concepts like Platforms,

Devices, Resources and taxonomies between them.

This section presents the contents i.e. taxonomies and concepts included in ontologies for

AmI systems. Ontology languages are also listed. They range from OWL to DAML and XML.

This information corresponds to the last five columns of Table 3, namely Ontology Language,

QoS, Context, Functionality and Hardware. The various concepts met in these ontologies are

categorized in those that regard QoS parameters, Context, Functionality and Hardware. QoS

related concepts can be Throughput, Latency etc. Context includes time, location and setting

concepts. Functionality includes actions and IOPEs and Hardware concepts describe devices and

resources.

Specifically, the ontology infrastructure of the GAIA system (Ranganathan 2004) is

described in detail in (Ranganathan 2003). These ontologies mainly define either context

information or entities in the environment. Context is represented in a predicate form that

inherently suits the planning component (World states in Planning are sets of facts – predicates).

E.g. the predicate Location (Chris, in, Room 2401) declares knowledge about a person’s location.

Other context-related predicates can be classified in: physical context (location and time),

environmental context (weather, light and sound levels), informational context (stock

quotes, sports scores), personal context (health, mood, schedule, activity), social context (group

activity, social relationships, whom one is in a room with), application context (email, websites

visited) and system context (network traffic, status of printers). Ontologies are used to type-

check arguments of these predicates (e.g. Chris and Room 2401). On the other hand entity-related

ontologies define taxonomies and relations between devices, services, applications and users.

16

GAIA (Ranganathan 2004) incorporates an ontology server that enables incremental addition

of new ontologies. Classes and properties are then merged with the existing ones.

Preuveneers (2004) defines an ontology in OWL that along with a context management

system, is able to adapt services based on context. Concepts defined in this ontology revolve

around the four main concepts of User, Platform, Service and Environment. At a glance,

Environment has location, time and environmental condition data. A user has mood, profile, role

and tasks (to complete) that include activities and use services in turn. A platform provides

hardware that relates to resources (power, memory, cpu, storage and network) and i/o devices, and

software that provides services. Software can be an operating system, a virtual machine, a

middleware or a rendering engine. The three main concepts are interconnected in many ways: a

service requires a platform, a platform has an environment. The ontology for services is in fact

OWL-S (that provides service profile, model and grounding) and is interlinked with the rest of the

ontologies as tasks use services and software provides services.

Iacob et. al. (2008) also include the concept of context in their ontology. In fact, this

ontology demonstrated, is only a fragment of an example domain ontology required by their

prototype. Concepts include a User, associated with a GSMCell, a GeoLocation, his Home, his

Office, and a Schedule. Finally Context comprises of GeoLocation, GSMCell and Schedule. So,

indeed, context ontologies mainly define time and location terms.

 Santofimia (2011) proposes a general simplistic semantic model for universal use across

AmI applications. This only includes basic concepts that cannot be left out in AmI which namely

are “Service”, “Device”, “Event”, “Action”, “Object” and “Context”. Furthermore, as a showcase,

they map this model to an OWL ontology, adding more domain-dependent concepts and

relationships suited for their intrusion-detection implementation, like “Announce” and “Hazard”.

All in all, true semantic interoperability across systems can only be achieved by using a

common vocabulary. Apparently, most of the systems share some perspective on concepts: most of

them define context, environmental parameters, hardware and functionality, but in many different

ways. Reuse and convergence have yet to emerge. Only Sheshagiri (2004) and Bottaro (2007)

reference existing vocabularies.

3.4 Composition Process
The fourth view of the comparative presentation is the composition of services itself and

deals with several issues regarding how the composition is actually realized and what type of

information it takes into account. More specifically, Table 4 presents an indicative selection of

systems and analyzes them in terms of composition method, details concerning the specific

17

technique used and parameters that the composition takes into account, such as context awareness,

quality of service, user involvement and user preferences.

System Method Technique Context QoS User Involvement User Prefs
Paluska 2008 Planning HTN × ×
Sousa 2006 Matching Knapsack Optimization × Manual

Mokhtar 2007 Matching Capabilities Matching × ×
Thomson 2008 Matching Capabilities Matching × ×

Ranganathan 2004 Planning BLACKBOX × ×
Beauches 2008 Planning GraphHTN × × × ×

Messer 2006 Matching Capabilities Matching +
Ranking Manual

Preuveneers 2005 Matching Capabilities Matching +
Constraint solving ×

Bottaro 2007 Matching Capabilities Matching +
Ranking × ×

Iacob 2008 Matching Capabilities Matching +
Ranking ×

Yokohata 2006 Matching Capabilities Matching × Manual ×
Nakazawa 2004 Matching Capabilities Matching × × × ×

Lagesse 2010 Matching Capabilities Matching +
Constraint solving × ×

Davidyuk 2010 Planning Genetic Algorithm × Ranging
Wisner 2007 Planning State Space Search × × Manual ×

Vukovic 2007 Planning TLPLAN × × ×
Qiu 2006 Planning HTN ×

Qasem 2004 Planning HTN × × ×

Maamar 2005 Agents Context Based
Negotiations × ×

Sheshagiri 2004 Planning STRIPS × ×

Mabrouk 2009 Matching Capabilities Matching +
Ranking × × ×

Masuoka 2003 Matching Manual × Manual
Ni 2005 Planning State Space Search × Choose Solution ×

Vallée 2005 Agents Semantic matching × Choose Solution
Paolucci 2009 Planning BDD × × ×

Salomie 2008 Fluent
Calculus Fluent Calculus × × × ×

Ibrahim 2009a Matching Pair-wise Capabilities
Matching × × ×

Robinson 2004 Matching Capabilities Matching × × ×
Santofimia 2011 Planning HTN × × ×

Table 4. Composition Process

3.4.1 Composition Methods and Techniques

Some methodologies could be considered as framework dependent and hence restrictive. In

other words, some techniques require specific representation form like predicates, and a

18

transformation is required beforehand. Other than that, methodologies can be applied to any

domain and range from planning to service matching/selection and slight variations.

Ranganathan (2004) employs blackbox STRIPS planning that also supports retryable

actions. This system’s implementation in general favors the planning methodology. Common

planning aspects are widely used, like the world representation in predicate form. However, this

representation is a requirement for the system’s planning component and thus the component could

be considered as restrictive (Davidyuk 2008).

The planning subsystem in (Davidyuk 2010), receives a series of abstract user subgoals that

have to be grounded – mapped to actual implementations/devices. The technique involved is based

on evolutionary and genetic computing optimization and also takes into account multiple user

criteria (nearest, fastest or cheapest solution) and user preferences (fidelity and QoS).

In general, most of the service matching systems rely on service discovery subsystem to

match the required capabilities. If applicable, matching required QoS parameters or preferences is

also a requirement. A utility function is also used sometimes to rank service candidates. E.g. Iacob

(2008) employs a matching approach where goal services are iteratively decomposed until a

matching solution is found for each component. Each match is evaluated against a utility measure

of semantic similarity.

Multi-Agent systems as autonomous entities can enhance an AmI system in a number of

ways. Popular approaches are exchanging data about context or playing an active role in

composition by performing matching or planning. They can also simply autonomously call the

composition subsystem (relieving the user of having to do so).

(Vallée 2005) employs a multi-agent-system approach that combines context management

and service matching. There are three types of Agents: Assistant, Composition and Service

Agents. Assistant Agents receive the goal task either explicitly from the user or infer it from

context-based rules. Composition Agents put together possible solutions comprised of a set of

requirements on services and their relationships. Service Agents fulfill these requirements by

selecting services based on semantic matching service descriptions and evaluate them, based on

current context. Agents of each type are able to negotiate with one another. The user can finally

take decision on the resulting alternatives. Maamar 2005 also employs autonomous agents that

collectively perform service composition. The different types of agents are associated with

composite services, atomic services and service instances and negotiate based on their knowledge

of the current service state.

BDI Agents in (Santofimia 2011) and (Santofimia 2008) interact with each other to

exchange information and finally call plans to fulfill their goals. The planning infrastructure is

19

HTN-based. The MAS which is implemented in JADEX, discovers Services and refers to the

knowledge base and semantic model over the ZeroC ICE-based middleware.

3.4.2 Context-awareness

Context-awareness refers to the ability of a system or method to perceive and take into

account the current environment or user state. As a result, outputs are case sensitive: the same

inputs can bring about different results according to the user’s situation. Apparently, this property

is most critical for AmI systems that pursue high-level of automation, smart sensing and reacting

to user context.

The most popular approach for context awareness is designing an ontology, where concepts

regarding context and system entities can be defined and inter-related. E.g. a location or

temperature can be assigned to a user or a room respectively. Systems that follow this

methodology include (Ranganathan 2004), (Preuveneers 2005). Context can also be the product of

reasoning (e.g. absolute coordinates can point out a certain location or room) which is the case in

(Preuveneers 2005). Context is also part of an ontology in GAIA and has been described in the

corresponding section. An approach to consider context in composition is presented in (Vallée

2005) which evaluates each selected service based on current context.

Except the view of context as a set of statements about a person a place or an object (Abowd

1999), another is regarding context as a whole world representation including static and dynamic

facts. This approach is followed by Santofimia 2011, where a knowledge base and a semantic

model are used to model a world state.

3.4.3 Quality of Service – QoS

Quality of Service considers added value parameters like service latency, response time or

costs in general. Systems that take these parameters into account, offer optimum solutions. A

typical approach to consider QoS is using an ontology that defines QoS concepts. Then, service

QoS parameters can be registered and reviewed at discovery-time as service meta-data. Davidyuk

(2010) indeed includes QoS metadata – non-functional properties of services in an upper ontology.

Thus each service has known non-functional or QoS properties, that serve as selection criteria.

3.4.4 User Preferences

Some systems also take decisions taking user preferences into account. This parameter

differs from context as preferences are not case sensitive, but rather characterize a specific user.

E.g. a user can generally prefer mobile services. Another user could prefer black and white

printing to color. Preferences could also be considered as profiles that can be interchanged.

20

Preuveneers (2005) considers user preferences and namely High, Medium or Low Quality in audio

or video, only if the current context allows it and resources are available.

3.4.5 User involvement in Composition

AmI systems aim automatic service composition i.e. minimizing user involvement.

Traditional non-AmI applications require full user involvement. However, sometimes users do get

partially involved. As the transition between fully autonomous systems and fully controlled

systems is ongoing, many systems still require partial user involvement either to compensate for

the lack of inference of user goals or to simply supervise the process and manually select the best

composite solution. Indeed, a usual form of user participation is presenting the user with a variety

of solutions, along with their rankings (if a utility function is available), so that he is able to choose

based on his intent. In (Vallée 2005) users take decisions on the final alternative solutions

presented. After all, it is argued whether AmI systems can make accurate predictions of the user

intent.

Davidyuk (2010) focuses on the user-centric proportion of AmI applications and lets users

manually craft applications (i.e. composite services) arranging abstractions of service

implementations. The system provides four interchangeable interface levels of user involvement

that range from fully manual to fully automatic. As user involvement rises, system autonomy

decreases. In manual mode, the user directly selects service instances/devices while the

composition component is disabled. Moving on, while on the semi-manual mode, the system’s

composition component can complete the application by assigning the services the user has left

out. In the mixed-initiative mode, the system presents a range of composite services ordered by

user defined criteria. Users then are able to browse and validate which service instances will be

used each time, prior to execution. Finally, in the fully autonomic mode the system autonomously

executes composite services.

On the other hand, high level of user involvement can be met in (Sousa 2006), (Messer

2006), (Yokohata 2006) and (Wisner 2007). E.g. in (Messer 2006) users are aided to enter the goal

services (pseudo sentences in the form of Play Video file x). If there is no user involvement, the

system’s function is totally transparent to the user. In other words, user involvement is the opposite

of system transparency. Transparency is considered as a criterion on the survey of Ibrahim

(2009b).

21

3.5 End-Product Features
The final view of the reviewed systems concerns several features of the system performing

service composition as a whole. More specifically, we are interested in security issues and how

they are resolved in the systems, the type of interfaces offered to the user, whether the systems

have been evaluated and finally if they are implemented as stand-alone or multi-agent systems.

Table 5 presents an indicative number of such systems and analyzes their performance in the

aforementioned features.

3.5.1 Security

New paradigms like the Service Oriented Architecture, Task Oriented Computing etc. have

yet time to mature and standardize. There are many modeling languages, many frameworks and

many methodologies. Each one has its own aspects, and security issues are not always inherently

addressed. Systems need to proactively take measures to prevent malicious use that would result in

loss of data, privacy breaches and malfunctions.

An approach to security by using ontologies is introduced by GAIA (Ranganathan 2004).

GAIA incorporates access control policies and ontologies that define user roles and thus

privileges. However, the Semantic Web technologies used to define these ontologies have no

inherent authorization mechanisms. These mechanisms have to be engineered. Maamar (2005) has

indeed developed an Access Control mechanism for preventing malicious of services and thus

misusing resources. Khosrowshahi (2009) considers consumer privacy by adopting a model that

always maintains data locally.

3.5.2 User Interface

An AmI system supposedly has a physical, intuitive interface so that users do not have to

enter its monolithic environment (e.g. sitting in front of the desktop computer). This review

focuses on the composition component, but also at the system as a whole. Naturally, the UI greatly

signifies an AmI system. User interfaces can be bidirectional: they allow input and/or output to

and from the system. Input interfaces especially, solely depend on the advancement of Human-

Computer interfaces. There are visions of virtual reality, motion input (i.e. gestures) or even input

by pads attached to the skull.

Ranganathan (2004) uses a windows forms GUI application to enable the user input the goal

task. Users check desired complex tasks and choose desired parameters. They are also able to view

the planning process’ solution i.e. grounded actions as the GAIA infrastructure executes the

service.

22

System Security UI Evaluation M.A.S.
Paluska 2008 × × × ×

Sousa 2006 × GUI Experimental ×

Mokhtar 2007 Security Parameters × Experimental ×

Ranganathan
2004 Access Control GUI, Feedback × ×

Messer 2006 × TV GUI Compose
Tool Experimental ×

Bottaro 2007 × PDA GUI Experimental, Comparison ×

Yokohata 2006 × GUI Experimental ×

Lagesse 2010 Trust by Learning × Experimental, Comparison ×

Davidyuk 2010 × Mobile GUI +
Physical UI (cards) User ×

Wisner 2007 × GUI Compose Tool × ×

Cottenier 2005 × × × Migrating Agents

Vukovic 2004 × GUI × ×

Vukovic 2007 × × Experimental ×

Lee 2007 × PDA GUI × ×

Khosrowshahi
2009

Data maintained
locally PDA GUI × ×

Lee 2006 × × Simulation
 Service Agents

Maamar 2005 Access Control GUI Composite
Editor × Service Agents

Mostefaoui 2003 × × × Context Agents

Sheshagiri 2004 Privacy Parameter × × Task Specific
Agents

Mabrouk 2009 Security and Privacy
Parameters × Experimental ×

Chakraborty
2005

× × Simulation, Comparison ×

Vallée 2005 × × × Composition
Agents

Paolucci 2009 × × Experimental ×

Santofimia 2011 × × Experimental Manager,
Preceptor Agents

Table 5. End-Product Features

Davidyuk (2010) demonstrates an innovative and intuitive mixture of a physical and a

computer graphical interface. Specifically, it employs RFID tags and a mobile phone that not only

reads them but also presents a GUI for user input. The tags are placed on custom-made cards

associated with atomic services or data e.g. video/audio files. Unreachable elements like projectors

and loudspeakers have their cards placed on a reachable control panel in the room. Scanning a

series of cards forms a workflow of the requested composite service. However, as the level of user

involvement is configurable (as mentioned before), the user has to enter or view some information

23

(except in the fully automatic mode). A mobile phone GUI enables them to view selected service

instances prior to execution for validation purposes. In the mixed-initiative mode they can choose

between suggested compositions.

Output interfaces currently remain conventional. Users solely came aware of the effects their

requests have e.g. see their documents printed, audio or video is played on target devices. This

methodology certainly lacks feedback. Feedback is valued not only in case of faults, where the

user simply needs to know what went wrong but also for tracking down the reason why the

composite service contains the specific atomic services (e.g. could be due to QoS parameters or

unavailability of alternatives). Feedback also adds to the system’s feel of responsiveness: users

remain uncertain whether the system functions or not until they see the effects. If no solution is

found, users indefinitely remain uncertain.

Traditional output on displays is certainly an acceptable alternative as an output interface.

Some systems indeed provide graphical tools (GUIs) to present users with results. The composite

service solution,, alternative ones or general information can be shown.

In Vallée 2005 an interface is implied as users not only enter goals but also make the final

decision between alternatives.

Finally, a GUI can be bidirectional, which complies with the traditional desktop computer

paradigm. Users enter data in an application and are presented with the results. More flexible

systems include mobile applications for input/output which enhances the system with a more

pervasive feel (Bottaro 2007, Davidyuk 2010, Lee 2007, Khosrowshahi 2009)

3.5.3 Evaluation

Empirical results are a valuable piece of information, when reviewing systems. Every kind

of such results shows actual performance and therefore measures usability and effectiveness.

Evaluations can take many forms. Some systems showcase composition runtimes in different

settings and present extensive results in charts. For example, (Ibrahim 2009a) measures

composition times while increasing the number of available atomic services each time. This

evaluation is carried out once for plain services (syntactic descriptions) and once with semantic

annotations. Naturally, composition times in the second case range high above the ones in the first

case. Similarly Vukovic (2007) presents scalability performance. Mabrouk (2009) presents

execution times for various workloads, number of services and QoS parameters. Chakraborty

(2005) confirmed over simulation that their setting outperforms centralized composition.

Davidyuk (2010) carried out a user test to evaluate its RFID-card interface. A single pair of

users experimented with an initial set of cards for 1.5 hours, designing six composite services

24

(applications). Interesting conclusions out of the experiment suggest that the smart card designs

(i.e. icons) should be self-explanatory and intuitive and there should be a motivating mechanism

for the system.

3.5.4 Multi-Agent Systems

Multi-Agent systems are an active area of research that many systems can benefit from. All

autonomous systems can be regarded as software agents. This criterion specifically presents

systems that employ a multi-agent system where agents negotiate, reason and act to aid

composition in any way.

Vallée 2005 employs a MAS of three different types of Agents that negotiate, to aid the

composition process. Hesselman (2006) includes Context-Agents in his approach. However these

agents are not considered as MAS, as these are simply software agents that provide data (i.e.

context information) and do not negotiate or interact.

Being autonomous entities, BDI Agents can perceive the world and act towards

accomplishing their goals. That eliminates the need for user involvement as in (Santofimia 2011),

where Agents evaluate perceptions of the world and autonomously take actions. In this particular

implementation, the Agents perceive intruder presence, and authenticate him using different

techniques.

Acknowledgments

This project is funded by Operational Program Education and Lifelong Learning, OPS

200056 (International Hellenic University, Thessaloniki, Greece).

Conclusion

This article presented a review of systems in Ambient Intelligence environments, mainly

focusing on service composition aspects. AmI systems rely more and more on service composition

to provide intelligent automations to their users. As service orientation becomes a standard in AmI,

methodologies to develop such an infrastructure have surfaced and slightly converged. AmI

systems also focus on relevant but different domains of smart spaces and employ various sets of

devices. Spread of UPnP multimedia devices has led to wide use of AmI home multimedia

systems. Smart Offices, Meeting rooms, Teleconference and Health have also been domains of

interest. Meanwhile, service description languages have settled on the standardized WSDL

format. However, as WSDL can provide syntactic interoperability only, the use of Ontologies has

25

been issued upon. Many languages have emerged to semantically annotate Web Service

descriptions, referencing OWL ontologies. Although it is not a recommendation yet, OWL-S is the

dominant language in recent AmI systems. However, not only technology has to converge in

standard languages but also, a universal agreed-upon AmI vocabulary of concepts has to be met.

Context awareness is a key element in AmI. Ontologies for context resources appear to be

the dominant approach towards it. Other than that, concepts include QoS parameters, type-

definition of inputs, outputs, preconditions and effects of services, Platforms, Devices etc.

At the next stage, services are discovered and composed. The two main methods of

composition, planning and matching have been presented and described. Planning uses existing

progress and out-of-the-box algorithms for the task while matching is brute-force in nature.

Semantic annotations enhance discovery and can benefit both planning and matching. Finally, a

couple of other methods include the use of MAS, where agents cooperate to form a goal service.

The methods can and need to consider some parameters, namely QoS, context-awareness and user

preferences. Also sometimes the user is able to fully or partially control composition e.g. by

selecting one of the proposed solutions.

Finally, AmI systems present different additional properties. Some of them consider security

issues by applying access control or requiring trust-related parameters in services. Security is one

of the key issues to be addressed in the future. A few systems also offer mobile, desktop or even

physical UIs. Test runs, experimental results or comparisons of the systems can be found as means

for evaluation. Another interesting topic of AI, Multi-Agent Systems, has also been employed in a

few AmI systems, aiding in context or data handling or even composition itself.

References

Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P., 1999, Towards

a better understanding of context and context-awareness. In: HUC,pp. 304–307.

Beauche S.,Poizat P., Automated Service Composition with Adaptive Planning. ICSOC 2008:

530-537

Bouguettaya, A., Krueger, I. & Margaria, T. (Eds.), Proceedings of the 6th International

Conference on Service-Oriented Computing (pp. 530-537). Berlin, Heidelberg: Springer-Verlag.

Bellur U., Narendra N. C. Towards service orientation in pervasive computing systems.

International Conference on Information Technology: Coding and Computing, 2:289-295, 2005.

26

Bertoli P., Kazhamiakin R., Paolucci M., Pistore M., Raik H., Wagner M.: Continuous

Orchestration of Web Services via Planning. ICAPS 2009

Bottaro A., Bourcier J., Escoffier C. and Lalanda P. Autonomic context-aware service

composition. 2nd IEEE International Conference on Pervasive Services, 2007.

Carey K., Lewis D., Higel S., and Wade V.: Adaptive composite service plans for ubiquitous

computing. In 2nd International Workshop on Managing Ubiquitous Communications and

Services (MUCS 2004), December 2004.

Chakraborty D. Service discovery and composition in pervasive environments, THESIS, 2004.

Chakraborty D., Joshi A., Finin T., and Yesha Y. Service composition for mobile environments.

Journal on Mobile Networking and Applications, Special Issue on Mobile Services, 10(4):435–

451, January 2005.

Chantzara M., Anagnostou M. & Sykas E. (2006). Designing a Quality-Aware Discovery

Mechanism for Acquiring Context Information. Proceedings of the 20th International Conference

on Advanced Information Networking and Applications, 1(6), AINA’06. Washington DC:

IEEE Computer Society.

Cottenier T. and Elrad T.: Adaptive embedded services for pervasive computing. In Workshop on

Building Software for Pervasive Computing - ACM SIGPLAN conf. on Object-Oriented

Programming, Systems, Languages, and Applications, 2005.

Davidyuk O., Georgantas N., Issarny V., Riekki J. Dans: MEDUSA: Middleware for End-User

Composition of Ubiquitous Applications, Handbook of Research on Ambient Intelligence and

Smart Environments: Trends and Perspectives, IGI Global (Ed.) (2010)

Hesselman C., Tokmakoff A., Pawar P. & Iacobs S., (2006). Discovery and Composition of

Services for Context-Aware Systems. Proceedings of the 1st IEEE European Conference on Smart

Sensing and Context (pp. 67-81). Berlin: SpringerVerlag.

Iacob S. M., Almeida J. P. A., Iacob M.E.: Optimized dynamic semantic composition of services.

SAC 2008: 2286-2292

Ibrahim N., Le Mouël F., Frénot S., MySIM: A Spontaneous Service Integration Middleware for

Pervasive Environments, ACM International Conference on Pervasive Services (ICPS), july 2009,

London, England.

27

Ibrahim N., Le Mouël F. (2009) A Survey on Service Composition Middleware in Pervasive

Environments, 1-12. In International Journal of Computer Science Issues (IJCSI)

Kaefer G., Schmid R., Prochart G., and Weiss R. Framework for dynamic resource-constrained

service composition for mobile ad hoc networks. UBICOMP, Workshop on System Support for

Ubiquitous Computing, 2006.

Kalofonos D.N. and Reynolds F.D. , “Task-Driven End-User Programming of Smart Spaces Using

Mobile Devices”. Published in Nokia Research Center Technical Report (NRC-TR-2006-001)

Khosrowshahi B. S., Graham P.: Component placement and location for a dynamic software

composition system. C3S2E 2009:127-130

Lagesse B., Kumar M., Wright M.: ReSCo: A middleware component for Reliable Service

Composition in pervasive systems. PerCom Workshops 2010: 486-491

Lee S. Y., Lee J. Y., and Lee B. I. Service composition techniques using data mining for

ubiquitous computing environments. International Journal of Computer Science and Network

Security, 6(9):110-117, 2006.

Lee W. L. C., Ko S., Lee S. and Helal A. Context-aware service composition for mobile network

environments. In 4th International Conference on Ubiquitous Intelligence and Computing

(UIC2007), 2007.

Maamar Z., Mostefaoui S. K., and Yahyaoui H. Toward an agent-based and context-oriented

approach for web services composition. IEEE Transactions on Knowledge and Data Engineering,

17(5):686-697, 2005.

Mabrouk N. B., Beauche S., Kuznetsova E., Georgantas N., Issarny V.: QoS-Aware Service

Composition in Dynamic Service Oriented Environments. Middleware 2009: 123-142

Maffioletti S.: UBIDEV A Homogeneous Service Framework for Pervasive Computing

Environments THESIS, 2006

Masuoka R., Parsia B., Labrou Y.: Task Computing - The Semantic Web Meets Pervasive

Computing. International Semantic Web Conference 2003: 866-881

Messer A., Kunjithapatham A., Sheshagiri M., Song H., Kumar P., Nguyen P. & Yi K.H.

(2006). InterPlay: A Middleware for Seamless Device Integration and Task Orchestration in a

Networked Home. Proceedings of the Annual IEEE International Conference on Pervasive

Computing PerCom'06 (pp. 296-307), Washington DC: IEEE Computer Society.

28

Mingkhwan A., Fergus P., Abuelma'atti O., Merabti M., Askwith B., and Hanneghan M. B.

Dynamic service composition in home appliance networks. Multimedia Tools and Applications,

29(3):257-284, 2006.

Mishra R. B. and Kumar S.: Semantic web reasoners and languages, Artificial Intelligence

Review, 2011, Volume 35, Number 4, Pages 339-368

Mokhtar S. B., Georgantas N., and Issarny V:. Cocoa: Conversation-based service composition in

pervasive computing environments. Proceedings of the IEEE International Conference on

Pervasive Services, 2006.

Mokhtar S. B., (2007). Semantic Middleware for Service-Oriented Pervasive Computing.

Doctoral dissertation, University of Paris 6, Paris, France.

Mostefaoui S. K., Tafat-Bouzid A., and Hirsbrunner B. Using context information for service

discovery and composition. Proceedings of the Fifth International Conference on Information

Integration and Web-based Applications and Services, 3:15{17}, 2003.

Nakazawa J., Yura J. & Tokuda H. (2004). Galaxy: a Service Shaping Approach for

Addressing the Hidden Service Problem. Proceedings of the 2nd IEEE Workshop on

Software Technologies for Future Embedded and Ubiquitous Systems (pp. 35-39).

Ni Q., Sloman M. An Ontology-enabled Service Oriented Architecture for Pervasive Computing.

In Proceedings of ITCC (2)'2005. pp.797-798

Paluska J. M., Pham H., Saif U., Chau G., Terman C., Ward S.: Structured decomposition of

adaptive applications. Pervasive and Mobile Computing 4(6): 791-806 (2008)

Park J.H. and Kang J. H.: Intelligent service processing in common USN middleware Artificial

Intelligence Review, 2011, Volume 35, Number 1, Pages 37-51

Pourreza H. and Graham P. On the fly service composition for local interaction environments. In

IEEE International Conference on Pervasive Computing and Communications Workshops, page

393. IEEE Computer Society, 2006.

Preuveneers D., Van den Bergh J., Wagelaar D., Georges A., Rigole P., Clerckx T., Berbers Y.,

Coninx K., Jonckers V., De Bosschere K.: Towards an Extensible Context Ontology for Ambient

Intelligence. EUSAI 2004: 148-159

29

Preuveneers D. & Berbers Y. (2005). Automated Context-Driven Composition of Pervasive

Services to Alleviate Non-Functional Concerns. International Journal of Computing and

Information Sciences, 3(2), 19-28.

Qasem A., Heflin J., and Mu~noz-Avila H. Efficient source discovery and service composition

for ubiquitous computing environments. 2004.

Qiu L., Shi Z., and Lin F. Context optimization of ai planning for services composition. In

ICEBE '06: Proceedings of the IEEE International Conference on e-Business Engineering, pages

610-617, 2006.

Ranganathan A., McGrath R. E., Campbell R.H., Mickunas M.D. Ontologies in a Pervasive

Computing Environment. In Workshop on Ontologies and Distributed Systems (part of the 18'th

International Joint Conference on Artificial Intelligence (IJCAI 2003), Acapulco, Mexico, Aug 9

2003

Ranganathan A. & Campbell R. H. (2004). Pervasive Autonomic Computing Based on

Planning. Proceedings of the IEEE International Conference on Autonomic Computing

ICAC’04 (pp. 80-87), Washington, DC: IEEE Computer Society.

Robinson J., Wakeman I., Owen T.: Scooby: middleware for service composition in pervasive

computing. Middleware for Pervasive and Ad-hoc Computing 2004: 161-166

Rouvoy R., Barone P., Ding Y., Eliassen F., Hallsteinsen S., Lorenzo J., Mamelli A. & Scholz U.

(2009). MUSIC: Middleware Support for Self-Adaptation in Ubiquitous and Service-

Oriented Environments. In Cheng, B. H. et al (Eds.) Software Engineering For Self-Adaptive

Systems (pp. 164-182), Lecture Notes In Computer Science, Vol. 5525. Berlin, Heidelberg:

Springer-Verlag.

Salomie I., Chifu V. R., Harsa I.: Towards automated web service composition with fluent

calculus and domain ontologies. iiWAS 2008: 201-207

Santofimia M. J., Moya F., Villanueva F. J., Villa D. and Lopez J. C.: An agent-based approach

towards automatic service composition in ambient intelligence Artificial Intelligence Review,

2008, Volume 29, Numbers 3-4, Pages 265-276

Santofimia M. J., Fahlman S. E., del Toro X., Moya F. and Lopez H. J.: A semantic model for

actions and events in ambient intelligence, Engineering Applications of Artificial Intelligence

(June 2011)

30

Sheshagiri M., Sadeh N. M. and Gandon F. Using semantic web services for context-aware

mobile applications. Second International Conference on Mobile Systems (MobiSys 2004),

Applications, and Services - Workshop on Context Awareness, 2004.

Sousa J. P., Poladian V., Garlan D., Schmerl B. and Shaw M.: Task-Based Adaptation for

Ubiquitous Computing. In IEEE Transactions on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, Special Issue on Engineering Autonomic Systems, Vol. 36(3), May

2006

Takemoto M., Oh-ishi T., Iwata T., Yamato Y., Tanaka Y., Shinno K., Tokumoto S. & Shimamoto

N. (2004). A Service-Composition and Service-Emergence Framework for Ubiquitous-Computing

Environments. Proceedings of International Symposium on Applications and the Internet,

SAINT’04-W (pp. 313-318). Washington DC: IEEE Computer Society.

Thomson G., Bianco S., Mokhtar S. B., Georgantas N. and Issarny V.: Amigo Aware Services,

Communications in Computer and Information Science, 1, Volume 11, Constructing Ambient

Intelligence, Part 7, Pages 385-390

Urbieta A., Barrutieta G., Parra J., Uribarren A.: A survey of dynamic service composition

approaches for ambient systems, Proceedings of the 2008 Ambi-Sys workshop on Software

Organisation and MonIToring of Ambient Systems

Vallée M., Ramparany F., and Vercouter L. Dynamic service composition in ambient intelligence

environments: a multi-agent approach. In First Workshop on YR-SOC, 04 2005.

Vukovic M. and Robinson P. Adaptive, planning based, web service composition for context

awareness. 2nd International Conference on Pervasive Computing, 2004.

Vukovic M., Kotsovinos E., Robinson P.: An architecture for rapid, on-demand service

composition. Service Oriented Computing and Applications 1(4): 197-212 (2007)

Weiser M., The computer for the 21st century, ACM SIGMOBILE Mobile Computing and

Communications Review, v.3 n.3, p.3-11, July 1999 [doi>10.1145/329124.329126]

Wisner P., Kalofonos D.N. (2007). A Framework for End-User Programming of Smart Homes

Using Mobile Devices. Proceedings of the 4th IEEE Consumer Communications and Networking

Conference CCNC'07 (pp. 716-721), Washington DC: IEEE Computer Society.

Yokohata Y., Yamato Y., Takemoto M., Sunaga H.: Service Composition Architecture for

Programmability and Flexibility in Ubiquitous Communication Networks. SAINT Workshops

2006: 142-145

