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Essential to realistic and visually appealing images, 
shadows zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare difficult zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAta compute in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmost display environ- 
ments. This survey characterizes the various types of 
shadows. It also describes most existing shadow algo- 
rithms and discusses their complexities, advantages, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand 
shommings. We examine herd shadows, soft shadbws, 
shadows of transparent objects, and shadows for com- 

plex modeling primitives. For each type, we examine 
shadow algorithms within various rendswing techniques. 

This survey attempts to provide readem with enough 
background and insight on the various rmthods to d o w  
them to choose the algorithm best wpuited to their W. 
We also hope that our analysis will h&p identify the a m  
that need more research and point bo possible sotutkms. 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshadow-a region of relative darkness within an not necessarily attenuate the light it occludes. In fact, 
illuminated region-occurs when an object totally or it can concentrate light. However, as is traditional in 
partially occludes the light. A transparent object does image synthesis, l ve  will consider a region to be in 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Common notation used in this survey. 

1~ Symbol , Definition I1 
- - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 I-- ~~~~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P 

Average number of edges per polygon 

Number of points simulating an ex- 
tended light source 

~~~~ ~ ~~~ ~ 

~~ - ~ 

R Linear resolution of some buffer used I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n Number of primitives in the scene , 

--+I ~ ~~~~~~~ 

~ - ~- ~ 

, p x q Resolution of the image in pixels --- ~ 
~~~~ ~ 

shadow if there exists an occluding surface between 
light andthe region ofinterest, whethertransparent or not. 

A shadow does not necessarily look like a darker 
region; colored shadows can appear in different ways 
in a scene. For example, let’s say you used two differ- 
ent colored light sources. A region occluded from 
only one light source by an opaque object will lie in 
the shadow of this light source, but the color of the 
second light source can influence the region. An ob- 
ject can also act as a filter, with the color of the shadow 
region depending on the wavelength spectrum fil- 
tered through the ohject. Moreover, diffraction of light 
through a transparent object might provide color 
within a shadow. 

Using almost any measure of the quality of an image, 
the computation of shadows is essential. They cause 
some of the highest intensity contrasts in images; they 
provide strong clues about the shapes, relative posi- 
tions, and surface characteristics of the objects: they 
can indicate the approximate location. intensity, 
shape, and size of the light source(s); and they repre- 
sent an integral part of the total effect in architecture 
with many objects in the environment. In fact, in 
some circumstances the shadows constitute the only 
components of the scene, as in shadow-puppet the- 
ater and in pin screen animation (developed by Alex- 
ander Alexeieff). 

In the only previous comprehensive discussion of 
shadow algorithms, Crow’ discussed shadow genera- 
tion by classifying the type of algorithms used. He 
distinguished three general categories of shadow al- 
gorithms. This useful distinction has since inspired 
many dc\Telopments. However, the intervening years 
have seen the ad1Tent of many new modeling primi- 
tives and rendering techniques. Within each one, new 
s ha d o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\v d eve  1 o p e d.  
Amanatides,’ Thalmann and Thalmann,3 and Foley 

a1 go r i t h m s have be en zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 1. Hard shadows in ray tracing. Ray tracing 
offers a simple technique to produce sharp shadows. 
In this image, we used a single directional light 
source. Notice how the shadow of the table looks 
sharp and well defined over the objects in shadow. 

et al.‘ described some of the existing shadow algo- 
rithms within the general context of image synthesis. 
However, they dealt mainly with shadows created by 
opaque objects, and even within this framework their 
discussion was incomplete. 

In this survey, we examine the algorithms according 
to the type of shadows produced: hard shadows and 
soft shadows caused by opaque objects, shadows 
caused by transparent objects, and shadows caused 
by more complex modeling primitives, such as para- 
metric and implicit surfaces, particle systems, vol- 
uni e - f i 1 1 i ng media, and surface se 1 f- s h a d o w i ng . 
Within each type, we examine algorithms as they re- 
late to the specific rendering techniques for which 
they were developed. We hope that after reading this 
survey, implementors will be aware of nearly all the 
existing shadow algorithms and will have sufficient 
information to choose an algorithm given the type of 
rendering, primitives, and effects desired. 

Of course, many problems related to shadows have 
not been solved (or solved well). With this in mind, 
we have tried to identify gaps and suggest improve- 
ments to known algorithms, as well as pointing out 
directions for new ones. 
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Complexity of algorithms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As a consistent basis for comparison, all shadow 

complexity order statistics assume a single light 
source and polygonal surfaces. The complexity con- 
sists mainly of three components: storage usage, pre- 
processing runt ime complexity, and runt ime 
complexity during actual rendering (referred to as 
shadow rendering complexity from here on). The stor- 
age complexity is stated with respect to the total stor- 
age requirements for shadow determination. The 
runtime complexities represent the additional cost of 
shadow computation over implementations that do 
not compute shadows. The shadow rendering com- 
plexity is also stated with respect to each pixel unless 
otherwise indicated. 

Note that, in general, we give worst-case complex- 
ity. Whenever practical, we also give an estimate of 
average complexity, but this is risky without an analy- 
sis of scene statistics. 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 summarizes common notat ion used 
throughout this survey. 

Hard shadow generation 

This section discusses shadow algorithms for hard 
shadows, requiring the display of the umbra section 
alone (as illustrated in Figure I). Calculation of hard 
shadows involves only the determination of whether 
or not a point in the scene lies in the shadow of 
opaque objects. This is a binary decision problem on 
top of the shading model. In other words, multiply a 
value of either zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 or 1 by the light intensity, indicating 
in shadow or not in shadow, respectively. 

The domain of light sources truly generating hard 
shadows is restricted to point516 and directional light 
(see Figure 2).  

In general, we can consider hard-shadow determi- 
nation just as difficult as visibility determination 
from the eye, because shadow determination is visi- 
bility determination with respect to the light source. 
However, hard-shadow determination is actually sim- 
pler to deal with. You do not need to calculate the 
closest visible object; just determine the existence of 
an object between the light source and the point of 
interest. 

Fake shadows 

The simplest approach employs special-purpose 
shadow algorithms that work only under certain cir- 
cumstances. For example, you might use a real-time 
shadow generator that takes into account only shad- 
ows projected on a Such short-cut algorithms 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Hard shadows. 

tend to be faster computationally than “honest” algo- 
rithms (discussed in the upcoming subsections) and 
can be very effective in the appropriate context, such 
as video games. 

Shadow generation during the scanning phase 

Appel* and Bouknight and Kelleyg suggested 
shadow generation during the display phase using an 
extended scan-line approach. During the display 
phase, polygonal boundaries are projected down onto 
the scanned object to form shadow boundaries, 
clipped within the boundaries of the scanned object, 
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Point light source 

Shadow count = 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 3. Shadow volume. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
then projected onto the viewing screen. The intensity 
of a scanned segment changes as it crosses the shadow 
boundaries. 

The storage usage and preprocessing for Bouknight 
and Kelley’s method are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(n2) and O((En)’), respec- 
tively, since they perform some preprocessing to de- 
termine candidate occluding objects. However, 
Appel’s method does not perform the preprocessing 
step, instead checking all objects during the scanning 
phase. The shadow rendering complexity for both 
methods is O(En) per scanned segment (not per pixel). 
This shadow determination approach only suits poly- 
gons. In addition, it has not acquired the popularity of 
the shadow determination approaches discussed in 
the upcoming subsections. 

Shadow volumes 

Crow’ proposed an approach to generate polygonal 
shadow umbrae from the objects in the scene, then 
place them into the rendering data structure as invis- 
ible objects. Many others”-’* later applied some vari- 
ation of the general principle to frame-buffer and 
scan-line approaches. 

To compute shadow determination, use a shadow 
count. Calculate an initial shadow count by counting 
the number of shadow volumes that contain the view- 
ing position. Then increment the shadow count by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

whenever there exists a shadow front-facing polygon 
(that is, entering the shadow umbrae] crossing in front 
of the nearest visible object. Decrement the shadow 
count by 1 whenever there exists a shadow back-fac- 
ing polygon (that is, exiting the shadow umbrae). If 
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the final shadow count is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, then the visible object 
does not lie in shadow; if positive, it does (see Figure 3).  

requires O(En) for storage and 
preprocessing, where En represents the number of 
shadow polygons. Shadowing rendering complexity 
requires depth processing of shadow polygons per 
pixel, which may get up to O(En). A binary space 
partitioning (BSP) tree variationI5 requires O(En) stor- 
age, with preprocessing complexity of O(En21 and 
rendering complexity of perhaps O(log(En)) for BSP 
tree traversal. Other algorithms, such as presented by 
Fournier and Fussell,14 require storage of O(pq) to 
keep the shadow count updates. The shadow render- 
ing complexity is constant, with preprocessing com- 
plexity of O(Enpq). 

The raw 

Area subdivision 

Nishita and Nakamaelg and Atherton, Weiler, and 
Greenberg” used clipping transformations for poly- 
gon shadow generation. In this two-pass hidden sur- 
face algorithm, the first pass transforms the image to 
the view of the light source and separates shadowed 
and unshadowed portions of the polygons via a hid- 
den surface polygon clipper. It then creates a new set 
of polygons, each marked as either completely in 
shadow or not. The second pass encompasses visible 
determination from the eye and shading of the poly- 
gons, taking into account their shadow flag. 

The storage complexity might be quite high, de- 
pending on the spatial complexity of the scene. In the 
worst case, clipping one polygon over another results 
in the creation of E’ polygons. Thus, the overall stor- 
age complexity considering the polygons in the scene 
is O(E2n). The preprocessing complexity of the algo- 
rithm due to the polygon clipping process is O((En)’). 
Although the shadow rendering complexity involves 
no additional cost, we might need to consider many 
more shadow and nonshadow polygons (compared to 
the original set of polygons without consideration of 
shadowing]. 

Note that the hidden surface polygon clipper must 
possess sufficient sophistication to handle convex 
and concave polygons with holes as a result of the 
clipping. In addition, it is algorithmically difficult to 
come up with a numerically robust polygon clipper as 
well as a clipper that deals with modeling primitives 
other than polygons. However, since this algorithm 
stores the shadow boundaries internally as polygons, 
the information can be sent to hardware shaders 
(hardware that processes and shades polygons). It can 
produce real-time shadows if the lights and polygonal 
database do not change. 
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Depth buffer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
generate shadows. The z-buffer approach to deter- 
mine visibility and intensity with respect to the eye is 
repeated for the light source. Thus, it creates a buffer 
with respect to the point of view of the light source, 
except that the buffer contains only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz depth values, 
not shading values or object information. The light 
source depth map is created before visible surface 
processing. During rendering, if the surface being 
shaded is not the nearest visible object with respect to 
the light source buffer view (meaning the z value in 
the buffer), then it lies in shadow; otherwise, it 

The storage complexity of this algorithm is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(pq). 
The preprocessing time equals O(Enpq), and shadow 

projections, is highly subject to aliasing problems as 

Williams2’ used a z-buffer depth map algorithm to the light Source gets doser to the scene* 

Ray tracing 

bility calculation and shadow determination. Ray 
was introduced as a method for 

During rendering, if the surface 

being shaded is not the nearest 

visible object with respect to the 

light source buffer view 

(meaning the z value in the 

buffer), then it lies in shadow; 

otherwise, it does not. 

does not. 

rendering complexity remains constant. 
This algorithm has the obvious disadvantage that it 

can handle a maximum 180 degree shadow frustum 
per buffer. If you placed a light source inside the 
scene, then you might need six such buffers to handle 
all shadow cases. Thus, the algorithm deals most ef- 
fectively with spotlights and directional lights. In ad- 
dition, it has aliasing problems due to discretized 
depth map cells and orientation of the shadow z- 
buffer (a cell on the buffer with respect to the eye view 
differs in orientation and size from a cell with respect 
to the light source). However, the attractiveness of this 
approach is that it can trivially support primitives 
other than polygons. 

Hourcade and Nicolas” and Reeves, Salesin, and 
Cookz3 attempted to improve on both aliasing prob- 
lems applying stochastic sampling Some Pre- 
filtering to the z-buffer approach. Reeves, Salesin, and 
Cook also claimed that their algorithm could generate 

sampling and filtering done and is not physically ac- 
curate because a point light source should only gener- 
ate hard shadows (assuming no inter-reflections). 

Some proposed algorithms use the idea of keeping 
the shadow information provided by projecting the 
scene in the light source dire~tion.’~-‘~ Consider, for 
example, Robertson’s proposed optimization of the 
scan-line algorithm for surface shadowingz6 He sug- 
gested combining rotation of the scene along the light 
direction, alignment of the points that can occlude 
themselves along vertical scan lines, determination of 
the shadowed points, and a return to the original 
orientation. This optimized the shadow determina- 
tion process because Robertson could simply use a 
composition of one-dimensional operations. How- 
ever, his method, like many of the others based on 

casting involves shooting (or casting) a ray from the 
eye to each pixel, performing ray-surface intersec- 
tions, and declaring the surface with the minimum hit 
distance to be the visible surface. This approach gen- 
eralizes to the rendering technique known as ray trac- 
ing, popularized by Whitted.” This technique also 
models reflection and refraction and generates shadows. 

A simple principle underlies ray tracing for hard 
shadow determination: a shadow ray is shot from the 
intersection point to the light source. If the ray inter- 
sects any object between its origin and the light 
source, then it lies in shadow; otherwise, it does not. 

Note that basic ray tracing requires no additional 
storage and preprocessing for shadow determination; 

However, shadow determination complexity is very 
expensive and no coherence information: the 
cost equals o ( E ~ )  per ray shot, since ray-surface inter- 
sections are required for all surfaces. One shadow ray 
is shot per pixel initially, but this number may in- 
crease due to the need for reflection, refraction rays, or 
additional sampling for antialiasing. 

The main advantage of ray tracing is that it handles 
shadow determination in an (almost) identical man- 
ner for cast, reflected, and refracted rays. Because it is 
the simplest among the hard shadow algorithms to 
implement, some software packages automatically 
switch the rendering to ray tracing when shadows are 
required. 

Note that the ray tracing process is very floating- 
point intensive. Thus, the visibility and shadow tests 

Soft shadows. However, note that this results from the shadow determination is lazily evaluated as needed. 
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Soft zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshadow generation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Another type of shadow algorithm deals with soft 

shadows (illustrated in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4), meaning the inclu- 
sion of the penumbra region along with the umbra for 
a higher level of visual quality (see Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ) .  Full 
occlusion from the light causes the umbra region, and 
partial occlusion from the light causes the penumbra 
region. The degree of partial occlusion from the light 
results in different intensities of the penumbra region. 

Determining soft shadows requires calculating the 
fraction of opaque occlusion (which results in the 
different intensities of the penumbra region), not just 
a binary decision as for hard shadows. A fraction in 
the range zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0, 1) is multiplied by the light intensity, 
where 0 indicates umbra, 1 indicates no shadow, and 
all other values indicate penumbra. 

Note also that the resultant shadow region has a 
shape depending both on the occluding object and on 
the light source (see Figure 5 ) .  In addition, the types of 
light sources modeled are linear and area light 
sources.s1.6,so Here, we consider only the soft shadow 
algorithms due to opaque objects. Assume the inten- 
sity is identical for every point on the light source. 

Some have done work to generate soft shadows due 
to inter-reflections of diffuse light. Such work takes 
into account global illumination issues. It considers 
surfaces in the scene as secondary light sources, mak- 
ing possible the generation of soft s h a d o ~ s . ~ ~ ~ ~ ~  

Figure 4. Soft shadows in cone tracing. Cone tracing 
can produce soft shadows. (Courtesy of J. 
Amanatides.) 

might give incorrect results due to numerical errors, 
usually seen as little holes in the images. (Some refer 
to it as surface acne.) Amanatides and Mitchellz9 dis- 
cussed further numerical error problems and offered 
solutions in their work. 

Intersection culling algorithms for ray tracing 

Since each ray requires intersection checks with all 
objects in the scene, research has gone into intersec- 
tion culling. Intersection culling algorithms limit 
checking for intersection with all ray types to a small 
candidate set of objects. Many such culling algo- 
rithms exist. They include hierarchical bounding vol- 
u m e ~ , ~ ' - ~ ~  variable size voxel t r a v e r ~ a l , ~ ~ ~ ~ ~  uniform 
size voxel t r a ~ e r s a l , ~ ~ - ~ ~  hybrid uniform-variable 
voxel t ra~ersal ,~ ' .~ '  ray c la~s i f i ca t ion ,~~ spatial coher- 
ence,43,44 and ray c ~ h e r e n c e . ~ " ~ ~  Analyzing the com- 
plexities of most of the approaches proves difficult. 
They usually much improve over the brute force zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
O(En) per ray shot. Typically they require some pre- 
processing but substantial storage. 

Shadow culling algorithms for ray tracing 

While the above algorithms perform culling with 
respect to all ray types including shadows, additional 
work has focused on culling shadow rays even fur- 
ther. These works take advantage of the realization 
that neighboring shadow binary decisions are usually 
the same. Preprocessing can potentially save a great 
deal of time in shadow intersection tests. 

The light buffer,47 hybrid shadow testing,16 voxel 
occlusion testing,17 and z z - b ~ f f e r ~ ~  exemplify such 
shadow cullers. The light b~ffer,~"."" voxel occlusion 
te~ t i ng , '~  and zz-buffer4' have been extended to 
model soft shadows as well. 

Frame buffer algorithm 

Brotman and Badler" stochastically chose points to 
model higher dimensional light sources. Their algo- 
rithm generates shadow umbra polygons for each 
such point source in the same manner as in Crow's 
algorithm' (see the section "Shadow volumes" 
above). This shadow polygon generation occurs dur- 
ing preprocessing. A 2D depth buffer for visible sur- 
face determination is extended to store cell counters. 

Calculate the cell count (slightly different from 
Crow's shadow count) as follows: The cell in which 
the intersected point resides is found, and the associ- 
ated counter is incremented by 1 if the shadow poly- 
gons for that particular point source enclose the 
whole cell. If the corresponding cell count equals the 
number of chosen point light sources, then the point 
lies in the umbra region. If the cell count is less than 
the number of chosen point light sources but higher 
than zero, then the point lies in the penumbra region. 

Theoretically, the storage complexity is O(pq) to 
store the cell counters. The algorithm has preprocess- 
ing complexity of O(PEnpq),  where Pis the number of 
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point sources simulating the light source, and con- 
stant shadow rendering complexity. In general, the 
algor i thm requires many such point  sources. 
(Brotman and Badler rendered several images using 
about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA100 points to simulate an area light source.) 
Even with a reasonable number of point sources, the 
most significant points on the light source with re- 
spect to the shaded point might not be considered 
because of the prechosen point sources. Thus, the 
inconsistency might cause some sparkle-like artifacts 
for highly specular surfaces, although perhaps not 
noticeable in diffuse environments. Similarly, some 
artifacts such as aliasing can appear in the shadow 
areas. 

Recent display architectures have features to help 
implement this type of algorithm. The accumulation 
buffer, as described by Haeberli and Akeley,55 allows 
the rendering of soft shadows by accumulating in a 
frame buffer the weighted shadows from point 
sources. They did not discuss how to correctly sample 
the light sources. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Distributed ray tracing 

Cook, Porter, and Carpenter56 proposed a distrib- 
uted ray tracing method for soft shadow generation. 
Their method involves shooting a collection of 
shadow rays from the intersected point to randomly 
perturbed locations on the light source. The number 
of rays is proportional to the illumination of the re- 
gion if it were completely unoccluded and to the pro- 
jected area of the light source as seen from the surface. 
The intensity of the penumbra depends on the num- 
ber of intersections of those rays with occluding 
objects. 

As with traditional ray tracing, this method requires 
no storage or preprocessing. The shadow rendering 
complexity is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(P En), where P is the number of 
shadow rays shot. The main attraction of this algo- 
rithm is that it deviates little from the traditional ray 
tracing implementation and allows for the generation 
of gloss (blurred reflections), translucency (blurred 
refractions), depth of field, and motion blur. However, 
because it is a point sampling approach, it might not 
always provide good approximations to the correct 
solution. Other works have discussed further stochas- 
tic schemes for distributed ray t ra~ ing .~~. "  

Cone tracing 

Amanatides'l extended the concept of a ray to a 
cone. Instead of point sampling, like previous ap- 
proaches, cone tracing does area sampling. Achieving 
antialiasing requires shooting exactly one conic ray 
per pixel. Broadening the cone to the size of a circular 
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Figure 5. Soft shadows. 

(spherical) light source for shadow cones permits gen- 
eration of soft shadows; a partial intersection with an 
object not covering the entire cone indicates 
pen um bra. 

Again, this method imposes no additional storage or 
preprocessing costs, and the shadow rendering com- 
plexity is O(En). It has the benefit of shooting exactly 
one shadow ray, and the area sampling done should 
provide an acceptable approximation to the penum- 
bra intensity. However, note that the approximation is 
physically valid only for circular light sources. Since 
the resultant shadow region depends on the shape of 
both the occluding object and the light source, cone 
tracing proves less suitable for light source shapes 
that cannot be closely approximated by one or more 
spheres. 

This approach is very powerful in that it can provide 
antialiasing, soft shadows, and gloss, but the cone 
geometry calculations involved are more difficult 
than dealing with just rays, as in traditional ray 
tracing. 

Area subdivision approach 

Generally, you would compute soft shadows in 
point sampling ray tracing by shooting a set of distrib- 
uted shadow rays to determine occlusions as well as 

19 



Light region not v 

P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 6. Area subdivision shadow tracing. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
illumination. However, these rays are expensive be- 
cause of ray-surface intersections and may not even 
allow a good approximation to the true solution. 

If the only modeling primitive available is the poly- 
gon, we propose another method for soft shadow gen- 
eration. Given the light source and the point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP to be 
shaded, we can apply in reverse the polygon clipper 
described by Atherton, Weiler, and Greenberg” (see 
the subsection “Area subdivision” in “Hard shadow 
generation” above). 

Using any intersection culler, you can easily acquire 
a candidate set of objects lying between P and the 
light. Project the candidate objects onto the light 
source as viewed from P, then clip them using 
Atherton, Weiler, and Greenberg’s algorithm. After 
clipping all the candidate objects, identify exactly the 
region of the light source visible from P (see Figure 6). 
This region is then passed to any intensity integral 
solver. Whether the solver uses an a n a l y t i ~ ~ . ~ ’  or point 
sampling approach51 does not matter; the important 
result is that you can rely upon the shadow calcula- 
tions. You could also apply many coherence optimi- 
zations here. 

Bidirectional ray tracing 

Chattopadhyay and F ~ j i m o t o ~ ~  proposed a fast 
method named bidirectional ray tracing to generate 
soft shadows (as a result of inter-reflections) using a 
uniform voxel structure. Their method involves 
shooting shadow rays from the light sources to sur- 
faces (highly diffuse only) considered a potential sec- 
ondary light. This lets you calculate the intensity 
contribution to the surface. Then interpolate this con- 
tribution for the vertices of the voxels that contain the 
surface. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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As a second step, add an ( R  + 1)3-bit factor to each 
voxel vertex, where R x R x R is the resolution of the 
voxel structure. Each bit factor indicates whether ver- 
tex i is visible from the current voxel vertex. This 
handles diffuse inter-reflections of light: for each ver- 
tex i visible from the current voxel, the secondary 
light source contribution from the vertex intensity 
contribution is redistributed to the current surface. 
However, for each vertex zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, you must calculate the 
secondary contribution, and so on. The authors claim 
that one or two iterations of this process usually prove 
sufficient. The final illumination value at any shaded 
point thus results from an interpolation of the vertex 
information and retracing of the contributions of the 
vertices. 

The storage complexity of this approach is O(R6). 
The preprocessing necessary measures about 
O(EnR6), where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR6 accounts for the outer loop of cal- 
culations of the vertex bits and En is the worst-case 
cost for determining occlusion between the vertex 
points. Finally, the shadow rendering complexity is 
O(SR3), where S stands for the number of iterations of 
secondary illumination calculations. 

This approach for soft shadow generation has a 
problem: The image results differ significantly for dif- 
ferent voxel sizes due to the interpolation process 
between voxel vertices. Moreover, it can result in poor 
approximations, since the method does not take the 
surface orientations into account. 

Radiosity 

Another method of computing soft shadows comes 
from the calculation of radiosity.62 This class of algo- 
rithms can calculate diffuse inter-reflections between 
surfaces by determining an equilibrium energy bal- 
ance within an enclosure. So far, only polygonal sur- 
faces have been used for this rather expensive 
algorithm. 

Each surface (including a light source, which the 
algorithm also considers a surface) is subdivided into 
patches, where each patch i is assumed to possess a 
constant radiosity Bp Depending on the orientation of 
patches i and j ,  the fraction of the radiosity Bi reaching 
patch j is given by a geometric form factor Fir To 
determine these form factors requires a determination 
of interpatch visibility. Once you know the form fac- 
tors, solving a system of linear equations gives the 
radiosity, hence the shading, of each patch. 

Hemicube 

Two approaches described in the literature specific- 
ally handle soft shadows using the radiosity ap- 
proach. The first approach, proposed by Cohen and 
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Greenberg,” computes form factors by attaching a 
hemicube to each patch (see Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7) .  The hemicube 
consists of five grid planes surrounding the center of 
a patch. Each grid pixel (referred to as a delta form 
factor) contributes to the overall form factor. It con- 
tains a pointer to the closest projected surface visible 
from the patch and intersecting the given grid pixel. 
Other surfaces are then considered occluded from the 
reflected light of the current surface at that pixel. 

For a given grid pixel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ,  the closest patch projected 
onto this pixel might not cover it completely. Patches 
lying beyond this closest patch within the frustum of 
p are considered to lie completely in shadow, but they 
might not. Thus, the method might generate inaccu- 
rate shadows if there exist many visible patches with 
respect to the pixel, caused by the insufficiency of the 
hemicube resolution. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Shadow polygons 

Nishita and Nakamae6,53 proposed another ap- 
proach for soft shadow generation within radiosity. In 
the hemicube approach, the Bivalues are calculated at 
the center of the patch. Nishita and Nakamae pro- 
posed calculating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABi at the vertices of the patches and 
doing shadow testing only at these points. To do so, 
they added two additional terms to the form factors: a 
weighting function taking into account the location of 
a point on a patch, and a shadowing function indicat- 
ing the fraction of the patch k hidden from patch i by 
the other patches. They used shadow polygons to de- 
termine this shadowing function and identified the 
umbra and penumbra regions6 (see Figure 5). 

For each vertex of patch i, project shadow polygons 
towards all other patches j so that j now acts as the 
occluding object and i as the area light source. If a 
patch k lies inside the shadow umbra region, then no 
light can reach patch k from patch i; if patch k lies 
inside the shadow penumbra region, then light can 
partially reach patch k fiom patch i. Interpolating the 
luminance of each patch from the luminance at the 
vertices generates smoothed soft shadows. 

Complexity analysis 

The preprocessing complexity of the hemicube is 
O(En2R2), where n represents the number of patches 
in the scene, R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx R is the resolution of the hemicube, 
and EnR’ accounts for the scan-conversion cost per 
hemicube. Nishita and Nakamae’s approach has a cost 
of O((En)’I), where I is the cost of identifying the 
umbra and penumbra regions. 

The calculation of the form factors resulting from 
the hemicube approach tends to be faster than that of 
Nishita and Nakamae’s shadow polygons approach. 

Grid pixel 

Patch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 

Patch j 

Figure 7. Hemicube. 

However, the hemicube approach has the undesirable 
feature that the image results differ significantly with 
variations in the resolution of the hemicube. 

Both approaches only approximate the level of 
shadowing. Which method provides more accurate 
results remains unknown. 

Other radiosity approaches 

Many others have written about radiosity. We do not 
list those works, since most do not specifically ad- 
dress shadow determination. However, note one ex- 
ception: the use of ray tracing to replace the hemicube 
 approximation^,'^ which tends to be much more ex- 
pensive though more accurate in shadowing effects. 

Another exception appears in the work done by 
Campbell and F ~ s s e 1 1 . ~ ~  They adaptively subdivided 
the scene along the shadow boundaries in a progres- 
sive refinement scheme. Their method subdivides a 
light emitter until each element can be treated as a 
point light source. It then uses BSP shadow volume 
generation, similar to that described by Chin and 
Feiner,” to efficiently subdivide the receiver poly- 
gons for each element on the emitter. 

The quality of the shadows (especially sharpness) 
thus created greatly exceeds that of the previous tech- 
niques. However, you must seriously consider the 
time and storage complexity of their approach if you 
expect many iterations of the progressive refinement. 
Assume P points approximate an emitter and k is the 
number of iterations. Then the number of edges used 
to build a shadow BSP-tree on a single receiving poly- 
gon is O(kPEn), giving a worst case size of O((kPEn)’) 
for the shadow BSP-trees. For O(n) receiving poly- 
gons, this gives a total size of O(k2pE2n3). Keep in 
mind that P can be large and that k can be O(n) for a 
large number of strongly emitting or reemitting poly- 
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Figure 8. Shadows from transparent objects. Correct 
shadows produced by transparent objects are hard to 
calculate. This image illustrates the shadow and the 
concentration of light produced when the light goes 
through a glass of water. Pencil tracing was used to 
simulate this effect. (Courtesy of M. Shinya of NTT.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
gons. The above complexity is only for the storage: 
processing is even larger. 

Skylight illumination 

Nishita and Nakamae"' contributed the concept of 
adding skylight to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsoft shadows. With this method, for 
each point you want to shade, generate a hemisphere 
representing the sky and define band soiirces longitu- 
dinally on this hemisphere. By assuming a uniform 
luminance of the sky within each band, you can sani- 
ple the luminance only over the center line of each 
band. You can interpolate the luminance of the sky 
from clear to overcast. Every object in the scene is 
projected onto the sample lines to compute the ob- 
structed factor. If the point you want to shade lies on 
a tilted surface (with respect to the scene), this 
method tilts the hemisphere by the same angle and 
considers the light reflection from the ground for this 
tilted angle. The method also extends to take into 
account the skylight entering interiors. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Shadows from transparent 
objects 

One of the difficult problems encountered while 
generating realistic shadows is dealing correctly with 
shadows from occluding transparent objects. When 
light goes through a transparent object, the object can 
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change the properties of the incoming light, for in- 
stance, its direction and color. You must take these 
effects into account to generate correct shadows. 

One aspect in determining the shadows from trans- 
parent objects is the presence of concentration or dif- 
fusion of light passing through this type of object. One 
of the most noticeable effects is the presence of caus- 
tics. Caustics in optics are defined as the envelope of 
the rays going through an area. This creates highlights 
when light passes through a convex lens (illustrated 
in Figure 8) or reflects from a concave mirror. How- 
ever, this effect, which many algorithms try to cap- 
ture, tends to be computationally expensive. 

Determining shadows from transparent objects 
proves more complex in that you need to find not only 
the first occluding object (if transparent), but all pos- 
sible occluding objects in the direction of the light 
source(s). Determining shadows from transparent ob- 
jects is also more complex than the visibility problem, 
since transparent objects not located between the 
point to shade and the light source(s) can contribute 
to the final intensity within the shadow region. 

We must mention that the colored region produced 
from occluding transparent objects is not really a 
shadow. A shadow results from occlusion from light, 
but the colored region results from transmitted light. 
H owe v e r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. s in c e p r evi ou s works have c o nsi der e d 
these regions to fall in the class of shadows, and many 
of the techniques are similar, we will also study the 
algorithms that generate such effects. 

Note that, with tho exception of the discussion in 
the next section, all the algorithms discussed for 
transparent shadow generation can also generate soft 
shadows. 

Shadow ray 

Traditionally in ray tracing, shadows that result 
from occluding transparent objects are handled by 
detecting all occluding objects arid returning the frac- 
tion of light transmitted through the objects.28 This 
won't work for transparent objects because the shad- 
owing function is wavelength dependent. Moreover, 
it does not take into account the refraction of incom- 
ing light. 

Hall and Greenberg"" (and likewise Lee, Redner, and 
Uselton5' in images they generated) dealt with the 
display of colored transparent objects using the spec- 
trum absorption model, which accounts for scattering 
of refracted light sources in ray tracing. They did not 
explicitly mention the shadowing effects of transpar- 
ent objects. However, one of their images showed a 
green transparent object projecting a green shadow on 
an opaque surface. The implementation used approx- 
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Figure 9. Incorrect shadowing of transparent objects. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
imate transparency without considering refraction: 
They shot a single shadow ray to the light source, and 
all transparent objects that intersected the ray contrib- 
uted to the final shadow color through color filtering 
of all the occluding transparent surfaces. They con- 
sidered the Fresnel reflectance at the intersection of 
the ray with the surface to decide the percentage re- 
flected and refracted into the object. 

A simple trick to simulate the light attenuation from 
the shadow of transparent objects was described by 
P e a r ~ e . ~ ~  He attenuated the light as a function of the 
angle between the shadow ray and the normal at the 
intersection between the shadow ray and the object. 

Backward ray tracing 

Correctly generating transparent shadows in ray 
tracing just by applying a single shadow ray proves 
very difficult. Because of refraction, the shadow ray 
aimed towards the light source bends as it enters and 
exits transparent objects, and it might not even reach 
the light source (see Figure sa). Similarly, other ray 
paths that go through transparent objects might con- 
tribute to the shading value but are not part of the 
shadow ray (see Figure 9b). The above two scenarios 
will result in incorrect shadowing if a shadow ray is 
shot to the light source. 

This suggests you need the tracing of rays from the 
light source, so that all refracted light reaching any 
point is considered. This general approach should 
theoretically deal with diffuse inter-reflections and 
generate concentration and diffusion of light as well. 
This approach resembles the backward ray tracing 
approach proposed by Arvo" (assuming only point 
light sources). Stochastically chosen rays are shot 
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Cone of 
converg,ence 

Shadow 

Figure 10. Concentration from parallel rays. 

from the light sources as a preprocessing step, and the 
amount of light that reaches the surfaces is recorded 
via a texture map storage scheme. 

When shooting rays from the light, you need to 
shoot a very large set of rays in all directions to accu- 
rately account for diffuse inter-reflections. Thus, 
Arvo's approach, and that of some  other^,^'-'^ requires 
a great deal of storage and processing. In addition, the 
generated images usually exhibit aliasing and spar- 
kle-like artifacts due to the insufficiency of the sam- 
pling done. Watt7' used a technique similar to beam 
tracing from the light, but the concentration of light in 
the resulting images betrayed their polygonal origin. 

Cone of convergence 

Inakage73 used ray tracing to model the concentra- 
tion of light passing through a convex lens. He illus- 
trated a limited effect where a spherical lens projects 
a shadow with a concentration of light within the 
shadow area. Given parallel rays of light striking a 
perfectly spherical lens (that is, given a directional 
light source), he assumed a resulting convergence of 
light intensity at a focal point beyond the object. 

The cone of convergence (see Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10) is defined 
as the volume swept by the joining of the focal point 
and the silhouette of the sphere. If the point to shade 
falls within this cone of convergence, then it lies 
within caustics, and intensity at that point increases. 
Note that you would calculate the cone of conver- 
gence during preprocessing and must do so for each 
transparent sphere per light source. 

This approach has many problems. First, Inakage 
did not consider the light concentration beyond the 
cone of convergence and assumed a uniform concen- 
tration of light within the cone of convergence. Sec- 
ond, the algorithm does not deal with occlusion of 
these light rays, which results in incorrect shadowing 
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effects. Finally, assuming a parallel set of incoming 
rays means the resultant convergence is valid only for 
a single thin lens, but not for a sphere of arbitrary 
radius. 

Paraxial approximation theory, presented in the 
next section, deals more effectively with the genera- 
tion of caustics. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Pencil tracing 

Applying fundamentals of paraxial approximation 
theory, Shinya, Takahashi, and N a i t ~ ~ ~  proposed an- 
other method for handling transparency: concentra- 

Pencil tracing-basically 

an intermediary between cone 

tracing and ray tracing-shoots a 

group of rays 

in a small solid angle. 

tion and diffusion of light. The axial ray surrounded 
by nearby paraxial rays defines a pencil. 

Pencil tracing is basically an intermediary between 
cone tracing and ray tracing. Ray tracing traces lines, 
so only point-sampled information can be gathered. 
Cone tracing traces a single conic pencil to get a better 
approximation. Pencil tracing shoots a group of rays 
in a small solid angle, and sampled information can 
be grouped together to get an even more precise solu- 
tion than previous attempts. Divergence (Figure l l a )  
and convergence of light (Figure I l b )  result naturally 
from this algorithm. 

To generate shadows from transparent objects, this 
method shoots pencils from the lights to the bounding 
volumes of all transparent objects, then propagates 
them to the surfaces. This takes refraction into ac- 
count, but still only first-generation transmitted light. 

This processing requires shadow rendering com- 
plexity of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(QEn), where Q stands for the average 
number of pencils shot from the light source to each 
transparent object. 

Shinya, Saito, and Takahashi proposed an extension 
of the approach including wavelength d e p e n d e n ~ y . ~ ~  

The rendering equation and path tracing 

K a j i ~ a ~ ~  proposed an approximation to the render- 
ing equation that uses ray tracing. Named path trac- 
ing,  i t  only traces certain secondary rays for 
computational speedup. The rays traced must main- 
tain the correct proportion of secondary ray types con- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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tributing to each pixel. These ray types include reflec- 
tion, inter-reflection, refraction, and shadow, where 
inter-reflection rays are shot stochastically into the 
environment. However, choosing only certain sec- 
ondary rays can conceivably result in erroneous shad- 
ows and undesirable light effects. 

Light-driven global illumination 

Proposed as a light-driven approach to global illu- 
mination (for both the specular and diffuse compo- 
nents ) ,  Fiat77 handles inter-reflections, inter- 
refractions, shadows, and concentration and diffu- 
sion of light by balancing the power of regions of 
space. Basically, a hierarchical data structure envel- 
ops the scene, in this case an octree. The goal is for the 
region occupied by each octree cell to achieve an ap- 
proximate power balance. Thus, in each cell, the 
power emitted minus the power absorbed must ap- 
proximately equal the power distributed to all the 
other cells minus the power acquired from all the 
other cells. 

To keep track of the traversal of light power within 
regions, each octree is surrounded by six R x R arrays 
of cells called sexells. Light traversing an octree re- 
gion must pass through the sexells. The same goes for 
reflections and refractions of light within the octree 
cell calculated using ray-surface intersections. Each 
sexell is associated with a hemisphere of discretized 
directions that carries information on the power 
transported in each direction. When some power is 
transferred to an adjacent cell, that particular octree 
cell contains new information on the power inheri- 
tance and must be balanced. Selecting the least bal- 
anced cell to adjust first allows the use of a pro- 
gressive refinement approach in this balancing. Itera- 
tions of these power adjustments continue until the 
octree regions are sufficiently close to a power bal- 
ance. An initial rendering step allows for sharp shad- 
ows from point and directional light sources. 

Fiat, like other approaches handling inter-reflec- 
tions, requires a great deal of memory and computa- 
tional resources. The other disadvantage of the 
algorithm is that it uses discrete directions to store 
information in the sexell. Conceivably, illumination 
might be slightly distorted or shifted if large amounts 
of activity (such as many objects, many inter-reflec- 
tions) lie between neighboring sexell directions. 

Shadows of complex surfaces 

The shadows dealt with so far in this article include 
the shadowing on and from objects without concern 
for the surface definition of these objects. In this sec- 
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tion, we discuss problems related to the shadowing 
evaluation of parametric and implicit surfaces. In ad- 
dition, we present shadowing on and of texture- 
mapped surfaces, as well as self-shadowing from 
facets. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Shadows of parametric and implicit surfaces 

Parametric and implicit surfaces can be rendered 
either by direct numerical techniques or by poly- 
gonization. Unfortunately, neither method does a to- 
tally satisfactory job in rendering them accurately. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Numerical iteration techniques 

Numerical iteration techniques solve for the visible 
surface directly and should therefore theoretically 
provide more accurate results. However, they are ex- 
pensive to evaluate and difficult to implement ro- 
bustly. We present only brief descriptions of a few 
approaches here to give an insight into the difficulties 
encountered. This section is by no means thorough. 

Various methods exist to evaluate implicit surfaces 
directly. As an example, Blinn7’ used a combination 
of Newton’s iteration and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAregula falsi to render alge- 
braic surfaces. However, convergence to a proper so- 
lution cannot be guaranteed unless you can generate 
an accurate start point; divergence shows up as holes 
in the visible surface and shadows. H a ~ u a h a n ~ ~  de- 
rived analytic solutions for low-order polynomial sur- 
faces, but not general enough to handle other 
formulations. Two recent works used interval analy- 
sis to guarantee correct intersection results for certain 
classes of implicit surfaces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,80,81 which also improves 
shadow determination. 

Rendering parametric patches can be just as diffi- 
cult. Kajiya” ray traced parametric bicubic patches by 
combining two sets of equations into an 18th degree 
polynomial. In his original paper, Kajiya used 
Laguerre’s root-finding algorithm, and the overall per- 
formance was rather poor. However, the method im- 
proves with a faster root finder and has become a little 
more ~ o m p e t i t i v e . ~ ~  

Sweeney and B a r t e l ~ ~ ~  used a multivariate Newton’s 
method to calculate roots, but it tends to be numeri- 
cally unstable. This method does not converge if the 
ray is perpendicular to the surface normal at the inter- 
section point (since it needs the Jacobian of the func- 
tions). This problem appears at the silhouette of the 
shadow. 

T ~ t h ~ ~  used interval arithmetic to arrive at suitable 
roots. This tends to be more stable than most other 
methods, but is quite slow (except compared to 
Kajiya’s method). 
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Figure 11. Paraxial approximation theory. 

Fournier and Buchanan86 used the properties of 
Chebyshev polynomials as bases both to get improved 
boxing and to get better criteria to stop the subdivi- 
sion. At the end of the subdivision, a bilinear sub- 
patch is intersected with a guaranteed tolerance on 
parametric values. 

Polygonization 

Parametric and implicit surfaces are often rendered 
by polygonization (decomposition of the surfaces into 
polygons). Polygonal decomposition has the advan- 
tage of simplicity in rendering polygons efficiently. 
However, a uniform subdivision scheme may either 
subdivide too much for low curvature regions or too 
little for high curvature regions. Adaptive subdivision 
of patches is sometimes used, but you must take care 
to avoid cracks between polygons resulting from dif- 
ferent neighboring polygon subdivision levels. A 
common practice involves subdividing until the de- 
composed polygons meet certain flatness criteria. 
Two adjacent polygons meet the flatness criteria if the 
angle between their normals or tangents is sufficiently 
small. 

25 



Figure 12. Polygonization. Polygonization offers one 
answer to the problem of rendering some primitives. 
However, it has some drawbacks, some of them illus- 
trated in this image. Notice the silhouette of the 
sphere and the shadows of the lamp shade on the 
walls. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

One problem with the polygonization of surfaces is 
that objects do not appear smooth. Within each poly- 
gon, interpolating the surface normals can reduce this 
effect. Unfortunately, shadow calculations do not 
have sufficient interpolation information, thus result- 
ing in polygonal shadow silhouettes (illustrated in 
Figure 12). 

Snyder and Barr3' proposed an improvement by 
subdividing more at the silhouette of the surface (a 
function of the light source position) to reduce this 
artifact. That had some success. But multiple light 
sources introduce the danger of severe surface subdi- 
vision. 

Max87 also attempted to smooth polygonal silhou- 
ettes as well as shadows from polygonal edges. 

Polygonization also has the terminator problem, 
where incorrect shadow determination results from 
the polygonal approximation. A point on a convex 
surface is lit if the angle between the normal at this 
point and the light direction is less than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArVz(7d. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI?> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0). 
In the case of concave surfaces, a point can lie in 
shadow even if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7d. I?> 0. Then testing determines 
whether a ray shot in the light direction will intersect 
the object again. A simple method to avoid checking 
this intersection consists of tessellating the concave 
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surface into many polygons. Figure 13 illustrates the 
terminator problem. 

To keep smooth self-shadowing while interpolating 
normals (the terminator problem) in ray tracing, Sny- 
der and Barr3' proposed starting the shadow ray fur- 
ther from the intersection point. However, this can 
cause further artifacts if poorly approximated. 

0 

Figure 13. Terminator problem. 

Shadows on texture-mapped surfaces 

Texture mapping offers a very powerful approach 
for providing detail and realism to surfaces at a low 
cost for modeling and rendering. Some texture map- 
ping aims to give the appearance of a bumpy surface. 
For example, in bump mappinga8 the surface normal 
is perturbed to make the surface appear bumpy, with- 
out altering the surface itself. 

Two problems arise with shadows using bump map- 
ping: the shadow cast on the surface by other surfaces 
and the shadow from bumps onto other surfaces and 
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on itself. Another form of texture mapping, transpar- 
ency mapping, also often exhibits incorrect shadow- 
ing effects if care is not taken. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Shadows on bumpy surface 

Perturbing the surface normal makes the surface ap- 
pear bumpy. This, in effect, also implicitly perturbs 
the visible surface. However, shadow determination 
as applied to the bumpy surface has been dealt with, 
assuming the visible surface region is not perturbed 
(since the shadow determination is done indepen- 
dently of the surface normal). See Figure 14. This 
problem proves a difficult one because reconstruction 
of the surface bumpiness from surface normals is nec- 
essary for an accurate solution of the shadowing. No 
good solutions have yet been proposed. 

Self-shadowing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof bumpy surfaces 

In displacement mapping, instead of the surface 
normal, the height of the surface is modified. For each 
point on a surface. there exists a corresponding height 
value by which this point would be raised on  the 
surface. Maxs9 approximated the shadows cast by 
these bumps on the same surface by introducing hori- 
zon mapping. Interpreting the bump function as a 2D 
table of height values, Max computed and stored. for 
each height value, the angle between the horizon and 
the surface plane at eight azimuthal directions on the 
surface plane. During the rendering stage, the horizon 
angle at the intersection point is interpolated from the 
light direction and the horizon map. If the horizon 
angle from the surface normal exceeds the light angle, 
then this point lies in shadow. 

Max also proposed a correction of the horizon angle 
for curved surfaces and penumbra generation from 
circular area light sources. The aliasing of the shad- 
ows (due to discrete sampling) can be reduced using 
coarser bump functions, chosen depending on how 
much of the bumps are covered by a pixel. Although 
the technique might quite likely miss isolated narrow 
peaks, the overall self-shadowing effect is greatly 
improved. 

In some cases of analytic surface maps, the function 
defining the horizon angle can be evaluated analyti- 
cally. Similarly, for statistically defined surface maps, 
the horizon angle can be approximated based on prob- 
abilistic theory. In these cases, many problems that 
occur because of the discrete sampling just disappear. 

Transparency mapping 

Transparency mapping modifies the level of 
opaqueness of the surface. However, just about all 

Novembr,r 1990 

Figure 14. Shadows on bump-mapped surfaces. The 
normals of the surface plane have been modified by a 
bump map function. Notice the shadows of the alge- 
braic surfaces onto the plane; the shadows are sharp 
and regular, as ifthe normals have not been modified 
on the plane. 

software that provides both features of shadolus and 
transparency mapping ignore the combination of 
opaque and transparency shadow effects gerierated 
from such surfaces. This effect is difficult to generate 
using solely preprocessing shadow algorithms. I t  ap- 
pears that evaluation of mapping is required on the 
fly, which proves easy for some forms of ray tracing. 
But  the evaluation of the mapping for shadow deter- 
mination increases computations. 

Self-shadowing of facets 

Smaller arid denser bumps over a surface prevent us 
from perceiving the bumps and the shadows. How- 
ever. the reflection of light behaves differently. and 
the local reflection model should capture this. 

I n  a reflection model proposed by Torrance and 
Sparrow.'"'.'" the surface bumps are represented by a 
ran do in 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA!, oriented c o 11 e c t i on of mirror-like facets. 
Assuming that the facets take the form of V-shaped 
grooves. the model can approximate the self-shadow- 
ing effect on thein. 

However, for many types of surfaces, the facets ex- 
hibit preferred orientations. Then the shadowing ef- 
fect does not depend only on the angle between the 
light and the surface normal, but also on the orienta- 
tions of the facets relative to the surface. In the case of 
simple distributions of facets. the attenuation factor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L /  



Particle systems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Reeves and BlauZ4 used a particle system to generate 

images of trees (see Figure 16). The self-shadowing of 
branches within a tree is associated with the ambient 
term of the illumination model. The value of this term 
decreases exponentially as the particle location gets 
deeper within the tree. To determine the shadows cast 
by other trees onto one tree, Reeves and Blau defined 
a horizon line using the locations of the tops of the 
trees positioned between the light source and the cho- 
sen tree. This line and the light source direction de- 
fine a shadow plane. If a particle lies under this plane, 
it has a higher probability of being shaded with only 
the ambient term. 

The shadows cast from trees onto the ground are 
determined with a shadow mask. First, compute an 
orthographic view of the trees from the light. When 
rendering a particle on the ground, invoke a test with 
the shadow mask to determine if the particle lies in 
the shadow of trees. However, calculating the true 
shadowing requires tests with objects other than trees. 

Figure 15. Self-shadowing of facets. The bumps over 
a surface can be so small that you cannot see them. 
Depending on the orientation of these facets, reflec- 
tion of the light and shadowing differs. This image 
shows a simulated Christmas ball. The facets are 
defined as threads going from one pole ofthe sphere 
to the other. Notice the darker area near One Pole. 

In reality, for each shadowing particle system you 
must determine the shadowing stochastically, but in 
close relation with the modeling process of the parti- 
cles. Thus, to some extent, each particle system must 
have its own shadowing determination algorithm. 

can be computed analytically. For instance, Poulin 
and Fournierg2 computed the self-shadowing caused 
by adjacent cylinders simulating an anisotropic sur- 
face (illustrated in Figure 1 5 ) .  Cabral, Max, and 
Springmeyerg3 used an approach similar to that of 
Maxsg to compute a bidirectional reflection map from 
a height field applied to the facets distribution. 

Shadows for particle-based 
objects 

To render realistic images from nature, the modeling 
of scenes would require a tremendous amount of 
work just to specify the scene description. Systems 
have been developed to procedurally and stochasti- 
cally transform a small set of simple constraints into a 
complete description of very complex objects (such as 
fire,g4,95 trees, and grassz4). A simple graphics primi- 
tive, the particle, is used to create this complexity. 

Such systems introduce new dimensions to the 
shadowing problem. Scenes composed of millions of 
particles become a formidable task to shade exactly. 
Probabilistic schemes must then be extended to the 
shadowing of each particle. 

Volume densities 

Blinng6 simulated the interaction of light with 
clouds (and dusty surfaces) by using statistical simu- 
lation of light passing through and reflected by clouds 
composed of small particles, considering only single 
scattering. The shadowing resul ts from other 
particles’ blockage of light. If you assume that all par- 
ticles have constant radius, you can use any statistical 
process (in this case, a Poisson process) to model the 
probability that a particle is completely illuminated 
and that the reflected light being in the view direction 
does not intersect any other particle. Thus, an analytic 
solution to shadow determination is available. 

Kajiya and Von Herzeng7 proposed a more general 
model and applied it to ray tracing. Their single scat- 
tering model resembles Blinn’s. As a preprocessing 
step, create a 3D grid of voxels. Each voxel represents 
a point in 3D space and contains the contribution of 
each light to the brightness of each point in space (the 
density distribution). During actual ray tracing, deter- 
mine the brightness of the ray by summing the contri- 
bution of each voxel element that the ray pierces. 

The main computational cost of this approach 
comes from the integral evaluation of the ray bright- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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ness. Note also that the 3D grid of density distribution 
information requires a great deal of memory. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Participating medium 

The treatment of volume densities easily extends to 
media that cause emission, scattering, and absorption 
of the light. 

Max" modeled atmospheric illumination assuming 
a volume density model like Blinn'sq': low albedo 
(reflective power) and single scattering. Thus, an ana- 
lytic solution for the scattered energy at each point is 
possible. Computation of scattered energy requires 
information about the portions of the viewing ray that 
is shadowed, and an extended shadow polygon ap- 
proach' can be used here. If the ray falls completely in 
shadow, then the illumination value is a function of 
the surface color and ambient illumination. If the ray 
is partially illuminated, then the illumination value is 
also a function of the scattered energy reaching the 
illuminated portion of the ray. 

Efficient implementations of this approach using 
regular grid subdivisions were described by Woo and 
Amanatides17 and Ebert and Parenty8 More general 
models of density distribution appear in work by 
Nishita, Miyawaki, and Nakamae"" and Ebert and 
Parent. 98 

Rushmeier and Torrance'"" appl ied the zonal 
method used in heat transfer to the computation of 
radiosity. Their method discretizes the medium into 
small volumes for which the form factors volume/vol- 
ume and volume/surface are calculated. The shadows 
are generated with the hemicube (described earlier) 
extended to a full cube. The complexity of the algo- 
rithm is the same as the general radiosity approach, 
taking into consideration the increase of volumeivol- 
ume and volume/surface form factor calculations. 

Conclusions 

The many algorithms examined in this survey give a 
common impression: that shadow determination is 
an expensive process. This is not, of course, very sur- 
prising when you consider that the simplest shadow 
problem is a version of the visibility problem and that 
while a scene has only one viewpoint, it can have 
many lights. 

Another unfortunate conclusion is that once you 
have determined that a region lies in shadow, you 
have not reached the end of the problem. You then 
have to decide how to modify the illumination ac- 
cordingly. This proves especially difficult in the case 
of soft shadows, where the real answer results from a 
convolution between the occluding object and the 

November 1990 

Figure 16. Andre's forest. This scene of a forest was 
generated by a particle system. Notice the self-shad- 
owing of branches of a same tree and the shadows of 
the trees projected onto the grass. (Courtesy of W. 
Reeves of Pixar.) 

light. The survey also makes clear that generating ac- 
curate shadows from transparent objects, which can 
diffuse and concentrate the light, proves extremely 
difficult. 

The three basic factors to consider in the choice of a 
shadow algorithm are (1) the rendering technique 
used, (2) the modeling primitives used, and (3) the 
degree of physical accuracy needed. Other constraints 
usually decide the first two factors, leaving only the 
third to be decided by the shadow maker. To some 
extent, one can question the importance of generating 
physically exact shadows in imagery for many appli- 
cation fields. Some kludges, like smoothing the po- 
lygonal shadows via interpolating curves or slowly 
increasing the intensity near the edges of the cast 
shadows (similarly with the penumbra region), could 
improve the quality of the images and preserve infor- 
mation about the scene. On the other hand, such 
kludges require some additional intelligence or heu- 
ristics from the system. This is worth considering be- 
fore involving more research and computing time in 
finding an exact solution to the problem of shadow 
determination. 

Several directions for future research emerge from 
this survey. While many algorithms exist for shadows 
of polygonal objects, very few of the high-perfor- 
mance display systems in laboratories or available on 
the market incorporate shadows, even though almost 
all are based on polygonal primitives. A notable ex- 
ception, Pixel-Planes," can compute shadows with a 
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version of the shadow-count algorithm. Some version 
of the algorithms described in the section “Shadow 
volumes” above should be applicable to most other 
systems as well, since they all use z-buffers for visibility. 
Another area needing more results involves shadows 
of complex primitives, such as parametric and im- 
plicit surfaces. While subdividing such surfaces into 
polygons seems reasonable and efficient for rendering 
their visible parts, it looks rather wasteful for shad- 
ows, since you only need the outline of the shadow 
area and since each polygon costs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(E) for processing 
shadows in most algorithms. In the same category, we 
see room for improvement in shadows of textured and 
bump-mapped surfaces. 

Finally, in this survey we have only discussed 
shadow determination within a single image. Are ad- 
ditional optimizations achievable during an anima- 
tion? While some of the algorithms discussed here do 
not require (or require little) additional processing for 
a fly-by animation, few animations can rely on the 
assumption of a static scene. Other works have dis- 
cussed optimization of shadow determination for cer- 
tain  animation^.^^^^"'*^^^ 

We hope this survey helps cast an even larger 
shadow on computer graphics. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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