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ABSTRACT

Discrete-event simulation optimization is a problem of
significant interest to practitioners interested in extracting
useful information about an actual (or yet to be designed)
system that can be modeled using discrete-event simulation.
This paper presents a brief survey of the literature on
discrete-event simulation optimization over the past decade
(1988 to the present).  Swisher et al. (2000) provides a more
comprehensive review of this topic while Jacobson and
Schruben (1989) covers the literature preceding 1988.
Optimization of both discrete and continuous input
parameters are examined herein.  The continuous input
parameter case is separated into gradient and non-gradient
based optimization procedures.  The discrete input parameter
case differentiates techniques appropriate for small and for
large numbers of feasible input parameter values.

1 INTRODUCTION

Simulation optimization provides a structured approach to
determine optimal input parameter values, where optimal is
measured by a function of output variables (steady state or
transient) associated with a simulation model.  Several ex-
cellent surveys have been written on this topic.  Azadivar
(1999) provides a survey of issues specific to simulation
optimization.  Andradottir (1998a,b) also presents a review
of simulation optimization techniques, focusing on both
gradient estimation techniques (for continuous input
parameters) and random search methods (for discrete input
parameters).  Carson and Maria (1997) present a general
summary of simulation optimization.  Fu (1994a,b) pro-
vides a comprehensive review of simulation optimization
and simulation gradient estimation techniques.  Vysypkov
et al. (1994) classify and analyze different situations in
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simulation model optimization and suggest appropriate
search algorithms.  Gaivoronski (1992) offers a survey of
recent results on the optimization of stochastic discrete-
event dynamic systems.  Safizadeh (1990) contributes a
general survey of simulation optimization techniques and
procedures.  Park (1990) provides an overview of
simulation optimization techniques, including a discussion
of methods appropriate to uni-modal and multi-modal
objective functions.  Glynn (1989) discusses research
issues associated with optimizing simulated systems,
including convergence rates for different gradient
estimators and stochastic approximation (SA) algorithms.

The objective of this paper is to survey the simulation
optimization literature since 1988.  At that time, most
simulation optimization procedures were path search
based, involving some type of gradient estimation
technique (e.g., perturbation analysis) imbedded in a SA
algorithm.  Other techniques that were reported included
pattern search methods (e.g., method of Hooke and
Jeeves), random methods, and integral methods.  This
survey covers several new advances that have surfaced
through the course of the past decade, including multiple
comparisons with the best and metaheuristics such as tabu
search and simulated annealing.

The paper is organized as follows: Section 2 provides
a description of the problem.  Section 3 looks at simulation
optimization techniques designed for continuous input
parameters, while Section 4 looks at techniques for discrete
input parameters.  Section 5 concludes the paper.

2 PROBLEM DESCRIPTION

Consider a discrete-event simulation model with p
deterministic input parameters ψ ≡ (ψ1,ψ2,�,ψp) and q
stochastic output variables Y ≡ (Y1,Y2,�,Yq), where Y is a
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function of ψ (i.e., Y = Y(ψ)).  Suppose that the input
parameters are defined over a feasible region ΨΨΨΨ.  Define a
real function of Y, C(Y), that combines the q output
variables into a single stochastic output variable.  The goal
is to determine values for ψ such that F(ψ) , the simulation
response function, is optimized.  Typically, F(ψ) ≡
E[C(Y(ψ))].

The p deterministic input parameters ψ can be either
continuous or discrete (or both).  For now, assume that the
p input parameters are either all continuous or all discrete.
If the p input parameters are continuous, assume that F(ψ)
is continuously differentiable, where ψ is defined over the
feasible region Ψ.  If the p input parameters are discrete,
the feasible region Ψ can be either countably finite (and
small), countably finite (and large) or countably infinite
(the last two classifications will be grouped together).  The
simulation optimization techniques that have been applied
depend on whether the input parameters are continuous or
discrete.  Each of these cases will be treated separately.

The challenge associated with determining ψ* = arg
optψ∈ΨΨΨΨ F(ψ) is that F(ψ) cannot be observed directly, but
rather, must be estimated.  This may require multiple
simulation run replications or long simulation runs, with
F(ψ) estimated by F� (ψ) using Yi(X)  as  the ith output from
n simulation replications.  The stochastic nature of the
output from a simulation run complicates the optimization
problem.  Note that this survey focuses on single response
optimization. See Evans et al. (1991) for a description of
techniques that can be used for the multi-criteria simulation
optimization problem.

3 CONTINUOUS INPUT
PARAMETER METHODS

The feasible region, ΨΨΨΨ, is uncountable and infinite when
the set of input parameters are continuous.  An extensive
body of research exists for simulation optimization
problems of this type.  Such continuous input parameter
methods may be classified as either gradient-based or
nongradient-based.

3.1 Gradient Approaches

Gradient-based simulation optimization procedures have
attracted a great deal of research attention over the past
decade, due largely to the enormous amount of research
attention given to gradient estimation techniques.
Perturbation analysis (Bettonvil 1989, Glasserman 1991,
Ho and Cao 1991), likelihood ratios or score functions
(Glynn 1987, Rubinstein 1991, Rubinstein and Shapiro
1993), harmonic analysis (Jacobson and Schruben 1999),
and phantom rare perturbation analysis estimation
(Bremaud and Vazquez-Abad 1992) have been studied
with the objective of developing efficient gradient
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estimators applicable to a broad class of discrete-event
simulation models.  These gradient estimators are then
imbedded in optimization algorithms which control the
step size taken in the gradient direction at each iteration.
SA (Robbins and Monro 1951, Kiefer and Wolfowitz
1952) is the most popular and widely used optimization
algorithm used for this purpose.

SA has been applied to numerous types of simulation
models, using several different gradient estimation
procedures.  Suri and Leung (1987) present a single run
optimization procedure that uses SA with perturbation
analysis gradient estimates.  Their results suggest that even
with multiple input parameters, their procedure obtains good
solutions in a reasonable amount of computing time.  In
contrast, Arsham (1996) presents a single run optimization
technique that uses the score function for gradient
estimation.  He shows the method to be particularly effective
and efficient for the M/M/1 queueing problem.  Fu and Ho
(1988) provide an empirical study of SA also using the
single server queue.  They conclude that the performance of
SA can be improved based on the quality of the search
direction estimator used.  Leung and Suri (1990) compare
the finite-time behavior of the Robbins-Monro SA algorithm
and a modified (single run) SA algorithm that uses
projection operators on an AR(1) process.  Suri and Leung
(1991) further illustrate these results on a M/M/1 queue
simulation model.  Wardi and Lee (1991) propose and apply
a steepest descent algorithm with Armijo step sizes and
gradient estimation via finite perturbation analysis to
queueing networks.  The algorithm does not require an a
priori rate of reduction for the step sizes, allowing them to
remain large and provide substantial descent until the iterates
approach optimal (suboptimal, stationary) points.  L�Ecuyer
and Glynn (1994) prove that for the SA algorithm to
converge (when applied to at GI/G/1 queue), the gradient
estimates must converge, hence the simulation run length
must approach infinity.  Fu (1990) presents (and proves the
convergence of) a SA algorithm using infinitesimal
perturbation analysis for a GI/G/1 queue.  Fu and Hu (1997)
discuss numerous examples of applying different variations
of perturbation analysis with SA algorithms.  Hill and Fu
(1994a, b) introduce simultaneous perturbation stochastic
approximation (SPSA) that combines simultaneous
perturbation gradient estimation (Spall 1992) with SA.
SPSA requires only two sample estimates to compute a
gradient estimate, regardless of the number of input
parameters of interest, thereby significantly reducing the
number of simulation runs for multi-parameter problems.
As these papers demonstrate, SA has been applied in wide
and varied ways over the last decade.

Research has also been undertaken to identify ways to
accelerate the convergence of SA.  Andradottir (1990)
presents a scaling modification to SA that is provably
convergent on a large class of problems, and in many
instances converges faster to the optimal input parameter
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values.  Andradottir (1991) obtains similar results with a
projected SA algorithm. She notes that if the feasible
region is unbounded, and the simulation expected
responses function grows faster than a quadratic function
in ψ, then the stochastic approximation algorithm may not
converge.  To overcome this and establish convergence,
Andradottir (1995) presents a projection modification to
SA, while Andradottir (1996b) presents a scaling
modification to SA.  Andradottir (1996c) presents results
with a Robbins-Monro SA algorithm using likelihood ratio
gradient estimates.  Yakowitz (1993), motivated by the
machine learning problem, describes a globally convergent
SA algorithm that assumes the objective function to be
smooth.  This restriction on the objective function yields an
accelerated convergence rate that could be applied to a
discrete-event simulation model.

Research on gradient-based simulation optimization
techniques other than SA has also been reported.  For
example, Joshi et al. (1995) present an enhanced response
surface methodology algorithm that employs conjugate
gradient search techniques, second order models, and
common random numbers.  In contrast to SA, Shapiro
(1996) investigates stochastic counterpart (SC) methods in
which F(ψ) is approximated by an average function and
then solved using a deterministic optimization algorithm.
SC methods are meant to overcome the slow convergence
rates, absence of robust stopping rules, and constraint
handling difficulties exhibited by SA.  Shapiro suggests
that the use of steepest descent algorithms with Armijo step
sizes (Wardi 1990) are appropriate for use in SC methods.
Rubinstein (1997) develops an SC algorithm for optimizing
simulation models with rare events.

3.2 Non-Gradient Approaches

Non-gradient approaches provide an alternative to SA and
the gradient estimation-based procedures described in
Section 3.1.  These methods include the Nelder-Mead
(simplex) method and the Hooke and Jeeves method.

Haddock and Bengu (1987) present an unconstrained
simulation optimization procedure that incorporates the
Nelder-Mead method, the Hooke and Jeeves method, and a
modified integer parameter search.  Barton and Ivey (1991,
1996) present a modification to the Nelder-Mead method
for simulation optimization that reduces the risk of false
convergence.  Humphrey and Wilson (1998) also present a
variant of the Nelder-Mead method that is designed to
avoid excessive sensitivity to starting values, premature
termination at a local optimum, lack of robustness against
noisy responses, and lack of computational efficiency.  The
authors demonstrate that their method provides improved
performance, but requires slightly higher computational
effort than  either Barton and Ivey or a traditional Nelder-
Mead approach.  Tomick et al. (1995) present guidelines
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on the number of simulation replications that reduce the
frequency of inappropriate (non-optimal) termination.

Other approaches have also been considered.  Gurkan
et al. (1994) present the sample path method for simulation
optimization.  Their approach determines the optimal
solution for each simulation sample path, and iteratively
moves towards an optimal solution with each successive
sample path.  Robinson (1996) shows that under certain
assumptions sample path optimization will almost surely
find a point that is sufficiently close (i.e., user-specified) to
the set of optimizers of the limit function.  Dolgui and
Ofitserov (1997) propose a method that uses information
from the previous simulation to find a new starting point
which is closer to the global optimum.  Their method is
applicable to both discrete and continuous optimization
problems.  Schruben (1997) introduces a simulation
optimization procedure that uses event time dilation and
simultaneous run replications.  Lee et al. (1997) discuss the
reverse-simulation method for simulation optimization.

4 DISCRETE INPUT
PARAMETER METHODS

Several techniques have been developed for simulation
optimization when the number of input parameter values
(i.e., the size of ΨΨΨΨ) is discrete.  If the set ΨΨΨΨ is finite and
small, ranking and selection and multiple comparison
procedures are appropriate (Goldsman and Nelson 1994,
1998a, Bechhofer et al. 1995, Hsu 1996).  If the set ΨΨΨΨ is
infinite or very large, then techniques such as ordinal
optimization (Ho et al. 1992), simulated annealing
(Fleischer 1995), tabu search (Glover and Laguna 1997),
and genetic algorithms (Liepins and Hilliard 1989) have
been adapted for the simulation environment.

4.1 Small Number of Feasible Solutions

Ranking and Selection (R&S) focuses on selecting the
optimal input parameter values over a finite set ΨΨΨΨ =
{ψ1,ψ2,�,ψk}, k < +∞, where k is small (i.e., 2 to 20).  The
objective is to determine which of the k input parameter
values minimizes F(ψ).  By applying a two-stage
procedure (Dudewicz and Dalal 1975, Rinott 1978), the
output from simulation runs at the k input parameter values
can be used to determine the most likely input parameter
values that minimize F(ψ).  By defining differences in
F(ψ) that are less than δ > 0 to be insignificant, we can
assure the probability of making the correct selection P*
by choosing the length of our simulation run carefully.  In
general, as P* approaches one, or alternatively, as δ
approaches zero, the length of the k simulation runs must
approach infinity.  Procedures of this type are referred to as
indifference zone ranking and selection (R&S) procedures.
To apply these procedures, the simulation runs must be
independently seeded to ensure that the simulation outputs
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from each run are independent.  Koenig and Law (1985)
extend the indifference zone approach for use as a
screening procedure.  They present a method for selecting
a subset of size m (user-specified) of the k systems so that
with probability at least P*, the selected subset will contain
the best system.  Morrice et al. (1998, 1999) propose an
indifference zone R&S procedure that allows multiple
performance measures through the use of a multiple
attribute utility function.  A second type of R&S procedure,
known as subset selection, aims to produce a subset of
random size that contains the best system with probability
P* without specification of an indifference zone (i.e., δ =
0).  Originally these procedures saw little usage, since they
required equal and known variances among alternatives,
though Sullivan and Wilson (1989) have made subset
selection more feasible with a procedure that allows for
unknown and unequal variances.

Like R&S, multiple comparison procedures (MCPs)
attempt to identify the optimal input parameter values over
a finite set ΨΨΨΨ = {ψ1,ψ2,�,ψk}, k < +∞.  MCPs approach
the optimization problem as a statistical inference problem
and, unlike R&S procedures, do not guarantee a decision.
Three main classes of MCPs are used in practice:  all
pairwise multiple comparisons (MCA) (Tukey 1953),
multiple comparisons with the best (MCB) (Hsu 1984, Hsu
and Nelson 1988), and multiple comparisons with a control
(MCC) (Dunnett 1955, Bofinger and Lewis 1992, Damerji
and Nakayama 1999).  The most popular approach among
these is MCB.  In particular, MCB looks at F(ψj) - opti≠j

F(ψi), j = 1,2,�,k, to determine that j* with F(ψj*) - opti≠j*

F(ψi) > 0.  Simultaneous confidence intervals for F(ψj) -
opti≠j F(ψi), j = 1,2,�,k, can be used to determine j*, by
looking for the confidence interval with lower confidence
limit that is zero.  To apply this procedure, the simulation
runs must be independently seeded and the simulation
output must be normally distributed (or averaged so that
the estimators used are approximately normally
distributed).  Yang and Nelson (1989, 1991) present
modifications to the MCB procedure (and MCA and MCC)
that incorporates two variance reduction techniques
(common random numbers and control variates).  Their
results suggest that using variance reduction can lead to
correct decisions with higher probabilities.  Goldsman and
Nelson (1990) present a MCB procedure for steady state
simulation experiments.  Nakayama (1995) generalizes
these results on applying MCB using batch means in
steady-state simulations.  Matejcik and Nelson (1993)
establish a fundamental connection between indifference
zone procedures and MCB.  They present three procedures
that incorporate MCB based on whether independent or
common random numbers are used to obtain the simulation
outputs.  Matejcik and Nelson (1995) extend their earlier
work by showing that most indifference zone procedures
can simultaneously provide MCB confidence intervals.
Nelson and Matejcik (1995) show how common random
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numbers can be incorporated into a combined R&S-MCB
procedure.  Yuan and Nelson (1993) discuss MCB
procedures for steady-state simulations, where the
simulation outputs are assumed to follow an auto-
regressive process with normally distributed residuals.
Nakayama (1996, 1997a) presents a single-stage MCB
procedure that is asymptotically valid for steady-state
simulations, hence extending the domain of applicability of
previous MCB procedures.  Nakayama (1997b, 2000)
presents a two-stage MCB procedure using common
random numbers for steady-state simulations, and shows
that it is asymptotically valid.

Retrospective optimization uses several simulation
output runs to generate a performance function. This
performance function is then optimized using standard
deterministic techniques.  Healy and Schruben (1991)
illustrate retrospective optimization on a yield management
simulation model to determine optimal production lot
sizes, on a tandem queuing network simulation model to
determine optimal buffer allocations, and on an inventory
management simulation model, to determine optimal
inventory policies.  Fu and Healy (1992) present a
comparison of retrospective optimization with a gradient-
based SA algorithm and conclude that no meaningful
comparisons can be made since the two approaches are so
different.  Fu and Healy (1997) extend their earlier work
and present a hybrid gradient-based, retrospective
algorithm that attempts to build on the strengths and
mitigate the shortcomings of each approach.  Healy (1994)
presents a simulation optimization technique where the
idea is to retrospectively solve a related deterministic
optimization problem with respect to realizations of the
stochastic effects as if the outcomes of all uncertainties
were known in advance.

4.2 Large Number of Feasible Solutions

When the set of possible input parameter values is discrete,
but very large, different methods than those presented in
Section 4.1 must be applied.  Ordinal optimization (Ho et
al. 1992, Ho 1994) focuses on finding good solutions,
rather than trying to find the very best solution (i.e., goal
softening) (Lee et al. 1999).  In doing this, ordinal
optimization reduces the search for an optimal solution
from sampling over a very large set of solutions to
sampling over a smaller, more manageable set of good
solutions.  Ho and Deng (1994) show that goal-softening
can be effective for problems with greater than 10,000
alternatives.  Dai (1995) and Xie (1997) address the
convergence properties of ordinal optimization.  Xie shows
that for a regenerative system, the probability of obtaining
a desired solution using ordinal optimization converges at
an exponential rate while the variance of the performance
measures converge at rate O(1/t2), where t is the simulation
time.  Deng et al. (1992) study the impact of correlation on
2
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ordinal optimization.  They show that correlation between
the output data results in ordinal optimization selecting a
larger number of good solutions in the selected set.  Lau
and Ho (1997) examine how the choice of subset selection
rules affect alignment probability (i.e., the probability of
the intersection between the �good enough� subset and the
selected subset) and provide recommendations for the
subset size given certain system parameters.  Chen (1996)
establishes two methods for establishing a lower bound on
the probability that the selected subset contains at least one
good design and the probability that the best of the selected
subset is very close to the true best design.  Deng and Ho
(1997) introduce an iterative ordinal optimization
procedure, analogous to traditional hill climbing proce-
dures, that moves from one subset or search representation
to another (rather than between individual solutions in a
solution space).  Ho and Larson (1995) introduce a new
approach to rare event simulation using ordinal
optimization.  Chen (1995) and Chen et al. (1996) present
an extension of ordinal optimization for smartly allocating
computing budgets for discrete-event simulation and
suggest a possible tenfold speedup in simulation time
through its application.

General search strategies such as simulated annealing
(Eglese 1990, Fleischer 1995), genetic algorithms (Liepins
and Hilliard 1989, Muhlenbein 1997), and tabu search
(Glover and Laguna 1997) have been adapted for the
stochastic environment associated with discrete-event
simulation optimization.  Simulated annealing mimics the
annealing process for crystalline solids, where a solid is
cooled very slowly from an elevated temperature, with the
hope of relaxing towards a low-energy (objective function
value) state.  Genetic algorithms emulate the evolutionary
behavior of biological systems to create subsequent
generations that guide the search towards optimal/near-
optimal solutions.  Tabu search uses memory to guide the
search towards optimal/near-optimal solutions, by
dynamically managing a list of forbidden moves.

Haddock and Mittenhall (1992) discuss how to apply
simulated annealing to discrete-event simulation models.
Zeng and Wu (1993) present a strategy for introducing
perturbation analysis techniques into a simulated annealing
algorithm for simulation optimization.  Andradottir (1998a)
presents a modified simulated annealing algorithm that can
be applied to discrete-event simulations and provides
conditions under which the algorithm converges to a global
optimum.  Tompkins and Azadivar (1995) utilize a genetic
algorithm for a class of manufacturing system simulation
models, where the algorithm is capable of optimizing over
qualitative input parameters.  Hall and Bowden (1997)
compare evolutionary strategies and tabu search with the
Nelder-Mead algorithm for simulation optimization.  For
smooth convex response surfaces, they observe that the
Nelder-Mead method obtains better solutions.  These
articles illustrate that general search strategies conceived
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for discrete optimization problems can be successfully
adapted for simulation optimization.

Andradottir (1996a) uses a random walk approach to
develop a simulation optimization algorithm over a large
discrete set of input parameter values.  Alrefaei and.
Alrefaei and Andradottir (1998b) present a modified
stochastic ruler algorithm and show that it converges almost
surely to a global optimum.  Cassandras and Strickland
(1989) and Cassandras (1993) display a technique termed
�rapid learning� that aims at enumerating all possible sample
paths under different input parameter values based on the
observed sample path under nominal input parameter values.
Rapid learning relies on two necessary conditions:
observability, which asserts that every state observed in the
nominal path is always richer in terms of feasible events
than the states observed in constructed paths, and
constructability, which requires that the lifetime of the
events has the same distribution as their residual lives.
Yücesan and Jacobson (1997) show that verification of the
observability condition is an NP-hard search problem and
thereby encourage the development of heuristic procedures
to validate the applicability of rapid learning.

Shi and Ólafsson (1997) present the nested partitions
method for simulation optimization.  Nested partitions
combines partitioning, random sampling, a selection of a
promising index, and backtracking to create a Markov
chain that converges to a global optimum.  Ólafsson and
Shi (1998, 1999) show that the Markov chain generated by
nested partitions converges geometrically fast to the true
stationary distribution and use these results to derive a
stopping criterion for the method.  Olafsson (1999) links
this work with iterative ranking and selection methods.
Shi et al. (1999) discuss the nested partitions method as
applied to a simultaneous simulation environment.

5 CONCLUSIONS

Research and applications in the field of simulation optimi-
zation has advanced significantly in the past decade.  The
1980s were dominated by gradient estimation research over
continuous input parameters.  The 1990s has seen a shift
towards discrete sets of input parameter values.  The unifi-
cation of ranking and selection and multiple comparison
procedures has been a significant advancement for those
problems with discrete input parameters and a small num-
ber of feasible solutions.  Moreover, the cross-fertilization
between discrete optimization heuristics and discrete-event
simulation has provided a rich avenue for research
breakthroughs and new hybrids in the field of optimization.

Research that generalizes the domain of application of
all these techniques, as well as the incorporation of variance
reduction and other efficiency enhancement techniques, will
serve to broaden the application and appeal of simulation
optimization procedures.  Such enhancements may also
serve to build bridges, for example, between R&S/MCB
3
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procedures and the techniques used for discrete input
parameters with a large number of feasible solutions.  The
next decade promises to provide many new breakthroughs
that build upon such research foundations.
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