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Abstract

Since the small RNA-sequencing (sRNA-seq) technology became available, it allowed the discovery of thousands new
microRNAs (miRNAs) in humans and many other species, providing new data on these small RNAs (sRNAs) of high biologi-
cal and translational relevance. MiRNA discovery has not yet reached saturation, even in the most studied model organ-
isms, and many researchers are using sRNA-seq in studies with different aims in biomedicine, fundamental research and in
applied animal sciences. We review several miRNA discovery and characterization software tools that implement different
strategies, providing a useful guide for researchers to select the programs best suiting their study objectives and data. After
a brief introduction on miRNA biogenesis, function and characteristics, useful to understand the biological background
considered by the algorithms, we survey the current state of miRNA discovery bioinformatics discussing 26 different sRNA-
seq-based miRNA prediction software and toolkits released in the past 6 years, including 15 methods specific for miRNA
prediction and 11 more general-purpose software suites for sRNA-seq data analysis. We highlight the main features of mature
miRNAs and miRNA precursors considered by the methods categorizing them according to prediction strategy and implemen-
tation. In addition, we describe a typical miRNA prediction and analysis workflow by delineating the objectives, potentialities
and main steps of sRNA-seq data analysis projects, from preparatory data processing to miRNA prediction, quantification and
diverse downstream analyses. Finally, we outline the caveats affecting sRNA-seq-based prediction tools, and we indicate the
possibilities offered by data set pooling and by integration with other types of high-throughput sequencing data.
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Introduction

MicroRNAs (miRNAs) are �22 nt single-stranded small noncoding
RNAs (sncRNAs) that negatively regulate mRNA stability and/or
translation by recruiting different combinations of effector proteins
on target transcripts [1, 2]. The effects of miRNA expression can be
pervasive, as one single miRNA can target mRNAs of hundreds of
different genes. MiRNAs are involved in most physiological proc-
esses, and play important roles in cell-fate determination and devel-
opment [3–5]. Most known miRNAs are evolutionarily conserved
and their number largely correlates with organism complexity [6].

In humans, deregulation or alteration of miRNAs plays func-
tional roles in numerous pathological conditions [7], including

cancer [8–10]. Interestingly, miRNA profiles can predict relevant
tumor subtypes, treatment response and outcome [11]. For these
characteristics, miRNAs have been thoroughly investigated both
as therapeutic targets [12, 13] and noninvasive biomarkers [14].
Promising oncology works studied the use of circulating miRNAs
in patient plasma as biomarkers [15], and on small RNAs (sRNAs)
carried by vesicles as possible disease modulators or precondi-
tioning elements in the process of metastasis formation [16].
Beyond the biomedical field, also many animal and food
genomics research projects are studying miRNAs [17–19].

As reported in the latest release of miRBase (v.21, June 2014),
the most popular reference database of miRNA sequences,
almost 36 000 miRNAs have been detected in 223 species: from
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algae and slime molds to higher eukaryotes and viruses.
However, miRNA annotation is clearly incomplete for less
studied metazoans: only 88 miRNA loci are known for Pan panis-
cus, whereas a number close to that in the human genome (over
1800) is expected. In addition, over 10 000 entries were added to
miRBase in the 3-year interval between the current release
(v.21, June 2014) and version 18 (v.18, November 2011) [20],
including >4000 entries from the previous (v.20, June 2013) and
the current release. Thus, the number of expected miRNAs
being higher than current available annotations and the high
deposition rate of novel miRNA annotations in recent years
(Figure 1A) suggest that many miRNAs have not yet been dis-
covered in model species and humans.

Bioinformatic prediction from small RNA-sequencing (sRNA-
seq) data turned out to be a powerful approach for extensive
miRNA detection and study. sRNA-seq data can be generated in
the frame of different studies. According to the investigated
organism and project aims, a rigorous and effective experimen-
tal design should consider optimal replicate number, proper
controls, RNA extraction and library preparation protocol,
spike-ins, platform, depth and cost of the sequencing. These

aspects are fundamental for high-quality data production and
were surveyed in other works [23–25]. Here, we focus on the
tools for the bioinformatics analysis that follows the sRNA-seq
data production.

Several programs for miRNA identification and quantifica-
tion from sRNA-seq data are currently available [26, 27], and
many of them are accessible even to laboratories with little bio-
informatic expertise and computational resources. The cur-
rently available reviews on sRNA-seq data analysis focus
specifically on miRNA discovery [28–30] or offer a wide view of
the subject by covering also other topics such as miRNA target
prediction [31, 32]. However, these studies include approaches
now outdated, offering little guidance to prospective users. To
integrate and complement these reviews, here we provide a
summary of the state-of-the-art sRNA-seq-based software for
the prediction of animal miRNAs, considering also its applica-
tion to the identification of noncanonical miRNAs and miRNA
isoforms. We briefly recall the main aspects of miRNA biogene-
sis and of non-next generation sequencing (NGS)-based discov-
ery methods. Next, we introduce sRNA-seq-based discovery
tools grouped by prediction strategy. We describe a typical

Figure 1. miRNA discovery from sRNA-seq experiments. (A) Number of known mature miRNAs (black) and pre-miRNAs (gray) present in miRBase by year, since 2002.

(B) Examples of the three main cases of putative precursors’ read signatures: the lack of reads corresponding to any of the two mature miRNAs corresponds to read sig-

natures on on-miRNA hairpins; hairpin with read signatures typical of a true precursor, with precise 30 overhangs and reads mapping to definite regions of the hairpin

(i.e. aligning to the miRNA, the miRNA* or the loop without overlaps between different products) indicates high confidence miRNAs; an intermediate case in repre-

sented by bona fide pre-miRNAs with read signatures displaying high 50 heterogeneity or the absence of miRNA* reads, which cannot be annotated with high confi-

dence, and can be confirmed using additional evidence, such as read depletion in miRNA biogenesis mutants or enrichment in Ago-IP experiments (adapted from [21]).

(C) Drawing illustrating how data set pooling can increase the sensitivity of miRNA prediction analyses, by allowing the generation of highly informative read signa-

tures even for lowly expressed pre-miRNAs (adapted from [22]) .
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miRNA prediction and analysis workflow and indicate the main
toolkits implementing it. Finally, we discuss the challenges
posed by the validation of hundreds of predicted miRNA
sequences. We conclude with critical considerations on the
illustrated methods that can be useful to choose the best one
according to the study.

MiRNA biogenesis and function

To better understand the biological bases of the algorithms dis-
cussed below, we recapitulate the main aspects of miRNA bio-
genesis, functions and characteristics.

In the canonical pathway [33], miRNA genes are transcribed
into long capped and polyadenylated transcripts, the pri-
miRNAs, which are then cleaved by the nuclear type III endonu-
clease Drosha into 65–75 nt single-stranded hairpins called
miRNA precursors, the pre-miRNAs. In addition, miRNAs can be
generated through noncanonical mechanisms [34, 35]. For
instance, pre-miRNAs can derive from spliced intronic sequences
(miRtrons) [36] or from the processing of housekeeping noncod-
ing RNAs (ncRNAs), such as small nucleolar RNAs (snoRNAs) [37,
38] and transfer RNAs (tRNAs) [39, 40]. Pre-miRNAs are trans-
ported in the cytosol where they are cleaved by Dicer, resulting in
�22 nt double-stranded molecules. Afterward, this miRNA duplex
is unwinded and one of the two strands, the mature miRNA, is
loaded onto an Argonaute protein (usually AGO2) of the RNA-
induced silencing complex (RISC). The selection of which strand
of the duplex will form the mature miRNA is an actively regulated
process that can vary across different tissues and conditions [33].
MiRNAs were formerly referred to as major miRNA (the one that
is loaded onto the RISC) and miRNA* (the one that undergoes deg-
radation), but because of evidence of functional miRNAs*, nowa-
days it is preferred to name them miR-5p or miR-3p, according to
the originating pre-miRNA strand.

Mature miRNAs guide the RISC to target mRNAs by partial
sequence complementarity. The canonical targeting involves
particularly the miRNA nucleotides 2–7 or 2–8, the seed region
and the mRNA 30-untranslated region (UTR), even though differ-
ent pairing types were observed as well [41]. MiRNA-mRNA
interactions result either in the inhibition of translation
(through still unclear mechanisms) or in the degradation of the
mRNA, generally by promoting deadenylation, decapping
and 50-to-30 decay [42–44]. In addition, miRNAs binding outside
30-UTRs can exert noncanonical functions: for instance, miRNA
binding to the 50 region of a mRNA coding sequence can regulate
alternative translation [45], and binding sites in transcript
coding sequence can mediate a reduction of the target mRNA
abundance [46].

Postprocessing nucleotide addition, removal and editing
were observed in most miRNA sequences, so that miRNA
expression can be viewed as a mixture of miRNA isoforms
(isomiRs). The sequence variations involve mainly the 30 end
and can affect target specificity, stability and AGO-loading effi-
ciency [47, 48], thus impacting on the miRNA function. IsomiR
composition varies among tissue and conditions, and in several
cases, the sequence in official annotation is not the most
expressed form [49–51]. IsomiRs identified from sRNA-seq data
by computational methods were experimentally validated in
many species [49, 52–54].

Non-NGS-based miRNA discovery approaches

Early methods for miRNA discovery were laborious and of lim-
ited discovery power, as they relied on low-throughput

experimental procedures that required isolating the molecules
on high-resolution gels, cloning and Sanger sequencing. To sup-
port the findings, the sequences were further assessed by com-
puting the probability of folding into hairpin-like structures,
and by requiring no other ncRNA loci to overlap [55, 56].

Next, bioinformatic methods were developed to predict
miRNA loci by scanning the genomic sequence for hairpin-
forming sequences [57]. These genome-based approaches
grounded either on evolutionary conservation, or on similarity
with known miRNA loci.

Refining predictions by considering evolutionary conserva-
tion is a common strategy in computational biology, as func-
tional elements are under selection. Pre-miRNAs present a
particular conservation pattern: the strand regions are more
conserved than the loop, and the miRNA seed nucleotides are
the most conserved. In general, a miRNA is considered con-
served when its seed sequence is identical to those of its ortho-
logs in other species. Assuming these characteristics, the
MiRSeeker [58] and miRScan [59] miRNA prediction methods
select the loci with sequences that can fold into a hairpin-like
structure, and that have miRNA homologs in other species.

Similarity-based methods identify loci with sequence and RNA
secondary structure similar to known miRNAs by considering sev-
eral features including: sequence entropy and composition, fold-
ing energy and hairpin-like structure and number of paired bases
in the predicted miRNA duplex. Most of these programs imple-
ment machine learning approaches based on different classifiers,
such as hierarchical hidden Markov models (HHMMiR [60]) and
support vector machines (SVMs) (mirnaDetect [61]). Other soft-
ware use statistical analysis, like the scoring-based miRalign [62].

Both conservation and similarity-based approaches require
previous information and are inherently biased toward the discov-
ery of miRNAs homologous and/or similar to already known loci.

sRNA-seq-based miRNA prediction

Genome-based methods are subject to high rates of false-posi-
tive predictions, as only hundreds of the millions of loci whose
transcripts could fold into hairpin structures are transcribed
and processed by the miRNA biogenesis pathways [57].

Transcriptome sequencing resulted to be informative to cor-
rect this weakness: several programs used sRNA-seq reads to
detect the candidate pre-miRNA genomic sequences to be eval-
uated with genome-based methods. Examples are the similarity-
based miRD [63] and miR-BAG [64], both using machine learning
strategies, the conservation-based MIRPIPE [65] and the rule-
based (see below) approach MIRINHO [66]. These methods exploit
sRNA-seq information only partially, as read alignments are used
only for the excision of putative precursors, and pre-miRNA eval-
uation relies completely on the DNA sequence.

At present, prediction from sRNA-seq data is the most com-
monly used approach for miRNA discovery, and most of the
known miRNA loci and mature miRNA sequences have been
discovered with this technique [20, 67] (Figure 1A). In the past 6
years, several bioinformatic miRNA prediction tools have been
developed and applied both in small studies and in large proj-
ects with tens or hundreds of data sets [68–70].

Features considered for sRNA-seq-based miRNA
discovery

Algorithms for the prediction of novel animal miRNAs from
sRNA-seq data are based on the evaluation of the read signature
associated with each putative precursor, i.e. the distribution of
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reads on the precursor sequence, which allows to determine if
the reads originated from a putative precursor are compatible
with the canonical miRNA biogenesis pathway (Figure 1B).
Expectedly, all the reads derived from a bona fide miRNA hairpin
should correspond to either the mature miRNA, the miRNA* or
the loop sequences. The predicted miRNA and miRNA* sequen-
ces should also form a duplex with 2 nt overhanging at the 30 of
both ends, as from the typical Dicer processing. Although some
variability was observed [20], mature miRNAs’ 50 ends display in
general low heterogeneity because of their origin from the RNase
III-based endonucleolytic cropping of the precursors by Drosha
and Dicer. Additionally, homogeneous 50 ends are required for
seed-based miRNA-targeting, as any variation at the 50 end would
impact target recognition specificity. Thus, miRNA prediction
software requires that the reads corresponding to mature
miRNAs have highly consistent 50 ends. On the contrary, predic-
tion algorithms generally tolerate 30 end variability, as the 30 ends
of mature miRNAs are often heterogeneous in bona fide hairpins
[47] because of alternative processing and/or successive nucleo-
tide additions [47].

Reads derived from the antisense strand of a putative pre-
miRNA were considered by early prediction methods, for instance
(f.i.) the first version of miRDeep [71], to indicate false predictions,
as antisense transcripts are more probably associated with other
types of sncRNAs such as endo-siRNAs. However, more recent
methods, such as miRDeep2 [72], do not penalize for antisense
reads because several miRNAs are antisense to transcribed loci,
and there is evidence of miRNA precursors pairs transcribed from
opposite strands of the same locus, such as dme-mir-iab-4 and
dme-mir-iab-8 in Drosophila [72]. Moreover, endo-siRNAs and
piRNAs can be easily distinguished, as they are generally shifted by
several bases from the corresponding locus on the opposite strand
[73–75], while antisense miRNAs mostly present exact overlaps.

In addition to the features derived from pre-miRNA read sig-
natures, described in the previous paragraph, most software
also make use of structural information about the predicted
pre-miRNAs and the miRNA duplex. The most probable RNA
secondary structure of putative precursors is predicted, and the
structural compatibility with canonical pre-miRNA hairpins is
evaluated using: the minimum free energy (MFE) of the struc-
ture, the number of pairing bases between the miRNA and the
sister miRNA sequence and the absence of branching or bulges
outside the loop [28]. This evaluation can require the prediction
of the precursor’s RNA secondary structures, often performed
with RNAfold [76] (Table 1), and the realignment of the reads
onto a subset of putative pre-miRNA sequences.

MiRNA prediction software tools

Below, we discuss 15 currently available software tools for the
prediction of novel animal miRNAs from sRNA-seq data (Table
1), implemented either as Web-based services or as programs
than can be run locally, grouping them in three categories: read
signature evaluation and read profile clustering, both relying on
sRNA-seq read alignment to a reference genome, and miRNA
duplex evaluation methods.

Evaluation of read signatures
Approaches evaluating read signatures first generate a set of
putative precursors through the excision of �110 nt genomic
sequences surrounding the highest local stack of aligned reads
in a small sliding window, which is scanned along each strand
of every chromosome. Afterward, the RNA secondary structure
and MFE of every excised precursor are calculated together with

several parameters describing both the read signature and the
structures of the hairpin and the duplex. The most commonly
used parameters are the number of matching nucleotides in the
putative miRNA duplex, the length of putative miRNA duplex
overhangs and the 50 end entropy of miRNA reads. Finally, the
excised sequences are evaluated as putative pre-miRNAs in dif-
ferent ways, according to one of the two prediction strategies
described in the following paragraphs.

Rule-based prediction algorithms evaluate the parameters of
each candidate precursor against reference values calculated
from known pre-miRNAs and random sequences. For each pre-
cursor, these evaluations are finally summarized in a score,
which quantifies the probability of being a true miRNA hairpin.
The methods commonly used in novel miRNA prediction stud-
ies grounded on rule-based evaluation of read signatures
include MIReNA [83], miRSeqNovel [81], miRdentify [82],
miRDeep* [84] and miRDeep2 [72].

Machine learning-based methods require a training step on
a set of read signature and structural features, calculated from
known pre-miRNAs (positive set), and random hairpin-forming
sequences (negative set), to generate a classification model that
will be finally applied to the set of putative precursors. The
selection of training data can have large impact on the quality
of a classifier, in particular when it is used on data from species
different from the one for which it was trained. However, for
most species, there are not enough annotations to generate an
adequate training set. Therefore, annotations have often to be
pooled within a broad taxon, despite the resulting decline in
sensitivity and specificity [93]. Examples of machine learning-
based miRNA prediction software using random forest classi-
fiers are CoRAL [80, 94] and miRanalyzer [79].

Read profile clustering
Blocks of reads mapping close to each other on the same genomic
strand define read alignment profiles, or read profiles. The pro-
files are compared considering both the relative position and the
length of the reads, to be clustered by similarity. Most software
using the read profile clustering approach rely on the blockbuster
tool [95] to collect consecutive reads with close start and end
positions into sharp blocks. Then, profile clusters are annotated
according to the known ncRNAs they overlap. NcRNA classifica-
tion tools that analyze read blocks obtained with blockbuster
include deepBlockAlign [87], BlockClust [86], DARIO [91] and
miRDBA [92]. In contrast, FlaiMapper [88] uses a custom read-
grouping algorithm.

Differently from methods based on evaluation of read signa-
tures, approaches using read profiles clustering do not rely on
the prediction and evaluation of putative hairpin secondary
structures. Notably, apart from miRNAs, they can also identify
from RNA sequencing (RNA-seq) data several other classes of
small ncRNAs such as ribosomal RNAs, tRNAs and snoRNAs.

MiRNA duplex evaluation
Methods evaluating miRNA duplexes assemble the sRNA-seq
reads into contigs, select those 10–30 nt long and match them
into all possible pairs to generate putative miRNA duplexes.
Afterward, a set of features including length, number of
unpaired bases and overhangs is calculated to feed machine
learning algorithms that select the most probably true miRNA
duplexes. Examples of programs applying this method are
MirPlex [77], which uses an SVM classifier, and miReader [78],
which relies on a multi-boosting algorithm with Best-First Tree
as base classifier.
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MiRNA duplex evaluation programs are the only prediction
methods that can be applied to species for which a reference
genomic sequence is not yet available. However, this approach can
identify only the mature miRNA and miRNA* products, and does
not provide any information on the pre-miRNA hairpins. Another
important limitation is that these programs require the presence
of both miRNA and miRNA* reads: this could prevent the detection
of miRNA duplexes, as often only one of the two mature miRNAs
is present at a detectable level in a cell type or condition. Finally,
the reliance on machine learning algorithms requiring positive
training sets of miRNAs from closely related species limits the use-
fulness of these methods for understudied and nonmodel species.

MiRNA prediction and analysis workflow

Conceptually, the general sRNA-seq analysis workflow can be
divided in three stages (Figure 2): preparatory data processing,
miRNA prediction and downstream analyses.

Preparatory data processing

The first step preprocesses raw reads (usually in FASTQ format)
by trimming sequencing adapters and selecting the trimmed
reads according to both length (generally between 18 and 25 nt)
and sequence quality. This step is performed automatically by

Figure 2. sRNA-seq-based miRNA prediction workflow and software tools. The central column contains a flowchart illustrating the steps of each of the three main

phases of a typical miRNA discovery and characterization workflow (rectangles and continuous lines: analysis steps, parallelograms: data, rounded rectangles and

dashed lines: optional steps). The left panel shows examples of miRNA prediction software and toolkits, with vertical lines indicating the workflow parts performed by

each program. Tools commonly used to carry out specific tasks in each phase of the analysis’ workflow are reported in the right panel.
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the programs, or manually by the user with complementary
scripts usually bundled with the prediction software or dedi-
cated tools such as FASTX-Toolkit (http://hannonlab.cshl.edu/
fastx_toolkit/index.html) and Trimmomatic [96].

Next, in most cases, clean reads are collapsed into unique
sequences and converted to FASTA format to reduce the num-
ber of sequences to be aligned in later stages. Further compres-
sion of the files is recommended to reduce upload time if a
Web-based service is used for the analyses.

MiRNA prediction and expression quantification

After read trimming and filtering, most prediction tools map
the reads against known ncRNAs and exclude the aligned reads
from following stages. Then, reads are mapped against the
genome with a short-read aligner (Table 1), usually Bowtie [97],
set to tolerate one or at most two mismatches to consider
single-nucleotide polymorphisms or postprocessing base addi-
tions. Moreover, short reads can equally align to many genomic
loci (multiple mapping reads) because of repetitive regions and
paralog genes. In particular, miRNA families and multicopy
miRNA precursors are characterized by highly similar genomic
sequences. To exclude highly repetitive regions, the reads map-
ping in more than a fixed number of loci can be discarded and
the remaining multiple mapping reads can reasonably be con-
sidered representative of miRNAs and are eligible for further
processing. However, multiple mapping reads can bias expres-
sion quantification of miRNAs derived from multicopy miRNA
precursors: counting separately each alignment can overesti-
mate the expression; on the other hand, considering only
uniquely mapping reads can lead to the opposite. Some tools,
such as miRDeep2, correct expression levels for multiple map-
pings: a read mapping with equally good alignments against n
different loci is counted as 1/n reads toward the expression of
each sequence it aligns against. At this stage, most programs
additionally identify and quantify the expression levels of
known miRNAs.

Novel miRNA prediction is performed with one of the strat-
egies described before (see section ‘MiRNA prediction software
tools’). The resulting sequences, genomic coordinates and
expression levels of the predicted precursors and matures are
output in textual form, usually as table or Browser Extensible
Data (BED) (https://genome.ucsc.edu/FAQ/FAQformat.html#for
mat1) files, and often displayed with the support of figures and
graphs in PDF or HTML documents. While PDF or HTML results
provide the user a report of the predicted miRNAs easy to read
and to interpret, results in textual format better suit further
processing according to the study objectives.

Downstream analyses: isomiRs, differential expression,
target prediction and functional enrichments

Known and novel miRNA isomiRs can be detected if the
genomic mapping allows mismatches. Currently, various tools
allow isomiR identification and characterization (see the
‘IsomiR’ column in Tables 1 and 2). There is also software spe-
cific for isomiR analysis such as IsomiRID [109] and IsomiR-SEA
[110]. In many cases, isomiR characterization could be impor-
tant to disclose the exact sequences representing the mature
miRNAs in the analyzed samples, providing information useful
to efficiently design validations and to correctly predict miRNA
targets.

Typically, after miRNA detection and quantification, the
next step aims at the identification of miRNAs differentially

expressed in sample groups (Tables 1 and 2). Several R packages
fulfill this purpose, for example edgeR [111, 112], DESeq [113],
DESeq2 [114] and/or NOISeq [115].

MiRNA target prediction [116, 117] is a key step to interpret
the impact of newly discovered sRNAs on gene expression and
modulation of biological processes. Custom target prediction
according to the novel miRNA sequence, possibly considering
also isomiRs, can be obtained with different methods such as
TargetScan [118], miRanda [119], PITA [111] and RNAhybrid
[120]. Some of the presented toolkits provide target prediction
with one or more of these methods (Table 2). Functional annota-
tion or enrichment analyses of the predicted miRNA targets can
be performed with tools such as DAVID [121, 122], EnrichR [122]
or g: Profiler [123], considering all the new miRNAs or focusing
only the differentially expressed ones. More advanced analyses
could link through target prediction both new and known
miRNAs to pathways topology to infer the impact of miRNAs on
pathway activation [124, 125].

All-in-one analysis toolkits

Most sRNA-seq-based miRNA prediction software estimate
expression levels, and some of them also compute differential
expression tests. However, there are all-in-one methods
designed to perform the different steps of sRNA-seq data analy-
sis (Table 2): from preprocessing of raw reads to differential
expression and functional analyses (Figure 2). These general-
purpose toolkits integrate the miRNA prediction programs
described above, f.i. many of them use the miRDeep2’s miRNA
prediction module.

All-in-one solutions free the user from possible issues
caused by converting files into the formats required by each
specific program, but are less flexible and generally offer a
smaller range of options and parameter configurations than
specific single-purpose software. An exception is the Sepia tool-
kit [106], whose modular structure allows a high degree of
flexibility.

Some toolkits are available as virtual machines (miARMA-
Seq [103], CAP-miRSeq [102]) or Docker (https://www.docker.
com/) images (miARMA-Seq [103], Sepia [106]), which allow the
user to avoid complex installation procedures by providing the
software bundled in an environment with all the necessary
dependencies already installed, at the cost of more computa-
tional resources required than stand-alone applications.

Validation of miRNA predictions

Northern blots and quantitative reverse transcription polymer-
ase chain reaction (qRT-PCR) are the two main approaches for
the experimental validation of miRNAs. These methods have a
low throughput, which is not adequate to validate hundreds of
miRNAs and isomiRs that can be predicted by RNA-seq studies.
However, other types of RNA-seq-based experiments can sup-
port the annotation of many miRNAs (Table 1). For instance,
sRNA sequencing of a cell line or organism before and after the
knockdown or knockout of genes of the miRNA biogenesis path-
way may assess the biosynthesis of the predicted miRNAs, as
the biogenesis of real miRNAs is expected to be affected. In fact,
Dicer silencing by RNA interference was used for the validation
of miRDeep2 [72] and miRDeep* [84] predictions, while Dicer
knockout was used as a control for the validation of MirPlex
results [77].

Moreover, cross-linking immunoprecipitation and sequenc-
ing (CLIP-seq), which is commonly used to investigate
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miRNA-transcript interactions [126], can be exploited not only
for the validation of putative miRNAs but also to verify their
activity. Overlaps between predicted miRNAs and microprocessor
complex subunits or Argonaute proteins CLIP-seq tags provide
evidence of interactions between the candidate sequence and
the microprocessor or RISC complexes. Londin and colleagues
[70] used several AGO CLIP-seq data sets, partly publicly available
and partly produced in the study, to support the annotation of
>2000 newly identified human miRNAs. Further, Friedländer
and coworkers [22] used DGCR8, Ago1 and Ago2 CLIP-seq data by
to find support for hundreds of putative new miRNAs.

Cross-linking ligation and sequencing of hybrids (CLASH)
allows to sequence interacting miRNA-mRNA pairs bound to
AGO proteins [127, 128], thus providing direct evidence of the
miRNA guiding the RISC onto a target RNA. In the above cited
study, Friedländer and coworkers [22] confirmed by CLASH the
interactions between a small set of predicted miRNAs and their
target mRNAs. However, to our knowledge, no toolkit or plat-
form allowing the evaluation of novel miRNA annotations with
CLIP-seq or CLASH data is currently available.

Many studies presenting new miRNA discovery software [72,
82, 84] challenged the older methods. Moreover, Williamson
et al. [129] evaluated four miRNA prediction tools on seven dif-
ferent data sets, and validated 12 novel miRNAs by qRT-PCR.
However, most of these comparisons are now obsolete, and to
date, a comprehensive performance evaluation of miRNA pre-
diction methods has not been carried out.

Caveats on miRNA analysis tools

Most miRNAs in miRBase are highly expressed, nontissue- or
noncell-type specific and conserved across several genera [28].
MiRNAs with such characteristics are more easily detectable by
both bioinformatic and experimental approaches, so they had
more chance to be annotated. For instance, methods relying
exclusively on conservation information cannot identify
species-specific miRNAs. Additionally, tissue- or cell-type-spe-
cific miRNAs can be discovered either by genome-based meth-
ods, which are affected by low specificity, or using sRNA-seq
data of the tissues or cells in which they are expressed. Pooling
reads from different sRNA-seq experiments including multiple
tissues could be useful to improve detection rate. Recently,
Friedländer and colleagues [22] collected a large human sRNA-
seq data set (pooling 94 public samples from different cell lines
and tissues), and used resampling rarefaction simulations to
evaluate miRNA discovery power in relation to sequencing
depth and data set number. They demonstrated the advantages
of data set pooling (Figure 1C) and also showed that miRNA
detection saturation was not reached, indicating that probably
many miRNAs remain yet undiscovered even in the human
genome. By this approach miRNAs expressed at low levels,
down to less than one copy per cell, can be detected, as the
combined data better support their read signatures (Figure 1C).

Conversely to pooling, requiring candidate miRNAs to be
supported by reads from different biological replicates allows to
limit false positives because of technical biases, like single over-
amplified RNAs (derived from the PCR step in sRNA-seq
experiments) because finding the same sequence in independ-
ent data sets provides more robust evidence.

However, some caution should be exercised when selecting
data sets for discovery purpose, as including reads from cancer-
derived or otherwise abnormal samples can cause the errone-
ous classification as miRNAs of sequences that are not present
or expressed in physiological conditions.

Although miRNA prediction with sRNA-seq data has high
sensitivity, it is still biased against some categories of miRNAs
including precursors generated by the processing of other
ncRNAs. This is because most miRNA prediction software,
either rule-based or relying on machine learning techniques,
use features typical of canonical miRNA hairpins to evaluate
putative precursor candidates. To avoid false positives caused
by the presence of reads derived from ncRNA degradation frag-
ments, especially tRNAs, most prediction software filter and
exclude all the reads or predicted precursor sequences, which
overlap known RNAs, even though some of such loci have been
previously linked with the production of biologically active
miRNAs [35]. For similar reasons, most miRNA prediction tools
discard reads mapping to repetitive sequences (either by the
direct masking of repeats or by excluding reads aligned to too
many genomic locations). Nonetheless, several miRNAs are
known to originate from repetitive regions [6, 21]. Some tools,
such as miRDeep2, adopt a conservative choice by flagging the
predicted precursors that overlap known ncRNAs and warn the
user of the potential false positives. Apart from degradation
fragments, reads mapping to known ncRNAs could represent
functional products of noncanonical miRNA biogenesis, or other
ncRNAs derived from the regulated processing of various
ncRNA species. For instance, tRFs (transfer RNA-related frag-
ments) [40, 130], a heterogeneous class of functional sncRNAs
generated from the regulated cleavage of tRNAs and tRNA pre-
cursors, can be identified with several programs [131]. Further,
natural antisense short interfering RNA (nat-siRNA) generated
from processing of complementary transcripts in specific condi-
tions can be detected with NATpipe [132] from sRNA-seq reads
not assigned to miRNA genes, even in the absence of genome
data, grounding on de novo assembled transcriptomes.

miRNA genes can also yield microRNA-offset RNA (moRNA)
[54, 133–135], which can be differentially expressed in stem [136]
and cancer cells [54, 133]. Methods applying narrow models and
strict filtering criteria could erroneously discard reads derived
from moRNAs [137]. On the contrary, the cleanness of the cut-
site between the miRNA and moRNA reinforces the reliability of
precursor predictions [138]. The a priori exclusion of reads cor-
responding to these sRNAs can hamper the identification of
functional novel miRNAs and miRNA-like molecules. For this
reason, tools not hiding ambiguous elements should be pre-
ferred, as they allow manual curation [138].

Conclusions

sRNA-seq by NGS technologies brought a dramatic increase of
newly annotated miRNAs in the past 10 years. The development
of bioinformatics methods to characterize novel sRNAs is still
an active field of research, which now can benefit from a wealth
of sRNA-seq data, as it was demonstrated by the reanalysis of
publicly available data sets that made possible the post hoc
assessment of previous miRBase miRNA annotations and the
definition of a high confidence miRNA set [20].

Given the large number of tools available, researchers will-
ing to analyze data from sRNA-seq experiments may wonder
which method is the most appropriate for their study. For
instance, read signature evaluation approaches that are based
on machine learning algorithms are more efficient when
applied to animals with a large number of miRNA annotations
and/or with well-annotated closely related species. Such knowl-
edge base can enhance the training of the model and improve
quality of predictions. Yet, this approach is biased toward the
discovery of miRNAs similar to those already known because
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negative sets for training cannot be easily established [61, 139].
Moreover, there is no consensus on which machine learning
approach works best [139, 140]. In contrast, rule-based read sig-
nature evaluation approaches can be applied to any species
with a reference genome. Among these methods, the most cited
in literature is miRDeep2, which was incorporated into several
all-in-one toolkits.

If the analysis of ncRNAs other than miRNAs is relevant for
the study, read profile clustering methods like FlaiMapper [88],

DARIO [91] or miRDBA [92] can identify known and novel
ncRNAs of several classes including tRNAs, scRNAs, snoRNAs
and snRNAs. Additionally, CoRAL [80, 94], which relies on a
machine learning algorithm for the evaluation of read signatures,
allows the prediction of five other classes of ncRNAs (lincRNAs,
scRNAs, C/D box snoRNAs, snRNAs and transposon-derived
snRNAs) as well as miRNAs. The miR&moRe pipeline [133] can
predict novel miRNA* from known precursors, as well as isomiRs
and moRNAs, and can be combined with miRDeep2 to identify
miRNA, moRNAs and isomiRs from novel precursors [134].

Users with limited computational resources can use Web-
based services, or software available as Galaxy [141] tools or
workflows, such as BlockClust [86]. These tools are also the
most user-friendly, as they are configured through a graphical
user interface and do not need to be installed on the user’s
machine. Furthermore, they allow the recording of the parame-
ters, inputs and versions of every tool, making analyses easily
sharable and reproducible. However, Web-based tools are often
limited to few predefined species and model organisms. For
instance, the DARIO Web server allows the user to analyze data
from six model organisms (human, rhesus macaque, mouse,
fruit fly, nematode and zebrafish). Unfortunately, Web-based
services limit the amount of data that can be uploaded, prevent-
ing the analysis of sRNA-seq data obtained by data set pooling
or produced at high sequencing depths, which are the most
informative for miRNA discovery and are becoming the stand-
ard in current research projects.

Key Points

• MiRNA annotation is clearly incomplete in animals,
especially in nonmodel species, but also in humans and
well-studied model organisms.

• sRNA-seq data analysis allows the discovery and the
characterization of hundreds novel miRNAs.

• Several tools for miRNA prediction in animals are avail-
able, each one presenting bias or limitations that
should be taken into account.

• Typical miRNA prediction and analysis workflow con-
siders several steps, from preparatory data processing
to diverse analyses downstream miRNA detection and
quantification.

• Pooling different sRNA-seq data sets can improve detec-
tion power in discovery experiments, and other high-
throughput sequencing data (such as CLIP-seq or
CLASH) can validate novel miRNAs.
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