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Wireless acoustic sensor networks (WASNs) are formed by a distributed group of acoustic-sensing devices featuring audio playing
and recording capabilities. Current mobile computing platforms o�er great possibilities for the design of audio-related applications
involving acoustic-sensing nodes. In this context, acoustic source localization is one of the application domains that have attracted
the most attention of the research community along the last decades. In general terms, the localization of acoustic sources can
be achieved by studying energy and temporal and/or directional features from the incoming sound at di�erent microphones and
using a suitable model that relates those features with the spatial location of the source (or sources) of interest. �is paper reviews
common approaches for source localization in WASNs that are focused on di�erent types of acoustic features, namely, the energy
of the incoming signals, their time of arrival (TOA) or time di�erence of arrival (TDOA), the direction of arrival (DOA), and the
steered response power (SRP) resulting from combining multiple microphone signals. Additionally, we discuss methods not only
aimed at localizing acoustic sources but also designed to locate the nodes themselves in the network. Finally, we discuss current
challenges and frontiers in this 	eld.

1. Introduction

With the rapid development in 	elds like circuit design and
manufacturing, wireless nodes incorporating a variety of
sensors, communication interfaces and compact micropro-
cessors have become economical resources for the design
of innovative monitoring systems. Networks of such type
of devices, referred to as wireless sensor networks (WSNs)
[1, 2], have been widely spread and used in many 	elds, with
applications ranging from surveillance and military deploy-
ments to industrial and health-care systems [3]. When the
nodes incorporate acoustic transducers and the processing
involves the manipulation of audio signals, the resulting
network is usually referred to as a wireless acoustic sensor
network (WASN). A WASN consists of a set of sensor nodes

interconnected via a wireless medium [4]. Each node has one
or several sensors (microphones), a processing unit, awireless
communication module, and, sometimes, also one or several
actuators (loudspeakers) [5].

During the last decade, the use of location informa-
tion and its potentiality in the development of ambient
intelligence applications has promoted the design of local
positioning systems with WSNs [6]. Using WSNs to perform
localization tasks has always been a desirable property since,
besides being considerably cheap, they are easily deploy-
able. Localization and ranging in WSNs have been typically
addressed by measuring the received signal strength (RSS)
or time of arrival (TOA) of radio signals [7]. However, the
RSS approach, while being signi	cantly inexpensive, incurs
signi	cant errors due to channel fading, long distances,
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and multipath. In the context of acoustic signal processing,
WASNs also provide advantages with respect to traditional
(wired) microphone arrays [8]. For example, they enable
increased spatial coverage by distributing microphone nodes
over a larger volume, a scalable structure, and possibly better
signal-to-noise ratio (SNR) properties. In fact, since the
ranging accuracy depends on both the signal propagation
speed and the precision of the TOA measurement, acoustic
signals may be preferred with respect to radio signals [9].

�ere are two typical localization tasks in WASNs: the
localization of one or more sound sources of interest and the
localization of the nodes that make up the network. �e 	rst
case may involve locating the position of unknown sound
sources, for example, talkers inside a room or unexpected
acoustic events or sometimes other devices emitting known
beacon signals. �e second case is usually related to the self-
calibration or automatic ranging of the nodes themselves.

To estimate the locations of the sound sources that are
active in an acoustic environment monitored by a WASN,
di�erent methods exist in the literature. Usually, a centralized
scheme is adopted where a dedicated node, known as the
fusion center, is responsible for performing the localization
task based on information it receives from the rest of nodes.
�e sensor network itself poses many limitations and chal-
lenges that must be considered when designing a localization
approach in order to facilitate its use in practical scenarios.
Such challenges include the bandwidth usage which limits
the amount of information that can be transmitted in the
network and the limited processing power of the nodes
which prohibits them from carrying out very complex and
computationally expensive operations. Moreover, each node
has its own clock for sampling the signals and since the nodes
operate individually, the resulting audio in the network will
not be synchronized.

A taxonomy of sound source localization methods can
be built up upon the nature of information from the sensors
that it is utilized in order to estimate the locations. Hence,
the WASN can estimate the locations of the acoustic sources
based on (i) energy readings, (ii) time-of-arrival (TOA)
measurements, (iii) time-di�erence-of-arrival (TDOA) mea-
surements, and (iv) direction-of-arrival estimates or (v) by
utilizing the steered response power (SRP) function.

In DOA-based approaches, each node estimates the DOA
of the sources it can detect and transmits the DOA estimates
to the fusion center. Although such approaches require
increased computational power and multiple microphones
in each node, they can attain very low-bandwidth usage, as
only the DOA estimates need to be transmitted. Also, since
the DOA estimation is carried out in each node individually,
the audio signals at di�erent nodes need not be synchronized:
DOA-based approaches can tolerate unsynchronized input as
long as the sources move at a rather slow rate relative to the
analysis frame.�e location estimators are generally based on
estimating the location of a sound source as the intersection
of lines emanating from the nodes at the direction of
the estimated DOA. However, for multiple sources several
challenges arise: the number of detected sources (and thus
the number of DOA estimates) in each time instant can vary
across the nodes due to missed detections (i.e., a source is not

detected by a node) or false-alarms (i.e., overestimation of the
number of detected sources) and an association procedure is
needed to 	nd the DOA combinations that correspond to the
same source. �is is known as the data-association problem
and is crucial for the localization task.

�e TDOA is related to the di�erence in the time of �ight
(TOF) of the wavefront produced by the source at a pair of
microphones in the same node. TDOAs can be estimated
at a moderate computational cost through the generalized
cross correlation (GCC) [10] of the signals acquired by
microphones in the pair. �e source location estimate is
accomplished by combining TDOA measurements coming
from multiple sensors. Notice that, as for the DOA, only the
TDOA measurements must be transmitted over the wireless
network, with clear advantages in terms of transmission
power and required bandwidth. �ough suitable for WASNs,
in practical scenarios (reverberant environments, presence of
noise, and interferers), TDOA measurements are prone to
errors, which in their turn lead towrong localization. In order
to mitigate the impact of these adverse phenomena, several
techniques have been presented with the aim of identifying
and removing outliers in the TDOA set [11–13].

A TDOA measurement bounds the source to lie on
a branch of hyperbola whose vertices are in microphone
positions and whose aperture is determined by the TDOA
value. When two (three in 3D) measurements from di�erent
pairs are available, the source can be localized through inter-
section of hyperbolas.�e resulting cost function, however, is
strongly nonlinear, and therefore its minimization is di�cult
and prone to errors. Linearized cost functions have been
proposed to overcome this di�culty [14–16]. It is important
to notice, however, that the linearized cost functions require
the presence of a reference microphone, with respect to
which the remaining microphones in all the sensors must be
synchronized. �is poses technological constraints that, in
some cases, hinder the use of such techniques. More recently,
methodologies that include the synchronization o�set in the
optimization of the cost function have been proposed to
overcome this problem [12, 17].

TOA measurements are obtained by detecting the time
instant at which the source signal arrives at the microphones
present in the network. Since in passive source localization
the source emission time is unknown, the TOA is not
equivalent to the TOF of the signal, preventing a direct
mapping from TOAs to source-to-node distances. While
some applications involve the use of sound-emitting nodes
that allows performing localization by using trilateration
techniques, TDOA localization methods are usually chosen.
In this case, although the source emission time does not
need to be known, the registered TOAs need to be referenced
to a common clock, requiring precise timing hardware and
synchronization mechanisms.

Energy-based localization relies on the averaged energy
readings computed over windows of signal samples acquired
by the microphones incorporated by the nodes [18].
Compared to TDOA and DOA methods, energy-based
approaches are attractive because they do not require the
use of multiple microphones at the nodes and are free
of synchronization issues unlike those based on TOA.
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Figure 1: WASN with� = 3 nodes and � = 3microphones per node.

However, TDOA- and DOA-based methods, considered as
signal-based approaches, o�er generally better performance
than energy-based methods. �is is due to the fact that the
information conveyed by all the samples of the signal is
directly exploited instead of their average, at the expense
of more sophisticated capturing devices and transmission
resources [18, 19].

SRP approaches are beamforming-based techniques that
compute the output power of a 	lter-and-sum beamformer
steered to a set of candidate source locations de	ned by a
prede	ned spatial grid. Since the computation of the SRP
involves the accumulation of GCCs from multiple micro-
phone pairs, the synchronization requirements are usually
the same as those of TDOA-based methods. �e set of SRPs
obtained at the di�erent points of the grid make up the
SRP power map, where the point accumulating the highest
value corresponds to the estimated source location. When
using unsynchronized nodes with multiple microphones, the
SRP power maps computed at each node can be used to
obtain their corresponding DOAs. Alternatively, the SRP
power maps from the di�erent sensors can be accumulated
at a central node to obtain a combined SRP power map,
identifying the true source location by its maximum.

Besides the localization of acoustic sources, approaches
for localizing the nodes in the network are also of high
interest within a WASN context. Based on the estimated
TOAs and TDOAs, algorithms for self-localization of the
sensor nodes usually assume known source positions playing
known probe signals. In practical scenarios, each sensor node
does not have any information regarding other nodes or
synchronization between the sensor and the source. �ese
assumptions allow all processing to take place on the node
itself. Several issues, for example, reverberation, asynchrony
between the sound source and the sensor, poor estimation
of the speed of sound, and noise, need to be considered for
robust self-localization methods. In addition, the processing
needs to be computationally inexpensive in order to be run
on the sensor node itself.

Some state-of-the-art solutions for acoustic sensor local-
ization detail the challenges facing these algorithms and
methods to tackle such problems in a uni	ed context [20,
21]. Furthermore, recent methodologies have been proposed
for probe signal design aimed at improving TOF estimation
[22], the joint localization of sensors and sources in an ad
hoc array by using low-rank approximation methods [23],
and an iterative peak matching algorithm for fast node
autocalibration [24].

�e paper is structured as follows. Section 2 discusses
some general considerations regarding a general WASN
structure and the notation used throughout this paper.
Section 3 presents the fundamentals of energy-based source
localization methods. Section 4 discusses TOA-based local-
ization approaches. Methods for TDOA-based localization
are presented in Section 5. Section 6 discusses the use of
DOAmeasurements to perform localization of one or several
sound sources. In Section 7, the fundamentals of the conven-
tional and modi	ed SRP methods are explained. Section 8
reviews some recent methods for the self-localization of the
nodes in the network. Some future directions in the 	eld are
discussed in Section 9. Finally, the conclusions of this review
are summarized in Section 10.

2. General Considerations

In order to clarify the notation used throughout this paper
and the type of location cues used to perform the localization
task, Figure 1 shows a general WASN with a set of wireless
nodes and an emitting sound source. It is assumed that the
network consists of� nodes and that each node incorporates�microphones. In the example shown in Figure 1,� = 3 and� = 3.�e nodes are assumed to be located at positions q� =[��,�, ��,�, ��,�]�, � = 1, . . . ,�, while the microphone

locations are denoted asm(�)
� = [�(�)� , �(�)� , �(�)� ]�, 	 = 1, . . . ,�, where the superscript (�) identi	es the node at which

the microphone is located. �e source position is denoted
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as x� = [��, ��, ��]�, while a general point in space is x =[�, �, �]�. Note that all these location vectors are referenced
to the same absolute coordinate system. �e distance from

any microphone to the sound source is denoted as 
(�)� , while
the time it takes the sound wave to travel from the source to
a microphone, that is, the time of �ight (TOF), is denoted

by �(�)� . �e time instant at which the source signal arrives

to a given microphone, that is, the TOA, is denoted as �(�)� .

TDOAs are denoted by �(�)�	 and correspond to the observed

TOA di�erences between pairs of microphones (	). It is a
common practice to identify di�erent pairs of microphones
by using an index � = 1, . . . , �, where � is the total number
of microphone pairs involved in the localization task. �e
DOA corresponds to the angle that identi	es the direction
relative to the nodemicrophone array that points to the sound
source and is denoted by ��. Finally, the energy values of
the source signal measured at the nodes are denoted as ��.
�ese are negligible formicrophones located at the samenode
(especially if the nodes are relatively far from the source), so
it is usually assumed that only one energy reading is obtained
for each node.

3. Energy-Based Source Localization

Traditionally, most localization methods for WASNs have
been focused on sound energy measurements. �is is moti-
vated by the fact that the acoustic power emitted by targets
usually varies slowly in time. �us, the acoustic energy time
series does not require as high a sampling rate as the raw
signal time series, avoiding the need for high transmission
rates and accurate synchronization. �e energy-based model
was 	rst presented in [25]. In this model, the acoustic energy
decreases approximately as the inverse of the square of the
source to sensor distance. Without loss of generality, it will
be assumed in this section that the node locations determine
the microphone positions and that nodes only incorporate
one microphone (� = �). Note that, as opposed to time
delaymeasurements, the di�erences in energymeasurements
obtained from di�erent microphones at the same node are
negligible.

3.1. Energy-Decay Model. Assuming that there is only one
source active, the acoustic intensity signal received by the 	th
sensor at a time interval � is modeled as [25]

�� (�) = �� � (� − ��)
2� + �� (�) = �� (�) + �� (�) , (1)

where ��(�) is the source intensity at the sensor location, �� is
a sensor gain factor, �(�) denotes the intensity of the source
signal at a distance of one meter from the source, �� is the
propagation delay from the source to the sensor, 
� is the
distance between the sensor and the source, and ��(�) is an
additive noise component modeled as Gaussian noise. In

practice, for each time interval �, a set of � samples is used
to obtain an energy reading ��(�) at the sensor:

�� (�) ≈ 1�

+�/2∑

−�/2

�2� (�) , (2)

where ��(�) are the samples obtained from the microphone
of the 	th node. In the case when several microphones are
available at each node, the 	nal energy reading is obtained
by averaging the energies computed from each of the micro-
phones.

By assuming that the maximum propagation delay
between any pair of sensors is small compared to� and taking
into account the averaging e�ect, �� can be neglected for the
energy-decay function, so that

�� (�) ≈ �� � (�)
2� + �� (�) . (3)

3.2. Energy Ratios. Considering the energy measurements
obtained by a group of � sensor nodes, the energy ratio ��	
between the 	th and the th sensors is de	ned as

��	 ≜ (��/�	��/�	)
−1/2 =     x� −m�

         x� −m	
     = 
�
	 , (4)

where x� is the location of the source and m� and m	 are the
locations of the two microphones. For 0 < ��	 ̸= 1, all the
possible source coordinates x that satisfy (4) must reside on a

hypersphere (sphere if x ∈ R
3 or circle if x ∈ R

2) described
by

     x − c�	
     2 = #2�	, (5)

where the center c�	 and the radius #�	 of this hypersphere are
c�	 ≜ m� − �2�	m	1 − �2�	 ,
#�	 ≜ ��	      m� −m	

     1 − �2�	 .
(6)

In the limiting case, when ��	 → 1, the solution of (4)
forms a hyperplane betweenm� andm	:

w
�
�	x = %�	, (7)

where w�	 ≜ m� −m	 and %�	 ≜ (1/2)(‖m�‖2 − ‖m	‖2).
By using the energy ratios registered at a pair of sensors,

the potential target location can be restricted to a hypersphere
with center and radius that are functions of the energy ratio
and the two sensor locations. If more sensors are used, more
hyperspheres can be determined. If all the sensors that receive
the signal from the same target are used, the corresponding
target location hyperspheres must intersect at a particular
point that corresponds to the source location. �is is the
basic idea underlying energy-based source localization. In the
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Figure 2: Example of energy-based localization with three nodes.
�e red circle indicates the true source location. Note that due to
measurement noise circles do not intersect at the expected source
location. �e center of the contour plots indicates estimated target
location, according to the nonlinear cost function of (9).

absence of noise, it can be shown that for � measurements
only�−1 of the total�(�−1)/2 ratios are independent, and
all the corresponding hyperspheres intersect at a single point
for four or more sensor readings. For noisy measurements,
however, more than�− 1 ratios may be used for robustness,
and the unknown source location x� is estimated by solving
a nonlinear least squares problem, as explained in the next
subsection. As an example, Figure 2 shows a 2D setup with
three sensors and the circles resulting from noisy energy
ratios.

3.3. Localization through Energy Ratios. Given � sensor
nodes providing � = �(�−1)/2 energy ratios, the following
least squares optimization problem can be formulated:

'(ER)
NLS

(x) = �1∑
�1=1

*****     x − c�1
     − #�1 *****2 + �2∑

�2=1

*****w�
�2x − %�2

*****2 , (8)

x̂
(ER-NLS)
� = argmin

x
'(ER)
NLS

(x) , (9)

where �1 is the number of hyperspheres and �2 is the number
of hyperplanes (��	 close to 1), with corresponding indices �1
and�2 indicating the associated sensor pairs (	) (� = �1+�2).
Note that the above cost function is nonlinear with respect to
x, resulting in the energy-ratio nonlinear least squares (ER-
NLS) problem. It can be shown that minimizing this cost
function leads to an approximate solution for the maximum
likelihood (ML) estimate. A set of strategies were proposed

in [26] to minimize '(ER)
NLS

(x) by using the complete set of
measured energy ratios. A popular approach to solve the
problem is the unconstrained least squares method. Since
every pair of hyperspheres (with double indices 	 replaced by
a single pair index for the sake of brevity) ‖x− c�‖2 = #2� and

‖x−c‖2 = #2, a hyperplane can be determined by eliminating
the common terms:

(c� − c)� x = (    c�    2 −     c    2) − (#2� − #2)2 . (10)

�e combination of (7) with (10) leads to a least squares
optimization problemwithout inconvenient nonlinear terms,
known as the energy-ratio least squares (ER-LS) method,
with cost function:

'(ER)
LS

(x) = �1∑
�1=1

*****u��1x − 6�1 *****2 + �2∑
�2=1

*****w�
�2x − %�2

*****2 , (11)

where

u�	 ≜ 2m�1 − �2� − 2m	1 − �2	 ,
6�	 ≜     m�

    21 − �2� −      m	
     21 − �2	 .

(12)

�e closed-form solution of the above unconstrained
least squares formulation makes this method computation-
ally attractive; however, it does not reach the Cramer-Rao
bound. In [27], energy-based localization is formulated as
a constrained least squares problem, and some well-known
least squares methods for closed-form TDOA-based loca-
tion estimation are applied, namely, linear intersection [28],
spherical intersection [29], sphere interpolation (SI) [30], and
subspaceminimization [31]. In [32], an algebraic closed-form
solution is presented that reaches the Cramer-Rao bound for
Gaussian measurement noise as the SNR tends to in	nite.
�e authors in [33] formulated the localization problem as a
convex feasibility problem and proposed a distributed version
of the projection onto convex sets method. A discussion of
least squares approaches is provided in [19], presenting a
low-complexity weighted direct least squares formulation. A
recent review of energy-based acoustic source localization
methods can be found in [18].

4. TOA-Based Localization

Typically, a WASN sound source location setup assumes
that there is a sound-emitting source and a collection of
	xed microphone anchor nodes placed at known positions.
When the sound source emits a given signal, the di�erent
microphone nodes will estimate the time of arrival (TOA) or
time of �ight (TOF) of the sound. �ese two terms may not
be equivalent under some situations. �e TOF measures the
time that it takes for the emitted signal to travel the distance
between the source and the receiving node; that is,

�� ≜ 17     m� − x�
    . (13)

In fact, when utilizing TOA measurements for source
localization, it is o�en assumed that the source and sensor
nodes cooperate such that the signal propagation time can
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be detected at the sensor nodes. However, such collaboration
between sources and sensor nodes is not always available.
�us, without knowing the initial signal transmission time at
the source, fromTOAalone, the sensor is unable to determine
the signal propagation time.

In the more general situation when unknown acoustic
signals such as speech or unexpected sound events are to be
localized, the relation between distances and TOAs can be
modeled as follows:

�� = �� + �� + ��, (14)

where �� is an unknown transmission time instant and �� is
the TOA measurement noise. Note that the time �� appears
due to the fact that typical sound sources do not encode a
time stamp in their transmitted signal to indicate the starting
transmission time to the sensor nodes and, moreover, there
is not any underlying synchronization mechanism. Hence,
the sensor nodes can only measure the signal arrival time
instead of the propagation time or TOF. One way to tackle
this problem is to exploit the di�erence of pairwise TOA
measurements, that is, time di�erence of arrival (TDOA), for
source localization (see Section 5). Although the dependence
on the initial transmission time is eliminated by TDOA, the
measurement subtraction strengthens the noise. To overcome
such problems, some works propose methods to estimate
both the source location and initial transmission time jointly
[34].

When the TOA and the TOF are equivalent (i.e., �� = ��),
for example, because there are synchronized sound-emitting
nodes, the source-to-node distances can be calculated using
the propagation speed of sound [35]. �is may require an
initial calibration process to determine factors that have a
strong in�uence on the speed of sound. �e computation of
the source location can be carried out in a central node by
using the estimated distances and solving the trilateration
problem [36]. Trilateration is based on the formulation of
one equation for each anchor that represents the surface of
the sphere (or circle) centered at its position, with a radius
equal to the estimated distance to the sound source. �e
solution to this series of equations 	nds the point where
all the spheres intersect. For 2D localization, at least three
sensors are needed, while one more sensor is necessary to
obtain a 3D location estimate.

4.1. Trilateration. Let us consider a set of� sensor TOAmea-
surements �� that are transformed to distances by assuming a
known propagation speed:


� = 7 ⋅ ��, (15)

where 7 is the speed of sound (343m/s). �en, the following
system of equations can be formulated:

    m� − x�
    2 = 
2� 	 = 1, . . . , �. (16)

Each equation in (16) represents a circle inR
2 or a sphere

in R
3, centered atm� with a radius 
�. Note that the problem

is the same as the one given by (5). �us, solving the above
system is equivalent to 	nding the intersection point/points

of a set of circles/spheres. Again, the trilateration problem is
not straightforward to solve due to the nonlinearity of (16)
and the errors in m� and 
� [37]. A number of algorithms
have been proposed in the literature to solve the trilateration
problem, including both closed form [37, 38] and numerical
solutions. Closed-form solutions have low computational
complexity when the solution of (16) actually exists. However,
most closed-form solutions only solve for the intersection
points of 9 spheres in R

. �ey do not attempt to determine
the intersection point when � > 9, where small errors
can easily cause the involved spheres not to intersect at one
point [39]. It is then necessary to 	nd a good approximation
that minimizes the errors contained in (16) considering the
nonlinear least squares cost function:

'(TOA)
NLS

(x) = �∑
�=1

(    m� − x
    − 
�)2 ,

x̂
(TOA-NLS)
� = argmin

x
'(TOA)
NLS

(x) .
(17)

Numerical methods are in general necessary to estimate

x̂(TOA-NLS)� . However, compared with closed-form solutions,
numerical methods have higher computational complexity.
Some numerical methods are based on a linearization of the
trilateration problem [40–42], introducing additional errors
into position estimation. Common numerical techniques
such as Newton’s method or steepest descent have also
been proposed [38, 40, 41]. However, most of these search
algorithms are very sensitive to the choice of the initial guess,
and a global convergence towards the desirable solution is not
guaranteed [39].

4.2. Estimating TOAs of Acoustic Events. As already dis-
cussed, localizing acoustic sources from TOAmeasurements
only is not possible due to the unknown source emission
time of acoustic events. If the sensors are synchronized, the
di�erences of TOA measurements can be used to cancel out
the common term ��, so that a set of TDOAs are obtained
and used as discussed in Section 5. A low-complexitymethod
to estimate the TOAs from acoustic events in WASNs was
proposed in [43], where the cumulative-sum (CUSUM)
change detection algorithm is used to estimate the source
onset times at the nodes. �e CUSUM method is a low-
complexity algorithm that allows estimating change detection
instants by maximizing the following log-likelihood ratio:

�̂� = arg max
1≤�≤�

�∑
�=�

ln(� (�� (�) , �1)� (�� (�) , �0)) . (18)

�e probability density function of each sample is given
by �(��(�), �), where � is a deterministic parameter (not to
be confused with the DOA of the source). �e occurrence
of an event is modeled by an instantaneous change in �, so
that � = �0 before the event at � = �� and � = �1 when� ≥ ��. To simplify calculations at the nodes, the samples
before the acoustic event are assumed to belong exclusively to

aGaussian noise component of variance;20 , while the samples
a�er the event are also normally distributed with variance
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Figure 3: Node communication steps in CUSUM-based TOA estimation. (a) One of the nodes detects the sound event and sends an event
warning alert to the other nodes. (b) �e nodes estimate their TOAs and send it to a central node.

;21 > ;20 . �ese variances are estimated from the beginning
and tail of a window of samples where the nodes have strong
evidence that an acoustic event has happened.�e advantage
of this approach is twofold. On the one hand, the estimation
of the distribution parameters is more accurate. On the other
hand, the CUSUM change detection algorithm needs only to
be runwhen an acoustic event has actually occurred, allowing
signi	cant battery savings in the nodes. �e detection of
acoustic events is performed by assuming that, at least, one
of the nodes has the su�cient SNR to detect the event by a
simple amplitude threshold. �e node (or nodes) detecting
the presence of the event will notify the rest by sending an
event warning alert in order to let them know that they must
run the CUSUM algorithm over a window of samples (see
Figure 3). �e amplitude threshold selection is carried out by
setting either the probability of detection or the probability
of false alarm given an initial estimate of the ambient noise

variance ;20 . Note that synchronization issues still persist (all�� must have a common time reference), so that the nodes
exchange synchronization information by using MAC layer
time stamping in the deployment discussed in [43].

5. TDOA-Based Localization

When each sensor consists of multiple microphones, local-
ization can be accomplished in an e�cient way demanding
as much as possible of the processing to each node and
then combining measurements to yield the localization at
the central node. When nodes are connected through low
bitrate channels and no synchronization of the internal clocks

is guaranteed, this strategy becomes a must. Among all the
possible measurements, a possible solution can be found in
the time di�erence of arrival (TDOA).

5.1. TDOA and Generalized Cross Correlation. Consider the
presence of� nodes in the network. For reasons of simplicity
in the notation, all nodes are equipped with�microphones.
�e TDOA refers to the di�erence of propagation time from
the source location to pairs of microphones. If the source is
located at x�, and the 	th microphone in the �th sensor is at

m(�)
� 	 = 1, . . . , �, the TDOA is related to the di�erence of the

ranges from the source to the microphones 	 and  through
�(�)�	 = 
(�)�	7 =      x� −m(�)

�
     −      x� −m(�)

	
     7 ,

	 = 1, . . . , �,  = 1, . . . , �, 	 ̸= , � = 1, . . . ,�.
(19)

�roughout the rest of this subsection we will consider
pairs of microphones within the same node, so we will omit
the superscript (�) of the sensor. �e estimate �̂�	 of the
TDOA ��	 can be accomplished performing the generalized
cross correlation (GCC) between the signals acquired by
microphones at m� and m	, as detailed in the following.
Under the assumption of working in an anechoic scenario
and in a single source context, the discrete-time signal
acquired by the 	th microphone is

�� (�) = ?�� (� − ��) + �� (�) , 	 = 1, . . . , �, (20)

where ?� is a microphone-dependent attenuation term that
accounts for the propagation losses and air absorption, �(�)
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is the source signal, �� is the propagation delay between
the source and the 	th microphone, and ��(�) is an additive
noise signal. In the discrete-time Fourier transform (DTFT)
domain, the microphone signals can be written as

@� (A) = ?�B (A) C−	��� + D� (A) , 	 = 1, . . . , �, (21)

where B(A) and D�(A) are the DTFTs of �(�) and ��(�), respec-
tively, and A ∈ R denotes normalized angular frequency.

Given the pair of microphones 	 and , with 	 ̸= , the
GCC between ��(�) and �	(�) can be written as [10]

E�	 (�) ≜ 12F ∫�

−�
@� (A)@∗

	 (A)Ψ�	 (A) C	��IA, (22)

where@�(A) is the DTFT of ��(�), ∗ is the conjugate operator,
and Ψ�	(A) is a suitable weighting function.

�e TDOA from the pair (	) is estimated as

�̂�	 = argmax� E�	 (�)K� , (23)

where K� is the sampling frequency. �e goal of Ψ�	(A) is to
make E�	(�) sharper so that the estimate in (23) becomes
more accurate. One of the most common choices is to use the
PHAse Transform (PHAT) weighting function; that is,

Ψ�	 (A) = 1*****@� (A)@∗
	 (A)***** . (24)

In an array of�microphones, the complete set of TDOAs
counts�(� − 1)/2measures. If these are not a�ected by any
sort of measurement error, it can be easily demonstrated that
only�−1 of them are independent, the others being a linear
combination of them. It is common practice, therefore, to
adopt a reference microphone in the array and to measure� − 1 TDOAs with respect to it. We refer to the set of� − 1 measures as the reduced TDOA set. Without any loss
of generality, for the reduced TDOA set, we can assume the
reference microphone be with index 1, and the TDOAs �̂1	 in
the reduced set, for reasons of compactness in the notation,
are denoted with �̂	,  = 2, . . . , �.

5.2. TDOA Measurement in Adverse Environments. It is
important to stress the fact that TDOA measurements are
very sensitive to reverberation, noise, and the presence of
possible interferers: in a reverberant environment, for some
locations and orientation of the source, the peak of the GCC
relative to a re�ective path could overcome that of the direct
path.Moreover, in a noisy scenario, for some time instants the
noise level could exceed the signal, thus making the TDOAs
unreliable. As a result, some TDOAs must be considered
outliers and must be discarded from the measurement set
before localization (as in the example shown in Figure 4).

Several solutions have been developed in order to alle-
viate the impact of outliers in TDOAs. It has been observed
that GCCs a�ected by reverberation and noise do not exhibit
a single sharp peak. In order to identify outliers, therefore,
some works analyze the shape of the GCC from which
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Figure 4: Examples of GCCs measured for pairs of microphones
within the same node. It is possible to observe that for most of
the above GCCs the measured TDOA (Peak) is very close to the
ground truth (GT).�is does not happen for one measurement, due
to reverberation. Note also that TDOA values have been mapped to
range di�erences.

they were extracted. In [12], authors propose the use of the
function

L�	 ≜ ∑�∈D�� E�	 (�)2∑�∉D�� E�	 (�)2 , (25)

to detect GCCs a�ected by outliers. More speci	cally, the
numerator sums the “power” of the GCC samples within
the interval D�	 centered around the candidate TDOA and
compares it with the energy of the remaining samples.
When L�	 overcomes a prescribed threshold, the TDOA is
considered reliable. Twometrics of the GCC shape have been
proposed in [13, 44]. �e 	rst one considers the value of
the GCC at the maximum peak location, while the second
compares the highest peak with the second highest one.
When both metrics overcome prescribed thresholds, the
GCC is considered reliable.

Another possible route to follow is described in [11] and
is based on the observation that TDOAs along closed paths
of microphones must sum to zero (zero-sum condition) and
that there is a relationship between the local maxima of the
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autocorrelation and cross correlation of the microphone sig-
nals (raster condition).�e zero-sum condition onminimum
length paths of three microphones with indexes 	, , and N, in
particular, states that

��	 + �	� + ��� = 0. (26)

By imposing zero-sumand raster conditions, authors demon-
strate that they are able to disambiguate TDOAs in the case
of multiple sources in reverberant environments.

In [17] authors combine di�erent approaches. A redun-
dant set of candidate TDOAs is selected by identifying
local maxima of the GCCs. A 	rst selection is operated by
discardingTDOAs that do not honor the zero-sumcondition.
A second selection step is based on three quality metrics
related to the shape of the GCC. �e third 	nal step is based
on the inspection of the residuals of the source localization
cost function: all the measurements related to residuals
overcoming a prescribed threshold are discarded.

It is important to notice that all the referenced techniques
for TDOA outlier removal do not involve the cooperation of
multiple nodes, with clear advantages in terms of data to be
transmitted.

5.3. Localization through TDOAs. In this section we will
consider the problem of source localization by combining
measurements coming from di�erent nodes. In order to
identify the sensor from which measurements have been
extracted, we will use the superscript (�). From a geometric

standpoint, given a TDOA estimate �̂(�)�	 , the source is bound

to lie on a branch of hyperbola (hyperboloid in 3D), whose

foci are in m(�)
� and m(�)

	 , and whose vertices are 7�̂(�)�	 far

apart. If source andmicrophones are coplanar, the location of
the source can be ideally obtained by intersecting two ormore
hyperbolas [14], as in Figure 5 and some primitive solutions
for source localization rely on this idea. It is important to
notice that when the source is su�ciently far from the node,
the branch of hyperbola can be confused with its asymptote:
in this case the TDOA is informative only with respect to
the direction towards which the source is located and not its
distance from the array. In this context it is more convenient
to work with DOAs (see Section 6).

In general, intersecting hyperbolas is a strongly nonlinear
problem, with obvious negative consequences on the compu-
tational cost and the sensitivity to noise in themeasurements.
In [12] a solution is proposed to overcome this issue, which
relies on a projective representation. �e hyperbola derived

from theTDOA �̂(�)�	 atmicrophonesm(�)
� andm(�)

	 is written
as

O(�)�	 �2 + P(�)�	 �� + 7(�)�	 �2 + I(�)�	 � + C(�)�	 � + Q(�)
�	 = 0, (27)

where the coe�cients O(�)�	 , P(�)�	 , 7(�)�	 , I(�)�	 , C(�)�	 , Q(�)
�	 are

determined in closed form bym(�)
� ,m(�)

	 , and �̂(�)�	 . Equation

(27) represents a constraint on the source location. In the

xs

mk
(l)

mm
(l)

mj
(l)

Figure 5: �e source lies at the intersection of hyperbolas obtained
from TDOAs.

presence of noise, the constraint is not honored and a residual
can be de	ned as

R(�)�	 (x) = V
(�)
�	 (O(�)�	 �2 + P(�)�	 �� + 7(�)�	 �2 + I(�)�	 �

+ C(�)�	 � + Q(�)
�	 ) , (28)

where V
(�)
�	 = 1 for all the TDOAs that have been found

reliable and 0 otherwise. �e residuals are stacked in the
vector R(x), and the source is localized byminimizing the cost
function

'(TDOA)
HYP

(x) = R (x)� R (x) . (29)

If TDOA measurements are a�ected by additive white Gaus-
sian noise, it is easy to demonstrate that (29) is proportional
to the ML cost function.

It has been demonstrated that a simpli	cation of the
localization cost function can be brought if a reference
microphone is adopted, at the cost of the nodes sharing a
common clock. Without loss of generality, we assume the
reference to be the 	rst microphone in the 	rst sensor (i.e.,	 = 1 and� = 1), andwe also setm(1)

1 = 0; that is, the origin of
the reference frame coincides with the referencemicrophone.
Moreover, we can drop the array index � upon assigning a
global index to the microphones in di�erent sensors, ranging
from  = 1 to  = ��. In this context, it is possible to
linearize the localization cost function, as shown in the next
paragraphs. By rearranging the terms in (19) and setting 	 = 1,
it is easy to derive

    x�    − 
̂	 =      x� −m	
     , (30)

where 
̂	 = 7�̂	. In [45] it has been proposed to represent
the source localization problem in the space-range reference

frame: a point x = [�, �]� in space is mapped onto the 3D

space-range as |x�, 
]� where


 =     x� − x
    −     x�    . (31)
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Figure 6: In the space-range reference frame the source is a point
on the surface of the cone S� and closest to the cones S�.

We easily recognize that, in absence of noise and measure-
ment errors, 
 is the range di�erence relative to the source in
x� between the reference microphone and a microphone in x.
If we replace


� = −     x�    , (32)

we can easily interpret (30) as the equation of a negative
half-cone S	 in the space-range reference frame, whose apex

is [m�
	 , 
̂	]�, and with aperture F/4, and the source point[x�� , 
�� ] lies on it. Equation (30) can be iterated for  = 2, . . . ,�×�, and the source is bound to lie on the surface of all the

cones.Moreover, the range 
� of the source from the reference
microphone must honor the constraint


� = −     x�    , (33)

which is the equation of a cone S� whose apex is in [m�
1 , 0]�

and with aperture F/4. �e ML source estimate, therefore, is
the point on the surface of the cone in (33) closest to all the
cones de	ned by (30), as represented in Figure 6.

By squaring both members of (30) and recognizing that

�2� + �2� − 
2� = 0, (34)

(30) can be rewritten as

�	�� + �	�� − 
̂	
� − 12 (�2	 + �2	 − 
̂2	 ) = 0, (35)

which is the equation of a plane in the space-range reference
frame, on which the source is bound to lie. Under error in the
range di�erence estimate 
̂	, (35) is not satis	ed exactly, and
therefore a residual can be de	ned as

C	 = �	�� + �	�� − 
̂	
� − 12 (�2	 + �2	 − 
̂2	 ) . (36)

Based upon the de	nition of C	, the LS spherical cost function
is given by [46]

'(TDOA)
SP

(x�, 
�) = ��∑
	=2

C2	 . (37)

Most LS estimation techniques adopt this cost function and
they di�er only for the additional constraints. �e Uncon-
strained Least Squares (ULS) estimator [16, 30, 31, 47, 48]
localizes the source as

x̂
(ULS)
� = argmin

x� ,��
'(TDOA)
SP

(x�, 
�) . (38)

It is important to notice that the absence of any explicit
constraint that relates x� and 
� provides inmany applications
a poor localization accuracy. Constrained Least Squares
techniques, therefore, reintroduce this constraint as

x̂
(CLS)
� = argmin

x� ,��
'(TDOA)
SP

(x�, 
�)
subject to 
� = −     x�    . (39)

Based on (39), Spherical Intersection [29], Least Squares with
Linear Correction [49], and Squared Range Di�erence Least
Squares [15] estimators have been proposed, which di�er
for the minimization procedure, ranging from iterative to
closed-form solutions. It is important to notice, however,
that all these techniques assume the presence of a global
reference microphone and synchronization valid for all the
nodes. Alternative solutions that overcome this technological
constraint have been proposed in [17, 50]. Here the concept of
cone propagation in the space-range reference has been put
at advantage. In particular, in [50], the propagation cone is
de	ned slightly di�erent from the one de	ned in (30): the
apex is in the source and 
� = 0. As a consequence, in absence
of synchronization errors, all the points [x(�)�	 , 
̂(�)	 ]�.  =1, . . . , �, � = 1, . . . ,� must lie on the surface of the
propagation cone. If a sensor exhibits a clock o�set, its
measurements will be shi�ed along the range axis. �e shi�
can be expressed as a function of the source location, and
therefore it can be included in the localization cost function
at a cost of some nonlinearity. �e extension to the 3D
localization cost function was then proposed in [17].

6. DOA-Based Localization

When each node in the WASN incorporates multiple micro-
phones, the location of an acoustic source can be estimated
based on direction of arrival (DOA), also known as bearing,
measurements. Although, such approaches require increased
computational complexity in the nodes—in order to perform
the DOA estimation—they can attain very low-bandwidth
usage as only DOA measurements need to be transmitted
in the network. Moreover, they can tolerate unsynchronized
input given that the sources are static or that they move
at a rather slow rate relative to the analysis frame. DOA
measurements describe the direction from which sound is
propagating with respect to a sensor in each time instant and
are an attractive approach to location estimation also due to
the ease in which such estimates can be obtained: a variety
of broadband DOA estimation methods for acoustic sources
are available in the literature, such as the broadband MUSIC
algorithm, [51] the ESPRIT algorithm [52], Independent
Component Analysis (ICA) methods [53], or Sparse Compo-
nent Analysis (SCA) methods [54]. When the microphones



Wireless Communications and Mobile Computing 11

4 3

1 2
1 2

34

Figure 7: Triangulation using DOA estimates (�1–�4) in aWASN of
4 nodes (blue circles, numbered 1 to 4) and one active sound source
(red circle).

at the nodes follow a speci	c geometry, for example, circular,
methods such as Circular Harmonics Beamforming (CHB)
[55] can also be applied.

In the sequel, we will 	rst review DOA-based localization
approaches when a single source is active in the acoustic envi-
ronment.�en, we will present approaches for localization of
multiple simultaneously active sound sources. Finally, we will
discuss methods to jointly estimate the locations as well as
the number of sources, a problem which is known as source
counting.

6.1. Single Source Localization through DOAs. In the single
source case, the location can be estimated as the intersection
of bearing lines (i.e., lines emanating from the locations of
the sensors at the directions of the sensors’ estimated DOAs),
a method which is known as triangulation. An example of
triangulation is illustrated in Figure 7. �e problem closely
relates to that of target motion analysis, where the goal
is to estimate the position and velocity of a target from
DOAmeasurements acquired by a single moving or multiple
observers. Hence, many of the methods were proposed for
the target motion analysis problem but outlined here in the
context of sound source localization in WASNs.

Considering a WASN of � nodes at locations q� =[��,� ��,�]�, the function that relates a location x = [� �]�
with its true azimuthal DOA estimate at node� is

�� (x) = arctan(� − ��,�� − ��,�) , (40)

where arctan(⋅) is the four-quadrant inverse tangent function.
Note that we deal with the two-dimensional location esti-
mation problem; that is, only the azimuthal angle is needed.
When information about the elevation angle is also available,
location estimation can be extended to the three-dimensional
space.

4 3

1 2
1

2

34

Figure 8: Triangulation using DOA estimates contaminated by

noise (�̂1–�̂4) in a WASN of 4 nodes (blue circles, numbered 1 to
4) and the estimated location of the sound source (red circle).

In any practical case, however, the DOA estimates �̂�,� = 1, . . . ,�, will be contaminated by noise and tri-
angulation will not be able to produce a unique solution,
craving for the need of statistical estimators to optimally
tackle the triangulation problem. �is scenario is illustrated
in Figure 8. When the DOA noise is assumed to be Gaussian,
the ML location estimator can be derived by minimizing the
nonlinear cost function [56, 57]:

'(DOA)
ML

(x) = �∑
�=1

1;2� (�̂� − �� (x))2 , (41)

where ;2� is the variance of DOA noise at the �th sensor.
As information about the DOA error variance at the

sensors is rarely available in practice, (41) is usually modi	ed
to

'(DOA)
NLS

(x) = �∑
�=1

(�̂� − �� (x))2 , (42)

which is termed as nonlinear least squares (NLS) [58] cost
function. Minimizing (42) results in the ML estimator, when
the DOA noise variance is assumed to be the same at all
sensors.

While asymptotically unbiased, the nonlinear nature of
the above cost functions requires numerical search methods
for minimization, which comes with increased computa-
tional complexity compared to closed-form solutions and
can become vulnerable to convergence problems under bad
initialization, poor geometry between sources and sensors,
high noise, or insu�cient number of measurements. To
surpass some of these problems, some methods form geo-
metrical constraints between the measured data and result in
better convergence properties than the maximum likelihood
estimator [59] or try to directly minimize the mean squared
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location error [60] instead of minimizing the total bearing
error in (41) and (42).

Other approaches are targeted at linearizing the above
nonlinear cost functions. Stans	eld [61] developed aweighted
linear least squares estimator based on the cost function
of (41) under the assumption that range information 
� is
available and DOA errors are small. Under the small DOA
errors assumption �̂�−��(x) can be approximated by sin(�̂�−��(x)) and the ML cost function can be modi	ed to

'(DOA)
ST

(x) = 12 (Ax − b)�W−1 (Ax − b) , (43)

where

A = [[[[[

sin �̂1 − cos �̂1... ...
sin �̂� − cos �̂�

]]]]]
,

b = [[[[[

��,1 sin �̂1 − ��,1 cos �̂1...
��,� sin �̂� − ��,� cos �̂�

]]]]]
,

W = [[[[[[[


21;21 0


22;22
d

0 
2�;2�

]]]]]]]
,

(44)

which is linear and has a closed-form solution:

x̂
(ST)
� = (A�

W
−1
A)−1 A�

W
−1
b. (45)

When range information is not available, the weight
matrix W can be replaced by the identity matrix. In this
way, the Stans	eld estimator is transformed to the orthogonal
vectors estimator, also known as the pseudolinear estimator
[62]:

x̂
(OV)
� = (A�

A)−1 A�
b. (46)

While simple in their implementation and computation-
ally very e�cient due to their closed-form solution, these
linear estimators su�er from increased estimation bias [63].
A comparison between the Stans	eld estimator and the ML
estimator in [64] reveals that the Stans	eld estimator provides
biased estimates. Moreover, the bias does not vanish even for
a large number of measurements. To reduce that bias various
methods have been proposed based on instrumental variables
[65–67] or total least squares [57, 68].

Motivated by the need for computational e�ciency, the
intersection point method [69] is based on 	nding the
location of a source by taking the centroid of the intersections
of pairs of bearing lines. �e centroid is simply the mean
of the set of intersection points and minimizes the sum of
squared distances between itself and each point in the set.

To increase robustness in poor geometrical conditions, the
method incorporates a scheme of identifying and excluding
outliers that occur from the intersection of pairs of bearing
lines that are almost parallel. Nonetheless, the performance
of the method is very similar to that of the pseudolinear
estimator.

To attain the accuracy of nonlinear least squares estima-
tors and improve their computational complexity, the grid-
based (GB) method [70, 71] is based on making the search
space discrete by constructing a grid G of �� grid points
over the localization area. Moreover, as the measurements
are angles, the GB method proposes the use of the Angular
Distance—taking values in the range of [0, F]—as a more
proper measure of similarity than the absolute distance of
(42).�eGBmethod estimates the source location by 	nding
the grid point whose DOAsmost closely match the estimated
DOAs from the sensors by solving

'(DOA)
GB

(x) = �∑
�=1

[` (�̂�, �� (x))]2 , (47)

x̂
(GB)
� = argmin

x∈G
'(DOA)
GB

(x) , (48)

where `(⋅, ⋅) denotes the angular distance between the two
arguments.

To eliminate the location error introduced by the discrete
nature of this approach, a very dense grid (high ��) is
required. �e search for the best grid point is performed in
an iterative manner: it starts with a coarse grid (low value
of ��) and once the best grid point is found—according to
(47)—a new grid centered on this point is generated, with
a smaller spacing between grid points but also a smaller
scope. �en, the best grid point in this new grid is found
and the procedure is repeated until the desired accuracy is
obtained, while keeping the complexity under control, as it
does not require an exhaustive search over a large number
of grid points. In [70] it is shown that the GB method is
muchmore computationally e�cient than the nonlinear least
squares estimators and attains the same accuracy.

6.2. Multiple Source Localization. When considering mul-
tiple sources, a fundamental problem is that the correct
association of DOAs from the nodes to the sources is
unknown. Hence, in order to perform triangulation, one
must 	rst estimate the correct DOA combinations from
the nodes that correspond to the same source. �e use of
DOAs that belong to di�erent sources will result in “ghost”
sources, that is, locations that do not correspond to real
sources, thus severely a�ecting localization performance.
�is is known as the data-association problem. �e data-
association problem is illustratedwith an example in Figure 9:
in aWASNwith twonodes (blue circles) and two active sound
sources (red circles), let the solid lines show the DOAs to
the 	rst source and the dashed lines show the DOAs to the
second source. Intersecting the bearing lines will result in 4
intersection points: the red circles, that correspond to the true
sources’ locations and are estimated by using the correctDOA
combinations (i.e., the DOAs from the node that correspond
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1 2

Figure 9: Illustration of the data-association problem. A two-
node WASN with two active sound sources. �e solid lines show
the DOAs to the 	rst source, while the dashed lines show the
DOAs to the second source. Intersecting the bearing lines from
the sensors will result in 4 possible intersection points: the true
sources’ locations (red circles) that are estimated by using the correct
combination of DOAs and the “ghost” sources (white circles) that
are the results of using the erroneous DOA combinations.

to the same source) and the white circles that are the result of
using the erroneous DOA combinations (“ghost” sources).

Also, with multiple active sources, some arrays might
underestimate their number, especially when some nodes
are far from some sources or when the sources are close
together in terms of their angular separation [54]. �us,
missed detections can occur, meaning that the DOAs of some
sources from some arrays may be missing. As illustrated in
[72], missed detections can occur very o�en in practice. In
the sequel, we review approaches for the data-association and
localization problem of multiple sources whose number is
assumed to be known.

Some approaches tried to tackle the data-association
problem by enumerating all possible DOA combinations
from the sensors and deciding on the correct DOA com-
binations based on the resulting location estimates from
all combinations. In general, if S� denotes the number of
sensors that detected � sources, the number of possible DOA
combinations is

�comb = �∏
�=1

��� . (49)

�e position nonlinear least squares (P-NLS) estimator
developed in [73] incorporates the association procedure in
the ML cost function, which takes the form

'(DOA)
P-NLS (x) = �∑

�=1
min
�

*****�̂�,� − �� (x)*****2 , (50)

where �̂�,� is the 	th DOA estimate of sensor�. To minimize
(50),�comb initial locations are estimated (one for each DOA
combination) using a linear least squares estimator, such as
the pseudolinear transform of (46). �en, the cost function
(50) is minimized—using numerical searchmethods—�comb

times, each time using a di�erent initial location estimate.

Each time, for each sensor the DOA closest to the DOA
of the initial location estimate is used to take part in the
minimization procedure. In that way, for all initial locations,
the estimator is expected to converge to a location of a true
source. However, as illustrated in [70], in the presence of
missed detections and high noise the approach is not able to
completely eliminate “ghost” sources.

�emultiple source grid-based method [70] estimates an
initial location for each possible DOA combination from the
sensors by solving (47). It then decides which of the initial
location estimates correspond to a true source, heuristically
by selecting the estimated initial locations whose DOAs are
closer to the DOAs from the combination used to estimate
that location.

Other approaches focus on solving the data-association
problem prior to the localization procedure. In this way, the
correct association of DOAs from the sensors to the sources
is estimated beforehand and the multiple source localization
problem decomposes into multiple single source localization
problems. In [74] the data-association problem is viewed
as an assignment problem and is formulated as a statistical
estimation problem which involves the maximization of the
ratio of the likelihood that the measurements come from the
same target to the likelihood that themeasurements are false-
alarms. Since the proposed solution becomes NP-hard for
more than three sensors, suboptimal solutions tried to solve
the same problem in pseudopolynomial time [75, 76].

An approach based on clustering of intersections of bear-
ing lines in scenarios with no missed detections is discussed
in [77]. It is based on the observation that intersections
between pairs of bearing lines that correspond to the same
source will be close to each other. Hence, intersections
between bearing lines will cluster around the true sources,
revealing the correct DOA associations, while intersections
from erroneous DOA combinations will be randomly dis-
tributed in space.

Permitting the transmission of low-bandwidth additional
information from the sensors can lead to more e�cient
approaches to the data-association problem. �e idea is that
the sensors can extract and transmit features associated with
each source they detect. Appropriate features for the data-
association problem must possess the property of being
“similar” for the same source in the di�erent sensors. �en,
the correct association of DOAs to the sources can be found
by comparing the corresponding features.

In [78] such features are extracted using Blind Source
Separation. �e features are binary masks [79] in the fre-
quency domain for each detected source that when applied
to the corresponding source signals they perform source
separation. �e extraction of such features relies on the W-
disjoint orthogonality assumption [80], which states that in
a given time-frequency point only one source is active, an
assumption which has been showed to be valid especially
for speech signals [81]. �e association algorithm works
by 	nding the binary masks from the di�erent arrays that
correlate the most. However, the method is designed for
scenarios with no missed detections and, as illustrated in
[72], performance signi	cantly dropswhenmissed detections
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Figure 10: Example of (a) narrowband location estimates and (b) their corresponding histogram for a scenario of two active sound sources
(the red X’s). �e narrowband location estimates form two clusters around the true sources’ locations, while their corresponding histogram
describes the plausibility that a source is present at a given location.

occur.Moreover, the association algorithm is designed for the
case of two sensors.

�e design of association features that are robust to
missed detections is considered in [72] along with a greedy
association algorithm that canworkwith an arbitrary number
of sources and sensors.�e association features describe how
the frequencies of the captured signals are distributed to the
sources. To do that, the method estimates a DOA c(A, N)
in each time-frequency point, where A and N denote the
frequency and time frame index, respectively. �en, a time-
frequency point (A, N) is assigned to source � if the following
conditions are met:

`(c (A, N) , �̂� (N)) < ` (c (A, N) , �̂� (N)) , ∀� ̸= �, (51)

`(c (A, N) , �̂� (N)) < �, (52)

where �̂�(N) is the DOA estimate at time frame N for the�th source at the sensor of interest and � is a prede	ned
threshold. Equations (51) and (52) imply that each frequency
is assigned to the source whose DOA is closest to the
estimated DOA in this frequency, as long as their distance
does not exceed a certain threshold �. �e second condition
(see (52)) adds robustness to missed detections as it rejects
the frequencies with DOA estimates whose distance from the
detected sources’ DOAs is signi	cantly large.

6.3. Source Counting. Assuming that the number of sources
is also unknown and can vary arbitrarily in time, other
approaches were developed to jointly solve the source count-
ing and location estimation problem. In these approaches,
the central idea is to utilize narrowband DOA estimates—for
each time-frequency point—from the nodes in order to

estimate narrowband location estimates. Appropriate pro-
cessing of the narrowband location estimates can infer the
number and locations of the sound sources. �e location for
each time-frequency point is estimated using triangulation
based on the corresponding narrowband DOA estimates
from the sensors at that time-frequency point. Figure 10
shows an example of such narrowband location estimates
and their corresponding histogram, which also describes
the plausibility that a source is at a given location. �e
processing of these narrowband location estimates is usually
done by statistical modeling methods: in [82], the narrow-
band location estimates are modeled by a Gaussian Mixture
Model (GMM), where the number of Gaussian components
corresponds to the number of sources, while themeans of the
Gaussians determine the sources’ locations. A variant of the
Expectation-Maximization (EM) algorithm is proposed that
incorporates empirical criteria for removing and merging
Gaussian components in order to determine the number of
sources as well. A Bayesian view of the Gaussian Mixture
Modeling is adopted in [83, 84], where a variant of the e-
means algorithm is utilized that is able to determine both
the number of clusters (i.e., number of sources) and the
cluster centroids (i.e., sources’ locations) using split and
merge operations on the Gaussian components.

7. SRP-Based Localization

Approaches based on the steered response power (SRP)
have attracted the attention of many researchers due to
their robustness in noisy and reverberant environments.
Particularly, the SRP-PHAT algorithm is today one of the
most popular approaches for acoustic source localization
using microphone arrays [85–87]. Basically, the goal of SRP
methods is to maximize the power of the received sound
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source signal using a steered 	lter-and-sum beamformer. To
this end, the method uses a grid-search procedure where
candidate source locations are explored by computing a func-
tional that relates spatial location to the TDOA information
extracted from multiple microphone pairs. �e power map
resulting from the values computed at all candidate source
locations (also known as Global Coherence Field [88]) will
show a peak at the estimated source location.

Since SRP approaches are based on the exploitation of
TDOA information, synchronization issues also arise when
applying SRP inWASNs. As in the case of source localization
using DOAs or TDOAs, SRP-based approaches for WASNs
have been proposed considering that multiple microphones
are available at each node [89–91]. In these cases, the SRP
method can be used for acquiring DOA estimates at each
node or collecting source location estimates that are merged
by a central node. Next, we describe the fundamentals of SRP-
PHAT localization.

7.1. Conventional SRP-PHAT (C-SRP). Consider a set of �
di�erent microphones capturing the signal arriving from a

sound source located at a spatial position x� ∈ R
3 in an

anechoic scenario, following the model of (20). �e SRP is
de	ned as the output power of a 	lter-and-sum beamformer
steered to a given spatial location. DiBiase [85] demonstrated

that the SRP at a spatial location x ∈ R
3 calculated over a time

interval of � samples can be e�ciently computed in terms of
GCCs:

'(SRP)� (x) = 2�
�∑
�=1

�∑
	=�+1

E�	 (��	 (x)) + �∑
�=1

E�� (0) , (53)

where ��	(x) is the time di�erence of arrival (TDOA) that
would produce a sound source located at x; that is,

��	 (x) =     x −m�
    −      x −m	

     7 . (54)

�e last summation term in (53) is usually ignored, since
it is a power o�set independent of the steering location.When
GCCs are computed with PHAT, the resulting SRP is known
as SRP-PHAT.

In practice, the method is implemented by discretizing
the location space regionV using a search gridG consisting of
candidate source locations inV and computing the functional
of (53) at each grid position. �e estimated source location is
the one providing the maximum functional value:

x̂
(C-SRP)
� = argmax

x∈G
'(SRP)� (x) . (55)

7.2. Modi
ed SRP-PHAT (M-SRP). Reducing the compu-
tational cost of SRP is an important issue in WASNs,
since power-related constraints in the nodes may render
impractical its implementation in real-world applications.
�e vast amount of modi	ed solutions based on SRP is
aimed at reducing the computational cost of the grid-search
step [92, 93]. A problem of these methods is that they are
prone to discard part of the information available, leading

to some performance degradation. Other recent approaches
are based on analyzing the volume surrounding the grid
of candidate source locations [87, 94]. By taking this into
account, the methods are able to accommodate the expected
range of TDOAs at each volume in order to increase the
robustness of the algorithm and relax its computational
complexity. �e modi	ed SRP-PHAT collects and uses the
TDOA information related to the volume surrounding each
point of the search grid by considering a modi	ed functional
[87]:

'(SRP)� (x) = �∑
�=1

�∑
	=�+1

����(x)∑
�=����(x)

E�	 (�) , (56)

where f
�	(x) and f �	(x) are the lower and upper accumulation

limits of GCC delays, which depend on the spatial location x.
�e accumulation limits can be calculated beforehand

in an exact way by exploring the boundaries separating the
regions corresponding to the points of the grid. Alternatively,
they can be selected by considering the spatial gradient of

the TDOA ∇���(x) = [∇����(x), ∇����(x), ∇����(x)]�, where each
component h ∈ {�, �, �} of the gradient is

∇!��� (x) = 17 ( h − h�    x −m�
    − h − h	     x −m	

     ) . (57)

For a rectangular grid where neighboring points are
separated a distance 
� and the lower and upper accumulation
limits are given by

f
�	 (x) = ��	 (x) −       ∇��� (x)      ⋅ I�,
f �	 (x) = ��	 (x) +       ∇��� (x)      ⋅ I�, (58)

where I� = (
�/2)min(1/| sin(�) cos(c)|, 1/| sin(�) sin(c)|,1/| cos(�)|), and the gradient direction angles are given by

� = cos−1 ( ∇���� (x)      ∇��� (x)      ) ,
c = arctan2 (∇���� (x) , ∇���� (x)) .

(59)

�e estimated source location is again obtained as the
point in the search grid providing the maximum functional
value:

x̂
(M-SRP)
� = argmax

x∈G
'(SRP)� (x) . (60)

Figure 11 shows the normalized SRPpowermaps obtained
by C-SRP using two di�erent grid resolutions and the one
obtained by M-SRP using a coarse spatial grid. In (a), the
	ne search grid shows clearly the hyperbolas intersecting at
the true source location. However, when the number of grid
points is reduced in (b), the SRP power map does not provide
a consistent maximum. As shown in (c), M-SRP is able to 	x
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Figure 11: Example of SRP power maps obtained by C-SRP and M-SRP for a speech frame in anechoic acoustic conditions using di�erent
spatial grid resolutions. Yellow circles indicate the node locations.

this situation, showing a consistent maximum even when a
coarse spatial grid is used.

An iterative approach of the M-SRP method was
described in [95], where the M-SRP is initially evaluated
using a coarse spatial grid. �en, the volume surrounding
the point of highest value is iteratively decomposed by using
a 	ner spatial grid. �is approach allows obtaining almost
the same accuracy as the 	ne-grid search with a substantial
reduction of functional evaluations.

Finally, recent works are also focusing on hardware
aspects in the nodes with the aim of e�ciently computing
the SRP. In this context, the use of graphics processing
units (GPUs) for implementing SRP-based approaches is

specially promising [96, 97]. In [98] the performance of SRP-
PHAT is analyzed over a massive multichannel processing
framework in amulti-GPU system, analyzing its performance
as a function of the number of microphones and available
computational resources in the system. Note, however, that
the performance of SRP approaches is also related to the
properties of the sound sources, such as their bandwidth or
their low-pass/pass-band nature [99, 100].

8. Self-Localization of Acoustic Sensor Nodes

Methods for sound source localization discussed in previous
sections assume that q� for � = 1, . . . ,�, the locations of



Wireless Communications and Mobile Computing 17

x2

x1 x3

x4

m

x = 1.2 m
y = 2.5 m
z = 0.7 m

Figure 12: Illustration of a WASN comprised with� = 1 node andB = 4 loudspeakers for self-localization scenario.

the acoustic sensor nodes, or m� for 	 = 1, . . . , �, those of
microphones, are known to the system and 	xed in time.
In practical situations, however, the precise locations of the
sensor nodes or the microphones may not be known (e.g.,
for the deployment of ad hoc WASNs). Furthermore, in
some WASN applications, the node locations may change
over time. Due to these reasons, self-calibration for adjusting
the known node/microphone locations or self-localization of
unknown nodes of the WASNs becomes necessary.

�e methods for self-localization of WASNs can be
divided into three categories [101]. �e 	rst one uses nona-
coustic sensors such as accelerometer and magnetometers,
the second one uses the signal strength, and the third one
uses the TOA or TDOA of acoustic signals. In this section,
we focus on the last category since it has been shown to
enable localization with 	ne granularity, centimeter-level
localization [21], and requires only the acoustic sensors.

�e TOA/TDOA-based algorithms can be further
divided into two types depending upon whether the source
positions are known for self-localization. Most of the
early works addressed this problem as microphone array
calibration [102–105] with known source locations. �e
general problem of joint source and sensor localization was
addressed by [5] as a nonlinear optimization problem. �e
work in [106] presented a solution to explicitly tackle the
synchronization problem. In [107], a solution considering
multiple sources and sensors per device was described.

�is section will focus on algorithms that assume known
source positions generating known probe signals without the
knowledge of the sensor positions as well as the synchro-
nization between the sensors and the sources. �is approach
allows all processing to take place on the sensor node for
self-localization. �e system illustration for this problem is
given in Figure 12.�e remainder of this section describes the
TOA/TDOA-based methods for acoustic sensor localization
by modeling the inaccurate TOA/TDOA measurements for
robust localization, followed by some recent approaches.

8.1. Problem Formulation. Consider a WASN comprised of B
sources and � nodes. �e microphone locations m(�)

� , for	 = 1, 2, . . . , �, at node q� can be determined with respect
to the node location, its orientation, and its microphone

con	guration. So we consider the sensor localization of

	nding the microphone location m(�)
� as the same problem

as 	nding the node location q� in this section. Without
loss of generality, we can consider the case with only one
node and one microphone (� = � = 1) because each
node determines its location independently from others. In
addition, we consider that the sources are the loudspeakers of
the system with 	xed and known locations in this scenario.

Let m and x� be the single microphone position and
the position of the �th source for � ∈ S ≜ {1, 2, . . . , B},
respectively. �e goal is to 	nd m by means of B received
acoustic signals emitted by B sources where the location of
each source x� is known.

�e TOF �� from the �th loudspeaker to the sensor is
de	ned as

�� ≜ 17     m − x�
    , (61)

where 7 is the speed of sound. Note that this equation is
equivalent to (13) except thatwe consider a singlemicrophone
(m), multisource ({x�}) case for � ∈ S; thus the TOF is
indexed with respect to � instead of 	. From (61), it is evident
thatm can be found if a su�cient number of TOFs are known.
In practice, we need to rely on TOAs instead of TOFs due to
measurement errors.

In order to remove the e�ect from such unknown factors,
the TDOA can be used instead of TOA, which is given by

��1�2 ≜ ��1 − ��2 =
     m − x�1

     −      m − x�2
     7 , (62)

regarding a pair of sources �1, �2 ∈ S. Please note that the
subscripts for the TDOA indicate the source indexes that are
di�erent from those de	ned for sensor indexes in (19).

Since the probe signals generated from the sources
along with their locations are assumed to be known to the
sensor nodes, the derivations of the self-localizationmethods
herea�er rely on the GCC between the probe signal and the
received signal at the sensor. Provided that the direct line-of-
sight between the source and the sensor is guaranteed, then
the time delay found by the GCC in (22) between the probe
signal and the signal received at the sensor provides the TOA
information.

8.2. Modeling of Time Measurement Errors. Two main
factors—asynchrony and the sampling frequency mismatch
between sources and sensors—can be considered for the
modeling of time measurement errors. When there exists
asynchrony between a source and a sensor, the TOA can be
modeled as

�� = �� + Δ��, (63)

where �� is the true TOF from �th source to the sensor
and Δ�� is the bias caused by the asynchrony. If there exists
sampling frequency mismatch, then the sampling frequency
at the sensor can bemodeled asK�+ΔK�, whereK� is that of the
source. Considering these and ignoring the rounding of the
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discrete-time index, the relationship between the discrete-
time TOA �̂� and the actual TOF �� is given by

�̂� = �� + Δ��K� + ΔK� = �� + Δ��K� ( 11 + ΔK�/K�) , (64)

which can be further simpli	ed for |ΔK�| ≪ K� as�̂� ≈ ?�̂� + s�, (65)

where ? ≜ (K� − ΔK�)/K�, �̂� ≈ ��/K�, and s� ≜ Δ��(K� −ΔK�)/K2
� . If the sources are connected to the playback system

with the same clock such that the sources share the common
playback delay, then s� = s for all � ∈ S. �erefore    m − x�

    = 7�� ≈ O�̂� + P, (66)

where O = 7/? and P = −7s/?.
8.3. Least SquaresMethod. Given a su�cient number of TOA
or TDOA estimates, the least squares (LS) method can be
used to estimate the sensor position.�e TOA-based and the
TDOA-based LS methods proposed in [20, 21] are described
in this subsection.

8.3.1. TOA-Based Formulation. Motivated by the relation
in (66), the localization error C� corresponding to the �th
loudspeaker can be de	ned as

C� ≜ (O�̂� + P)2 −     m − x�
    2 , ∀� ∈ S. (67)

If we de	ne the error vector as e(TOA) ≜ [C1 C2 ⋅ ⋅ ⋅ C�]� with
unknown parameters O, P, andm, then the cost function can
be de	ned as

'(TOA)
LS

(m, O, P) =      e(TOA)     2 . (68)

�en the localization problem is formulated as

m̂
(TOA)
LS

= argmin
m,",#

'(TOA)
LS

(m, O, P) , (69)

which does not have a closed-form solution.

8.3.2. TDOA-Based Formulation. We can consider the 	rst
loudspeaker for � = 1 as the reference loudspeaker, whose
TOA and position can be set to �̂1 and x1 = 0. Given a set of
TDOAs in the LS framework, it can be used with (66) as

O�̂� + P = (O�̂� − O�̂1) + (O�̂1 + P) ≈ O�̂�1 + ‖m‖ , (70)

where �̂�1 is the TDOA between the �th and the 	rst
loudspeakers. With the 	rst as the reference, we can de	ne
length B − 1 vectors C̃� ≜ (O�̂�1 + ‖m‖)2 − ‖m − x�‖2, for� = 2, 3, . . . , B and e(TDOA)

LS
≜ [C̃2, ⋅ ⋅ ⋅ C̃�]�, the cost function

can be de	ned as

'(TDOA)
LS

(m, O) =      e(TDOA)
LS

     2 , (71)

and the LS problem can be written as

m̂
(TDOA)
LS

= argmin
m," '(TDOA)

LS
(m, O) . (72)

Note that the TDOA-based approach is not dependent upon
the parameter P unlike the TOA-based approach.

8.3.3. LS Solutions. For both the TOA- and TDOA-based
approaches, the error vector can be formulated as e = HΘ−g,
where the elements of the vectorΘ are unknown and those of
the matrixH and the vector g are both known to the system.
�e error vectors for both approaches in this formulation can
be expressed as follows [21]:

e
(TOA) = [[[[[

1 2x�1 �̂21 2�̂1... ... ... ...
1 2x�� �̂2� 2�̂�

]]]]]
[[[[[[

P2 − ‖m‖2
m

O2OP
]]]]]]

− [[[[[

    x1    2...    x�    2
]]]]]

,

e
(TDOA) = [[[[[

2�̂21 2x�2 �̂221... ... ...
2�̂�1 2x�� �̂2�1

]]]]]
[[[[
‖m‖ O
m

O2
]]]]

− [[[[[

    x2    2...    x�    2
]]]]]

.

(73)

Although the elements of the vector Θ are not indepen-
dent from one another, the constraints can be removed for
computational e�ciency [15, 21], then the nonlinear problems
in (69) and (72) can be considered as the ULS problem as
follows:

min
Θ

‖e‖2, (74)

which has the closed-form solution given by

Θ̂ ≜ (H�
H)−1H�

g. (75)

It has been shown that it requires B ≥ 6 to 	nd the closed-
form solution for both approaches [21].

For the case when O = 7, that is, no sampling frequency
mismatch with known speed of sound, the TDOA-based
approach can be further simpli	ed as

e = [[[[[

27�̂21 2x�2... ...
27�̂�1 2x��

]]]]]
[ ‖m‖

m
] − [[[[[

    x2    2 − 72�̂221...    x�    2 − 72�̂2�1
]]]]]

, (76)

which is related to the methods developed for the sensor
localization problem [15, 108].

�e self-localization results of the LS approaches are
highly sensitive to the estimated values of TOA/TDOA. If
they are estimated poorly, then the localization accuracy may
signi	cantly su�er from those inaccurate estimates. In order
to address this issue, a sliding window technique is proposed
to improve the accuracy of TOA/TDOA estimates [21].
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8.4. Other Approaches. More recently, several papers have
tackled the problem of how to design good probe signals
between source and sensor and how to improve TOF estima-
tion; in [22], a probe signal design using pulse compression
technique and hyperbolic frequency modulated signals is
presented that is capable of localizing an acoustic source
and estimates its velocity and direction in case it is moving.
A matching pursuit-based algorithm for TOF estimation is
described in [109] and re	ned in [101]. �e joint localization
of sensor and source in an ad hoc array by using low-rank
approximation methods has been addressed in [23]. In [24]
an iterative peak matching algorithm for the calibration of a
wireless acoustic sensor network is described in an unsyn-
chronized network by using a fast calibration process. �e
method is valid for nodes that incorporate a microphone and
a loudspeaker and is based on the use of a set of orthogonal
probe signals that are assigned to the nodes of the net-
work. �e correlation properties of pseudonoise sequences
are exploited to simultaneously estimate the relative TOAs
from multiple acoustic nodes, substantially reducing the
total calibration time. In a 	nal step, synchronization issues
are removed by following a BeepBeep strategy [106, 110],
providing range estimates that are converted to absolute node
positions by means of multidimensional scaling [104].

9. Challenges and Future Directions

9.1. Practical Challenges. Some real-world challenges arise in
the design of localization systems using WASNs. To build
a robust and accurate localization system, it is necessary
to ensure a tradeo� among aspects related to cost, energy
e�ectiveness, ease of calibration, deployment di�culty, and
precision. Achieving such tradeo� is not straightforward and
encompasses many practical challenges as discussed below.

9.1.1. Cost-Eectiveness. �e potentiality of WASNs to pro-
vide high-accuracy acoustic localization features is highly
dependent on the underlying hardware technologies in
the nodes. For example, localization techniques based on
DOA, TDOA, or SRP need intensive in-node processing
for computing GCCs as well as input resources permitting
multichannel audio recording. With the advent of powerful
single-board computers, high-performance in-node signal
processing can be easily achieved. Nonetheless, important
aspects should be considered regarding cost and energy
dissipation, especially for battery-powered nodes that are
massively deployed.

9.1.2. Deployment Issues. Localization methods usually
require a predeployment con	guration process. For example,
TOA-based methods usually need to properly set up
synchronization mechanisms before starting to localize
targets. Similarly, energy-based methods need nodes with
calibrated gains in order to obtain high-quality energy-ratio
measurements. All these tasks are usually complex and time-
consuming. Moreover, they tend to need human supervision
during an o�ine pro	ling phase. Such predeployment
phase can become even more complex in some application

environments where nodes can be accessed by unauthorized
subjects. Moreover, WASNs are also applied outside of
closed buildings. �us they are subject to daily and seasonal
temperature variations and corresponding variations of
the speed of sound [35]. To cope with this shortcoming,
calibration needs to be automated and made environment
adaptive.

9.1.3. System Resiliency. Besides predeployment issues, a
WASN should also implement self-con	guration mecha-
nisms dealing with network dynamics such as those related
to node failures. In this context, system design must take into
account the number of anchor nodes that are needed in the
deployment and their placement strategy. �e system should
assure that, if some of the nodes get out of the network, the
rest are still able to provide location estimates appropriately.
To this end, it is important to maximize the coverage area
while minimizing the number of required anchor nodes in
the system.

9.1.4. Scalability. Depending on the speci	c application, the
WASN that needs to be deployed can vary from a very small
and simple network of a few nodes to very largeWASNs with
tens or hundreds of nodes and complex network topologies.
For example, in wildlife monitoring applications a very large
number of sensors are utilized to acoustically monitor very
large environments, while the topology of the network can
be constantly changing due to sensors being displaced by
the wind or by passing animals. �e challenge in such
applications is to design localization and self-con	guration
methods that can easily scale to complex WASNs.

9.1.5. Measurement Errors. It is well known that RF-based
localization in WSNs are prone to errors due to irregular
propagation patterns induced by environmental conditions
(pressure and temperature) and random multipath e�ects
such as re�ection, refraction, di�raction, and scattering. In
the case of WASNs, acoustic signals are also subject to
similar distortions caused by environmental changes and
e�ects produced by noise and interfering sources, re�ected
echoes, object obstruction, or signal di�raction. Other errors
are related to the aforementioned predeployment process,
resulting in synchronization errors or inaccuracies in the
positions of anchor nodes. �ese errors must be analyzed
in order to 	lter measurement noise out and improve the
accuracy of location estimates.

9.1.6. Benchmarking. In terms of performance evaluation,
so far there are no speci	c benchmarking methodologies
and datasets for the location estimation problem in WASNs.
Due to their heterogeneity—in terms of sensors, number of
sensors and microphones, topology, and so on—works com-
paring di�erent localizationmethods using a common sensor
setup are di�cult to 	nd in the literature. �e de	nition
of formal methodologies in order to evaluate localization
performance and the recording of evaluation datasets using
real-life WASNs still remain a big challenge.
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9.2. Future Directions

9.2.1. Real-Life Application. In our days, the need for real-
life realizations of WASN with sound source localization
capabilities is becoming more a more evident. An important
direction in the future will thus be the application of the
localization methodologies in real-life WASNs. In this direc-
tion, the integration ofmethodologies from a diverse range of
scienti	c 	elds will be of paramount importance. Such 	elds
include networks (e.g., to design the communication and
synchronization protocols), network administration (e.g., to
organize the nodes of the network and identify and handle
potential failures), signal processing (e.g., to estimate the
sources’ locations with many potential applications), and
hardware design (e.g., to design the acoustic nodes that can
operate individually featuring communication and multi-
channel audio processing capabilities in a power e�cient
way).While many of these 	elds have �ourished individually,
the practical issues that will arise from their integration in
practical WASNs still remain unseen and the need for bench-
marking and methodologies for their e�cient integration is
becoming more and more urgent.

9.2.2. Machine Learning-Based Approaches. One of the prac-
tical challenges for the deployment of real-life applications
is the huge variability of acoustic signals received at the
WASNs due to the acoustic signal propagation in the physical
domain as well as the inaccuracies caused at the system level
and uncertainties associated with measurements of TOAs
and TDOAs. With the help of large datasets and vastly
increased computational power of o�-the-shelf processors,
these variabilities can be learned by machines for designing
more robust algorithms.

10. Conclusion

Sound source localization throughWASNs o�ers great poten-
tial for the development of location-aware applications.
Although many methods for locating acoustic sources have
been proposed during the last decades,mostmethods assume
synchronized input signals acquired by a traditional micro-
phone array. As a result, when designing WASN-oriented
applications, many assumptions of traditional localization
approaches have to be revisited. �is paper has presented
a review of sound source localization methods using com-
monly used measurements inWASNs, namely, energy, direc-
tion of arrival (DOA), time of arrival (TOA), time di�erence
of arrival (TDOA), and steered response power (SRP). More-
over, since most algorithms assume perfect knowledge on
the node locations, self-localizationmethods used to estimate
the location of the nodes in the network are also of high
interest within aWASN context.�e practical challenges and
future directions arising in the deployment of WASNs have
also been discussed, emphasizing important aspects to be
considered in the design of real-world applications relying on
acoustic localization systems.
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[65] K. Doğançay, “Passive emitter localization using weighted
instrumental variables,” Signal Processing, vol. 84, no. 3, pp. 487–
497, 2004.

[66] Y. T. Chan and S. W. Rudnicki, “Bearings-only and doppler-
bearing tracking using instrumental variables,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. 28, no. 4, pp.
1076–1083, 1992.
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