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ABSTRACT Humans can identify a speaker by listening to their voice, over the telephone, or on any

digital devices. Acquiring this congenital human competency, authentication technologies based on voice

biometrics, such as automatic speaker recognition (ASR), have been introduced. An ASR recognizes

speakers by analyzing speech signals and characteristics extracted from speaker’s voices. ASR has recently

become an effective research area as an essential aspect of voice biometrics. Specifically, this literature

survey gives a concise introduction to ASR and provides an overview of the general architectures dealing

with speaker recognition technologies, and upholds the past, present, and future research trends in this

area. This paper briefly describes all the main aspects of ASR, such as speaker identification, verification,

diarization etc. Further, the performance of current speaker recognition systems are investigated in this

survey with the limitations and possible ways of improvement. Finally, a few unsolved challenges of speaker

recognition are presented at the closure of this survey.

INDEX TERMS Automatic Speaker Recognition, Feature Extraction, Recognition Techniques, Perfor-

mance Measures, Challenges.

I. INTRODUCTION

S
PEAKER recognition is a biometric scheme applied

to authenticate user’s individuality using the specific

characteristics elicited from their speech utterances. It is the

automatic process of acknowledging the speaker depending

on the speech signal’s characteristic features. The Speaker

recognition system uses the speaker’s voice utterances to

recognize their individuality and control access to services,

such as voice dialling, voice mail, security control, etc.

The first automatic speaker recognition (ASR) sys-

tem came into existence in 1962 through an article by

Lawrence G. Kersta, a Bell Laboratories physicist desig-

nated, "Voiceprint Identification" [1], [2]. In 1960, Gun-

nar Fant developed a physiological model of humans voice

production system, which sets a speech analysis base. The

speaker recognition system’s evolution from the late 1900s

to the early 2000s is upheld in Figure 1 [3].

A standard speaker recognition system measures the char-

acteristics of a person’s voice or speech to assess that per-

son’s individuality. Voice or speech is the most logical way
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FIGURE 1. Evolution of speaker recognition from the early 1900s to 2000s.

The above diagram explains how the evolution of ASR started in the 1900s

before the ages of machine learning and deep learning.

to evolve the perceptions of humans. With the advent of

human-computer research technologies, ASR systems have

advanced in the last six decades. Nowadays, these advanced

systems are used in different areas such as person identi-
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fication, person verification, voice dialling, online banking,

telephone shopping, security control, and forensic appli-

cations as well. A typical speaker recognition system has

three primary sections: pre-processing, feature extraction,

and speaker modelling. Figure 2 presents a basic structure

of speaker recognition systems.

Speech Signal

Pre-Process Feature Extractor
Pre-Processed

Speech
Speaker Modelling

Training

Phase

Feature Matching

Testing Phase

Output/Decision

Feature's
Database

FIGURE 2. Basic structure of a automatic speaker recognition system. The

figure illustrates three initial steps where the inputs are pre-processed and

generate speaker models after being converted into feature vectors to identify

speakers.

Pre-processing: Pre-processing is the initial action in an

automated speaker recognition model. It is a crucial process

conducted on speech signal input to manifest an effective

and dynamic ASR system [4], [5]. In this part of a speaker

recognition system, first, the speech signal is cleaned. Then

the non-speech portions are removed from the signal. Then

preliminary tasks endpoint detection and pre-emphasis are

completed.

Feature extraction: Feature extraction, also known as

front end pre-processing, is applied to speaker recognition

systems training and testing phases. It employs to converts

digital speech signal to sets of feature vectors or numerical

descriptors. These feature vectors contain the essential char-

acteristics of the speaker’s voice [6].

Speaker modelling: The goal of modelling methods is to

generate speaker recognition algorithms for feature matching

of the speaker’s voice. The methods comprising enhanced

speaker-specific information with a compressed volume are

defined as speaker models [7]. When training or enrolling,

state speaker models are generated by practicing the partic-

ular features extracted from the contemporary speaker. The

speaker model compares with the modern speaker architec-

ture for identification or verification tasks in the recognition

state.

A standard automated speaker recognition system has con-

tained these characteristics. Now, the classifications of the

ASR are going to be discussed.

A. CLASSIFICATION OF SPEAKER RECOGNITION

An ASR can be split into several classes based on the

recognition criteria. Figure 3 presents the different types of

speaker recognition approaches. The following subsections

extensively outline the illustrated recognition approaches.

Speaker
Recognition

Identification Diarization

Text independentText dependent

Open set Closed set Closed setOpen set

Verification

FIGURE 3. Classification of speaker recognition. The speaker recognition

encompasses speaker identification (identify unknown speakers), verification

(ensure particular speaker’s identity), and diarization (identify speakers from

speech segments) with the text-dependent and independent criterion.

1) Identification, verification, and diarization

This level of classification is the most prominent among other

classification criteria. Automatic speaker identification (SI),

speaker verification (SV) and speaker diarization (SD) are

often acknowledged as the most fundamental and practical

approaches for bypassing illegal access to computer systems.

A brief explanation of these subdomains of speaker recogni-

tion are described below:

• Speaker identification (SI): SI determines an anony-

mous speaker’s identity depending on the speaker’s

spoken utterances. Speaker identification finds the exact

speaker from a set of recognised voices of speakers.

It is the way to find a person based on the different

utterances contained in the database. This approach is

a 1: N match where a particular utterance is compared

against N templates.

• Speaker verification (SV): SV deals with the voice to

authenticate a specific identity asserted by the speaker.

The SI system’s acquired characteristics are correlated

with all the speakers’ characteristics composed in a

voice model database. In contrast, in SV systems, the ac-

quired characteristics are only linked with the speaker’s

stored features he or she claimed to be. It is a 1:1 match

where one speaker’s speech is likened to one template.

• Speaker diarization (SD): SD is partitioning a voice

with multiple people into homogeneous segments as-

sociated with each individual. It is an essential part of

speaker recognition systems. It has applications in many

critical fields, such as video captioning, understanding

the content of any conversations, etc.

SI, SV, and SD system’s recognition criteria can be either

text-dependent or text-independent, which is discussed in the

following part.
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2) Text-dependent and text-independent recognition

Text-dependency is another level of classification of speaker

recognition (SR). This classification is based upon the text

uttered by the speaker during the classification process.

The two subdomains of speaker recognition based on text-

dependency are explained below.

• Text-dependent: Text-dependent ASR defines a

method in which the test utterance is equivalent to

the text employed during the enrollment phase [8]–

[13]. The test speaker has previous knowledge of the

model. The local lexicon posses low enrollment and

trial stages to give an authentic result. Still, it faces

few scientific and technical challenges. In the 1990s,

the first text-dependent speaker recognition introduced

the main features of the present state of the art with

feature extraction method, speaker modelling, and score

normalization using a likelihood ratio score [14]. Since

then, numerous architectures have inquired at various

times.

• Text-independent: In a text-independent ASR task,

the speech signal’s training and testing are entirely

unconstrained [15]–[19]. It usually takes long sections

of the speech signal to be developed for both the training

and testing phase. Here, in the testing phase, the test

speaker does not have any previous knowledge about the

samples of the enrollment phase.

However, text-independent speaker recognition is more

convenient to text-dependent speaker recognition system

(SRS) because the speaker can freely speak to the system.

Although, it needs more extended training and testing ut-

terances to obtain better accuracy. These text-dependent and

text-independent approaches can be further categorised into

the open set and closed set speaker recognition problems,

which are discussed in the next portion.

3) Open set and closed set

ASR architectures are classified as an open set or closed

set based on the number of qualified speakers available in

the system. These two types of ASR methods are described

below:

• Open set: An open set method is structured with any

number of trained speakers. This system is called an

open set because the anonymous speech could come

from a broad set of unfamiliar speakers.

• Closed set: A closed set method has only a desig-

nated number of speakers enrolled on the system. In

this method, the system tries to discover a speaker’s

individuality from a set of observed voices.

Additionally, the speech or speaker recognition techniques

make a different domain of speaker recognition systems. This

domain covers many more methods used to recognize and

analyze the speaker’s emotions or the emotions expressed

in the speech. But this study is extensively focused only on

speaker recognition approaches.

However, speaker identification and verification have ac-

quired increased impact and importance in the research field

as voice command, speech technology, speech analysis, etc.

An eternally progressing obligation to search for voice el-

ements and search based on speaker identity is growing

wild. This tremendous visibility and significance of speaker

recognition systems imply numerous research work over the

years. Besides, a few literature surveys on a different portion

of speaker recognition has been done as well. However, men-

tioning all the excellent research on ASR, a comprehensive

survey has become necessary.

In this comprehensive survey, more than 28 literature

survey on SR is mentioned and particularly described nine

amongst them. But these surveys do not precisely address

the current trends and applications, impact, and challenges of

the speaker recognition systems. No recent extensive survey

has been done on the entire domain of speaker recognition.

The summaries and comparison of the recognized literature

survey on speaker recognition are shown in Table 1.

In the previous survey, Tirumala et al. [25] carried out

a systematic literature review on different significant fea-

ture extraction approaches. The paper aimed to identify

substantial feature extraction methods in the last six years

and provided recommendations based on the investigation.

The authors answered three critical questions regarding the

speaker recognition domain and investigated the foundations

for optimal features with the feature extraction process. They

derived feature extraction methods and architectures and dis-

covered the most traditional and prosperous feature extrac-

tion methods in the last six years. Finally, they elaborated on

a few challenges of the speaker recognition domain. In [24],

the authors described a review of various methods for speaker

identification using deep learning. They characterised the

implementations of deep learning based on speaker identi-

fication methods and algorithms. The authors also described

major deep learning architectures that achieved the state of

art accuracy. They aimed to introduce detailed architectures

to speaker recognition researchers to decrease the knowledge

gap and enhance the significance of deep learning architec-

tures.

Further, Dicsken et al. [26] completed a tutorial survey

on speaker-specific information extraction approaches. The

work’s theories were categorized into three classes consider-

ing their robustness toward channel mismatch, additive noise,

and other depravities such as vocal effort, emotion mismatch,

etc. The authors mainly focused on the extraction of speaker-

specific information in degraded conditions alongside short-

time features. In [23], authors upheld a systematic review of

the ASR models, particularly with those introduced in the last

decade. The authors provided the reader with aspects of how

humans also redact speaker recognition. Their review aimed

to explain the main domains of speaker recognition, deriv-

ing the essential similarities and distinctions. The authors

accentuated how spontaneous speaker recognition methods

have originated over time toward more present architectures.

Togneri et al. [22], represented the actual illustrations for
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TABLE 1. Eight standard literature surveys of the Speaker Recognition domain are demonstrated in this table. In addition to a brief discussion of each paper

mentioned in the table, the challenges faced in recognizing speakers are given in detail.

Reference Year Main Purpose Challenges

[20] 2010
A survey of ancient and modern automatic text-independent
SR methods with efficiency and marks future scopes of SR to
get robust techniques.

There are limited training data, mismatched handsets for train-
ing and testing, background noise and unbalanced text.

[21] 2010 An extensive survey of automatic speaker recognition systems.

Unauthorized access, privacy in biometric technologies, the
possibility of cracking data encryption, designing long-range
features, managing vast quantities of correlated features, odd
feature range distributions, original disappeared features and
heterogeneous feature types.

[22] 2011
Overview on text-independent, closed-set, speaker identifica-
tion in the modelling and classification paradigms with key
extracted features on both clean and missing data.

The authors only surveyed the speaker identification ap-
proaches that are based on missing data methods.

[23] 2015
A comparative study of human versus machine speaker recog-
nition.

The search for alternative compact representations of speakers
and audio segments emphasizing the identity relevant param-
eters while suppressing the nuisance components in system
development.

[24] 2016
A comprehensive analysis of deep learning approaches and
applications for speaker identification

The paper addressed knowledge in improving SID perfor-
mance.

[25] 2017

Describes the foundations for optimal characteristics and how
feature parameter suitability is determined for the feature
extraction method in speaker identification. The feature extrac-
tion strategies and architectures are also explained.

Consolidate the capacity to trade with all channel data and
noisy data, handling complex pattern recognition problems
with deep learning techniques, multi-learner model, feature
extraction from unlabeled data alongside incomplete, tampered
or damaged data.

[26] 2017
Summarize feature extraction methods under degraded condi-
tions, alongside the short-time features, with few normaliza-
tion techniques for gaining robustness.

Performance improvement for extracting more robust features
in the appearance of the noise and channel mismatch situa-
tions.

[27] 2021
A comprehensive survey of automatic speaker recognition
based on deep learning.

Most speaker feature extraction techniques require handcraft
acoustic features as the input, which is not always optimal.
Besides, The state-of-the-art deep models have many parame-
ters, which are difficult to apply to portable devices. This paper
presents few more challenges of ASR.

Ours 2021

A systematic survey on speaker recognition where the feature
extraction approaches, algorithms, limitations of subdomains
of speaker recognition such as speaker identification, speaker
verification, diarization is described concisely.

Data-driven dependency; Intra-speaker variability; Speaker-
based variability; Conversation-based variability; Technology-
based variability; Limited data and constrained lexicon; Aging
of speaker models; Forward compatibility.

speaker identification and described the latter study on miss-

ing data approaches to enhance robustness. In their study,

the feature extraction approaches, various speaker modelling

and model classification were explained. In [21], the authors

introduced a comprehensive literature survey of ASR sys-

tems. They categorized the modules of speaker recognition

and demonstrated different models for each module. Besides,

they gave a brief explanation of the enormous applications of

SR Systems. The authors also elaborated on the issues and

challenges of SR Systems. Kinnunen et al. [20], presented

a brief introduction of ASR approaches with an emphasis

on text-independent recognition from the 1980s until 2009.

They emphasized the recent techniques introduced around

2009. Their research served as a short survey of the ana-

lytical inquiries and the explications of the speaker recog-

nition domain. Zhongxin Bai et al. [27] reviews various

significant speaker recognition subdomains such as speaker

identification, verification, diarization etc., focusing on deep-

learning-based approaches. Modern and newly published

deep learning-based feature extraction approaches, ASR al-

gorithms are extensively explained in this paper. Besides, a

few other surveys are introduced in the speaker recognition

domain at different times [28]–[47]. As these surveys did

not precisely uphold the speaker recognition domain, an

extensive study in this domain was necessary.

In this work, we present an elaborated survey of ASR.

The review is restricted to scholarly work published between

2000 and 2021. The survey aims to discuss the findings of

different related research areas such as speaker identification,

speaker verification, speaker diarization, etc. Lastly, the pa-

per addresses this field’s present challenges and gives rec-

ommendations and suggestions for future research directions.

The overall contributions of the survey include:

• The paper presents a systematic review of the speaker

recognition systems, along with the historical back-

grounds.

• The paper introduces the feature extraction procedures,

architectural procedures, dataset inspections, and per-

formance comparisons of speaker recognition architec-

tures.

• The paper summarizes speaker recognition procedures

based on the existing systems, datasets, feature extrac-

tion techniques. Further, the paper exploits the limita-

tions of such systems.

• Finally, the survey concludes by identifying the present

challenges of speaker recognition systems, with future

research directions.

The rest of the paper is outlined as follows. Section II

explains the survey methodology. Section III demonstrates
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TABLE 2. The table explains the inclusion and exclusion criteria maintained to select review articles.

Inclusion/Exclusion Criteria

Inclusion
IC1: Research articles are written in English.
IC2: Articles that have been published between 2000 to 2021 [Few old papers are used in
the survey for specific purpose.]
IC3: Papers published in Academic Journals, Conference/Workshop Proceedings, Book
Chapters, and thesis dissertations.

Exclusion
EC1: Duplicate articles
EC2: Conflicting with the theme of the review
EC3: Lack of sufficient information

the dataset used in ASR. The feature extraction techniques

are explained in Section IV. Section V describes famous ASR

techniques and algorithms. Section VI investigates the papers

regarding speaker recognition systems. Section VII analyzes

the performance evaluation methods of ASR. Section VIII

addresses the challenges of ASR with future research scopes.

Finally, Section IX concludes the article.

II. SURVEY METHODOLOGY

This survey is processed through a systematic literature re-

view (SLR) approach proposed by Kitchenham [48], [49]. In

this paper, SLR steps are described in three phases: planning,

conducting and reporting the review. In the following subsec-

tions, the steps are elaborated.

A. PLANNING THE REVIEW

This sub-section briefly describes the following things. The

i. research question, ii. sources of review materials; and iii.

inclusion and exclusion criteria.

1) Research question: The primary research questions

were:

RQ1: How does ASR systems contribute to the field of

SV, SI and SD?

RQ2: Which datasets are universally used for ASR sys-

tems?

RQ3: Which feature extraction approaches are widely

used for ASR systems?

RQ4: Which techniques are broadly used for ASR sys-

tems?

RQ5: What kind of evaluation matrices are used for ASR

systems evaluation?

RQ6: What are the challenges and future research possi-

bilities on ASR systems?

2) Sources of review materials: The survey is restricted

to excellent academic articles published via the Sci-

enceDirect, SpringerLink, MDPI, Hindawi, ACM Digi-

tal Library, IEEE Xplore, etc., and also different famous

conferences.

3) Inclusion and exclusion criteria: This survey’s essen-

tial materials are gathered using PRISMA (Preferred

Reporting Items for Systematic Reviews and Meta-

Analyses) described in Figure 4. Moreover, the inclu-

sion and exclusion criteria in PRISMA are presented in

Table 2. This table expresses the paper selection criteria

and standard. On which standard the paper is selected

for review or rejected.

Identification

Scanning

Eligibility
testing

Inclusion

395 papers are collected from different sources

Duplicates papers are removed in this phase

Irrelevant and low quality papers are removed

Finally, 281 papers are selected for the review

FIGURE 4. The image explains the PRISMA workflow for this literature review.

Number of papers collected during the systematic literature review are

mentioned in the PRISMA statement.

B. CONDUCTING THE REVIEW

This phase discusses how the necessary information is ex-

tracted from the articles. Extracting essential information and

performing the literature review in a structured way, five sub-

phases considered as described below.

1) Topical relationship: This phase describes how the ar-

ticles are correlated with others selected for this survey.

Word cloud in Figure 5 is created with the keywords of

the papers and principal words from the papers’ titles

explaining how much the chosen articles are correlated.

FIGURE 5. Word cloud for the titles and keywords of the selected articles.
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TABLE 3. Popular datasets used in speaker recognition domain. Datasets are included for the results of speaker recognition under different environmental

conditions during the training and testing phase. Different sizes and conditions of the datasets differ the effectiveness of speaker identities from voices.

Dataset Name No. of Speakers No. of. Utterances Condition Used in

TIMIT [50] 530 6300 sentences Clean Speech [51]–[56]

LIBRISPEECH [57] 44 1000 hours Segmented English read speech [58]–[61]

MIT Mobile [62] 88 7884 sentences Mobile Devices [63]–[66]

Switchboard [67] 500 2500 conversations Telephony [68]–[72]

POLYCOST [73] 133 1285 conversations Telephony [74]–[77]

ICSI Meeting Corpus [78] 53 75 meetings Meetings [79], [80]

Forensic Comparison [81] 552 1264 conversations Telephony [82]

RSR2015 [13] 300 151 hours Mobile device [83]–[85]

ANDOSL [86] 204 33900 utterances Clean Speech [56], [87]

RedDots [88] 45 104,000 sentences Phonetic variation [89]–[91]

SITW [92] 299 8 session/speaker Multi-media [93]–[96]

ELSDSR [97] 22 154 sentences Clean Speech [98]–[101]

YOHO [28] 138 1380 sentences NA [56], [77], [102]–[106]

CMU [107] 74 9487130 utterances NA [106]

VOICES [108] 300 1440 hours Noisy room [109]

NIST-SRE [110] 2000+ Varies year by year Clean Speech [77], [95], [96], [111]–[122]

CN-CELEB [123] 1000 274 hours Unconstrained [124]

Hi-MIA [125] 340 1561 hours Multiple microphone [126]

VoxCeleb1 [127] 1251 153516 utterances Multi-media [96], [128]–[130]

2) Aims and outcomes: Objective, contribution, chal-

lenges of different useful articles are presented in Sec-

tion VI and VIII.

3) Evaluation metrics: All the evaluation measurement

techniques are explained in Section IX.

4) Research type: It shows the paper type, such as

academic journals, conference/workshop proceedings,

book chapters, or thesis work.

5) Publication year and type: At the beginning of this

work, 395 papers were collected from various resources,

and 281 papers were finalized for the survey. Amongst

them, more than 90% of articles are published between

2010 to 2021. We have worked with more recent articles

to make this review more advanced. Figure 6 present the

number of papers by year.

FIGURE 6. The figure illustrates the statistics of papers collected from the

year 2010 to 2021.

C. OUTCOME:

Finally, the gathered information has been analyzed, ad-

dressed current issues and challenges, and provided future

research opportunities.

III. DATASETS USED IN SPEAKER RECOGNITION

With the advent of voice-related applications, the essentiality

of verified speaker/speech databases has radically increased

in the speaker recognition domain. The shared dataset avail-

able for speaker recognition lets the researchers demonstrate,

evaluate, and compare model’s performance with the ex-

isting system. To create these databases, the data can be

collected from various sources according to the application,

such as speech recorded from acoustic laboratories [86],

[131], speech recorded from mobile device [62], [132],

telephone calls [73], forensic data from police, [133], etc.

The mentioned datasets are acquired from single-speaker

systems and have no audience noise or overlapping speech.

Researchers also worked with the multi-speaker environment

datasets with audience noise and overlapping speech, such as

recorded meeting data [78], [134], and audio broadcast [135].

Few datasets have artificial degradation to mimic real-world

noise, such as the TIMIT dataset [50]. The different audio

formats like uncompressed, lossless compressed, and lossy

compressed are used to record a speech. Therein, waveform

(.wav) format is mostly used. This audio format is arranged

into three general chunk types, the RIFF chunk, the FOR-

MAT chunk and the DATA chunk, where the DATA chunk

contains the real sample data. Selecting the proper dataset

reduces the pre-processing time and makes the systems more

efficient. These speaker recognition datasets can be classified

into two categories:

i Clean speech dataset: Clean speech refers to the condi-

tion of the dataset where there is zero presence of noise in

the dataset. Most of the dataset we use are clean speech

dataset [50], [67], [110].
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ii In the wild dataset: In the wild dataset, data do not

collect beneath controlled situations, and hence it car-

ries actual noise, vibration, intra-speaker variability and

squeezing artefacts. Popular in the wild datasets are

SITW [92] and VoxCeleb [127].

Mostly popular datasets in speaker recognition domain are

presented in Table 3.

IV. FEATURE EXTRACTION APPROACHES

A series of feature vectors can represent the speech signal to

apply mathematical tools without losing generality. The goal

of feature extraction is to interpret a speech signal by preset

the signal’s number of components. The reason is every

piece of data in the acoustic signal is weighty to work, and

some of the data is inappropriate [198], [199]. In practical,

real-life systems, several features are used in combinations

for speaker recognition tasks. Every speaker has identi-

cal guttural raw features, mainly learned/behavioural based

and physiological/natural features. Below, such features are

briefly explained:

i Behaviour-based speech features: This feature is ex-

tracted by measuring the number of parameters like

experience, personality, education, familial connections,

community, and communication media. High-level fea-

ture and prosodic & spectro-temporal features are two

categories of learned based features. High-level charac-

teristics comprise phones, idiolect, semantics, accent, and

pronunciation. On the other side, prosodic & spectro-

temporal characteristics include pitch, energy, rhythm,

duration, and temporal features. Prosodic characteristics

are the non-segmental appearance of speech formed in

lengthy utterances such as prosodic properties accent is

an associative technicality used to describe pitch varia-

tions, stress, rhythm, loudness, rhythm. Table 4 gives a

chronology of learned based feature extraction methods.

ii Physiological based speech features: These types of

features are affected by the vocal tract’s length, dimen-

sion and fold size. The short-term spectral characteristics

are the types of physiological features that can be mea-

sured from small speech utterances; These features are

applied to explain the short-term spectral container con-

nected to the supralaryngeal vocal tract’s timbre and reso-

nance characteristics. Voice source features are character-

istics of the verbal flow. The short term spectral features

are additionally categorised into two types: Spectrum

and Gammatone pulse features. Short term physiological

based feature extraction approaches are given in Table 5.

However, the Mel-frequency Cepstral Coefficients

(MFCC) [200], Linear Predictive Coefficients (LPC) [201],

and Linear Predictive Cepstral Coefficients (LPCC) [202],

Perceptual Linear Prediction (PLP) [203]-based feature ex-

traction strategies are recognized as the most effective,

economical, and universally adopted feature extraction tech-

nique in the speaker recognition domain. These extensively

accepted models for feature extraction are categorised into

two types based on the coefficients, such as filterbank coeffi-

cients and predictive coefficients. MFCC and LFCC (Linear

Frequency Cepstral Coefficients) use filterbank coefficients

and LPC, LPCC use predictive coefficients for the feature

extraction procedure. Besides, PLP is used in combination

with cepstral and autocorrelation coefficient. Hence, in this

section, a few renowned feature extraction approaches are

demonstrated.

a: Mel-frequency cepstral coefficients (MFCC)

MFCCs is the extensively employed feature extraction

method in speech and speaker recognition tasks. In the

1980s, the MFFCs was proposed by Davis and Mermelstein

and have remained state-of-the-art from then. The standard

MFCC feature extraction procedure is illustrated in Figure 7.

Pre-emphasize

Discrete Cosine
Transform Log Filtering

Frame Blocking &
Windowing

Fast Fourier
Transform

Input
Utterences

LifteringMFCCs

FIGURE 7. The figure represents a block diagram explaining the steps to

generate MFCC features. The seven computational steps extracts

parameterized representation of input signals where the critical frequency

bandwidth of signals is evenly spaced in the mel-frequency cepstrum. The

feature extraction affects its response with efficiency in recognition

performance.

The first action is to employ a pre-emphasis filter on the

input signal to expand the high frequencies. This filter is

implemented to a signal x applying the first-order filter in

the subsequent equation:

y(t) = x(t)− αx(t− 1) (1)

where, α is the filter coefficient.

After pre-emphasis, framing is applied to partition the

signal into low-time frames. After splitting the signal into

short-time frames, a window function like the Hamming

window is used for every frame.

w[n] = 0.54− 0.46cos(
2πn

N − 1
) (2)

where, 0 ≤ n ≤ N − 1, N is the window length.

Then the fast fourier transform (FFT) is applied using the

next formula:

P =
|FFT (xi)|

2

N
(3)

where, xi is the ith frame of signal x.

Then the mapping from linear frequency to MFCC is

defined, and the following equation determines filter bank

coefficients where f is physical frequency and Mel(f) is the

approximation of the Mel from physical frequency.

Mel(f) = 2595 log10

(

1 +
f

700

)

(4)

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3084299, IEEE Access

M. M. Kabir et al.: A survey of speaker recognition

TABLE 4. The table aggregates the behaviour-based feature extraction approaches in speaker recognition.

Learned-based approaches

High level References Prosodic References

PMFC (Phoneme Mean F-ratio Coefficient) [136] Sub-band Auto Correla-
tion Classification (SACC)

[137]–[143]

PMFFCC (Phoneme Mean F-ratio Fre-
quency Cepstrum Coefficient)

[144] PROSACC [145]

Polish vowel [146] Shifted Delta Cepstrum
(SDC) and additional tem-
poral information

[147]

Vowel phonemes [148] DPE to present pitch and
energy by using twelve
DCT coeffs

[147]

Maximum-Likelihood Linear Regression
(MLLR)

[149] Empirical Mode Decom-
position (EMD) features
extraction method

NA

TABLE 5. The table aggregates the physiological-based feature extraction approaches in speaker recognition.

Physiological based speech features

Spectrum References Gammatone pulse References

MFCC (Mel-Frequency Cepstral Coeffi-
cients)

[137], [139], [141], [142],
[150]–[184]

Gammatone Feature [185]–[187]

Linear Predictive Cepstral Coefficients
(LPCC)

[138], [188]–[191] Gammatone Frequency
Cepstral Coefficients
(GFCC)

[136], [162], [184], [186],
[187], [192]

Linear Predictive Coefficients (LPC) [189], [193], [194] Hilbert Envelope of Gam-
matone Filterbank

[195]

Linear Predictive Residual (LPR) [138], [196] Perceptual Linear Predic-
tion (PLP)

[141], [145], [197]

TABLE 6. The table demonstrates a correlation between the feature extraction methods based on four signal processing criteria.

Name Type of Filter Shape of Filter
Speed of

Computation
Type of

Coefficient
Noise

Resistence
Sensitivity to
Quantization

MFCC Mel Triangular High Cepstral Medium Medium

LPC Linear prediction Linear High
Auto-correlation
coefficient

High High

LPCC Linear prediction Linear Medium Cepstral High High

PLP Bark Trapezoidal Medium
Cepstral and
Auto-correlation

Medium Medium

f = 700(10m/2595 − 1) (5)

Finally, the MFCC computed using the following discrete

cosine transformation formula:

MFCCi =

√

2

N

N
∑

j=1

mjcos

(

πi

N
(j − 0.5)

)

(6)

where, N is the number of bandpass filters, mj is the log

bandpass filter output amplitudes. The main drawbacks of

MFCC is that the features are not precisely correct in back-

ground sound [204], [205], and it does not work better for all

case [206].

b: Linear prediction coefficients (LPC)

LPC architecture is practised to get the filter coefficients co-

equal to the uttered speech by decrementing the mean square

error (MSE) within the input signal and estimated signal

[207]. LPC analyze the speech features by the prognosis of

any input signal at a particular time as a linear weighted

aggregation of including examples. The LPC architecture is

developed based on the following equation for a given sample

at time n, [208], [209]:

ŝ(n) =

p
∑

k=1

aks(n− k) (7)

where ŝ is the predicted speech, s is the input speech, and

ak = 1, 2, 3, .., p are the predictor coefficients.

e(n) = s(n)− ŝ(n) (8)

where, e(n) is prediction error, which is calculated as in

[209], [210].

LPC analyzes the vocal tract signal from a given speech

[210] efficiently. It provides accurate results of speech pa-

rameters and is relatively better for computation [204], [211].

However, LPC suffers from high sensitivity to quantization

noise [212].
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c: Linear prediction cepstrum coefficients (LPCC)

LPCC is more robust and reliable than LPC, and it has

been broadly used for a few decades. LPCCs are equivalent

to LPC when organized in the cepstrum domain. LPCC is

solely the coefficients of all-pole filter and is equal to the

flattened container of the log spectrum of the speech signal.

The following equation is calculated the LPCC:

LPCCi = LPCi +
i−1
∑

k=1

k − i

i
LPCCi−kLPCk (9)

LPCC features produce a lower error rate (ER) than LPC

[213]. However, LPCC results are shady for having massive

sensitivity to quantization noise [214].

d: Perceptual linear prediction (PLP):

PLP architect human speech depending on the notion of

the psychophysics of sound [203]. PLP removes unneces-

sary information of the signal and therefore enhance speech

recognition rate. The PLP architecture is divided into three

stages: the critical-band resolution curves, the equal-loudness

curve, and the intensity-loudness power-law relation. Figure

8 demonstrates the PLP architecture.

Quantized
 Signal Hamming Window |FFT|*|FFT| Bark Filter Bank

Intensity Loudness

Equal Loudness-
Pre-emphasis

Cepstrum
Computation Linear PredictionPLP Cepstral

Coefficients

FIGURE 8. The figure represents a block diagram explaining the steps to

generate PLP features. The input signal converts frequency to bark that

integrates into Bark Filter Bank using hamming window and critical band

analysis. An equal-loudness pre-emphasis observes sensitivity of hearing by

the filter-banks. Then the equalized values are processed to linear prediction

and obtain cepstral coefficients.

However, the adoption of the feature extraction strategy

depends on the work and individual. Table 6 represents

a comparison between the widely used feature extraction

architectures described above, based on various dimensions

of speech signal processing. The table will be beneficial to

select between these algorithms for future work.

V. SPEAKER RECOGNITION TECHNIQUES

Based on the working criteria, speaker recognition architec-

tures are divided into stage-wise and end-to-end architecture.

A stage-wise ASR algorithm commonly compositions of a

front-end for the feature extraction and a back-end for the

speaker features similarity computation. On the other hand,

the end-to-end speaker recognition uses speech utterances as

the enrollment signal and instantly returns the similarity rate.

Figure 9 represents the algorithm used in stage-wise and end

to end speaker recognition modelling. This section broadly

discussed the algorithms are shown in figure 9.

A. STAGEWISE SPEAKER RECOGNITION

In a stagewise speaker recognition systems, the recognition

tasks such as speaker identification, speaker verification or

speaker diarization are processed in two stages: front-end

Speaker
Recognition

Stagewise End to end

Back endFront end

x-vector

d-vector

i-vector

GMM

t-vector

LDA

PLDA

Euclidean
distance

Cosine
distance

AMMobileNet1D

RawNet

SincNet

Deep speaker

FIGURE 9. A taxonomy of the speaker recognition approaches based on the

architectural constraint.

and back-end [27]. Various algorithms are employed in the

front end and back end to complete the speaker recognition

task. A standard stage-wise speaker recognition architecture

is demonstrated in Figure 10. In the following portion, the

front-end and back-end architectures are extensively investi-

gated.

Enrollment/Test
utterance

Feature extraction Front end
Speaker

Features
Back end

Clustered

Features
Output/Decision

FIGURE 10. The figure demonstrates a block diagram of the stage-wise

speaker recognition architecture. Front-end extracts low dimensional speaker

utterances to high dimensional feature vectors. Back-end evaluated the result

from input and test features similarity using threshold values.

1) Front-end

The front-end of stagewise speaker recognition architec-

ture changes an utterance in the time-frequency domain or

time domain into a high-dimensional feature vector. The

widespread algorithms use in the front end nowadays are

Gaussian mixture model (GMM), i-vector, x-vector, t-vector,

and d-vector. These algorithms are briefly explained below:

a: Gaussian mixture model (GMM)

The GMM is a probabilistic model [215] in which datasets

are assumed to be formed by a mixture of a fixed number of

Gaussian distributions with uncertain variables [216]. Mix-

ture models can be thought of as making generalizations of

k-means clustering to provide details about the data’s covari-

ance structure and the centres of the undiscovered Gaussian
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distributions. It is a function made up of many Gaussian

distributions, each defined by kǫ {1, 2, ...,K} where K is the

number of clusters in the dataset. The following parameters

characterize each Gaussian k in the mixture:

• µ − mean with a specified centre.

• Σ − a covariance defines its width. In a multivariate

case, this will be analogous to the measurements of an

ellipsoid.

• A combining probability that determines the size of the

Gaussian function.

The combining factors are probabilities which must satisfy

the following condition:

K
∑

k=1

πk = 1 (10)

To do so, we must ensure that each Gaussian matches the

data sets in each cluster. The matching is precisely what max-

imizing probability achieves. The Gaussian density function

is expressed by:

N (x|µ,Σ) =
exp(− 1

2
(x− µ)TΣ−1(x− µ))

(2π)D/2 |Σ|
1/2

(11)

where, x represents data points, D is the number of di-

mensions of each data point. µ and Σ are the mean and

covariance, respectively. The log calculation of equation 11

found significant. The mathematical derivation can be given

as:

lnN (x|µ,Σ) = −
D

2
ln2π −

1

2
lnΣ−

1

2
(x− µ)TΣ−1(x− µ)

(12)

GMM is a beneficial method that is commonly used for

a variety of clustering based tasks. The most common prob-

ability function for text-independent ASR using continuous

features, in which there is no advance awareness of what the

speaker would say, has also been Gaussian mixture models.

b: i-vector (identity vector)

i-vector [217] is applied to reduce high dimensional space to

low dimensional space for speaker and channel variations by

simple factor analysis. Instead of using two different spaces,

the approach uses only a single space with both speaker

and channel named "total variability space". The new GMM

supervector is defined by M = m + Tw, where m is the

speaker, and channel-independent supervector and w is the

total factor with standard normal distributed vectors named

i-vectors. For a given utterance, i-vectors used to represent

the speech signal by posterior distribution. Then, the Baum-

Welch statistics are extracted using UBM to estimate i-

vectors by following statistics:

Nc =
L
∑

t=1

P (c | yt,Ω) (13)

Fc =
L
∑

t=1

P (c | yt,Ω)yt (14)

F̃c =
L
∑

t=1

P (c | yt,Ω)(yt −mc) (15)

here, [y1, y2, ..., yL] represents a sequence of L frames,

Ω formed by C mixture components in F feature space.

P (c | yt,Ω) denotes posterior probability of vector yt where

c = 1, 2, ..., C is Gaussian index. Then the centralized first

order Baum-Welch statistics computed on the UBM mean

mixture components and estimating i-vectors.

c: d-vector (deep vector)

d-vector framework [10] first preprocess data by extracting

acoustic features. A DNN model is trained and acoustic

feature is concatenated with context frames in hidden layer

because of the inefficient information of single speakers. d-

vector receives the output activation of every frame from the

last hidden layer using feedforward propagation and is rep-

resented by averaging all frames’ deep embedding features

from an utterance. The output layer is removed to decrease

the DNN model size for runtime. Finally, the decision derives

by computing the distance between the target and test d-

vectors. The reason to choose the last hidden layer is to

observe well generalized unseen speakers. Figure 11 shows

the architecture of d-vector.

FIGURE 11. The figure illustrates d-vector architecture implemented in the

front-end of a multi-stage speaker recognition system (from [10]).

d: x-vector

x-vector system is developed on DNN embeddings where

neural networks trained to discriminate between speakers
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[96]. The approach [218] follows an end-to-end system [219]

that produces embeddings united with similarity metric using

time-delayed DNN and compare them by a separated trained

classifier like PLDA. First, short term temporal frame-level

context is extracted by time delay. Then, a statistic pooling

layer aggregates over the input segment and computes mean

and standard deviation. The computation finally classifies the

segment level feature to the speaker by DNN. The produced

segment level speaker embeddings are known as x-vectors.

Figure 12 represents the network structure of the x-vector

architecture.

FIGURE 12. Network structure of x-vector (from [218])

.

e: t-vector

The t-vector system as triplet speaker embeddings [220]

is also trained discriminatively like x-vector in speaker di-

arization or verification. High-resolution filter bank features

are extracted to modify the system [71] to deal with the

long duration data samples without overlapping. Also, the

null utterance part is emitted by energy-based voice activity

detection. Using an end-to-end system, segment level embed-

ding generated by averaging the output in a sequential order

to estimate the t-vector. Then the Inception-ResNet-V1 net-

work specified in [71] is applied for discriminative speaker

training. The speaker embeddings combined with Cosine

Distance Scoring (CDS) and PLDA classifier can improve

the performance against channel and noise variabilities. The

t-vector architecture developed for the speaker recognition

system is transformed from [71], with loss function changes

and acoustic features. Figure 13 presents the triplet loss based

speaker verification architecture which is further converted

into t-vector.

2) Back-end

The back-end specifies the relationship evaluation between

input and test speaker features and then conforms the result

with a threshold. Then, the decision took by the threshold

values, and the speaker recognition processed completed. In

FIGURE 13. Triplet loss based speaker verification system (from [71])

.

speaker recognition tasks, the back-end aims to compensate

for the channel variability and reduce interfaces. Linear dis-

criminant analysis (LDA), probabilistic linear discriminant

analysis (PLDA), cosine distance, Euclidean distance are the

popular algorithms for the back-end. In the below sections, an

extensive description of these back-end architectures is given.

a: Linear discriminant analysis (LDA)

LDA is a technique for reducing dimensions. As the name

suggests, dimensionality reduction methods minimize the

number of parameters in a dataset while preserving as much

information as available. It is a standard statistical method for

reducing dimensionality in classification and pattern recogni-

tion concerns [221]. As each class has a Gaussian distribution

and a general covariance matrix, it considers the best opti-

mum linear transformation. The speech class differentiation

parameter in the context of A is defined by LDA as follows

[23]:

λ =
ATSbA

ATSwA
(16)

here, Sb and Sw represent between and within-class covari-

ance matrices. A is a projection matrix that contains the k

eigenvectors corresponding to the k largest eigenvalues of

S−1. wSb is the answer to the LDA optimal solution. Overall

class disperses for feature vectors x are determined by [222]:

Sb =
C
∑

c=1

nc(µc − µ)(µc − µ)T (17)

Sb =
C
∑

c=1

∑

kǫc

(xk − µc)(xk − µc)
T (18)

here, C is the number of different speaker classes, nc is the

number of various samples in class c, µ is the total mean of

all samples and µc is the mean of samples in class c.

b: Probabilistic linear discriminant analysis (PLDA)

PLDA is a probabilistic variant of linear discriminant analy-

sis that can accommodate more complex data sets. PLDA has

a wide range of applications in several fields of study, namely

computer vision, speech recognition, etc. Even for a single

example of an unknown class, PLDA will generate a class

centre using discrete non-linear parameters. Researchers con-

sider different instances of a previously unknown class in sta-

tistical analysis to see if they relate to the same category—it

also clusters studies from previously unseen groups. PLDA

VOLUME 4, 2016 11
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is a generative theory that includes given data sets are drawn

from a distribution. In PLDA, the model parameters that best

represent the training data must be determined. Two factors

determine the representation where the data is presumed to be

obtained: It should reflect various data types, and parameter

processing should be easy and swift. Gaussian is the most

common representation that meets these requirements. A typ-

ical Gaussian PLDA implies that an i-vector w is constructed

as follows [223]:

w = m+ Vy + z (19)

here, m is the mean of i-vectors, y denotes the speaker

latent variable with standard typical prior and the residual.

Z is normally distributed with zero mean and full covariance

matrix Σz. PLDA uses the expectation-maximization (EM)

algorithm to estimate the model parameters (V,Σz).

Following parameterization, the verification score for each

of the two trial i-vectors w1 and w2 will be calculated using

the log-likelihood ratio of the hypothesis Hs, that both i-

vectors are accurate from the same speaker, and the Hd

assumption that both are two distinct speakers [224], that

mathematically represented as:

verification_score = log
p(w1, w2)|Hs

p(w1, w2)|Hd
(20)

PLDA score can be calculated by:

PLDA_score = logN(

[

w1
w2

]

;

[

m

m

]

,

[

ST SB

SB ST

]

)

−logN(

[

w1
w2

]

;

[

m

m

]

,

[

ST 0
0 ST

]

) (21)

where SB = WT and ST = SB + Σz.

c: Euclidean distance

The Euclidean distance ||x− y||
2

between two vectors x =
(x1, x2, ....., xn) and y = (y1, y2, ....., yn) can be computed

as [225]:

||x− y||
2
=

√

√

√

√

n
∑

i=1

(xi − yi)2 (22)

where the calculation measured in Euclidean vector space

R
n, and n ∈ N.

d: Cosine distance

Cosine distance is calculated from cosine similarity [226].

Cosine similarity is applied to define the similarity between

two non zero vectors. It calculates the cosine of the an-

gle between two vectors in a multi-dimensional space. The

relationship between cosine similarity and cosine distance

is disproportionate. The cosine similarity raises when the

distance between two vectors reduces and vice versa. The

following equations calculate the cosine similarity and cosine

distance, respectively. The functions can be mathematically

presented as below:

cos(θ) =
A.B

||A|| . ||B||
=

∑n
i=1

AiBi
√

∑n
i=1

A2

i

√

∑n
i=1

B2

i

(23)

Cosinedistance = 1− cos(θ) (24)

here, A, B are two non-zero vectors and cos(θ) refers to the

cosine similarity.

B. END TO END SPEAKER RECOGNITION

End-to-end speaker recognition is a modern technique that

receives a set of speech utterances as the input and returns

their affinity score immediately. Here, both the front-end

and back-end task is done by a single architecture. Few

standard end-to-end speaker recognition architectures are

deep speaker, raw-net, AM-MobileNet, Sinc-net etc. This

subsection extensively explains these architectures. A general

end-to-end speaker recognition architecture is upheld in the

Figure 14. In this section, some of the standard end-to-end

systems are demonstrated.

Enrollment/Test
utterance

Pre-process
(Optional) Speaker features End to end

SR Model Output/Decision

FIGURE 14. The figure demonstrates the end-to-end speaker recognition

architecture.The preprocessed speaker embedding from input signal

generates the output results by deep speaker modeling. Following the steps,

the system produces single similarity score from the directly mapped input

utterances to identify speakers.

a: Deep speaker

Deep Speaker algorithm [227] produces utterance-level

speaker embedding using a deep neural network where

speaker similarity is measured by cosine similarity. First,

the raw audio is converted to a minibatch size of Fbank

coefficients. Then, a feed-forward DNN is used to extract fea-

tures over the preprocessed audio. In deep training, ResCNN

architecture containing ResBlock [228] is used to remove

computational complexity and help the frequency dimension

immutable when the channel increases. Also, Deep speech

2 (DS2) [229] style GRU architecture extracts frame-level

acoustic feature like ResCNN for faster training and less

chance of divergence. After both layers, the average sentence

layer, affine and length normalization layers are applied to

convert the frame-level input to speaker embeddings. Finally,

the triplet loss layer based on cosine similarities is conducted

over an entire batch for negative selection across GPUs. This

algorithm improves accuracy in both speaker verification and

identification tasks. Figure 15 demonstrates the deep speaker

architecture.

b: SincNet

SincNet [230] is a CNN based architecture that deals with

high dimensional inputs, noisy and inconsistent multi-band

shapes in the first convolutional layer. SincNet reduces the
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FIGURE 15. Diagram of the Deep Speaker architecture (from [227])

.

filter parameters and helps to converge faster by strength-

ening the network to focus only on the parameters. SincNet

implicates the waveform by getting started a function g using

a set of parameters:

y[n] = x[n] ∗ g[n, θ] (25)

here, y[n] is the filtered output, and x[n] is a portion of the

speech signal. The function implements rectangular band-

pass filters as the difference between two low-pass filters

using low f1 and high f2 cutoff frequencies.

g[n, f1, f2] = 2f2sinc(2πf2n)− 2f1sinc(2πf1n) (26)

The generated filters with cutoff frequencies can directly

allocate more filters where significant speaker identity clues

are lying. Then, the high-frequency selection attains by Ham-

ming window to get the ideal band-pass filters. The filters

obtained by SincNet are interpretable and readable than any

other techniques of speaker identification and verification.

c: RawNet

RawNet [231] is a reformed architecture of the CNN-LSTM

model that enhances the pre-training scheme with additional

objective functions of speaker embeddings. In the architec-

ture, residual blocks connected to a global average pooling

layer are constructed first to process Input features for frame-

level embeddings extraction using leaky ReLU. A gated

recurrent unit (GRU) layer then aggregates the features to

utterance level embedding instead of the LSTM layer.

Center loss Lc and speaker-basis loss LBS as an additional

objective function employs in RawNet to reduce intra-class

and enhance inter-class covariance while embeddings are

discriminate.

LC =
1

2

N
∑

i=1

‖xi − cyi
‖
2

2
(27)

LBS =
M
∑

i=1

M
∑

j=1,j 6=i

cos(wi, wj) (28)

DNN is trained using the final objective function besides

categorical cross-entropy loss Lce for feature enhancement.

The fully connected layer initiates the utterance level to

speaker embeddings that decrease the number of frames’

parameters and increase efficiency.

d: Additive Margin MobileNet1D

Additive Margin MobileNet1D (AM-MobileNet1D) [66] di-

rectly process waveform audio on mobile devices that reduce

storage size, energy-consuming and processing memory. To

fit the audio signal and tackle the speaker recognition prob-

lems on mobile, the MobileNetV2 [232] architecture is mod-

ified from a 2D convolutional neural network to 1D. The

modification reduces complexity and model size by faster

speed. The MobileNet1D uses additive margin softmax (AM-

Softmax) layer to extract features that include each linear

surface of separation with the additional region. The AM-

Softmax equation defined as:

Loss = −
1

n

n
∑

i=1

log
φi

φi +
∑c

j=1,j 6=yi
exp(s(WT

j fi))
(29)

φi = exp(s(WT
yi
fi −m)) (30)

here, W is the weight matrix, and fi is the input and WT
yi
fi

is the target logit from the ith sample for the last fully

connected layer. It introduces two new parameters scaling

factor s and additive margin size m in softmax function.

The model forces the distance between two same samples to

be closer and different samples to be more distant, reducing

frame-level error rate seven times faster than SincNet.

VI. SUMMARY OF PAPERS REGARDING SPEAKER

RECOGNITION

In the last decades, the ASR approaches gained a broad

interest from many researchers that driven this system to

become an effective identity authentication means. Speaker

recognition is related to physiological and behavioural fea-

tures of the speech utterance method of an individual voice.

This section first analyses the papers of general speaker

recognition systems in Table 7 and then explains the sub-

domains that are presented in Table 8, 9, and 10.

Ahilan et al. [233] explored how the current factor analysis

approaches perform when utterances length are reduced.

The paper provided a comparative analysis of Joint Factor

Analysis (JFA) and i-vector based systems, including various

compensation techniques using the dataset of 2008 NIST

SRE. The experiment showed that all the techniques’ perfor-

mance difference was very narrow at short utterance (<10s).

In [234], a weighted feature extraction method is proposed

to improve the effectiveness of the feature parameter. The
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TABLE 7. A summary of some significant papers of speaker recognition are mentioned in the table.

Reference Task Method Dataset
Feature
Extract

Accuracy Limitation

[233]
Short utterance
effect
investigation

Joint vector
analysis(JFA)
and i-vectors
including various
compensation
techniques

NIST 2008
SRE (telephone
based)

13 feature-
warped
MFCC with
appended delta
coefficients

Overall results show
that as the utterance
length decreases, per-
formance degrades at
an increasing rate

The analysis
approaches have
not provided any
clear differences in
performance for short
speech.

[234]

Improves the
effectiveness
of feature
parameter

Weighted feature
extraction method

Voice sample of
20 speakers

Weighted
LPCC

94.67% for non-
sequential weighting
coefficients

Hard to determine
weighting coefficients.

[235]

Feature extrac-
tion in front-
end ASR sys-
tem

Bottleneck Neural
Network approach

2010 NIST SR
Bottleneck fea-
tures

Combined MFCC with
Bottleneck approach
optimizes a recording-
level criterion

Proposed bottleneck
feature extraction
method slightly worse
than MFCCs.

[236]
Speaker adap-
tation

DNN acoustic
model

Switchboard
English
conversational
telephone
speech

Speaker
identity vectors
along with the
regular ASR
features

i-vectors can be used
to adapt neural net-
work models

Result may change
with the increasing
number of speakers’
data.

[237]
Single DNN
training

DNN BNF i-vector
system

NIST
Switchboard
data

DNN
bottleneck
features

On DAC13: 55% re-
duction in EER for
out-of-domain.

NA

[238]
Deep speaker
feature learning

Convolutional
Time Delay Deep
Neural Network
structure (CT-
DNN)

Train: Fisher
database
Test: CSLT-
COUGH100

Highly speaker
sensitive
features

Best in d-vector sys-
tem with PLDA scor-
ing

Implication of the ex-
perimental results for
the acoustic and lin-
guistic research.

[239]
Enhance end-
to-end system
for SR

CNN based end-to-
end system

Voxceleb and
NIST LRE 07

LR task: SDC
features,
SR task: MFCC
features

CNN with LDE-
ASoftmax performs
best

NA

[240]

Speaker
recognition
under noisy and
unconstrained
conditions

VGGVox (CNN
trunk based
embedded system)

VoxCeleb1,
VoxCeleb2
(train only)

DNN

VoxCeleb2 addresses
the lack of VoxCeleb1
alongside achieves
significant margin
over previous works

Very low label error
in VoxCeleb1 is de-
tected and solved in
VoxCeleb2.

[130]
Improve text-
independent
SR system

LM(Logistic
Margin) and AM-
Softmax with
dropout method

VoxCeleb
dataset

ResNet-20
Reduces prediction er-
rors by up to 18%

NA

[241]
Short utterance
speaker recog-
nition

Self-adaptive
GMM-MAP-UBM
method

Self-recording
voice

24-dimensions
MFCC

Decrease the equal er-
ror rate from 4.9% to
2.5%.

Improve richness of
feature extraction for
large data

[242]

How the
speaker
recognition
model extracts
discriminative
embeddings

CNN
Voxceleb1,
TIMIT

MFCCs

The networks are
better at discriminating
broad phonetic classes
than individual
phonemes

Exploring a larger
speaker dataset, a
different loss function,
such as the angular
softmax loss, or
adding an attention
layer

[243]

Identify
speakers for
short utterances
with imbalance
length pairs

Meta-learning
framework:
ResNet34

VoxCeleb

40-dimensional
log mel-
filterbank
(MFB) features

state-of-the-arts
performance on short
utterances

NA

[244]

Combine
two features
to enhance
degraded
audio signals
performance

1D-Triplet-CNN
TIMIT, Fisher,
Nist SRE 2008
and 2010

MFCC-LPC
features

Perform in a substan-
tial margin

Fails to verify some
of sample data of each
datasets.
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paper analyzed each component of traditional LPCC and

generated the weighted LPCC where vector quantization is

used for feature matching. The experiment then evaluated

that weighted LPCC has high accuracy and also learned the

method non-sequentially is better than the one sequentially.

Further, the study concluded that the different distribution of

weighting coefficients is essential to the system’s accuracy.

Yaman et al. [235] presented an approach of using a bottle-

neck neural network to provide features in an SR system. A

network re-training technique was described in this paper that

optimizes a recording-level criterion with significant gains.

The experiments on the same and different microphone tasks

of the NIST 2010 SRE dataset showed that the bottleneck

features benefit from the combined MFCC. In [236], authors

presented a DNN acoustic model consisting of i-vectors and

ASR features to perform speaker adaptation. The experimen-

tal results on a Switchboard, 300 hours corpus, showed that

the DNN with i-vectors inputs is better than those trained

on speaker-independent features only and also provide ad-

ditional gains with normalized speaker features. The authors

observed that i-vector extraction requires a single decoding

pass but performance similar to other speaker adaptation

techniques.

Richardson et al. [237] introduced the utilisation of a

single DNN for speaker and language recognition and ex-

plained the construction of a DNN BNF i-vector method.

The paper illustrated considerable achievement obtains when

practising the DAC13 SR and LRE11 LR benchmarks tech-

nique. The evaluation showed a more significant reduction

in error rate for both out-of-domain and in-domain condition

using tandem features. In [238], the authors used a convo-

lutional time-delay DNN (CT-DNN) architecture to extract

speaker-sensitive features. The paper investigated that when

the test utterances are short, the learned feature is highly

preferential and can be used to obtain high accuracy. The

experiment evaluated in the Fisher database explained that

CT-DNN could generate high-quality speaker features. The

study showed that the speaker trait is primarily a determin-

istic short-time feature rather than a long-time distributional

pattern. In [239], a unified and interpretable end-to-end sys-

tem for both SR and LR was developed. Besides the time

average pooling layer, authors introduced self-attentive pool-

ing (SAP) and learnable dictionary encoding (LDE) layers

that aggregated the variable-length input sequence into an

utterance level representation. Center loss and angular soft-

max loss introduced in the system to get more discriminative

speaker embedding. Experimental results on Voxceleb and

NIST LRE 07 datasets showed that the proposed encoding

layer and loss function could significantly improve the sys-

tem. Chung et al. [240] introduced VoxCeleb2, a truly large-

scale audio-visual speaker recognition dataset gathered from

open-source tools. The paper developed CNN models and

training strategies to recognize identities from voice under

noisy and unconstrained conditions effectively.

Hajibabaei et al. [130] investigated different methods to

advance the efficiency of a text-independent ASR system

without using additional data and more extensive criteria by

expanding the training and testing data. The results showed

the sufficient dimensionality of embedding space, and the

usage of more discriminative loss functions increases ac-

curacies. Also declared that the dropout method of a fully

connected layer improves the verification accuracy. In [241],

a hybrid model of adaptive GMM and CNN for short ut-

terance was presented. The CNN method was trained to

process spectrograms to extract the deep features of the entire

frequency spectrum of short utterance. The experimental

results showed the improvement of accuracy and richness

of feature extraction in short utterance and speech. Shon et

al. [242], proposed a Convolutional Neural Network (CNN)

based ASR model for extracting robust speaker embeddings.

The paper modified the embedding structure to extract frame-

level speaker embeddings from each hidden layer. In [243],

the authors introduced a meta-learning framework for im-

balance length pairs which solved the poor performance of

models with short utterances. Further, the authors proposed

prototypical networks with different speech length of two

meta-learning schemes as support and query sets. The exper-

imental results of combined two schemes on short utterance

(1-2 seconds) outperformed speaker verification models and

unseen speaker identification on the VoxCeleb datasets. 1D-

Triplet CNN was presented in [244] with a combination of

MFCC and LPC features to improve the quality of the input

speech signal. Experiments on the TIMIT dataset, Fisher

dataset, NIST SRE 2008 and 2010 datasets observed robust

performance to a wide range of audio degradations hence still

failed to verify all the data correctly.

Besides, a few other speaker recognition models are also

introduced in this domain at different times [227], [249]–

[263]. In paper [20], authors presented an overview of Clas-

sical approaches like vector quantization, Gaussian mixture

model, support vector machine (SVM), and Supervector

methods of automatic text-independent SR. The authors also

elaborated the normalization and adaption methods to handle

mismatch of training and testing, unbalanced text, limited

training data, background noise, and non-cooperative users.

The study showed the NIST database’s performance and

mentioned recent methodological difficulties such as text

dependency, channel impacts, speech durations, and cross-

talk speech.

Singh et al. [264] provided information about three specific

application areas as authentication, surveillance and forensic

speaker recognition technologies. The authors discussed ir-

relevant information in automatic speaker recognition appli-

cations that may degrade the system accuracy. Also added

relevant information of applications such as linguistic infor-

mation. In [265], the MFCC technique for feature extraction

and vector quantization for feature matching were used for

designing a speaker recognition system. The paper suggested

some modifications of existing MFCC that can be used to

improve the performance of SR. Ferrer et al. [266] presented

SRI’s submission along with an analysis of the approaches

that provided significant gains for the evaluation. The paper
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TABLE 8. Some papers of speaker identification have been summarized in this table.

Reference Task Method Dataset
Feature
Extract

Accuracy Limitation

[245]
Identify unknown
speaker

BPNN based
approach

text-dependent
dataset spoken by
5 different female
speakers

MFCC
85% at the filter
number 32

NA

[246]

Personal
authentication
based on neural
network

ASR model
of MFCC and
ANN classifier

Sample of 10
phrases for each
50 users and the
phrase

16 MFCC fea-
tures

92%

Text-
dependent
phrase
only.

[247]

Performance analy-
sis in noise pres-
ence or degradation
for identification.

SVM (support
vector
machine)
technique

Sample of Arabic
clause iterates
15 times each of
80 speakers with
degradation

MKMFCC
(Multiple
Kernel
Weighted
MFCC)

Higher
identification
rate

Result dif-
fer in other
languages.

[248]

Low complexity
solution for short
utterance speaker
identification

Gaussian mix-
ture model

TIMIT database

combined
MFCC and
CMN feature
vectors

Overall
performance
reduce both time
and complexity

NA

included a multiclass voice-activity detection (VAD) system

and the fusion of subsystems trained with clean and noisy

data, a fusion strategy for acoustic characterization using

metadata. In [267], a new MFCC and VAD based approach

was presented for the SR system where VAD removes the

background noise. Also, a new criterion for voice detection

was proposed. Experimental results were presented on the

dataset of three speakers’ sample voices and showed 90%

accuracy with no false recognition. In [183] the authors

designed speaker identification experiments to analyze noise

robustness of MFCC and GFCC. This study revealed that

the nonlinear rectification accounts for the noise robustness

differences primarily, suggested how to enhance MFCC ro-

bustness, and further improved GFCC robustness by adopting

a different time-frequency representation. The paper [268]

applied a CNN/i-vector approach to identify speakers in

noisy conditions for Automatic speech recognition (ASR).

Datasets used for the experiments was supplied under the

DARPA RATS program with an additional two latest data

collection. The performance evaluated that CNN/i-vector

front end is better than the UBM/i-vector on heavily degraded

speech data fusion with UBM/i-vector system using different

features considerably outperforms with 26% in miss rate. The

paper also highlighted a future scope of the CNN/i-vector

approach by analyzing the language and channel dependency.

As speaker recognition has different applications, the fol-

lowing subsections summarize the papers of speaker identi-

fication, speaker verification and speaker diarization that are

presented in Table 8, 9, and 10.

A. SUMMARY OF PAPERS REGARDING SPEAKER

IDENTIFICATION

In this section, we represent the speaker identification sys-

tems evolution from the early implementations to current

trends. The summary of the papers are uphold in table 8.

In the paper [245], a BPNN based system was presented

for speaker identification where the MFCC feature was used

with some modifications. The paper investigated the ex-

tracted features to identify the unknown speaker using five

unknown female speakers dataset, and the results showed

that at 32 number of filters, the efficiency is 85%. The paper

used neural networks for training and testing to find the error

values that defined the clarity of the algorithm. In [246],

an automatic text-dependent speaker recognition model was

presented. The paper used MFCC features to get hybrid

features and then a multilayer feed-forward backpropagation

ANN classifier used to recognize speakers. The experimental

results evaluated on a fixed spoken phrase, and the CIR

performance is 92% but only for ten users. The paper [247]

presented a robust noise MKMFCC–SVM based on the Mul-

tiple Kernel Weighted Mel Frequency Cepstral Coefficient

(MKMFCC) and SVM for SI. The paper used MKMFCC to

extract features from degraded audio using multiple kernels

like exponential and tangential and categorized with the SVM

approach. The comparative analysis with MFCC-SVM SI

in different transforms and SNR on a database includes 80

speakers (each iterating Arabic clauses 15 times) provided

a higher identification rate in noise presence or degradation.

The paper [248] proposed GMM based on a low complex-

ity solution with new feature vectors in a text-independent

speaker recognition system for short utterances. The paper

used Cepstral Mean Normalization (CMN) to reduce the

effect of the extracted features’ variability and combined

with MFCC to enhance the performance. The experimen-

tal results on the TIMIT database demonstrated remarkable

results of the system’s effectiveness without incorporating

lengthy, extra-data and complicated calculations to handle

short utterances data.
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TABLE 9. Some papers of speaker verification have been summarized in this table.

Reference Task Method Dataset
Feature Ex-
tract

Accuracy Limitation

[269]

Speaker
verification with
short speech
utterance

Probabilistic linear
discriminant analysis
(PLDA) approach

NIST
2008

MFCC

Heavy-
tailed PLDA
achieve better
performance
than Gaussian
PLDA

NA

[270]

Improve speaker
embedding quality
in short utterances
text independent
speaker verification

CNN based end-to end
SV framework and an
i-vector SV framework
with deep discriminant
analysis compensation

NIST
SRE
corpus

I-vector
system based
MFCCs,
A-softmax
loss based
fbank
features

24.4% and
13.9%
respectively
outperform by
i-vector/PLDA
framework

Proposed deep
discriminant
analysis
compensation
isn’t
compatible
with PLDA.

[271]

Generate likelihood
ratios in an end-to-
end speaker verifi-
cation system

Two Tied Factor Deep
Neural Network (TF2-
DNN) model and au-
toencoder model

RSR
2015
database
I

MFCCs
Competitive re-
sult respect to
DNN

NA

[272]
Extract self atten-
tive speaker embed-
dings

DNN with PLDA
and extension of the
x-vector architecture

NIST
SRE
2016

MFCCs

consistent with
both short and
long testing ut-
terances.

Small dataset
lead mismatch
during train
and test
segmentation.

[218]

DNN embedding
and fusion
with i-vectors
investigation for
text independent
speaker verification

A feed-forward DNN
embedding system

NIST
SRE
2010 and
2016

MFCCs

Embeddings
are better on
short utterances
and fusing are
complementary

More
appropriate
symmetric
metric can be
used.

B. SUMMARY OF PAPERS REGARDING SPEAKER

VERIFICATION

This section presents a concise overview of the speaker ver-

ification domain by elaborating its modelling methodologies

and various feature extraction approaches.The summary of

the papers are presented in table 9.

Kanagsundaram et al. [269] investigated the effect of

short utterances available for development, enrolment, and

verification using the PLDA approaches. Applying the NIST

2008 SR evaluation database, the study showed that heavy-

tailed PLDA (HTPLDA) deliver greater accuracy than Gaus-

sian PLDA (GPLDA) as evaluation sentence dimensions are

minimised. The paper presented mismatched and matched

evaluation performance by pooling the advancement data,

preferably concatenating two independently trained total-

variability spaces from every channel. In [270], the appli-

cation of angular softmax is presented to increase speaker

embedding performance. In the paper, a CNN based end-

to-end SV framework and a deep discriminant analysis for

compensation in i-vector space are two a-softmax loss-based

SV frameworks investigated. An end-to-end text-dependent

speaker recognition model was proposed in the paper [271]

based on deep neural networks using tied hidden factors.

A two-step backpropagation algorithm used to train model

parameters and hidden variables in the paper. The authors

calculated the gradients of tied hidden variables by aggre-

gating all session frames for JFA. For effectiveness against

overfitting and uncertainty, the dropout Bernoulli distribution

and likelihood ratios used in enrolment and trial evaluation.

The evaluation on the RSR2015 part I database provided

well-calibrated scores in results. A self-attention mechanism

into DNN embeddings was proposed in [272] to extract

speaker embeddings for text-independent SV. The speaker

embeddings used as a weighted mean of a speaker’s frame-

level hidden vectors in the paper. A PLDA classifier was used

to compare combinations of embeddings. The experimental

results on NIST SRE16 showed that the improvement by the

mechanism was compatible with both short and long testing

utterances. The paper [218] investigated deep neural network

embeddings that had been replaced with i-vectors for text-

independent speaker verification. The experiments on NIST

SRE 2010 and 2016 showed that the feed-forward DNN

embedding system outperformed i-vectors for short speech

segments and are ambitious on long-duration test circum-

stances. The paper also evaluated equivalent performance

using a fusion of i-vector and embeddings.

C. SUMMARY OF PAPERS REGARDING SPEAKER

DIARIZATION

This section demonstrates a few speaker diarization papers.

The summary of the articles is upheld in table 10. In [273],

Yusuke et al. introduced an end-to-end neural-network-based

speaker diarization technique. This technique does not have

individual sections for feature extraction and clustering. In-
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TABLE 10. Some papers of speaker diarization have been summarized in this table.

Reference Task Method Dataset
Feature Ex-
tract

Accuracy Limitation

[273]

End-to-end
neural-network
based SD
method

Neural probabilis-
tic model of SD

Switchboard
2, Switchboard
cellular, NIST
SRE

23-
dimensional
log-Mel-
filterbank
features

The proposed
method
achieved
diarization
error rate
(DER) of
12.28%

Better simula-
tion techniques
can improve the
error rate

[274]

Overlap detec-
tion system for
improved meet-
ing diarization

Integrated overlap
detector and
diarization system

AMI Meeting
Corpus

MFCC

Relative
improvement
of about 7.4%
DER

NA

[275]

Improving
the short-term
spectral feature
based overlap
detector

HMM/GMM over-
lap detector

AMI meeting
corpus

Long-term
conver-
sational
features

DER is
reduced by
5%

Exploring prior
probabilities
obtained
from the
conversational
features

[276]
Discriminatively
trained DNN
for SD

DNN

CALLHOME
conversational
telephone speech
corpus

Feed forward
DNN

DER 9.9

Does not
respond as
well to current
unsupervised
calibration
strategy

[277]
Speaker
diarization
system

LSTM-based
d-vector

NIST SRE 2000
CALLHOME

LSTM
12.0%
diarization
error rate

NA

[278]
Supervised
speaker
diarization

Unbounded
interleaved-state
recurrent neural
networks (UIS-
RNN)

NIST SRE 2000
CALLHOME

RNN
7.6% diariza-
tion error rate

NA

[279]

Speaker
diarization via
unsupervised
PLDA i-vector

Incorporates proba-
bilistic linear dis-
criminant analysis
(PLDA) for i-vector
scoring

CALLHOME
conversational
telephone speech
corpus

i-vector DER 13.7%
Error rate can
be reduce fur-
ther

stead, a single neural network outputs SD results directly.

The authors developed a permutation-free objective function

to depreciate diarization errors instantly. This SD architecture

obtains a diarization error rate (DER) of 12.28%. In [274], the

authors developed an overlapped speech detector in the SD.

Kefi et al. propose an overlap detector and diarization system

that trained on AMI meeting corpus dataset and achieved

relative-improvement of about 7.4% diarization error rate.

The paper [275] represents an architecture to enhance the

short-term spectral feature-based overlap detector by incor-

porating information from long-term conversational features.

HMM/GMM based technique applied on AMI meeting cor-

pus finds that the diarization error rate is minimized by

5% pertinent to the baseline overlap detector. In [276], the

authors introduced a substitute technique for learning fea-

ture affirmation by deep neural networks to dispel the i-

vector model from this speaker diarization system. Wang et

al. [277] proposed a novel d-vector based model for SD.

The authors merged LSTM-based d-vector audio embed-

dings with modern nonparametric clustering to significantly

result in the speaker diarization system. This architecture

experimented on NIST SRE 2000 CALLHOME dataset and

found a significant result of 12% DER. Zhang et al. [278]

introduced a diarization approach fully supervised denoted

unbounded interleaved-state recurrent neural networks (UIS-

RNN). This unsupervised method was evaluated on NIST

SRE 2000 CALLHOME dataset and obtained a 7.6% diariza-

tion error rate. In [279], the authors proposed a supervised

diarization system i-vector and PLDA. The model evaluated

on CALLHOME conversational telephone speech corpus and

obtained a diarization error rate of 13.7%. The paper [280]

describes an unsupervised speaker diarization method that

creates massive progress on unsupervised SD.

VII. PERFORMANCE OF SPEAKER RECOGNITION

The SR system’s performance can be evaluated depending

on parameters such as accuracy and the system’s speed.

The accuracy of architecture can be calculated from the

false acceptance ratio (FAR) and false rejection ratio (FRR).

FAR is the percentage of negative inputs which are deter-
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mined as positive. FRR is the percentage of positive in-

puts, which are destined as negative. Some widely used

SR performance measures systems are receiver operating

characteristic (ROC), equal error rate (EER), detection error

tradeoff (DET). The following sections broadly describe the

evaluation systems.

A. RECEIVER OPERATING CHARACTERISTIC (ROC)

The area under the curve (AUC) and receiver operating

characteristic (ROC) curve is a performance measurement for

recognition problems at numerous thresholds. The receiver

operating characteristic is a probability curve, and the area

under the curve demonstrates the degree or measure of sepa-

rability. It represents how much the architecture is efficient

to separate classes. If the threshold value is minimized, it

classifies more items as positive, which increases both true

positive and false positive. Figure 16 demonstrates a standard

ROC-AUC curve. To better explain the ROC-AUC curve, the

true positive and false positive rates are discussed below:

FIGURE 16. The figure illustrates TPR vs FPR at different classification

thresholds, which is the condition of the ROC-AUC curve.

True positive rate (TPR): TPR means true positive rate

or sensitivity that tells us what proportion of the positive

items got correctly classified. The mathematical formula of

TPR is:

TPR =
TP

TP + FN
(31)

here, TP , FN refers to true positive and false negative

respectively.

False positive rate (FPR): FPR means the false positive

rate that tells us what proportion of the negative items got

incorrectly classified. The mathematical formula of FPR is:

FPR =
FP

TN + FP
(32)

where, FP , TN refers to false positive and true negative

respectively.

B. EQUAL ERROR RATE

The equal error rate (ERR) is the algorithm that is used

to accurately predict the thresholds for its false acceptance

and false rejection rates. The standard value is referred to

as the equal error rate whenever the rates are similar. The

value demonstrates that the percentage of false acceptances

equals the portion of false rejections. Fundamentally, it is a

mathematical method of detecting errors and error margins

in inaccurate results. There are also two possible conditions:

Y , which means that the expression is acknowledged as the

speaker’s, and N , meaning that the expression is refused.

From these expressions, the conditional probability can be

summarized as [28]:

P (Y |y) is the probability of correct acceptance,

P (Y |n) the probability of false acceptance (FA),

P (N |y) the probability of false rejection (FR),

P (N |n) the probability of correct rejection.

The relationships between these parameters: P (Y |y) +
P (N |y) = 1 and P (Y |n)+P (N |n) = 1. SR systems can be

measured using the two probabilities P (Y |y) and P (Y |n).

C. DETECTION ERROR TRADEOFF

A detection error tradeoff (DET) is a visual representation

of error margins for binary classifications that plots the false

rejection rate versus the false acceptance rate [281]. It is

now common practice to map the error curve on a regular

deviate scale, in which situation the curve is referred to as

the DET curve. The x and y-axes in the curve are measured

non-linearly by the regular natural deviates, resulting in more

linear tradeoff curves than ROC curves. It uses most sequen-

tial values to emphasize the significance of the difference in

the critical operating zone. The DET curve representation is

simple to understand and compares the system’s output over a

wide range of operating situations. The probit function (used

to model binary outcome variables) gives the normal deviate

mapping, such that:

x = probit(Pfa)
y = probit(Pfr)
where Pfa and Pfa are the false-accept and false-reject

rates. Probabilities are mapped from the unit interval [0, 1] to

the extended real line [−∞,+∞].

VIII. CHALLENGES AND FUTURE SCOPES OF ASR

SYSTEMS

Speaker recognition approaches face numerous challenges.

In data-driven strategies, intra-speaker variability is the

most common challenge. These challenges are common for

both text-dependent and text-independent speaker recogni-

tion tasks. This section first analyzed speaker recognition’s

general challenges and then explained the technology and

deployment challenges.

a: General challenges

The difficulties of speaker recognition tasks for both text-

dependent and text-independent models are:

• Data-driven dependency: Even though the speaker

recognition approaches are practical, these strategies are

incredibly data-driven. A massive quantity of knowl-

edge is required to train the background methods. The
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database got to be structured and arranged in a very

controlled way requiring notable human efforts.

• Intra-speaker variability: Sometimes, the same per-

son does not speak the exact speeches in the same

style every interval, which causes a significant degree of

variability. We have discussed three types of variability

that create excessive challenges for speaker recognition

tasks.

• Speaker-based variability: It displays differences in

how a speaker speaks and will affect system accuracy

for ASR. Those can be regarded as the inherent variabil-

ity of the speaker, including the following determinants:

vocal style, emotion, phycological, etc.

• Conversation-based variability: It reflects different

scenarios concerning the vocal communication with ei-

ther a different person or any system or disputes con-

cerning the particular language or accent. It incorporates

the human-to-human conversation of the dialect spoken,

monologue, two-way conversation, etc.

• Technology-based variability: It involves the time and

place of the audio capturing and subsequent issues: elec-

tromechanical, environmental, data quality—duration,

sampling rate, recording quality, and audio compres-

sion.

• Low resource languages: State-of-the-art ASR ap-

proaches give satisfactory results on the dataset de-

scribed in Section III. Still, when the language of the

low resources is applied to these approaches, the result

becomes more down than average. So, there is quite a

notable quantity of effort demanded in the field of low-

resource language ASR systems.

b: Technology challenges

The technology challenges of speaker recognition architec-

tures are intensely correlated to the core algorithms. Few

technological challenges are:

• Limited data and constrained lexicon: Modern in-

dustrial purposes apply training periods that generally

composed of repetitious duplications of the enrollment

lexicon. The trial period falls from a unique replication

of a sub-portion of the recorded lexicon for an entire

speech input of 4-5 seconds. Certain obligations are

constrained by studies that illustrate, end customers best

observe shorter enrollment and testing sessions. In the

most prominent circumstances, the testing lexicon is

preferred to match the enrollment lexicon precisely.

• Channel usage: This is not surprising to observe that

top clients in real applications use numerous types of

phones: landline phones, payphones, cordless phones,

cell phones, etc. This advances the effect of their in-

fluence on the efficiency of channel usage. A cross-

channel endeavour is designated as a measuring interval

introducing from a separate channel than throughout the

training period. It is a vital region where the speaker

recognition architectures must be improved.

• Aging of speaker models: Several speaker models

ageing sources exist natural ageing, channel usage, and

behavioural changes. Biological ageing is associated

with the physiological developments that happen to the

phonatory device over extended times. Channel usage

shifts across time can let the speaker model enhance

antiquated concerning the contemporary channel us-

age. Subsequently, behavioural alterations happen when

users acquire extra vulnerability to the voice interface

and reconstruct how they communicate. In sum, these

constituents influence the models and score and there-

fore are reflected in the efficiency.

c: Deployment challenges

The deployment challenges of speaker recognition ap-

proaches are encountered when transferring the speaker

recognition architecture into an actual application include:

• Cost of deployment: For the speaker recognition task,

a broad range of dialogues can be implemented. These

dialogues need their individual collection of thresholds

based on the significant stage of protection. Lately, an

attempt to develop off-the-shelf security settings into

results has occurred. This method does not need any

information and is quite reliable for small- to medium-

scale methods or basic security settings for an experi-

ment. However, maximum developers desire to have a

more precise understanding of their protection layer’s

accuracy. They crave to estimate original data of the

conventional false accept, false reject, and prompt rates.

Thus the cost of the deployment becomes high.

• Forward compatibility: Here, the principal purpose is

that the enrollee database should be forward congruous

with revising the application and its underlying architec-

tures. Indeed, an application produced using a security

layer based on a first name and last name lexicon is

restricted to using this lexicon. The explanation of these

features is an indispensable part of the speaker model,

and any modification to this will harm efficiency. It also

regulates what research can contribute to an existent

algorithm.

Besides, challenging audio datasets, different phonation

styles, speech under stress in the record, channel mismatch,

and speech modality make today’s speaker recognition ap-

proaches challenging. However, solving these challenges in-

volves the huge advanced research possibilities of ASR.

IX. CONCLUSION

Speaker recognition is an eminent research domain widely

investigated and integrated into numerous systems to identify

or verify individuals. However, limited investigation has been

conducted in the vast research domain, and most of them

are currently outdated. Therefore, the paper focuses on the

renowned research area and explores various dimensions

of such an exciting research field. The article targets the

research domain in multiple aspects, including the fundamen-

tals, feature extraction methodologies, datasets, architectural
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constructions, performance measurements, and challenges.

Primitively, the study explains the fundamental theories and

existing review work of the ASR domain. The following

describes the research methodologies and the datasets used

in this domain. Then the paper introduces feature extraction

approaches of ASR systems extensively. Further, the paper

aggregates the current implementations of the ASR systems,

explains and provides a comparative review based on the

aspects mentioned earlier. Later the performance measure-

ment methods of ASR systems present. Finally, the paper

exploits some of the limitations of the current ASR systems

and addresses future directives. The article significantly up-

holds the existing defaults and variations of ASR systems

that would help new researchers quickly adapt the research

domain concepts. Moreover, the comparisons and future di-

rectives would help explore a broader perception of speaker

recognition technologies, including architectural and feature

extraction terminologies.
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P. Matejka, “i-vector/hmm based text-dependent speaker verification

system for reddots challenge.” in InterSpeech, 2016, pp. 440–444.

[91] M. J. Alam, P. Kenny, and V. Gupta, “Tandem features for text-dependent

speaker verification on the reddots corpus.” in Interspeech, 2016, pp.

420–424.

[92] M. McLaren, L. Ferrer, D. Castan, and A. Lawson, “The speakers in the

wild (sitw) speaker recognition database.” in Interspeech, 2016, pp. 818–

822.

[93] Y. Liu, Y. Tian, L. He, and J. Liu, “Investigating various diarization

algorithms for speaker in the wild (sitw) speaker recognition challenge.”

in Interspeech, 2016, pp. 853–857.

[94] D. Snyder, D. Garcia-Romero, G. Sell, A. McCree, D. Povey, and

S. Khudanpur, “Speaker recognition for multi-speaker conversations

using x-vectors,” in ICASSP 2019-2019 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp.

5796–5800.

[95] J. Villalba, N. Chen, D. Snyder, D. Garcia-Romero, A. McCree, G. Sell,

J. Borgstrom, L. P. García-Perera, F. Richardson, R. Dehak et al., “State-

of-the-art speaker recognition with neural network embeddings in nist

sre18 and speakers in the wild evaluations,” Computer Speech & Lan-

guage, vol. 60, p. 101026, 2020.

[96] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur, “X-

vectors: Robust dnn embeddings for speaker recognition,” in 2018 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2018, pp. 5329–5333.

[97] L. Feng and L. K. Hansen, “A new database for speaker recognition,”

Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby, 2005.

[Online]. Available: http://www2.compute.dtu.dk/pubdb/pubs/3662-full.

html

[98] M. Soleymanpour and H. Marvi, “Text-independent speaker identifica-

tion based on selection of the most similar feature vectors,” International

Journal of Speech Technology, vol. 20, no. 1, pp. 99–108, 2017.

[99] J. Martinez, H. Perez, E. Escamilla, and M. M. Suzuki, “Speaker recog-

nition using mel frequency cepstral coefficients (mfcc) and vector quan-

tization (vq) techniques,” in CONIELECOMP 2012, 22nd International

Conference on Electrical Communications and Computers. IEEE, 2012,

pp. 248–251.

[100] P. Dhakal, P. Damacharla, A. Y. Javaid, and V. Devabhaktuni, “A near

real-time automatic speaker recognition architecture for voice-based user

interface,” Machine Learning and Knowledge Extraction, vol. 1, no. 1,

pp. 504–520, 2019.

[101] Y. Lan, Z. Hu, Y. C. Soh, and G.-B. Huang, “An extreme learning machine

approach for speaker recognition,” Neural Computing and Applications,

vol. 22, no. 3, pp. 417–425, 2013.

[102] P. Angkititrakul and J. H. Hansen, “Discriminative in-set/out-of-set

speaker recognition,” IEEE Transactions on Audio, Speech, and Lan-

guage Processing, vol. 15, no. 2, pp. 498–508, 2007.

[103] R. G. Hautamäki, T. Kinnunen, V. Hautamäki, T. Leino, and A.-M.

Laukkanen, “I-vectors meet imitators: on vulnerability of speaker veri-

fication systems against voice mimicry.” in Interspeech, 2013, pp. 930–

934.

[104] N. Evans, T. Kinnunen, J. Yamagishi, Z. Wu, F. Alegre, and P. De Leon,

“Speaker recognition anti-spoofing,” in Handbook of biometric anti-

spoofing. Springer, 2014, pp. 125–146.

[105] S. Ozaydin, “Design of a text independent speaker recognition system,” in

2017 international conference on electrical and computing technologies

and applications (ICECTA). IEEE, 2017, pp. 1–5.

[106] R. Jahangir, Y. W. Teh, N. A. Memon, G. Mujtaba, M. Zareei, U. Ish-

tiaq, M. Z. Akhtar, and I. Ali, “Text-independent speaker identification

through feature fusion and deep neural network,” IEEE Access, vol. 8,

pp. 32 187–32 202, 2020.

[107] R. Hokking and K. Woraratpanya, “A hybrid of fractal code descriptor

and harmonic pattern generator for improving speech recognition of

different sampling rates,” in International Conference on Computing and

Information Technology. Springer, 2017, pp. 32–42.

[108] C. Richey, M. A. Barrios, Z. Armstrong, C. Bartels, H. Franco, M. Gra-

ciarena, A. Lawson, M. K. Nandwana, A. Stauffer, J. van Hout et al.,

“Voices obscured in complex environmental settings (voices) corpus,”

arXiv preprint arXiv:1804.05053, 2018.

[109] D. Snyder, J. Villalba, N. Chen, D. Povey, G. Sell, N. Dehak, and

S. Khudanpur, “The jhu speaker recognition system for the voices 2019

challenge.” in INTERSPEECH, 2019, pp. 2468–2472.

[110] C. S. Greenberg, V. M. Stanford, A. F. Martin, M. Yadagiri, G. R.

Doddington, J. J. Godfrey, and J. Hernandez-Cordero, “The 2012 nist

speaker recognition evaluation.” in INTERSPEECH, 2013, pp. 1971–

1975.

[111] C. Hanilçi, T. Kinnunen, F. Ertas, R. Saeidi, J. Pohjalainen, and P. Alku,

“Regularized all-pole models for speaker verification under noisy envi-

ronments,” IEEE Signal Processing Letters, vol. 19, no. 3, pp. 163–166,

2012.

[112] T. Kinnunen, R. Saeidi, F. Sedlák, K. A. Lee, J. Sandberg, M. Hansson-

Sandsten, and H. Li, “Low-variance multitaper mfcc features: a case

study in robust speaker verification,” IEEE transactions on audio, speech,

and language processing, vol. 20, no. 7, pp. 1990–2001, 2012.

[113] M. Sahidullah and G. Saha, “A novel windowing technique for efficient

computation of mfcc for speaker recognition,” IEEE signal processing

letters, vol. 20, no. 2, pp. 149–152, 2012.

[114] S. Sarkar and K. S. Rao, “Stochastic feature compensation methods for

speaker verification in noisy environments,” Applied Soft Computing,

vol. 19, pp. 198–214, 2014.

[115] R. M. Hecht, E. Noor, G. Dobry, Y. Zigel, A. Bar-Hillel, and N. Tishby,

“Effective model representation by information bottleneck principle,”

IEEE transactions on audio, speech, and language processing, vol. 21,

no. 8, pp. 1755–1759, 2013.

[116] J. Pohjalainen, C. Hanilçi, T. Kinnunen, and P. Alku, “Mixture linear

prediction in speaker verification under vocal effort mismatch,” IEEE

Signal Processing Letters, vol. 21, no. 12, pp. 1516–1520, 2014.

[117] M. J. Alam, P. Kenny, and D. O’Shaughnessy, “Low-variance multitaper

mel-frequency cepstral coefficient features for speech and speaker recog-

nition systems,” cognitive computation, vol. 5, no. 4, pp. 533–544, 2013.

[118] M. J. Alam, T. Kinnunen, P. Kenny, P. Ouellet, and D. O’Shaughnessy,

“Multitaper mfcc and plp features for speaker verification using i-

vectors,” Speech communication, vol. 55, no. 2, pp. 237–251, 2013.

[119] S. Ganapathy, S. H. Mallidi, and H. Hermansky, “Robust feature ex-

traction using modulation filtering of autoregressive models,” IEEE/ACM

Transactions on Audio, Speech, and Language Processing, vol. 22, no. 8,

pp. 1285–1295, 2014.

[120] A. K. Sarkar, C.-T. Do, V.-B. Le, and C. Barras, “Combination of cepstral

and phonetically discriminative features for speaker verification,” IEEE

Signal Processing Letters, vol. 21, no. 9, pp. 1040–1044, 2014.

[121] K. K. George, C. S. Kumar, K. Ramachandran, and A. Panda, “Cosine

distance features for improved speaker verification,” Electronics Letters,

vol. 51, no. 12, pp. 939–941, 2015.

[122] Z.-Y. Li, W.-Q. Zhang, and J. Liu, “Multi-resolution time frequency

feature and complementary combination for short utterance speaker

VOLUME 4, 2016 23

http://www2.compute.dtu.dk/pubdb/pubs/3662-full.html
http://www2.compute.dtu.dk/pubdb/pubs/3662-full.html


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3084299, IEEE Access

M. M. Kabir et al.: A survey of speaker recognition

recognition,” Multimedia Tools and Applications, vol. 74, no. 3, pp. 937–

953, 2015.

[123] Y. Fan, J. Kang, L. Li, K. Li, H. Chen, S. Cheng, P. Zhang, Z. Zhou,

Y. Cai, and D. Wang, “Cn-celeb: a challenging chinese speaker recogni-

tion dataset,” in ICASSP 2020-2020 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020, pp.

7604–7608.

[124] D. Zhou, L. Wang, K. A. Lee, M. Liu, and J. Dang, “Deep discriminative

embedding with ranked weight for speaker verification,” in International

Conference on Neural Information Processing. Springer, 2020, pp. 79–

86.

[125] X. Qin, H. Bu, and M. Li, “Hi-mia: A far-field text-dependent speaker

verification database and the baselines,” in ICASSP 2020-2020 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2020, pp. 7609–7613.

[126] Y. Zhang, H. Yu, and Z. Ma, “Speaker verification system based on de-

formable cnn and time-frequency attention,” in 2020 Asia-Pacific Signal

and Information Processing Association Annual Summit and Conference

(APSIPA ASC). IEEE, 2020, pp. 1689–1692.

[127] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb: a large-scale

speaker identification dataset,” arXiv preprint arXiv:1706.08612, 2017.

[128] H. Zeinali, S. Wang, A. Silnova, P. Matějka, and O. Plchot, “But sys-
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