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Abstract— This paper gives a unified and historical review
of observer design for the benefit of practitioners. It is unified
in the sense that all observers are examined in terms of: 1) the
assumed dynamic structure of the plant; 2) the required infor-
mation, including the input signals and modeling information of
the plant; and 3) the implementation equation of the observer.
This allows a practitioner, with a particular observer design
problem in mind, to quickly find a suitable solution. The review
is historical in the sense that it follows the evolution of ideas in
observer design in the last half century. From the distinction in
problem formulation, required modeling information and the
observer design goal, we can see two schools of thought: one
is developed in the framework of Modern Control Theory; the
other is based on disturbance estimation, which has been, to
some extent, overlooked.

Index Terms— Estimators, Observers, Kalman Filter, H∞,
Robust Estimation, Disturbance Observer, Unknown Input
Observer, Extended State Observer, Survey

I. INTRODUCTION

Without a doubt, “observers”, also known as “estimators”
or “filters”1 are indispensable tools for engineering. Their
main function is extracting otherwise unmeasurable vari-
ables2 for a vast number of applications including feedback
control [2] and system health monitoring [3]. In engineering
practice, an observer is used for a number of purposes, such
as removing phase lag in feedback, reducing the use of costly
sensors [4] and estimating disturbances [5], [6].

Over the years, two classes of design methods for ob-
servers have emerged. One is concerned with state estimation
based on a mathematical plant model; the other is concerned
with disturbance estimation based on input output data.

For the first class, sophistication of observer design grad-
ually grew. Initially, it was found that a better estimate could
be obtained if more accurate information was incorporated
into the observer. This includes knowledge of noise and
disturbances characterized by deterministic, differential [7],
polynomial [8], bounded [9], and stochastic [10] descrip-
tions. Consequently, many of these enhancements were pro-

Supported by NASA grants NCC3-931 and NCC3-1081.
1 The terms “observer”, “estimator” and “filter” have loosely described

tools that extract information. For this reason, the terms are used inter-
changeably in this paper. “Filters” are often viewed as single input single
output systems from a classical engineering standpoint where the Kalman
filter is an exception. The common view of an “observer” is an information
extraction tool that uses inputs from the input and output of a plant.

2An observer of a dynamic system is formally referred to as another
dynamic system whose states converge to the observed system states [1].

posed at the cost of detailed model information. Textbooks
have predominately focussed on this class of observers.

Practitioners recognize one can not rely entirely on math-
ematical models. This leads to the second class of observers
developed for practical disturbances [8], [11], [12]. Brief
surveys can be found in [13]–[16]. This class of observers
compliments the first class in practical control problems with
significant nonlinearity and uncertainty. They are primarily
motivated by the need for effective disturbance rejection in
control of mechanical systems.

To give a comprehensive and clear account of observers in
each of these classes, a unified framework is proposed in this
paper. This survey also shows how the methodology evolved
within each school of thought. A primary motivation of this
effort is to provide a comprehensive review of observers
for practitioners to solve real world problems. One critical
question they face is selecting, among many candidates,
an appropriate observer for a particular problem. For this
purpose, observers are reviewed in terms of the applicable
dynamic structure of the plant, required sensors, plant knowl-
edge, and implementation. This unified framework leads to
a standard form for users to select a suitable observer.

A unified characterization of observers is first described in
Section II. Once this has been established, a clear evolution
of observers can be shown in Section III. This starts with
a base set of estimators in Section III-A followed by the
modern branch in Section III-B and the less known distur-
bance estimation based observers in Section III-C. Finally,
concluding remarks are made in Section IV.

II. A UNIFIED CHARACTERIZATION OF OBSERVERS

In the context of practical applications, each observer is
characterized in terms of:

Plant Description (1)
I

Input → Estimate (2)
I

Implementation (3)

(1) provides the mathematical description of a physical
process, (2) shows the information required by the observer
and what estimates it produces, and (3) gives the observer
equation as it is implemented.

To simplify notation, the following guidelines are fol-
lowed. 1) Where possible, each estimator is described in



a standard form. For example, when both discrete and
continuous version are available a continuous version is used
to maintain a clear comparison. 2) The variables x, y and u
are, respectively, vectors of the plant state, output and input.
3) Unless noted, lowercase letters are considered as time
varying vectors. For example, y represents multiple outputs
varying with time [y1(t), y2(t), · · · , yn(t)]T . 4) Uppercase
letters such as A denote constant matrices unless noted as a
function of time, for example A(t). 5) y is assumed to be
measurable. 6) Instead of assuming the goal is to estimate y,
the goal is x. Once a state is estimated, any static mappings
are trivial and have been left out for simplicity.

III. EVOLUTION OF OBSERVER DESIGN

The following sections use the Plant Description, Input
and Estimate, and Implementation characteristics, defined
previously, to survey the early, modern, and disturbance
estimation based observers, respectively.

A. Early Estimators

Early on, engineers discovered internal values could be ex-
tracted from input output data. The mechanism used for this
purpose is known as a state estimator. Unmeasured internal
values can be extracted from input, output and plant dynamic
information. The following discusses the development of
early estimators as a popular and important base set.

1) Plant Output Based Estimator (OBE): This estimator
simply extracts information from the output of a plant or
signal; for this reason, it is called an Output Based Estimator
(OBE). Some common types of OBE’s are the low pass noise
filter, approximate differentiator [17] and αβγ filter [18]. The
OBE represented in terms of (1), (2) and (3) is:

ẋ = Ax

y = Cx (4)
I

OBE : {y, A,C} → {x̂} (5)
I ˙̂x = Ax̂ + L(y − Cx̂) (6)

where L is chosen such that the estimation error is driven
to zero.3 This filter is useful for common applications that
only have an output. Although simple, the information is
often delayed and corrupted by disturbances and sensor
noise.

2) Alpha Beta Gamma Filter: A special case of the OBE
is the Alpha Beta Gamma (αβγ) filter since the output is the
only information used for estimation. The αβγ filter [18],
[19] was a very early sampled data filter used as a practical
radar estimation algorithm for velocity and acceleration when
only position is available.

y(n) = f(x, t, wf )

x =
[
y ẏ · · · y(n−1)

]T
(7)

I
αβγ : {y, n} → {x̂} (8)

I

3A stable estimator is designed such that the eigenvalues of A−LC have
negative real parts.

Φij =

{
T j−i

(j−i)! , i ≤ j;

0, else.

x̂k+1 = Φ [x̂k + L(yk − x̂1k)] (9)

Here T is the discrete time sampling period. Design is
simplified since (7) requires a specified structure that is a
special case of the famous Kalman filter [20] and other
equivalent forms [21]. Although design is simplified, the
problem of all OBE’s still exists for plants with excessive
noise, delay, and output disturbances.

3) Plant Input Based Estimator (IBE): One way to get
around sensor noise and output disturbances is not using
them.

ẋ = Ax + Bu

y = Cx (10)

I

IBE : {u, A,B, x0} → {x̂} (11)

I

˙̂x = Ax̂ + Bu (12)

If the plant model in the observer is accurate, inputs, and
initial conditions, x0, are available then internal system states
can be determined from inputs alone. This can be thought as
attempting to estimate internal plant information by running
a simulated plant in parallel. However, initial conditions
must be given. For example, to estimate velocity a noisy
position output could be differentiated using the OBE or an
acceleration input could be integrated with the IBE. This
method is also applicable if y is not measurable.

4) Input and Output Based Observer (IOBO): Luenberger
Observer: The real workhorse began with the IOBO, popu-
larly known as the Luenberger Observer [22].

ẋ = Ax + Bu

y = Cx (13)

I

IOBO : {u, y, A,B,C} → {x̂} (14)

I

˙̂x = Ax̂ + Bu + L(y − Cx̂) (15)

This is a simple combination of the OBE (6) and IBE (12).
By feeding back the estimated state along with measured
data, it eliminates the IBE requirement for accurate initial
conditions [2]. Since the estimate is fed back through the
estimator it is also often called a Closed Loop Observer.
The key advantage of the IOBO is the ability to use both
the input and output data along with plant information to
reduce noise and phase lag without the knowledge of initial
conditions.

The Luenberger observer established the structure that
most estimators are based today. The difference lies in the
method of choosing L.



5) Proportional Integral Observer (PIO): The PIO or PI
Observer [23]–[25] is an extension of the IOBO aimed at
removing steady state error.

ẋ = Ax + Bu

y = Cx (16)
I

PIO : {u, y, A,B,C} → {x̂} (17)
I

˙̂x = Ax̂ + Bu + L(y − Cx̂) + Li

∫
(y − Cx̂) (18)

The main idea is to use an integral gain, Li, in addition to
the common proportional gain, L, for the estimation error,
y−Cx̂, in the Luenberger observer. The extra integral state
enhances the correction term by accumulating error over
time.

6) Basic Nonlinear Observer (NLO): Nonlinear Luen-
berger: A common initial enhancement to an established
linear algorithm is modifying it for nonlinear systems. The
NLO is another simple variation of the IOBO for nonlinear
functions of states and inputs.

ẋ = f(x, u)
y = h(x) (19)

I
NLO : {u, y, f, h} → {x̂} (20)

I ˙̂x = f(x̂, u) + L(y − h(x̂)) (21)

The applicability is limited by the requirement that non-
linear plant knowledge is known. Furthermore, like many
other plant structures, it is not explicitly designed to handle
disturbances.

B. Modern Estimators

From this base set of observers, there have been a few
key advances. The advance in modern control theory has
been made by formulating the problem with disturbances
in mind. These methods minimize a cost function based on
mathematical assumptions about disturbances [20]. However,
the design complexity has substantially increased.

1) Kalman Filter (KF): The Kalman filter [10], [26] was
one of the first estimators to include the formulation of
disturbances and provide optimal solutions.

ẋ = Ax + Bu + wN(0,Q)

y = Cx + vN(0,R) (22)
I

KF :
{

u, y, A,B,C,
cov(wN ), cov(vN )

}
→ {x̂} s.t. min ||x− x̂||2

(23)
I

Ṡ(t) = S(t)AT + AS(t) + Q− S(t)CTR−1CS(t)
L(t) = S(t)CTR−1

˙̂x = Ax̂ + Bu + L(t)(y − Cx̂) (24)

In order to derive an optimal estimator, a few mathematical
assumptions are made about the unknown disturbance. First,
the model must be “sufficiently accurate” [27]. Second, dis-
turbances are stochastic, zero mean, and Gaussian (no time
correlation) with known input and output noise covariances
Q = cov(wN(0,Q)) and R = cov(vN(0,R)). From these

assumptions, the KF minimizes the 2-norm of the estimation
error.

The KF can be viewed as an optimal balance between the
IBE and OBE [27] since the final equation of (24) is an
IOBO with a time varying L,

Since the 1960 seminal paper [10], many KF variations
have been made. It was originally defined in discrete time
and has been extended to continuous time [28]. It has also
been formulated for non-Gaussian noise, and applications
have spread to parameter estimation.

The KF has not been widely applied to industrial applica-
tions, probably, due to the complexity of the implementation.

2) Extended Kalman Filter (EKF): The EKF was the first
major effort to adapt the Kalman filter for nonlinear systems
[29]–[31].

ẋ = f(x, u, wN(0,Q), t)
y = h(x, vN(0,R), t) (25)

I

EKF :
{

u, y, f, h,
cov(wN ), cov(vN )

}
→ {x̂} (26)

I

A(t) = Jf =
∂(f(x, u, 0, t))

∂(x)

C(t) = Jh =
∂(h(x, 0, t))

∂(x)
Ṡ(t) = S(t)A(t)T + A(t)S(t) + Q

−S(t)C(t)TR−1C(t)S(t)
L(t) = S(t)CTR−1

˙̂x = f(x̂, u, 0, t) + L(t)(y − h(x̂, 0, t)) (27)

At each point in time, f and h are linearized to A(t) and
C(t) to then be used in the standard Kalman filter.

One of the most recent Kalman filter modifications for
nonlinear systems is the Unscented Kalman Filter (UKF)
[32], [33]. It moves beyond the EKF by additionally passing
intermediate values through the known nonlinear equations
[20], [29]. Although the UKF is derived for an algorith-
mic implementation, the complexity and model information
required make it impractical for the majority of practical
applications.

ẋ = f(x, u, t) + wN(0,Q)

y = h(x, t) + vN(0,R) (28)
I

UKF :
{

u, y, f, h,
cov(wN ), cov(vN )

}
→ {x̂} (29)

I

(The UKF implementation is too involved to include in this
survey, however it is an important recent modern extension
to include for historical reference.)

3) H∞ Estimator: Another significant tool in the modern
direction is the H∞ estimator.

ẋ = Ax + Bu + Bwwf

y = Cx + Dwwf (30)
I

H∞ :
{

u, y, A,B,C,
Bw, Dw, γ

}
→ {x̂} s.t.

∣∣∣∣∣∣∣∣x− x̂

wf

∣∣∣∣∣∣∣∣
∞

< γ

(31)
I



Q̇(t) = Q(t)AT + AQ(t) + BwBT
w

−Q(t)
(
CTC − γ−2CTC

)
Q(t)

L(t) = Q(t)CT

˙̂x = Ax̂ + Bu + L(t)(y − Cx̂) (32)

This also optimizes a cost function based on an assump-
tion about the disturbance. This formulation is significant
because it uses a unique characterization of the disturbance.
Kalman minimizes the minimum squared error because it is
a mathematically manageable optimization problem. Using
infinity norms, the H∞ estimator is able to minimize the
maximum or worst case disturbance [9], [28], [34]. In (32),
wf is unknown but not necessarily random or stochastic. The
estimator is guaranteed to be optimal under a user defined
upper bound γ.

C. Disturbance Estimators

Although great strides have been made in modern esti-
mation, it has moved beyond the reach of most practicing
engineers. For this reason, the following section describes
another school of thought not illuminated in mainstream
research.

Estimating an unknown disturbance in addition to states is
the key idea in this second school of thought. It is powerful in
conjunction with feedback control [7], [35]. By appropriately
including a disturbance estimate, ŵ, in a control law, u,
disturbance effects can be approximately removed.

ẋ = Ax + Bu + w

= Ax + B(ur − B̂+ŵ) + w

≈ Ax + Bur (33)

Here B+ signifies the Penrose pseudo matrix inverse. Many
estimators employ this scheme to handle slight perturbations
for a modeled plant. However, few go as far as removing
the requirement of a modeled plant by rejecting any un-
modeled dynamics. The disturbance rejection concept has
been analyzed in several papers. Systems with unknown and
known nonlinear dynamics with linear modeled disturbances
[36] and un-modeled disturbances [37] have been studied.
Discrete [16], non-linear, reduced-order, and robust [37]
forms have been designed. A few key disturbance estimation
tools will be outlined in the following sections.

1) Disturbance Observer (DOB): A common tool to
estimate disturbances is a Disturbance Observer (DOB) [5],
[6], [13].

y(s) = Pn(s) (u(s) + d(s)) (34)
I

DOB : {u, y, Pn} → {d̂} (35)
I

d̂(s) =
[
P−1

n (s)ŷ(s)− u(s)
]
Q(s) (36)

To make P−1
n (s) proper, Q(s) is frequently a low pass

filter. The DOB is different from state estimators because,
instead of states, it estimates external disturbances and ob-
server model discrepancies that effectively appear at the plant
input. an effective plant input disturbance instead of states. It

is usually written in transfer function instead of state-space
form. Similar to (33), the estimate d̂(s) is important in closed
loop operation to cancel d(s).

2) Unknown Input Observer (UIO): The UIO [38] uses
the DOB concept in state space representation.

ż = Afz

we = Cfz

ẋ = Ax + Bu + we

y = Cx (37)
I

UIO : {u, y, A,B,C,Af , Cf} → {x̂, ŵe} (38)
I [ ˙̂x

˙̂z

]
=

[
A BCf

0 Af

] [
x̂
ẑ

]
+

[
B
0

]
u + L (y − Cx̂)

ŵe = Cf ẑ (39)

It is an IOBO with an augmented disturbance model
to estimate both states and disturbances. With state space
equations, the UIO defines assumptions about the rate of
disturbance changes. The disturbance input, we, is made to
satisfy a differential equation. The most common4 assump-
tion is a constant disturbance ẇe(z) = 0 where Af = 0 and
Cf = 1.

Originally, the UIO focused on unknown external inputs
for linear systems [39], [40]; later this included nonlinear
plants [41] and fault estimation [42]. The ability to estimate
states and disturbances simultaneously is a practical advan-
tage of the UIO over the DOB.

3) Perturbation Observer (POB): With a slight change in
notation from the DOB, the POB makes a significant step to
include estimation of unmodeled plant variations in addition
to external disturbances.

xk+1 = Axk + Buk + wf

y = Cxk (40)
I

POB :
{

u, y, A,B,C,
Af , Bf , Cf

}
→ {x̂, ŵf} (41)

I

zk = Afzk−1 + Bf

(
B+(x̂k −Ax̂k−1)− uk−1

)
ŵf k = Cfzk

x̂k+1 = Ax̂k + B(uk + ŵf k) + L(yk − Cx̂k) (42)

By defining we in (39) to be wf , a bounded, L∞ and
admissible function [43], the unknown input can represent
traditional external disturbances and model variations wf =
we + ∆Axk + ∆Bxk [16].

4) Extended State Observer (ESO): Most estimators are
made to handle slight perturbations for a modeled plant, how-
ever the ESO was designed [44] to remove the requirement of
a modeled plant by rejecting un-modeled dynamics. The ESO
uses a simple canonical form so the un-modeled dynamics
appear at the disturbance estimation portion. This decisively
captures the subtle but important design methodology shift
between modern estimators and disturbance estimators. It

4This is reasonable assuming the disturbance is constant during a short
sampling period.



Fig. 1. A summary of observer techniques, complexity and depiction of two design philosophy directions

encompasses realistic disturbances and un-modeled plant
variations while remaining simple.

y(n) = f(x, t, u, wf ) + bmu

x =
[
y ẏ · · · y(n−1)

]T
(43)

I
ESO : {u, y, n, bm} → {x̂, f̂} (44)

I [
˙̂x1

... ˙̂xn−1
˙̂xn

˙̂
f

]T

=[
x̂2

... x̂n f̂ + bmu 0
]T

+ L(y − x̂1) (45)

Originally, L was a set of nonlinear gains (NESO) [14],
[44]–[46] but was greatly simplified with a single tuning
parameter [47]. Although the ESO can be structurally equiv-
alent to the UIO when C(sI − A)−1B = bm/sn, Af = 0
and Cf = 1, it solves a different problem. The ESO (43)
is focused around a large class of nonlinear systems with
simple system knowledge and the UIO (37) and DOB (34)
require modeling information. Due to the ESO’s practical
design, there have been many successful applications [48]
including: power converters [49], servo motion control [35],
web tension [50], bio-mechanics [51] and multivariable jet
engines [52].

A recent modification to the ESO is the GESO [53] to
include derivative estimates of the disturbance.

y(n) = f(x, t, u, wf ) + bmu

x =
[
y ẏ · · · y(n−1)

]T
z =

[
f ḟ · · · f (h−1)

]T
(46)

I
GESO : {u, y, n, h, bm} → {x̂, ẑ} (47)

I [ ˙̂x1 · · · ˙̂xn−1
˙̂xn

˙̂z1 · · · ˙̂zh−1
˙̂zh

]T
=[

x̂2 · · · x̂n f̂ + bmu ẑ2 · · · ẑh 0
]T

+L(y − x̂1) (48)

This extension, using h, provides extra information and
increases the ability to track different types of disturbances.
For example, h = 1 allows convergence to a constant

disturbance and h = 2 allows convergence to a disturbance
with a constant derivative.

IV. CONCLUDING REMARKS

After a half century of continuous research and devel-
opment, as reviewed in this paper and shown in Figure 1,
observers have become an integral part of control theory and
practice. Starting from the early estimators, the evolution of
observers proceeded with two distinct schools of thought:
One, modern estimation, relies on a detailed mathematical
model of the plant and seeks optimal solutions. The other,
disturbance estimation, acknowledges the limit of available
partial plant dynamic information, and seeks to estimate the
disturbance, i.e. the discrepancy between the model and the
real system. In some cases, the disturbance observers provide
both the state and disturbance estimation.

The model-based methods provide rigorous and, in many
cases, optimal solutions. The disturbance estimation strat-
egy is less known but addresses the uncertain nature of
physical processes; and it seems to offer a more practical
design framework to deal with real world control problems.
To facilitate the assessment for practical applications, each
observer is presented in terms of 1) the mathematical model
required, 2) its inputs and outputs, and 3) its implementation
equations. This makes it easy for a practitioner to quickly
determine whether the assumptions are met, whether the
observer provides what is needed for a particular application,
and the computational requirement for implementation.
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