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Abstract Topology optimization is the process of deter-

mining the optimal layout of material and connectivity

inside a design domain. This paper surveys topology opti-

mization of continuum structures from the year 2000 to

2012. It focuses on new developments, improvements, and

applications of finite element-based topology optimization,

which include a maturation of classical methods, a broad-

ening in the scope of the field, and the introduction of new

methods for multiphysics problems. Four different types

of topology optimization are reviewed: (1) density-based

methods, which include the popular Solid Isotropic Material

with Penalization (SIMP) technique, (2) hard-kill methods,

including Evolutionary Structural Optimization (ESO), (3)

boundary variation methods (level set and phase field), and

(4) a new biologically inspired method based on cellular

division rules. We hope that this survey will provide an

update of the recent advances and novel applications of

popular methods, provide exposure to lesser known, yet

promising, techniques, and serve as a resource for those new

to the field. The presentation of each method focuses on new

developments and novel applications.
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1 Introduction

Topology optimization is the process of determining the

connectivity, shape, and location of voids inside a given

design domain. This allows for greater design freedom than

size and shape optimization, which deal with variables such

as thicknesses or cross-sectional areas of structural mem-

bers (sizing) and geometric features (shape) of predefined

structural configurations. As such, topology optimization

has great implications in early conceptual and prelim-

inary design phases where design changes significantly

impact the performance of the final structure. The most

recent comprehensive surveys regarding topology optimiza-

tion include those by Rozvany (2001a) and Eschenauer and

Olhoff (2001) and the monograph by Bendsøe and Sigmund

(2003). Since then, the field has undergone a period of rapid

growth in academia, sponsored research, and industrial

application. In fact, it has been the most active research area

in structural and multidisciplinary optimization in the past

two decades. This growth is due to the maturation of some

classical topology optimization techniques and the contin-

ued development and creation of promising new methods.

In addition, the practical scope of topology optimization has

increased beyond a few linear structural responses to include

combinations of structures, heat transfer, acoustics, fluid

flow, aeroelasticity, materials design, and other multiphysics

disciplines.

This survey seeks to consolidate and highlight the

advancements in topology optimization of continuum struc-

tures from 2000 to 2012. Some references prior to the year

2000 are included for important topics and we have consid-

ered primarily journal publications. This review also iden-

tifies each method’s unique strengths for certain classes of

problems. Section 2 focuses on density-based methods for

continuum topology optimization, which have historically
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been the most prominent due to the widespread acceptance

of the Solid Isotropic Material with Penalization (SIMP)

method. Section 3 discusses so called “hard-kill” meth-

ods, the most popular of which is known as Evolutionary

Structural Optimization (ESO). Boundary variation meth-

ods, which implicitly represent the boundary surface of the

structure and include level set and phase field represen-

tations, are discussed in Section 4. A recently developed,

biologically-inspired method based on cellular division

rules is explored in Section 5. Finally, Section 6 contains

concluding remarks, including recommendations and per-

ceptions for the future. Effort has been made to include

relevant background information, to highlight the recent

developments in critical aspects for each method, and to

survey recent applications.

2 Density-based methods

The most widely used methodologies for structural topol-

ogy optimization can be broadly classified as density-based

methods, which include the popular Solid Isotropic Material

with Penalization (SIMP) method. Density-based methods

operate on a fixed domain of finite elements with the

basic goal of minimizing an objective function by identify-

ing whether each element should consist of solid material

or void. In structural topology optimization, this objec-

tive is often compliance, and constraints are placed on the

amount of material that may be utilized. Fundamentally,

this poses an extremely challenging large-scale integer pro-

gramming problem. As a result, it is desirable to replace

the discrete variables with continuous variables and iden-

tify a means to iteratively steer the solution towards a

discrete solid/void solution. This is accomplished with an

interpolation function, where the continuous design vari-

ables are explicitly interpreted as the material density of

each element. Penalty methods are then utilized to force

solutions to suitable “0/1”, “black/white”, or “solid/void”

topologies.

The fundamental mathematical statement of a density-

based topology optimization problem contains an objective

function, set of constraints (that likely includes an upper

limit on material usage), and a discretized representation of

the physical system. A general formulation based on linear

static finite element analysis may be given as:

min : f (ρ, U)

subject to : K(ρ)U = F(ρ) (1)

gi(ρ, U) ≤ 0

0 ≤ ρ ≤ 1

where f is the objective function, ρ is the vector of den-

sity design variables, U is the displacement vector, K is

the global stiffness matrix, F is the force vector, and gi are

the constraints. We note that the stiffness matrix K, and

sometimes load vector F, are explicitly dependent upon the

density design variables at the element level. Within this

generalized statement, a number of problems can be for-

mulated considering a variety of objectives and constraints,

including compliance, stresses, frequency, displacements,

and alternative physics such as eigenvalue problems, fluid

flow, and nonlinear systems as discussed later. As an exam-

ple, the popular (and likely overused at this time) compli-

ance problem can be setup by minimizing an objective of

structural compliance as f = c = UT KU and constrain-

ing the amount of material usage as g = V/V0 − Vf ≤ 0.

In the previous equations, c denotes the compliance, V and

V0 are the material volume and design domain volume,

respectively, and Vf is the allowable volume fraction.

For developments and basic discussion of density-based

topology optimization prior to 2003, especially related to

the SIMP technique, the reader is referred to the well-

known monograph by Bendsøe and Sigmund (2003). In

the following subsections, we highlight recent develop-

ments for several important topics in density-based topology

optimization.

2.1 Density interpolation/penalization

A critical aspect of density-based methods is the selection

of an appropriate interpolation function and penalization

technique to express the physical quantities of the problem

as a function of continuous design variables. As previ-

ously stated, the distributed function of design variables in

density-based topology optimization is interpreted as the

material density of each finite element, ρe. The values of

density range as 0 ≤ ρe ≤ 1 or 0 < ρmin ≤ ρe ≤ 1 where 0

corresponds to a void element, 1 to a solid element, and ρmin

is the minimum value of density, which is required with

some formulations to prevent difficulties associated with

zero values. These difficulties include singularity in finite

element matrices and issues with the inability of material to

reappear in an area with zero density in some cases. With

the choice of this parameterization comes the need to steer

the problem toward a solid/void solution. This is typically

accomplished by using implicit penalization techniques, the

most common of which is the Solid Isotropic Material (orig-

inally Microstructure) with Penalization (SIMP) method.

This method was originally developed independently by

Bendsøe (1989) and Zhou and Rozvany (1991), see also

Rozvany et al. (1992) in which the term “SIMP” was coined.

In the SIMP method, also referred to as the power law

or fictitious material model, density variables are penal-

ized with a basic power law (whose value is finite) and

multiplied onto physical quantities such as material stiff-

ness, cost, or conductivity (Bendsøe and Sigmund 1999,
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2003). It is likely that the simplicity of the SIMP method

has led to its widespread use and acceptance in both indus-

try and academia. Some theoretical convergence properties

of the SIMP method have been discussed by Rietz (2001),

Martinez (2005), and Stolpe and Svanberg (2001b).

Sigmund (2007) discusses the advantages of a slightly mod-

ified version of SIMP, which includes a minimum stiffness

(or other material parameter) that is independent of penal-

ization. For additional references concerning both the ori-

gins and theoretical mechanisms behind the SIMP method

the reader is directed to the early review (Rozvany 2001a;

Eschenauer and Olhoff 2001) and forum (Rozvany 2009a)

articles and the references therein.

Stolpe and Svanberg (2001a) proposed an alternative

interpolation scheme known as the Rational Approximation

of Material Properties (RAMP). A desirable feature of the

RAMP model is that, unlike SIMP, it has nonzero sensitiv-

ity at zero density. As a result, the RAMP material model

has been shown to remedy some numerical difficulties in

problems related to very low density values in the pres-

ence of design dependent loading. Bruns (2005) discusses

another alternative interpolation scheme known as the SINH

(pronounced “cinch”) method, SINH is an inverted ver-

sion of cost penalization suggested by Zhou and Rozvany

(1991), in which the specified cost can represent mate-

rial weight. This scheme differs from others in that usually

material parameters are penalized, whereas in the SINH

formulation the volume is penalized. As such, intermedi-

ate density material consumes more volume with respect

to its load-carrying capability than solid or void material.

A comparison of the SIMP, RAMP, and SINH penalization

schemes is shown in Fig. 1. In the figure, ρ is the den-

sity variable, p is the penalization parameter for the SIMP

and SINH methods, and q is the penalization parameter for

RAMP. The range of penalization parameters shown in the

figure is representative of the parameters used in practice,

with the actual value depending on the underlying physics

of the problem.

In a different technique, Fuchs et al. (2005) obtain a

solid/void layout from a linear function of densities and a

new constraint they refer to as the sum of the reciprocal vari-

ables (SRV). The constraint stipulates that the SRV must be

larger or equal to its value at a discrete design for a spec-

ified amount of material. This technique proves useful on

benchmark problems in the paper, but has yet to be further

explored in the literature.

For topology optimization problems involving alternative

physics, including eigenvalue problems, heat transfer, and

fluid flow among others, a number of works have proposed

variations of these interpolation schemes to handle partic-

ular nuances. These are highlighted in Section 2.6. Finally,

since penalized topology optimization problems are non-

convex, and often have a large number of local minima,

continuation methods are frequently used in the literature

to increase the chance of obtaining a global optimal solu-

tion (Bendsøe and Sigmund 2003). Continuation methods

slowly increase the effect of penalization (by increasing

penalization parameters) over the course of several iter-

ations in optimization. While it is shown by Stolpe and

Svanberg (2001b) that continuation methods are not guar-

anteed to give fully solid/void results in every situation,

they nonetheless perform very well in practical applica-

tions, especially when used with a regularization scheme

(Bendsøe and Sigmund 2003), discussed next.

2.2 Regularization techniques

Regularization in topology optimization refers to the pro-

cess of controlling the density values (or sensitivities) to

prevent numerical issues and to control the quality of

final results. These issues include checkerboarding, which

refers to the formation of adjacent solid-void elements

arranged in a checkerboard pattern, and mesh dependency,

which concerns the phenomenon that without special con-

sideration, different topologies result from identical design

domains of different discretization sizes. The two primary
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methods of regularization are filtering and constraint

techniques. Filtering methods are applied via direct mod-

ification of density variables or sensitivities while con-

straint methods utilize localized or global-level constraints

added to the optimization problem. It is noted here

that mesh independency algorithms tend to prevent

checkerboards because a checkerboard pattern is a small

feature in topology that can be removed by enforcing

minimum length scale. On the other hand, checkerboard-

prevention algorithms may not necessarily alleviate mesh

dependency.

2.2.1 Mesh-independence and checkerboard alleviation

The origin of constraint methods lies in pioneering works

prior to the year 2000. However, since that time extensions

have been proposed to some methods including global gra-

dient (Borrvall 2001), slope control (Schury et al. 2012),

local gradient control (Zhou et al. 2001), and regular-

ized penalty methods (Borrvall and Petersson 2001b). In

addition, a number of new constraint methods have been

developed such as patch control (Poulsen 2002) and integral

methods (Poulsen 2003).

Filter methods remain the most popular regularization

methods due largely to their ease of application. These

include the sensitivity filter (Sigmund and Petersson

1998) and the density filter (Bourdin 2001; Bruns and

Tortorelli 2001), which modify either the sensitivity or

the density value of an element based on the sensitiv-

ity or density of elements in a localized neighborhood.

Recently, Sigmund and Maute (2012) published a brief

note addressing the perception of the sensitivity filter

as “heuristic” or “inconsistent” despite its widespread

popularity in the field. They demonstrate the underly-

ing concepts of the sensitivity filter may be rigorously

derived from principles in continuum mechanics and non-

local elasticity. For basic regularization methods prior to

2003, the reader is referred to either the review article by

Sigmund and Petersson (1998) or the monograph by

Bendsøe and Sigmund (2003). In addition, Almeida et al.

(2009) proposed an inverse filter scheme to control the

size of void regions in topology. Regularization was also

suggested by design parameterization in wavelet space

(Kim and Yoon 2000; Poulsen 2002), and Pomezanski

et al. (2005) proposed an extension of SIMP to penalize

corner contact directly. In addition, while not explicitly

a regularization technique, Jang et al. (2003) eliminated

checkerboards by using non-conforming finite elements in

density-based topology optimization. Rahmatalla and Swan

(2004) and Matsui and Terada (2004) proposed nodal based

design variables which allowed for a continuous approxi-

mation of material density (CAMD) that naturally alleviates

checkerboards.

Recently, Lazarov and Sigmund (2011) developed more

efficient variations of the basic sensitivity and density fil-

ters based on the solution of Helmholtz-type differential

equations. A similar Helmholtz-based density filter was

independently formulated by Kawamoto et al. (2011). These

PDE-based filters reduce computational requirements by

eliminating both the need to compute and the need to store

neighborhood information as required by their conventional

counterparts. It is shown that the computational advan-

tage of the PDE-based filters increases with filter radius,

dimensionality, and parallelization capacity.

To force designs from utilizing excessively large struc-

tural members, Guest (2009a) recently proposed a constraint

method that can impose a maximum length scale on struc-

tural features.

2.2.2 Projection methods and morphology filters

A basic consequence of sensitivity and density filtering

is the formation of gray transition material between solid

and void regions. To combat this for situations where crisp

boundary definition is important, several schemes have

recently been developed to project the filtered densities

into 0/1 (void/solid) space via a relaxed Heaviside func-

tion (Guest et al. 2004, 2011; Kawamoto et al. 2011) and

morphology-based operators (Sigmund 2007; Wang et al.

2011c). These schemes are called projection methods in the

literature and are also able to enforce length scale control. A

volume-preserving projection based on a Heaviside function

was also introduced by Xu et al. (2010), but while it does

produce crisp designs, it cannot control length scale. Projec-

tion schemes have also been proposed for length scale con-

trol of void regions (holes) and both solid and void regions

simultaneously where conventional filters only ensure min-

imum length scale of the solid phase (Sigmund 2007; Guest

2009b). Wang et al. (2011c) proposed a modified formula-

tion to remedy the acknowledged deficiency that while pro-

jection methods provide global mesh-independence (overall

topology will converge with mesh refinement), they will not

guarantee local mesh-independence such as the formation of

hinges or narrow gaps. Figure 2 shows characteristic results

of density-based topology optimization using filtering and

projection. Note the gray transition material along structural

boundaries for (a) sensitivity and (b) density filters. This

region is eliminated using the (c) Heaviside projection. In

addition, Zhou et al. (2001) also proposed a process using

density slope control that is removed in the last iteration to

obtain crisp 0/1 results.

2.3 Nonlinear responses

While the roots of topology optimization lie in stiffness

design of linear elastic structures, density-based topology
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Fig. 2 Density-based topology optimization results for the MBB

benchmark problem (100 × 300 mesh size, filter radius of 16, p = 3,

and 50 % volume fraction) with a sensitivity filter, b density filter, and

c Heaviside projection filter (from Andreassen et al. 2011)

optimization is now being applied in situations with geo-

metric and/or material nonlinearity. When applying density-

based methods to nonlinear problems, numerical instabil-

ities are typically faced due to low density elements in

incremental and iterative nonlinear finite element analysis

(FEA). This occurs because regions of low density often

experience extremely large deformations, which causes

their tangent stiffness matrices to lose positive definite-

ness. These issues may be overcome in a number of ways

including convergence criteria relaxation in the nonlinear

FEA as suggested by Buhl et al. (2000) or by an ele-

ment removal and reintroduction technique proposed by

Bruns and Tortorelli (2003). Cho and Jung (2003) proposed

the use of a displacement-loaded formulation, which con-

trasts most force-loaded systems, to alleviate the problem of

excessive displacements. Yoon and Kim (2005) suggested

an element connectivity parameterization, where structural

elements remain solid throughout optimization, but are con-

nected by 1-D elastic link elements. The stiffness of the

link elements, which are more numerically stable even at

low stiffnesses, are taken as design variables to allow for

topology optimization. Recently, Kawamoto (2009) pro-

posed the use of the Levenberg-Marquardt method as an

alternative to the usual iterative Newton-Raphson nonlinear

solver because it is less susceptible to low density induced

anomalies. Another challenge to utilizing nonlinear mod-

eling is that the problem becomes dependent on loading

magnitude with different load amounts leading to different

optimal topologies. As such, problem setup becomes much

more critical.

The design of compliant mechanisms and micro-

actuators is an important area for nonlinear topology design

because their displacement response may be large and the

slender members that often result in optimum designs may

be prone to buckling. Pedersen et al. (2001), Bruns et al.

(2002), and Bruns and Tortorelli (2003) optimized compli-

ant mechanisms with geometric nonlinearity while Jung and

Gea (2004) did so with hyperelastic material nonlinearity.

Sigmund (2001a, b) demonstrated the effects of geometric

nonlinearity in multiphysics actuators. Several papers have

also focused on stiffness design under nonlinearity. Gea and

Luo (2001) investigated geometric nonlinearity for mini-

mum compliance in 2D structures while Kemmler et al.

(2005) did so with consideration of buckling stability. Jung

and Gea (2004) studied the problem of both geometric and

material nonlinearity together where material nonlinearity

is hyperelastic and Klarbring and Strömberg (2013) did so

for a number of different material models. Results from

Jung and Gea (2004), which demonstrate the effects of geo-

metric, material, and combinations of both nonlinearities

on optimum designs for maximum stiffness are shown in

Fig. 3. Yoon and Kim (2007) studied material nonlinear-

ity, including both elastic-plastic and hyperelastic behavior,

using a density-based element connectivity method. Earlier,

Fig. 3 a Design domain and loading for maximum stiffness designs

for b linear, c geometric nonlinear, d material nonlinear, and e both

geometric and material nonlinear (from Jung and Gea 2004)
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Schwarz et al. (2001) visited the topic of topology optimiza-

tion with elastoplastic material. Also, Stegmann and Lund

(2005) designed anisotropic shell structures for maximum

stiffness with geometric nonlinearity. Finally, Jung and Cho

(2004) and Kang and Luo (2009) included geometric non-

linearity in reliability-based topology optimization with a

density method.

As an alternative to directly solving the topology opti-

mization problem using nonlinear analysis, the Equivalent

Static Loads method for nonlinear structural optimization

can be utilized (Lee and Park 2012). The ESL method

begins by computing equivalent linear loads that produce

identical responses to nonlinear analysis. Optimization is

performed using the equivalent linear loads with basic lin-

ear topology methods. At this point, an updated nonlinear

analysis is performed on the design resulting from the

inner linear analysis-based optimization, and subsequently

new equivalent linear loads are determined. This process is

iterated until convergence in design variables.

2.4 Stress-based topology design

Stress is an essential consideration in the design of any

mechanical system (Duysinx et al. 2008). Despite this,

the overwhelming majority of developments in structural

topology optimization using density methods are related

to minimum compliance and other global level design cri-

teria. This is primarily due to three challenges posed by

stress-based topology optimization. These are the singular-

ity phenomenon, the local nature of stress constraints, and

the highly non-linear stress behavior (Bendsøe and Sigmund

2003). The singularity phenomenon occurs when the opti-

mum solution is in a degenerate subspace of the design

space, which arises in density-based topology optimization

as elements tend towards zero density. This problem, whose

roots lie in truss optimization, has been studied extensively

prior to 2000 and is resolved by stress constraint relaxation

methods (Rozvany 2001b; Bruggi 2008). The references

contained in the previously mentioned works include many

of the early works in stress-based topology optimization.

Techniques to address the local nature of stress con-

straints in density-based topology optimization can be

grouped into local methods, global methods, and regional

or block aggregation techniques. Local methods place a

constraint on each element in the design model (Bendsøe

and Sigmund 2003; Pereira et al. 2004; Navarrina et al.

2005; Bruggi and Venini 2008). However, when local con-

straints are subjected to multiple load cases an intractable

design problem often results due to the large number of con-

straints. Global methods remedy this issue by combining the

local stress values into a single combined relationship. This

can be accomplished using variations of the Kresselmeier-

Steinhauser (KS) function, p-norm measures, or global Lq

constraints (Bendsøe and Sigmund 2003; Guilherme and

Fonseca 2007; Parı́s et al. 2007, 2009; Qiu and Li 2010).

An evident tradeoff between global and local stress meth-

ods is that while globalization formulations streamline the

optimization problem, they cannot guarantee that maxi-

mum stresses are indeed maintained locally. Regional and

block aggregation (also called clustering) techniques seek

to help restore control of maximum stress levels by using

several localized regions that cover the design space. The

elements in each region are then aggregated to a single

constraint value computed via a global formulation. There-

fore, rather than one overall global constraint to account

for stresses, multiple constraints are used corresponding to

each of the regions, and the aggregation errors are reduced

somewhat. Several aggregation methods have been pro-

posed in the literature (Parı́s et al. 2010a, b; Le et al. 2010;

Holmberg et al. 2013). To date, the regionalized aggrega-

tion techniques appear to be the most efficient and robust

methods to incorporate stress-based design criteria. Le et al.

(2010) also introduced a method to adaptively update the

aggregated constraints such that they exactly match max-

imum stress values, which overcomes one of the primary

drawbacks to aggregated methods. A recent alternative by

(Luo et al. 2013) is an adaptive aggregation method that

treats potentially active and non-active local constraints

separately while updating aggregation metrics throughout

optimization.

For an excellent overall comparison of several methods

previously discussed for density-based topology optimiza-

tion with stress criteria, see the recent article by Le et al.

(2010). Also, Parı́s et al. (2010c) presented derivations of

first- and directional second-order sensitivities for local,

global, and block aggregated stress constraints. Applica-

tions to solid/void structures using stress-based criteria can

be found in nearly all of the references cited previously

in this section. Stump et al. (2007) designed functionally

graded structures using stress constraints and density-based

topology optimization. Luo and Kang (2012) used Drucker-

Prager yield stress constraints (as opposed to von Mises

stresses in other works) to account for different stress limits

in tension and compression and Rozvany and Sokol (2012)

treated different stress limits in an analytical benchmark

example. Lee et al. (2012) used regional stress-constraints

along with design dependent loading. Finally, Bruggi and

Duysinx (2012) explored the case of minimum weight

design with both compliance and stress constraints, which

combines the strengths of both stiffness and stress-based

design.

Related to stress-based criteria, fatigue and damage cri-

teria are also often considered in the design of mechanical

components. Sherif et al. (2010) demonstrate a density-

based topology optimization that systematically reinforces

a structure to achieve a desired damage level. The basic
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problem solved is a minimum mass problem with a con-

straint on the upper bound of damage. Their method relies

on the use of the Equivalent Static Load method for tran-

sient dynamic systems, which is similar to the ESL method

described previously for nonlinear structures optimization.

2.5 Design dependent loading, supports, and integrated

domains

Design dependent loads in topology optimization refer to

loads whose location, direction, or magnitude vary along

with changes in the design during the optimization process.

Examples of these loads include self-weight loading due to

gravity, transmissible or pressure loading, and thermal (tem-

perature) loads. Regardless of design dependency type, it is

important to capture the dependency during the sensitivity

analysis. In addition, we also discuss works that focus on the

optimal placement of structural supports and connections

between multi-component systems in this section.

2.5.1 Transmissible or pressure loads

Transmissible loads have a constant direction and magni-

tude, but their location will change throughout topology

optimization. Pressure loads demonstrate both direction and

location dependency and are commonly used to represent

hydrostatic loading from a fluid on the structure. As such,

a primary challenge with design dependent transmissible or

pressure type loading in a density-based topology optimiza-

tion problem is determining, at every iteration, the material

boundary upon which the loading should be applied. There

exist several techniques to do so in the literature, but they

can primarily be arranged into two groups.

The first group seeks to identify a fluid/structure bound-

ary and apply loading directly on the finite elements.

Hammer and Olhoff (2000) captured the fluid/structure

boundary by using iso-density curves along with Bézier

splines. Fuchs and Shemesh (2004) also used Bézier curves,

but define control points that are independent of density and

controlled by the optimizer. Du and Olhoff (2004a, b) exten-

ded the work by Hammer and Olhoff (2000) by connect-

ing iso-density points directly along element boundaries

without splines to define a loading surface and used finite

differences to obtain design-dependent load sensitivities.

This idea was further extended by Lee et al. (2012) and Lee

and Martins (2012), who used analytical sensitivities and

incorporated predefined void regions from which pressure

loading originates, which is useful when symmetry condi-

tions cannot be exploited. Similarly, Gao and Zhang (2009)

developed a pressure updating model for solid weight pres-

sure for contact problems with a solid object. Finally,

Zhang et al. (2008) proposed a simple boundary search

scheme where the sensitivity of loading to density can be

disregarded since loads are determined from real element

boundaries rather than an iso-line. However, the beginning

and end locations for the search procedure must be pro-

vided and the method may not be readily extended into

three-dimensions.

The second group of methods do not explicitly identify a

loading surface, but model pressure loading with alternative

physics or utilize mixed formulations. Chen and Kikuchi

(2001) simulated pressure loading by approximating it as an

equivalent thermal load that is penalized with the design and

a “dryness coefficient” to identify fluid vs. solid regions.

Zheng et al. (2009) introduced a potential function based on

the electric potential and applied a fictitious electric field

to model pressure loading. Sigmund and Clausen (2007)

expressed the void phase as an incompressible hydrostatic

fluid and introduced an additional variable for each element.

With two variables in an element to determine its phase,

pressure loads can be applied without surface parameter-

ization. A similar approach was presented by Bruggi and

Cinquini (2009).

2.5.2 Self-weight or thermal loads

Self-weight (body forces) and thermal (temperature) loads

represent another type of design dependent loading where

the magnitude of the loading is density dependent. The

literature related to these types of topology problems is

much more limited when compared to the transmissible

and pressure loads of the previous section. Bruyneel and

Duysinx (2001, 2005) outline the challenges of self-weight

loads in density-based topology optimization with a min-

imum compliance objective. The first challenge relates to

non-monotonous behavior of the compliance objective that

results from the additional density-dependency of the force

vector in the objective function. In addition, the optimum

topology is often not found with an active volume con-

straint, which can preclude the formation of solid/void

designs. Finally, the parasitic effects of SIMP interpola-

tion are explored. A modified SIMP formulation is sug-

gested to overcome these effects and it is also proposed

that an alternative interpolation scheme (RAMP, Stolpe and

Svanberg 2001a) may be suitable as well. Gao and Zhang

(2010) identified similar issues in compliance minimization

of structures subjected to thermal loading. In both cases, the

relative amount of externally applied density-independent

loading versus the amount of density-dependent self-weight

or thermal loading is very important in determining the

optimum design.

2.5.3 Design of supports and multicomponent structures

Most work in structural topology optimization is per-

formed on a design domain with fixed boundary and
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load conditions. However, it was demonstrated by Buhl

(2002) that by allowing the optimizer to simultaneously

design structural topology and support locations, supe-

rior performance could be achieved when compared to

the conventional formulation. This was accomplished by

introducing new support variables into the optimiza-

tion problem and constraining the amount of allow-

able support. More recently, this particular problem has

also been explored by Zhu and Zhang (2010) who

allowed for the placement of integrated support members.

Rozvany and Sokol (2012) also investigated support place-

ment costs in an analytical benchmark problem.

In a somewhat similar variation of structural topology

optimization, the design problem is not only to design struc-

tural topology, but also define the location of embedded

rigid components or subsystems within the domain. This

design formulation is often referred to as the design of

multicomponent structures in the literature and effectively

places mobile non-design regions inside the domain that

may represent functional components that have void, elas-

tic, or rigid properties. Pioneering work on this topic was

performed prior to the year 2000, but recently new formu-

lations have been proposed that include location variables

for integrated components in the optimization problem. In

the literature, these integrated components may be either

rigid (Qian and Ananthasuresh 2004) or elastic (Zhu et al.

2008, 2009, 2010). Recently, formulations have been intro-

duced that alleviate the need for semi-analytic sensitivities

in favor of analytical sensitivities for location variables with

superelement techniques (Xia et al. 2012a, b).

2.6 Alternate physics, multiphysics, and applications

One of the primary developments in density-based topology

optimization over the last decade has been its application

to design problems with physics outside of linear structural

responses with stiffness objectives. The following subsec-

tions review the application to a variety of engineering

disciplines.

2.6.1 Heat transfer & thermoelasticity

While there have been several early applications of topol-

ogy optimization to heat conduction problems, where the

material’s thermal conductivity is parameterized via penal-

ization, further developments have occurred more recently.

Gersborg-Hansen et al. (2006) developed a SIMP topol-

ogy optimization technique which utilized the finite volume

method to solve the thermal system, as opposed to the usual

finite element method. Zhou and Li (2008b, c), investigated

topology optimization for obtaining extremal conductivity

microstructures. Bruns (2007) proposed a technique that

allowed for the application of design dependent convection

boundaries to be applied to a heat transfer domain via a

new penalization/interpolation scheme to correctly formu-

late the convection portions of the finite element matrices.

This method can also be utilized to model external radia-

tion, where an equivalent nonlinear convection coefficient

can be determined. However, to date no topology optimiza-

tion publications have included the physics of internal or

enclosure radiation, which is still required to solve many

modern full physics heat transfer design problems. Finally,

in an innovative application, Ryu et al. (2012) demonstrated

a mobile robot control algorithm that relies on an anal-

ogous heat conduction topology optimization problem to

determine the optimal robot path throughout a domain with

z obstacles.

Thermoelastic problems have been solved using density-

based topology optimization techniques as well. Some of

the earliest work in this area was related to the design

of multiphysics actuators, where deformation due to ther-

mal expansion is controlled in the design of compliant

mechanisms (Sigmund 2001a, b). In this work, an efficient

coupled field adjoint sensitivity analysis that can capture

both the topological dependency of the temperature field

and its effect on a sequential thermoelastic response is uti-

lized. This process was also demonstrated by Cho and Choi

(2005). As it turns out, compliance minimization problems

in the presence of thermal loads pose several additional

challenges related to the penalization of the design depen-

dent loads and their contribution to the compliance objective

as discussed previously. It is often difficult to eliminate

intermediate material density because the volume constraint

in the usual minimum compliance problem is rarely active

for an optimal design with thermal loads. This was recently

explored by Gao and Zhang (2010), who penalized a ther-

mal stress coefficient (TSC) to effectively control both the

structural stiffness and design dependent loading. They also

demonstrated superior performance of the RAMP inter-

polation over the SIMP interpolation in their problems.

An example of troublesome intermediate density material

when using SIMP with thermal loading that was eliminated

in their work using the RAMP method and TSC formu-

lation is given in Fig. 4. Pedersen and Pedersen (2010,

2012) demonstrated that minimum compliance designs do

not lead to maximum strength designs in the presence of

thermoelastic loading for 2D and 3D structures and sug-

gest an alternative problem based on obtaining uniform

energy density. They also investigated different interpola-

tion schemes and their effects on the optimization process.

Wang et al. (2011a) utilized thermoelastic topology opti-

mization to design optimal bi-material structures with low

thermal directional expansion and high stiffness. In a similar

design problem, Deaton and Grandhi (2013a, b) investi-

gated various density-based topology optimization formu-

lations for stiffening thin structures with restrained thermal
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Fig. 4 a Design Domain Benchmark thermoelastic topology optimization problem where SIMP methods exhibit intermediate gray material (b)

SIMP, △T = 1 and (c) SIMP, △T = 3 that may be eliminated via (d) RAMP, △T = 1 RAMP interpolation (from Gao and Zhang 2010)

expansion and also investigate stress-constrained thermoe-

lastic problems.

2.6.2 Fluid flow

By modeling a potential solid/fluid domain as a region

of porous media, topology optimization has been applied

to various fluid flows using techniques similar to density-

based topological design of elastic continua. In general, both

internal flows for channel-like geometry and external flows

for optimizing airfoil-like shapes have been studied with the

majority of work in the former area. This is demonstrated

in Fig. 5. By continuously varying the permeability in a

region from nearly completely permeable (fluid) to nearly

impermeable (solid) it has been shown in the literature that

efficient fluid flow paths may be generated. This was first

demonstrated by Borrvall and Petersson (2003), who min-

imized the dissipated power in a flow domain according

to a fluid volume constraint in Stokes flow. The approach

was generalized by Evgrafov (2005) to allow the extremal

cases of the porous materials, both pure solid and pure flow

regions, to appear in the optimization procedure. Aage et al.

(2008) also demonstrated the methods on large-scale prob-

lems with up to 1,125,000 and 128,000 elements in 2D

and 3D, respectively. Alternative formulations for topology

optimization of Stokes flow have been proposed by Guest

and Prévost (2006b), who utilized a Darcy-Stokes represen-

tation, and Wiker et al. (2007), who allowed for discrete

regions controlled by Stokes equations and other regions

controlled by Darcy’s equation.

Many flows encountered in engineering problems cannot

be represented under the assumptions of Stokes flow. Thus,

some researchers modified the previous works to allow for

topology optimization of Navier-Stokes flow. By including

inertial effects, Gersborg-Hansen et al. (2005) and Kreissl

et al. (2011) focused on topology optimization of incom-

Fig. 5 Types of fluid topology

problems: Minimum power

dissipation for a Diffuser an

optimal diffuser and b Pipe Bend

optimal pipe bend and c Drag

Shape minimum drag design for

an aerodynamic shape (from

Borrvall and Petersson 2003)

1

1

1

1

1

1

0.2

0.2

0.2

0.2

1/3

0.05

0.05

0.05 0.05



10 J. D. Deaton, R. V. Grandhi

pressible Navier-Stokes flow at low Reynolds numbers for

channels while Oleson et al. (2006) utilized a similar formu-

lation along with the commercial tool FEMLAB. Evgrafov

(2006) also demonstrated topology optimization of Navier-

Stokes flow in addition to using filters to improve results

and provide stronger convergence. We note that in these

applications of topology optimization to fluid domains,

system equations are stilled solved via the finite element

method (FEM), as opposed to the finite difference method

or others used in the computational fluid dynamics (CFD)

field. Recently, Yoon (2010c) proposed a monolithic fluid-

structure interaction (FSI) formulation capable of perform-

ing topology optimization where fluid and solid regions are

distinctly represented by the governing Navier-Stokes and

linear elasticity equations, respectively. Similarly, Kreissl

et al. (2010) utilized topology optimization in an FSI prob-

lem to design micro-fluidic devices where the structure

with optimal embedded flow paths deforms in response to

changes in fluid loading.

2.6.3 Dynamics, acoustics, and wave propagation

While a significant amount of literature exists regarding the

topology optimization of vibrating structures and dynamic

effects prior to 2000 using homogenization and density-

based methods, a number of developments have been made

since. These include improvements in basic frequency opti-

mization, extensions to acoustic responses and coupled

acoustic structures, and design for control of wave propaga-

tion in a variety of media.

A fundamental engineering design problem is that of

frequency maximization, which involves the solution of an

eigenvalue problem formulated using the mass and stiffness

matrices of a structure. When attempting to apply density-

based topology optimization to this type of problem,

spurious modes are often computed for localized regions of

low density material due to the accompanying low stiffness.

In reality, these modes are completely artificial since low

density elements represent void regions in the structure.

In fact, this challenge is also encountered when solving

the eigenvalue problem for bifurcation buckling in density-

based topology optimization where low density regions may

exhibit artificial buckling modes because of their reduced

stiffness (Rahmatalla and Swan 2003). To remedy this,

Pedersen (2000) proposed a solution in which the degrees of

freedom associated with low density elements be removed

from the system when numerically solving the eigenvalue

problem. Alternatively, Tcherniak (2002) avoided localized

modes by setting the element mass to zero in subregions

of low material density. Du and Olhoff (2007b) extended

this idea with a formulation that places a heavy penalty,

when compared to the penalization of stiffness, on the

mass of elements with density below 0.1. A number of

works have investigated various frequency control prob-

lems including frequency maximization (Pedersen 2000;

Du and Olhoff 2007b), including geometric nonlinearity

(Yoon 2010a), the control of gaps between two frequen-

cies (Du and Olhoff 2007b; Jensen and Pedersen 2006),

and the tailoring of structures for specified eigenfrequen-

cies and eigenmodes (Maeda et al. 2006). In addition,

Tcherniak (2002) utilized density-based topology opti-

mization to maximize the steady-state dynamic response

for a given excitation frequency, which effectively maxi-

mizes the resonant response of a structure. Recently, (Yoon

2010b) demonstrated the use of model reduction tech-

niques for increased computational efficiency in topology

optimization of dynamic problems with the SIMP method.

Minimum compliance and stiffness design problems

have also been addressed for dynamic and transient loads

by density-based topology optimization beginning with

the introduction of “dynamic compliance” by Jog (2002).

Recently, Jang et al. (2012) demonstrated the use of the

equivalent static load (ESL) method for compliance min-

imization of dynamically loaded structures in the time

domain. In their work, an equivalent static load, that is a load

case which produces equal displacement to the dynamic

response, is computed for each time step in the transient

response and topology optimization is performed using the

statics loads.

Density-based topology optimization has also recently

seen applications in wave propagation problems beginning

with Sigmund and Jensen (2003) and Halkjaer et al. (2006),

who maximized the bandwidth of phononic band-gap mate-

rials and structures. Similarly, other works have focused on

the optimal material distribution in photonic crystal waveg-

uides, which transmit electromagnetic waves for a variety

of objectives (Jensen and Sigmund 2011). These include

maximum power transmission (minimum signal loss) for

waveguides with various bends (Jensen and Sigmund 2004;

Borel et al. 2004), T-junctions (Jensen and Sigmund 2005),

and Y-splitters (Borel et al. 2005), matching desired dis-

persion properties (Stainko and Sigmund 2007; Wang et al.

2011b), and obtaining desirable emission characteristics

(Frei et al. 2005). In addition, work by Larsen et al. (2009)

demonstrate similar topology optimization for wave propa-

gation; however, the goal is energy transport through elastic

media in addition to vibration suppression objectives.

In recent years, density-based topology optimization has

also been applied to acoustic design problems. These can

be generally grouped into three categories: (i) optimiza-

tion of a purely acoustic domain described by a Helmholtz

equation, (ii) minimization of sound radiation via struc-

tural design, and (iii) coupled acoustic-structures. In the first

category, Wadbro and Berggren (2006) utilized topology

optimization to design an acoustic horn by controlling geo-

metric features inside an acoustic domain. Later, Duhring
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et al. (2008) optimized room acoustics by geometry control

and placement of absorbing/reflective boundary material. In

the second category, a number of researchers have utilized

topology optimization to reduce acoustic radiation. Olhoff

and Du (2006) and Du and Olhoff (2007a, 2010) minimized

the total sound power radiated from structural surfaces of

vibrating bi-material structures. It is important to note that

with this selection of objective function, acoustic analysis

is not required. Similarly, (Nandy and Jog (2012) recently

studied a dynamic compliance objective for the reduction

of radiated noise, which also does not require a dedicated

acoustic analysis. On the other hand, the third category of

acoustic topology optimization problems necessitate a cou-

pled acoustic and structural analysis domain. Yoon et al.

(2006, 2007) utilized a mixed finite element formulation to

solve pressure and displacements to minimize the pressure

integral (a representation of noise) in a particular region of

an enclosed structure.

2.6.4 Aerospace design and aeroelasticity

As noted by Stanford and Ifju (2009a), the aerospace appli-

cations of topology optimization are still relatively rare

from a literature standpoint, but applications to flight vehi-

cle structures can be mostly grouped into two categories.

The first category uses an aerodynamic solver to com-

pute the pressure distribution over a wing (during typical

flight maneuvers). This load is subsequently applied to the

topology optimization model to consider classic topology

optimization objectives such as compliance. The effect on

the loading due to elastic deformation of the structure is

not considered. Another category of applications explicitly

utilizes aerodynamic forces computed on a flexible wing,

which inherently includes aeroelastic coupling between the

aerodynamic and structural analysis.

Early work related to density-based topology applica-

tion of the first category of problems was performed by

Balabanov and Haftka (1996), who optimized the internal

wing structure of a high speed civil transport (HSCT) air-

craft using a ground structure approach. Eschenauer and

Olhoff (2001) also demonstrated the conceptual design of

aircraft wing ribs via topology optimization using air loads.

More recently, Krog et al. (2004) optimized wing box ribs

both locally and globally for a variety of design criteria. Luo

et al. (2006) performed topological design on a missile body

for static pressure loads and natural frequencies. Recently,

Wang et al. (2011d) demonstrated a subset simulation-

based topology optimization method for the design of wing

leading-edge ribs. Finally, Choi et al. (2011) utilized the

equivalent static load method (ESL) along with CFD sim-

ulation to obtain aerodynamic loading for both path and

topology optimization of flapping wings. It is the authors’

opinion that the limited work reflected in the literature

concerning these applications of topology optimization,

where various aircraft components are designed to meet

conventional performance measures such as maximum stiff-

ness or minimum frequency given a particular set of loading

conditions, is not indicative of the impact of topology opti-

mization in the aerospace industry. We believe it is quite

the contrary, where topology optimization is commonly

used to develop conceptual designs of a variety of compo-

nents including wing ribs/spars, landing gears, and various

attachments.

The first work to explore aeroelastic design as described

in the second category above was that of Maute and Allen

(2004), who designed wing stiffeners using a 3D Euler

solver, linear finite element model, and adjoint sensitivity

analysis to minimize mass with constraints on lift, drag, and

wing displacement. This work was later extended by Maute

and Reich (2006) for compliant morphing mechanisms

inside an airfoil for both active and passive shape control.

Stanford and Ifju (2009a, b) utilized topology optimization

for the design of membrane aircraft wings for a variety

of objectives including load augmentation, load allevia-

tion, and efficiency. In addition, Stanford and Beran (2011)

also utilized density-based topology optimization to develop

optimal compliant drive mechanisms for flapping wings.

Recently, Leon et al. (2012) demonstrated aeroelastic tailor-

ing with combined composite fiber orientation and topology

optimization to minimum mass design of thin wings sub-

jected to flutter velocity constraints using the commercial

tool ZAERO for aeroelastic stability analysis. While not a

density-based method, Gomes and Suleman (2008) utilizes

level-set topology optimization (discussed in Section 4) to

optimize a reinforced wing box for enhanced roll maneu-

vers. We have chosen to include this reference here for

completeness of aerospace and aeroelastic applications of

topology optimization.

2.6.5 Multifunctional materials

The area of multifunctional materials and structures is one

field where topology optimization shows great promise. In

these types of design problems, objectives include obtaining

desirable component properties or characteristics, including

mechanical, thermal, electromagnetic, chemical, flow, and

weight, that span a range of engineering disciplines. Prob-

lems are typically set up using multiobjective techniques for

the competing physics and the basic methods in the proceed-

ing references are readily extendable to include other prop-

erties. Torquato et al. (2003) demonstrated this concept via

topology optimization for both maximum thermal and elec-

trical conductivity. Later, Guest and Prévost (2006a, 2007)

and Chen et al. (2009) designed periodic structures for both

stiffness and fluid permeability while Chen et al. (2010b)

and de Kruijf et al. (2007) designed for stiffness and thermal
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conductivity. With continued advances in the computational

simulation of alternative physics, with the appropriate mod-

ifications, topology optimization should continue to prove

valuable to the development of components with innovate

multifunctional capabilities.

2.6.6 Biomedical design

Recently, density-based topology optimization was demon-

strated for the design of patient-specific facial bone replace-

ments (Sutradhar et al. 2010). According to this work,

a conventional surgical procedure to repair severe facial

injuries is an extremely time intensive process with signif-

icant ad hoc effort, in real-time, on the part of the surgeon

using tissue from bones that are dissimilar from those of

the face. In order to improve this process, a custom fabri-

cation procedure is envisioned where topology optimization

is utilized to tailor a bone replacement to an individual by

determining a functional load-carrying structure according

to the injured skull geometry and particular type of injury.

An example of this is demonstrated in Fig. 6, where the

particularities of the optimized facial structure have been

tailored to fit the specific injury. This field has tremendous

potential to use topology optimization in the design of arti-

ficial limbs, hip and knee joint replacements, and medical

implant devices. References in the area of biomechanics and

topology optimization of bone mechanics prior to 2000 may

be found in the review by Eschenauer and Olhoff (2001).

In addition, significant work in the area of tissue engi-

neering scaffold structures has been performed in the last

decade. In these problems, which have similar objectives

to multifunctional materials previously discussed, a mate-

rial microstructure is sought with desirable stiffness and

porosity properties to enable rapid skeletal tissue regene-

ration once implanted in the human body (Lin et al. 2004;

Hollister 2005; Kang et al. 2010; Chen et al. 2011a; Sturm

et al. 2010). Chen et al. (2011c) also incorporated a degra-

dation model to investigate biodegradable scaffold design.

Further applications of topology optimization in the area of

biomedical design are discussed in later sections using the

ESO and level set methods.

2.7 Reliability-based and robust topology optimization

While reliability-based design optimization (RBDO) tech-

niques have long been applied to sizing and shape opti-

mization problems (see Choi et al. 2007), it was not until

the mid-2000s that these statistical and probabilistic design

methods were introduced in topology optimization. Early

reliability-based topology optimization (RBTO) papers uti-

lized first-order reliability methods (FORM) or performance

measure approaches, both of which are suited to topology

optimization problems with large numbers of design vari-

ables. Both methods account for uncertainties related to

material, loading, and geometric dimensions in the topology

optimization for minimum compliance (Kharmanda et al.

2004), micro-electromechanical systems (MEMS) (Maute

and Frangopol 2003; Wang et al. 2006a), and geometrically

nonlinear structures (Jung and Cho 2004) under a proba-

bilistic failure constraint. It is evident from Fig. 7, that with

the addition of such a constraint, we obtain different opti-

mal topologies that are statistically less likely to fail. Kang

et al. (2004) performed RBTO of electromagnetic systems

where permeability, coercive force, and applied current den-

sity were taken as normally distributed uncertain variables.

Kim et al. (2007a) developed a RBTO method for applica-

Fig. 6 a Skull with craniofacial

injury and b patient specific

bone replacement designed via

topology optimization (from

Sutradhar et al. 2010)
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tion to MEMS devices that utilizes parallel computing and

an advanced response surface method. Rozvany and Maute

(2011) developed an analytical solution to an elementary

reliability-based topology optimization problem and com-

pared results obtained using a SIMP method. An important

aspect of the previous references is that they use a double-

looped procedure where an inner reliability analysis loop

is required to determine the probability of failure for each

configuration of the outer optimization loop. More recently,

Silva et al. (2010) demonstrated a single-loop system level

reliability-based topology optimization method. Nguyen

et al. (2011) also used a single-loop technique to cap-

ture statistical dependence of multiple limit-state functions.

Finally, Kang and Luo (2009) proposed a non-probabilistic

reliability-based topology optimization method using con-

vex models for cases where probability distribution data is

unavailable.

In a similar sense, robust topology optimization formu-

lations have received much attention of late. Rather than

stating a probabilistic failure metric, uncertainties are intro-

duced into the topology optimization problem to study the

sensitivity (or robustness) of a resulting design to uncer-

tainties or variation in problem parameters based strictly on

stochastic moments of a system response. In the literature,

design robustness against several engineering parameters

using density-methods have been studied including loading

Fig. 7 Topology optimization and RBTO of the MBB-beam: a full

design domain, b resulting deterministic topology optimized beam,

and c resulting RBTO structure (from Kharmanda et al. 2004)

(Guest and Igusa 2008; Lógó et al. 2009), manufacturing

errors (Sigmund 2009; Wang et al. 2011c; Schevenels et al.

2011; Qian and Sigmund 2013), and material properties

(Tootkaboni et al. 2012; Lazarov et al. 2012). Further dis-

cussion for uncertainties in other topology methods in later

sections.

2.8 Additional comments

2.8.1 Educational resources

Several educational resources that demonstrate density-

based topology optimization are publicly available. These

include two MATLAB implementations using the SIMP for-

mulation: the original 99 line code by Sigmund (2001a) and

a more recent 88 line variant by Andreassen et al. (2011) that

demonstrates several of the developments discussed in this

paper. Of merit in Andreassen et al. (2011) is the application

of a Heaviside filter to achieve crisp black-white topol-

ogy results and discussions related to the solution of very

large topology optimization problems in MATLAB. It is a

recommended resource for both new and experienced prac-

titioners of topology optimization. Talischi et al. (2012) also

provide a MATLAB implementation for general topology

optimization that uses unstructured polygonal finite element

meshes. In addition, a web-based version of SIMP topology

optimization (Tcherniak and Sigmund 2001) and a mobile

application (Aage et al. 2013), for the iPhone or Android

for example, using SIMP have been developed by the same

research group. Finally, the monograph by Bendsøe and Sig-

mund (2003) remains as perhaps the most useful tool for a

new researcher in the area of topology optimization.

2.8.2 Choice of optimizer

Several benchmark, academic, and early works in density-

based topology optimization were solved using optimal-

ity criteria methods. However, general optimization codes

(e.g. CONLIN, DOT, MMA, SNOPT, etc.) offer black-

box solutions to general constrained optimization prob-

lems. In addition, the Method of Moving Asymptotes

(MMA) optimizer (Svanberg 1987) has become the de facto

standard tool for density-based topology optimization,

especially in multiphysics applications. Public MATLAB

and FORTRAN implementations of MMA, along with a

more recent, more robust globally convergent implemen-

tation (GCMMA, Svanberg 2002), can be obtained by

contacting Professor Svanberg.

2.8.3 Efficiency & multiresolution methods

The primary challenge to expanding topology optimization

to large-scale problems is the computational requirement
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of iteratively solving a large system of state equations

to feed the optimizer system responses and sensitivities.

In the literature, attempts to address this can be broadly

divided into three groups: (i) employing large-scale com-

puting resources, (ii) introducing efficient solution proce-

dures for finite element analysis, and (iii) reducing the

total number of degrees of freedom in the analysis mo-

del. Several researchers have applied the first method via

parallel or distributed computing to more rapidly com-

pute system responses (Borrvall and Petersson 2001a; Kim

et al. 2004; Vemeganti and Lawrence 2005; Evgrafov et al.

2008; Mahdavi et al. 2006; Aage et al. 2008). Aage and

Lazarov (2013) also demonstrated parallel topology opti-

mization where the popular MMA optimizer is parallelized

as well.

Related to the second method, Andreassen et al. (2011)

specify several simple concepts for computational effi-

ciency in MATLAB implementations of topology optimiza-

tion. Wang et al. (2007a) introduced an efficient solver uti-

lizing preconditioning and subspace recycling. Amir et al.

(2009, 2010), demonstrated more efficient use of iterative

solvers in nested topology optimization in addition to an

approximate reanalysis procedure where FEA is performed

only at certain intervals of iteration and approximate reanal-

ysis is used otherwise. Finally, Oded and Sigmund (2011)

contributed additional discussion regarding methods that

fall into the second category.

The third method has seen a wider variety of tech-

niques developed in the literature. As previously cited,

Yoon (2010b) proposed model reduction techniques for

dynamic problems. Several studies have also investi-

gated the use of multiple mesh sizes where optimiza-

tion begins on a coarse mesh and continues later on

a finer mesh by utilizing numerical continuation meth-

ods (Kim and Kwak 2002). In a different multi-mesh

concept, Nguyen et al. (2010) proposed a multiresolu-

tion formulation based on a coarse finite element mesh

and fine density and design variable meshes as shown in

Fig. 8. Figure 8a shows a Q4 displacement element com-

monly used in topology optimization, Fig. 8b presents

the multiple meshes, and Fig. 8c shows the density mesh

with 25 density elements (25 design variables). In this

way, high resolution designs can be obtained with lower

computational cost, due to a smaller analysis model,

compared to a uniform mesh at all levels. Recently,

improvements to this method were suggested and an

adaptive mesh refinement scheme was incorporated to fur-

ther increase efficiency (Nguyen et al. 2012). The mecha-

nisms at work in these multiresolution methods are similar

to previous papers that effectively allow for variation of den-

sity within finite elements and are analogous to earlier work

based on CAMD approaches (Rahmatalla and Swan 2004;

Matsui and Terada 2004; Paulino and Le 2009). A number

of other adaptive mesh refinement techniques for density-

based topology optimization have also been demonstrated

in the literature (Kim et al. 2003; Stainko 2006; Guest and

Genut 2010).

2.8.4 Non-zero prescribed boundary conditions

The majority of research in density-based topology opti-

mization is based on problems where structures are sub-

jected to external forces and zero-prescribed displacement

boundary conditions (or the appropriate analogs in alter-

native physics problems). However, sometimes structures

are subjected to prescribed loading conditions and non-

zero prescribed displacements. These instances have been

recently been investigated for compliance, stiffness, and

strength considerations (Cho and Jung 2003; Pedersen and

Pedersen 2011; Niu et al. 2011; Klarbring and Strömberg

2012, 2013). Analogies to this problem are also seen

in many of the fluid optimization problems previously

referenced.

2.8.5 Manufacturing constraints

The results of a topology optimization are only valu-

able if the design can be manufactured at acceptable

cost. Thus, in practice, feasibility in topology optimiza-

tion is maintained using additional constraints on the

problem that are representative of the limitations for a

particular manufacturing process, for example casting or

tooling tolerances. Examples of this include Zhou et al.

(2002), Harzheim and Graf (2002, 2006), and Leiva et al.

(2004).

2.8.6 Commercial software implementation

To the authors’ best knowledge, all commercial struc-

tural optimization or finite element analysis tools that

include topology optimization capabilities are based on

some variant of the SIMP density-based method. These

include Vanderplaats Research & Development GENE-

SIS, MSC.Software Nastran, Altair OptiStruct, Abaqus,

Fe-design TOSCA, ANSYS Workbench, and COMSOL

Multiphysics. It is noted that compared to the scope of

multidisciplinary applications highlighted in this paper

and the other multiphysics analysis options in the com-

mercial packages mentioned, their topology optimization

capabilities are generally limited to structural problems

with global responses, including stiffness and frequency,

with linear physics. Some packages do provide provi-

sions for constraints of local nature; however, details of

their implementation are not readily available in the lit-

erature. In addition, some success has been documented

utilizing the equivalent static loads (ESL) method with
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Fig. 8 Multiresolution

Topology Optimization (MTOP)

element: a Q4 displacement

element, b superimposed

meshes, c finer design variable

mesh (Nguyen et al. 2010)

commercial tools for topology optimization of nonlin-

ear structures. The growing use of commercial optimiza-

tion software with topology capabilities in automotive,

aerospace, and other engineering industries is a primary

impetus for continuing research in topology optimization

methods (Pedersen and Allinger 2006; Schramm and Zhou

2006).

2.8.7 Extended optimality

Extended optimality involves a increasing the solution space

of the optimization problem to simultaneously consider vol-

ume fraction, thickness (for 2D problems), and topology

and was introduced by Rozvany et al. (2002), Rozvany

(2009b). A 3D analogue considers a set of materials whose

density is proportional to their elastic modulus or strength

rather than thickness. In the references, extended opti-

mality was shown to result potentially in a much lower

structural weight when compared to traditional topology

optimization.

3 Hard-kill methods

Hard-kill methods of topology optimization work by grad-

ually removing (or adding) a finite amount of material

from the design domain. The choice of the material to

be removed or added is based on heuristic criteria, which

may or may not be based on sensitivity information, and

in contrast to density-based methods, the discrete design

space is not relaxed. The most well known hard-kill

method of topology optimization is known as Evolution-

ary Structural Optimization (ESO) originally proposed by

Xie and Steven (1993, 1997). A recent text by Huang

and Xie (2010b) provides an excellent overview of new

developments in topology optimization using the ESO

methods.

One of the most attractive features of hard-kill methods

such as ESO is the simplicity with which they can be utili-

zed with commercial finite element packages. Often

times, the integration of the algorithms with FEA solvers

requires only simple pre- or post-processing steps. In

addition, hard-kill methods for topology optimization

result in a design with crisply defined structural bound-

aries that are free of intermediate or gray material

because finite elements are explicitly defined as exis-

tent or absent. The basic optimization problem for ESO

of the common minimum compliance problem is given

as:

min : c = UT KU

subject to :
V

V0
≤ Vf (2)

KU = F

x = [0, 1]

Here variables are defined identically to those in (1) with the

exception of x, which is the vector of element design vari-

ables. We note the primary difference in basic formulation

between a hard-kill method and density-based method that

design variables are now taken as the existence (xe = 1)

or absence (xe = 0) of finite elements rather than their

associated physical or material properties.

3.1 Element removal and addition

In all the variants of ESO-type methods, a criterion func-

tion is calculated for each element, which is often called the

sensitivity number, and element removal/addition is applied

to elements with low criteria values. The following sections

highlight the progression of ESO methods and the recent

developments regarding how the algorithmic decision of

whether to retain, add, or delete elements is made.

3.1.1 Early ESO algorithms

The original versions of the ESO method (Xie and Steven

1997) allow for only the removal of material and were
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based on the idea that an efficient structural component is

one where all of the stresses are nearly uniform at some

safe level. This notion leads to a natural criterion function

of local elemental stress, where low-stressed elements are

removed iteratively according to (3) where σ vm
e is the von

Mises stress in element e, σ vm
max is the maximum von Mises

stress in the structure and RRi is the rejection ratio for the

current iteration.

σ vm
e

σ vm
max

< RRi (3)

Additional formulations were created to solve maximum

stiffness and displacement optimization problems where the

element removal criterion is based on a sensitivity number

(Liang et al. 2000a) as given by (4) for a mean compliance

objective and αe
i is the sensitivity number of element i, ui

is the displacement vector and Ki is the stiffness matrix for

element i.

αe
i =

1

2
uT

i Kiui (4)

Since ESO is susceptible to checkerboarding similar to

density-based methods, Li et al. (2001a) introduced a simple

algorithm to alleviate these numerical difficulties. In addi-

tion, performance-based methods were proposed where an

ESO-type element removal procedure was performed and

optimal topologies were selected from iteration histories

(Liang et al. 2001; Liang and Steven 2002).

3.1.2 Bi-directional ESO (BESO)

After the proposal of an additive ESO procedure (AESO),

whereby elements were added to a very simple base ker-

nel structure (Querin et al. 2000a), early versions of bi-

directional ESO (BESO) were developed in which elements

could be both added and removed (Querin et al. 1998).

BESO with element addition adjacent to those with low cri-

terion values was introduced for both stress-based (Querin

et al. 2000b) and stiffness/displacement (Yang et al. 1999)

criterion functions using sensitivity numbers. It is impor-

tant to note that the sensitivity numbers for void elements,

which do not exist in the FEA model, are computed using

extrapolation methods that are not consistent with those uti-

lized for the solid elements. Yang et al. (2003) developed

BESO including the perimeter constraint and Kim et al.

(2000b, 2002a) introduced cavity control techniques, both

of which afford geometric control of structural complexity.

Fixed grids for ESO/BESO were also proposed to reduce

the computational time associated with building the finite

element matrices (Kim et al. 2000a, 2002b). These works

also utilize nodal sensitivities and boundaries are not opti-

mized elementally. More recently, Huang and Xie (2007b),

Huang et al. (2006) proposed a modified BESO for compli-

ance minimization that uses nodal sensitivity numbers (as

opposed to elemental measures) with a mesh dependency

filter that exhibits stable convergence to mesh indepen-

dent and checkerboard free solutions. In this scheme, nodal

sensitivity numbers are determined by first averaging ele-

mental sensitivity numbers by (5) where M denotes the total

number of elements connected to the jth node.

αn
j =

M
∑

i=1

wiα
e
i (5)

wi is the weight factor of the ith element and is defined by

wi =
1

M − 1

(

1 −
rij

∑M
i=1 rij

)

(6)

where rij is the distance between the center of the ith ele-

ment and the jth node. The mesh dependency filter is given

by (7)

αi =

∑K
j=1 w(rij )α

n
j

∑K
j=1 w(rij )

(7)

where K is the total number of nodes to inside the filter

domain with radius rmin and w(rij ) is the linear weight

factor determined as

w(rij ) = rmin − rij (j = 1, 2, ..., K) (8)

The sensitivity numbers are then sorted and elements are

removed if their sensitivity number is less than a deletion

threshold value, αth
del , and added if their sensitivity number

is greater than addition threshold, αth
add . The values of the

thresholds are updated throughout optimization according

to predefined algorithm parameters. A significant improve-

ment in this work over legacy BESO is that the sensitivity

numbers for both solid and void elements are computed

consistently, which proved to increase the robustness of the

algorithm. In subsequent sections of this paper we refer to

the former development as the improved hard-kill BESO

method.

3.1.3 “Soft-kill” BESO

As an alternative to conventional ESO and other “hard-

kill” methods, wherein elements are completely removed

from the computational model, a number of early works

advocate using a very soft element. This is highlighted in

the Sequential Element Rejection and Admission (SERA)

method proposed by Rozvany and Querin (2002). Doing

so allows for the computation of admission criteria based

directly on the void elements, rather than extrapolating

criteria from nearby solid elements.

Recently, with void elements being retained by some

means in the computational model, BESO methods have

been introduced that utilize analytical sensitivities with
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respect to density values to determine the element rejec-

tion/admission criteria. Zhu et al. (2007) and Huang and

Xie (2009) independently proposed methods that employ

a penalized density measure similar to the SIMP density-

based method. In these works, which will be henceforth

referred to as soft-kill penalty-based BESO, the sensitivity

number for element rejection/admission is computed using

sensitivity analysis of compliance with respect to the penal-

ized density measure as opposed to strain energy criterion.

The new penalty based sensitivity number for a compliance

objective is given by (9) where p is the penalty, xi is the den-

sity, xmin is the minimum allowable density, and K0
i is the

stiffness matrix of the solid element. The educated reader

will note the resemblance to the compliance sensitivity in

the SIMP formulation.

αi = −
1

p

∂C

∂xi

=

⎧

⎨

⎩

1
2
uT

i K0
i ui xi = 1

x
p−1
min

2
uT

i K0
i ui xi = xmin

(9)

Similar to previously proposed “soft-kill” methods, ele-

ments are directly interpreted as solid/void with no inter-

mediate values. Finally, it was demonstrated by Huang and

Xie (2009) that legacy “hard-kill” BESO methods are a spe-

cial case of this soft-kill penalty-based BESO method with

infinite penalty. In addition, in a recent paper Huang and

Xie (2010c) extended the soft-kill penalty-based BESO to

include local displacement constraints.

3.2 Nonlinear responses

Since elements are explicitly added or removed from the

finite element analysis model when utilizing ESO/BESO

techniques, optimization with nonlinear responses is rela-

tively simple compared to that for the non-discrete, density-

based methods where low density elements create numerical

difficulties. Huang and Xie first demonstrated BESO with

both material and geometric nonlinearity in structural anal-

ysis using both the conventional BESO (2007a) and the

improved hard-kill BESO method with filtering (2008b)

for stiffness optimization. In a separate work, Huang et al.

(2007) demonstrate BESO with nonlinear material and

geometry for energy absorption objectives typically found

in the automotive industry for crashworthiness design.

3.3 Design dependent loading

Just as in density-based methods, the design dependency

of loads requires special consideration in ESO/BESO. By

modifying the sensitivity number, Yang et al. (2005) demon-

strated that the conventional BESO procedure can accom-

modate transmissible loads, surface loading with fixed load

direction, and self-weight body loads. Ansola et al. (2006)

also proposed a modified sensitivity number for self-weight

loads in ESO. Recently, Huang and Xie (2011) presented

a formulation for self-weight loading using the soft-kill

penalty-based BESO method. In this work, the sensitiv-

ity analysis used to compute the sensitivity number was

modified to capture self-weight load dependency consistent

with density methods and results were compared to those

obtained via improved hard-kill BESO.

3.4 Genetic ESO/BESO

While genetic algorithms (GAs) have been directly applied

to topology optimization problems in the literature where

their binary nature intuitively lends itself well to the deter-

mination of solid/void material, they have not experienced

widespread acceptance due in part because it is difficult

to ensure structural connectivity because of GA’s stochas-

tic search procedure in addition to extra computational

expense. For some successful applications of topology opti-

mization using GAs, the reader is directed to the work by

Wang et al. (2006b), Guest and Genut (2010), Bureerat and

Limtragool (2006), which utilize bit array representations of

the design domain. On a different path, Liu et al. (2008a)

overcome conventional challenges of GAs by treating each

element in a structural domain as an individual of the GA

population rather than generating a large number of individ-

ual structural designs to form a population. In doing so, the

usual ESO sensitivity number is used as the fitness function

and less fit elements die off throughout the evolutionary pro-

cedure just as less fit designs die off in a conventional GA

design problem. This method is termed genetic evolutionary

structural optimization (GESO). In theory, GESO holds an

advantage over conventional ESO because the probabilistic

criteria involved in the GA helps to avoid the convergence

of ESO towards only local optima. Additional examples of

the application of GESO are given in the recent paper by Liu

and Yi (2010). Finally, Zuo et al. (2009) developed a genetic

BESO method that is similar to GESO and utilizes a BESO

formulation much like the improved hard-kill BESO.

3.5 Multicriteria methods

In ESO/BESO, element rejection/admission rules are based

on the sensitivity of a single objective functional. As such,

multiple design criteria, from single or multiple physics,

cannot be solved as readily as compared to density-based

topology optimization where additional constraints can sim-

ply be added to the optimization problem. Therefore to

solve multicriteria design problems using ESO/BESO, all

responses of interest must be combined into a single func-

tion, in effect forming a multiobjective problem. This is

also true for multiple load cases. Proos et al. (2001a)

demonstrated both a weighting and a global method for mul-

ticriteria ESO and demonstrated them for combinations of
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von Mises stress and frequency. In the weighting method,

the normalized sensitivity numbers for each criteria are

assigned a weighting factor and are summed to form a single

new objective criteria as given by

F i
multicrit =

N
∑

j=1

wjR
i
j (10)

where F i
multicrit is the new multiple criteria function, wj is

the jth criteria weight factor with wj ≥ 0, and Rj = αi
j/α

∗
j

is the ratio of the jth criteria sensitivity number for each ele-

ment i to the maximum value of the jth criteria sensitivity

number, and N is the total number of criteria. Note that the

criteria weights must sum to unity. On the other hand, the

global criteria method is based on the formulation of a met-

ric function that represents the distance between the ideal

solution (minimum value of each criterion) and the optimum

solution as given by (11).

Gi
multicrit =

⎡

⎣

N
∑

j=1

(

Ri
j − Si

j

)p

⎤

⎦

1/p

(11)

Here, Gi
multicrit is the metric for the multiple criterion func-

tion for element i, Si
j = αmin

j /α∗
j is the ratio of the minimum

value of the jth criterion sensitivity number to the maximum

value of the jth criterion sensitivity number, and p is a con-

stant constrained by the condition 1 ≤ p ≤ ∞. In other

work, these methods were investigated for stiffness and iner-

tial design criteria (Proos et al. 2001b). Similarly, Kim et al.

(2006) proposed a combined static/dynamic control param-

eter for use in the ESO for thermal stress and frequency

criteria. Their method is demonstrated by application to

a spacecraft thermal protection component, which demon-

strates both lower thermal stresses and higher fundamental

frequency than baseline designs.

3.6 Alternate physics and applications

Just as with density-based topology optimization, ESO has

been applied to a number of different problems outside

of structural stiffness design. An important decision in the

application of ESO to alternative physics problems is the

identification of the appropriate sensitivity number to guide

element addition or removal. In fact, a number of different

alternative physics examples were presented by Steven et al.

(2000) related to general field problems including heat con-

duction, elastic torsion, inviscid incompressible fluid flow,

electrostatics, and magneto-statics.

3.6.1 Heat transfer and thermoelasticity

Prior to the year 2000, the original formulations of ESO

were applied to a number of simple heat transfer and ther-

moelastic design problems. References can be located in

the works by Li et al., who investigate heat conduction

(2004), combined thermal and structural criteria (2000), and

thermoelasticity due to various temperature distributions

(2001c) with ESO. Patil et al. (2008) employed ESO for

topology optimization of extremal conductivity microstruc-

tures. Gao et al. (2008) utilized BESO to design heat con-

ducting structures with design dependent heat loads. Most

recently, Ansola et al. (2010) demonstrated a BESO method

for the design of thermal compliant actuators subjected to

a uniform temperature distribution and non-uniform heating

including conduction and convection effects (Ansola et al.

2012).

3.6.2 Buckling and vibrations

Similar to heat transfer and thermoelasticity, some research

related to vibrations and buckling (eigenvalue-type prob-

lems) in structural mechanics using the original ESO was

performed prior to the year 2000. References may be found

in Rong et al. (2001), which also presents an applica-

tion of ESO for critical buckling loads. More recently,

Huang et al. (2010) demonstrated frequency optimiza-

tion using the new soft-kill penalty-based BESO method.

One potential advantage to ESO/BESO for these problems

is that the algorithm is not susceptible to the numeri-

cal instabilities when solving eigenvalue problems related

to low density elements as encountered in density-based

methods.

3.6.3 Biomedical design

Limited work in the area of biomedical design has been

performed utilizing the BESO method. For example, Chen

et al. (2011b) utilized BESO to study tissue scaffolds using

a wall shear stress criterion and the effect of flow induced

erosion.

3.6.4 Applications

While ESO/BESO has not enjoyed the same level of vast

acceptance in industrial topology optimization and commer-

cial software, it has found a number of interesting appli-

cations. Several civil engineering applications include rein-

forced concrete strut-and-tie models (Liang et al. 2000b),

connection patterns for joints (Li et al. 2001b), bridge

design (Guan et al. 2003), underground mining cavity shape

(Ren et al. 2005), and tunneling engineering (Liu et al.

2008b). In addition, several real world civil applications on
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existing structures including bridges, buildings, and sup-

ports designed using ESO methods are highlighted in the

recent text by Huang and Xie (2010b). Das and Jones (2011)

utilized conventional ESO to design aircraft bulkheads for

strength and low weight and Naceur et al. (2004) demon-

strated ESO for sheet metal blank optimization. Ansola et al.

(2007) demonstrated the use of ESO for compliant mecha-

nism design and were able to develop topologies analogous

to those obtained via SIMP. Recently, Huang et al. (2012)

utilized BESO to design multifunctional periodic compos-

ites with both extremal magnetic permeability and electrical

permittivity and Yang et al. (2011) did so for stiffness and

thermal conductivity. A number recent works have investi-

gated BESO methods for topology optimization of material

microstructures (Yang et al. 2013; Huang et al. 2013; Zuo

et al. 2013).

3.7 RBTO with BESO

Compared to reliability-based topology optimization uti-

lizing density-based methods, RBTO applications with

ESO/BESO are currently much more scarce. Kim et al.

(2007b) demonstrated the use of ESO with first-order reli-

ability methods in RBTO. Recently, Eom et al. (2011)

demonstrated RBTO using the improved hard-kill BESO

along with a response surface method (RSM) to com-

pute the reliability index using a first-order reliability

method. In this work uncertainties included material prop-

erties and applied loading. Also, Cho et al. (2011) used

BESO and the performance measure approach (PMA) to

find the reliability index where uncertainties included stiff-

ness, applied load, and dimensions for a multi-objective

problem.

3.8 Additional comments

3.8.1 Educational resources

For resources related to the most recent developments

in both hard-kill and soft-kill ESO/BESO methods for

topology optimization, the reader is again referred to the

manuscript by Huang and Xie (2010b). In addition, a short

MATLAB code for soft-kill BESO and details for a publicly

available BESO program from the authors can be located in

the appendix of that text. The original developments of ESO

formulations are reviewed in the book by Xie and Steven

(1997).

3.8.2 Reviews & critiques of ESO/BESO

Early versions of the ESO/BESO algorithms have faced

criticism beginning with Zhou and Rozvany (2001), who

demonstrated a breakdown of the methods on a simple

cantilever tie-beam example. Further discussion is offered

by Rozvany (2001c) where the ESO method is com-

pared against classical Fully Stressed Design (FSD) and

Minimum Compliance (MC) sizing optimization methods.

In an effort to explain with technical rigor the work-

ings of ESO, Tanskanen (2002) investigated the theo-

retical aspects of the method. More recently, in a brief

technical note, Huang and Xie (2008a) offer poten-

tial solutions to the long-standing concerns raised in

Zhou and Rozvany (2001). In addition, Edwards et al.

(2007) independently offered a comparison study in sup-

port of the ESO methods. Finally, Rozvany (2009a)

presents a summary of the previous criticisms in addi-

tion to critical opinions regarding the supporting papers

in a forum article. Most recently, Huang and Xie

(2010a) responded in friendly discussion to these con-

structive criticisms in a forum article that highlights the

newest fundamental developments for ESO-type methods

including several of the filtering and soft-kill method-

ologies cited previously in this review. It is advised

to first develop a soft-kill BESO method for a new

topology optimization problem and then investigate the

application of hard-killing elements to increase com-

putational efficiency. Additional works have also com-

mented on various aspects regarding the application of

ESO/BESO methods (Abolbashari and Keshavarzmanesh

2006).

4 Boundary variation methods

Boundary variation methods are a most recent development

in structural and multidisciplinary topology optimization

with their roots lying in shape optimization techniques.

In contrast to density-based methods, they are based on

implicit functions that define structural boundaries rather

than an explicit parameterization of the design domain.

Figure 9a shows an explicit representation where the

domain, �, exists as an explicit parameterization of vari-

ables x between 0 and 1. The structural boundary d�

then exists at the interface of regions 0 and 1. Figure 9b

demonstrates an implicit representation where the structural

boundary is implicitly specified as a contour line of the field

�, which is a function of x.

Two boundary variation techniques currently under-

going development in the literature are the level set

method and the phase-field method. These methods pro-

duce results in the design domain with crisp and smooth

edges that require little post-processing effort to inter-

pret results. In addition, these methods are fundamen-

tally different than shape optimization techniques because

they allow for not only the movement of structural

boundaries, but also the formation, disappearance, and
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Fig. 9 a Explicit versus b

Implicit representation of a

design domain and boundaries

merger of void regions, which defines true topological

design.

4.1 Level set topology optimization

In the level set method, boundaries are represented as the

zero level curve (or contour) of a scalar function � (the

level set function) as shown simply for 2D topologies in

Fig. 10. Boundary motion and merging, as well as the neces-

sary introduction of new holes, are performed on this scalar

function. The shape of the geometric boundary is modi-

fied by controlling the motion of the level set according to

the physical problem and optimization conditions. It is also

important to note here that while a smooth boundary rep-

resentation is realized in the design domain as shown in

Fig. 10, most level-set formulations rely on finite elements.

Thus, boundaries are still represented by a discretized, likely

unsmooth, mesh in the analysis domain unless alternative

techniques are utilized to map the geometry to the analysis

model.

Level sets for moving interface problems in physics were

first developed by Osher and Sethian (1988) with the fun-

damental goal of tracking the motion of curves and surfaces

and have since been applied in a wide variety of research

areas (Sethian 1999; Osher and Fedkiw 2002). The level

set method was first applied to topology optimization in

the early 2000s by Sethian and Wiegmann (2000), where

it was used to capture the free boundary of a structure in

linear elasticity, and Osher and Santosa (2001), who com-

bined level sets with a shape sensitivity analysis framework

for optimization of structural frequencies. For more com-

prehensive discussion of level set methods for topology

optimization, we refer interested readers to the review arti-

cles of Burger and Osher (2005) and most recently van Dijk

et al. (2013).

4.1.1 Conventional level set topology design

The development of what are considered conventional level

set methods in the modern day began when Wang et al.

(2003) identified the velocity of points on the structural

boundary and the design sensitivity as a critical link between

the general structural optimization process and the level

set method for boundary definition. First let the structural

Fig. 10 Level set

representations: a 2D topology

with (b) corresponding level set

function along with a more

complicated representation of

benchmark structure (c) & (d)

(from Luo et al. 2012)

Ω

∂Ω

D

Φ(x) = 0

Φ(x) > 0

Φ(x) < 0
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boundary be specified as a level set in implicit form as an

iso-surface of a scalar function in 3D as (12)

S = {x : �(x) = k} (12)

where k is the iso-value and is arbitrary, and x is a point

in space on the iso-surface. Structural optimization can

be performed by letting the level set model vary in time,

yielding (13).

S(t) = {x(t) : �(x(t), t) = k} (13)

Taking the time derivative of (13) and applying the chain

rule yields the following “Hamilton-Jacobi-type” equation

∂�(x, t)

∂t
+ ∇�(x, t)

dx

dt
= 0, �(x, 0) = �0(x) (14)

which defines an initial value problem for the time depen-

dent function �. In the solution process, let dx/dt be the

movement of a point driven by the objective of optimization

such that it can be expressed in terms of the position of x

and the geometry of the surface at that point. The optimal

structural boundary then becomes the solution of a partial

differential equation on � given by (15)

∂�(x)

∂t
=−∇�(x)

dx

dt
≡ −∇�(x)Ŵ(x, �)�(x, 0)=�0(x)

(15)

where Ŵ(x, �) is the “speed vector” of the level set and

depends on the objective of optimization. A proper vector is

obtained as a descent direction of the objective via sensitiv-

ity analysis. With the level set formulation characterized, a

general minimum compliance optimization problem may be

written as (Dunning and Kim 2013):

min : C(u, �) =

∫

�

Eε(u)ε(u)H(�)d�

subject to :

∫

�

H(�)d� ≤ Vf

∫

�

Eε(u)ε(v)H(�)d� =

∫

�

bvH(�)d�

+

∫

Ŵs

f vŴsu|ŴD
= 0 ∀v ∈ U (16)

where � is a domain larger than �S such that �S ∈

�, Vf is the limit on material volume, E is the mate-

rial property tensor, ε(u) is the strain tensor for displace-

ment field u, U is the space of permissible displace-

ment fields, v is any permissible displacement field, b

are body forces, f are surface tractions, and H(�) is a

Heaviside function that equals 1 when � ≥ 0 and zero

otherwise.

The capability for topology design for stiffness under

a volume constraint was demonstrated (Wang et al. 2003).

Additional discussion can be found in Wang and Wang

(2004b, 2005), Wang et al. (2004b) in addition to a mul-

tiple material level set method (Wang and Wang 2004a;

Wang et al. 2005). Independently, Allaire et al. (2002),

Allaire et al. (2004) also developed a numerical framework

for boundary design that linked the velocity of level set

boundaries to adjoint shape sensitivity analysis for stiffness

design and frequency maximization (Allaire and Jouve

2005). A limitation of these direct methods are that algo-

rithms cannot create new holes in the level set function

away from free boundaries (typically the outside of a design

domain) and resulting solutions are heavily dependent on

the initial state of the design problem. In response a num-

ber of works, including Burger et al. (2004), Allaire et al.

(2005), Allaire and Jouve (2006), Wang et al. (2004a), and

He et al. (2007), proposed different mechanisms to include

topological derivatives in the level set problem. Topological

derivatives represent the change in objective functional with

the introduction of infinitesimally small holes and allow for

the nucleation of new holes anywhere in the design domain.

This enables a true topological design capability. Dunning

and Kim (2013) present a new method for the introduc-

tion of holes without the topological derivative using a

secondary level set function. Recently, James and Martins

(2012) proposed an extension of the conventional level

set method for use with a body-fitted finite element mesh,

which is useful when the design domain is nonrectangular

or irregularly shaped.

4.1.2 Alternative level set formulations

In the conventional level set methods, the Hamilton-Jacobi

partial differential equation (PDE) controlling the struc-

tural boundary is solved explicitly. This places time step

size restrictions for convergence stability and also often

requires the reinitialization of level set functions when they

become too flat or steep, both of which decrease the com-

putational efficiency of the schemes. To alleviate this, a

number of alternative formulations, which do not require the

explicit solution process, have been proposed to circumvent

these issues. Luo et al. (2008a, b) proposed a new formula-

tion where the Hamilton-Jacobi PDE is solved using a semi-

implicit additive operator splitting scheme. Another family

of parameterization techniques have been explored that con-

vert the Hamilton-Jacobi PDE into a simpler set of ordinary

differential equations (ODEs) using radial basis functions

(RBFs) (Wang and Wang 2006a, b, Wang et al. 2007b)

or system of algebraic equations using compactly sup-

ported RBFs (CSRBFs) (Luo et al. 2007, 2008c, 2009a). In

another alternative, the spectral level set method, Fourier

coefficients of the level set function are taken as design

variables, which serves to reduce the design space (Gomes

and Suleman 2008). Recently, Luo et al. (2012) proposed

a meshless Galerkin level set method using the CSRBFs.
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In addition, piecewise constant level set methods have been

successful for multiphase material problems (Luo et al.

2009b). In yet another alternative level set method, Yamada

et al. (2010) abandon the Hamilton-Jacobi PDE in favor of

a reaction-diffusion equation similar to phase-field meth-

ods described later. Other alternatives were proposed by

Amstutz and Andrä (2006) and Norato et al. (2007), who

utilized an evolution equation based directly on topologi-

cal gradients. Belytschko et al. (2003) described the level

set function in a narrow band of the zero level set accord-

ing to nodal variables, C0 continuous shape functions,

and a heuristic updating scheme. Finally, Haber (2004)

used a sequential quadratic programming (SQP) method

in conjunction with multilevel continuation schemes to

advance the implicit shape boundary rather than solving the

Hamilton-Jacobi PDE. It is important to note that a number

of the alternative level set formulations highlighted in this

section can accommodate new hole formation without the

use of a topological derivative.

4.2 Phase-field topology optimization

The phase-field method for topology optimization is based

on theories originally developed as a way to represent the

surface dynamics of phase-transition phenomena such as

solid-liquid transitions (Chen 2002; Macfadden 2002). The

methods have been utilized in a number of different sur-

face dynamics simulations, especially in materials science,

including diffusion, solidification, crack-propagation, and

multiphase flow in addition to phase transitions. In these

theories, a phase field function φ is specified over the

design domain � that is composed of two phases, A and

B, which are represented by values α and β of φ, respec-

tively, as shown in Fig. 11. The boundary region between

phases is a continuously varying region of thin finite

thickness ξ .

In phase-field topology optimization this region defines

structural boundaries and is modified via dynamic evolu-

tion equations of the phase field function φ. A primary

difference between the level set and phase-field methods

lies in the fact that in the phase-field method the bound-

ary interface between phases is not tracked throughout

optimization as is done when using level sets. That is, the

governing equations of phase transition are solved over the

complete design domain without prior information about

the location of the phase interface. In addition, phase-field

methods do not require the reinitialization step of level set

functions.

The use of phase-field methods for topology optimization

was first proposed by Bourdin and Chambolle (2003, 2006).

Wang and Zhou (2004a) further explored the idea by using

van der Waals-Cahn-Hilliard phase transition theory and a

numerical method based on the theory of Ŵ-convergence to

solve the variational system for mean compliance minimiza-

tion of bi-material phases of solids and later for three-phase

systems (Wang and Zhou 2004b). They later investigated the

phase-field method for compliance minimization based this

time on the generalized Cahn-Hilliard equations for mul-

tiphase transitions (Zhou and Wang 2006, 2007). Wallin

et al. (2012) incorporated an adaptive finite element for-

mulation into a Cahn-Hilliard based phase-field method.

Recently, Takezawa et al. (2010) used a time dependent

reaction-diffusion equation, called the Allen-Cahn equation,

to evolve the phase function. They present structural topol-

ogy optimization examples of compliance minimization,

compliant mechanism design, and eigenfrequency maxi-

mization. It was demonstrated that with a suitable choice

of double well potential function, the evolution equation

can be approximately represented as a conventional steepest

descent method where phase evolves in the direction of neg-

ative gradient of the objective function. This work was later

extended by Gain and Paulino (2012) to non-Cartesian solu-

tion domains using polygonal elements. In each paper on the

phase-field method, the ability to generate structural results

without the need to explicitly define an interface between

material phases was demonstrated. A recent article by Blank

et al. (2010) provides a comparison between the Cahn-

Hilliard and Allen-Cahn transition methods for evolving the

phase function in structural topology design on a bench-

mark cantilever beam problem. Results demonstrate that

utilizing the Allen-Cahn equation reduces the computational

cost and increases efficiency of the topology optimization

when compared to the Cahn-Hilliard equation for linear

elasticity.

Fig. 11 a A 2D domain

represented by the phase field

function and b a 1D illustration

of the phase field function (from

Takezawa et al. (2010))
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4.3 Nonlinear responses

Studies involving topology optimization with nonlinear

responses indicate that the numerical difficulties and

convergence issues experienced by density-based methods,

which are due primarily to low density elements in the

nonlinear solution procedure, are avoided with the level

set method. In their introduction to level set topology

design, Allaire et al. (2004) discussed a generalization of

their method to nonlinear elasticity problems. In similar

work, Kwak and Cho (2005) introduced a level set method

for compliance minimization with geometric nonlinearity.

More recently, Ha and Cho (2008) used an unstructured

mesh along with level set topology for compliance mini-

mization with geometric nonlinearity and hyperelastic mate-

rial. Luo and Tong (2008) demonstrated a formulation for

level set topology optimization for the design of large-

displacement compliant mechanisms. In their work, radial

basis functions are utilized to increase solution efficiency.

Kim et al. (2009) utilized level set topology for steady-

state nonlinear heat conduction where material properties

are temperature dependent. Finally, while no publications

utilizing the phase-field method with nonlinear responses

were found, no significant barriers to its application appear

evident.

4.4 Stress-based boundary variation topology design

Boundary variation methods have also been demonstrated

for topology optimization with stress considerations. In

fact, due to the fundamental formulation of these meth-

ods with purely black and white designs, several of the

challenges of stress-based topology optimization described

for density-based methods are naturally avoided. Allaire

and Jouve (2008) demonstrate level set topology opti-

mization of several benchmark problems including a can-

tilever, L-bracket, gripping mechanism, and 3D mast struc-

ture for both minimum compliance and minimum global

stress objectives. Guo et al. (2011) studied two different

stress-based objectives for minimum stress design in the

level set method. The first objective was the integral of

von Mises stress over the whole structure and the sec-

ond objective was the maximum value on von Mises stress

in the structure, which was dealt with by an active-set

strategy for numerical stability. More recently, Xia et al.

(2012c, 2013) and Wang and Li (2013) have introduced

solutions to the stress problems using level sets meth-

ods. In addition, Burger and Stainko (2006) demonstrated

the phase-field method for minimum volume structures

with local stress constraints on benchmark beam examples.

Numerical results appeared consistent with those obtained

with stress-based design and other topology optimization

methods. While not directly stress-based design, Challis

et al. (2008b) provides interesting discussion regarding

optimization against fracture resistance using a level set

method.

4.5 Alternate physics, multiphysics, and application

4.5.1 Heat transfer and thermoelasticity

Ha and Cho (2005) first applied the level set method to heat

conduction problems via a weak variational form of the heat

conduction equation and variational level set calculus to

determine the velocity field of the level set equation. Later,

Zhuang et al. (2007) included both shape and topological

derivatives in the level set formulation and performed topol-

ogy optimization for optimal heat dissipation with multiple

load cases for steady state conduction. In an extension to

thermoelasticity, Xia and Wang (2008) demonstrated the use

of the level set method for stiffness design of structures

subjected to uniform temperature loading. One significant

advantage of the level set method in thermoelasticity is the

lack of intermediate density material, which causes several

issues in density-based topology optimization as discussed

earlier. Recently, Luo et al. (2009c) used level sets along

with CSRBFs for optimization of thermomechanical and

electrothermomechanical microactuators, where actuation

results from temperature increases due to Joule heating.

4.5.2 Fluid flow

Duan et al. (2008c) used a modified Hamilton-Jacobi level

set, called variational level set, for topological design of

two-dimensional Stokes and Navier-Stokes flow (Duan et

al. 2008a, b) for minimum power dissipation channel flows.

Zhou and Li (2008a) also utilized a variational level set

method for both 2D and 3D Navier-Stokes flows for low-

loss junctions and maximum permeability problems. Challis

and Guest (2009) utilized a conventional level set method

for optimization of minimum power dissipation flow paths

in Stokes flow and Abdelwahed and Hassine (2009) also

proposed a level set formulation for Stokes flow with 2D

and 3D examples. Finally, Pingen et al. (2007, 2010) formu-

lated a parametric level set method with RBFs that utilized

a hydrodynamic Lattice Boltzmann Method (LBM) rather

than the Navier-Stokes finite element methods utilized by

the other cited works.

4.5.3 Biomedical design & multifunctional materials

Level set methods have also shown to be suitable in the

design of tissue scaffolds for biomedical design. Challis

et al. (2012) utilized level set topology optimization for both

stiffness and permeability objectives to generate a first esti-

mate at cross-property bounds for porous materials. Challis
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et al. (2010) also experimentally studied some topologically

derived bone scaffold designs manufactured using freeform

techniques. The level set methods have also be successfully

applied to other multifunctional domains including optimal

stiffness and thermal conductivity (Challis et al. 2008a),

electromagnetic meta materials for permittivity and elec-

trical permeability (Zhou et al. 2010b), and electric dipole

antenna design (Zhou et al. 2010a).

4.6 RBTO with level set method

Just as with ESO, the number of publications related to

reliability-based topology optimization using the level set

method is much more limited when compared to the more

widely accepted density-based methods. In fact, the limited

publications have actually been applied to robust optimiza-

tion, since a meaningful failure state is not given. For

example, de Gournay et al. (2008) developed a robust

compliance minimization using level set topology to iden-

tify a set of worst case loading perturbations and per-

form optimization. More recently, Dunning et al. (2011)

presented an efficient method for considering both load-

ing magnitude and directional uncertainty in topology

optimization in order to produce robust solutions. Chen

et al. (2010a) and Chen and Chen (2011) also devel-

oped robust topology optimization capabilities using the

level set method for both random field and geometric

uncertainties.

4.7 Additional comments

4.7.1 Educational resources

Inspired by the 99 line SIMP topology optimization

code, Challis (2010) presents a simple 129 line MAT-

LAB implementation of discrete level set topology opti-

mization. The paper provides insight into the main facets

of the level set method for topology optimization and

provides concrete implementation details. In addition,

another publicly available implementation of the level set

method is provided by Allaire and Pantz (2006).

5 Bio-inspired cellular division-based method

Recently, an innovative biologically-inspired layout and

topology optimization method capable of generating dis-

crete and continuum-like structures was proposed by

Kobayashi (2010). In the method, which is inspired by

the cellular division processes of living organisms, topo-

logical layout is implicitly governed by a developmen-

tal program that when executed completes a sequence of

tasks that develop the topology in stages. When driven

by a genetic algorithm (GA), the set of rules, called

a Lindenmayer or map-L system, that define the tasks

of the developmental program become the design vari-

ables in the optimization problem. With control over these

developmental rules, a strikingly diverse set of topologi-

cal designs may be generated with relatively few design

variables.

One advantage of this method is the straightforward

nature with which it can be coupled onto existing finite

element (or other) analysis tools to develop a topology

optimization capability. Just as with the ESO-type meth-

ods, it is readily accomplished using simple pre/post-

processing operations, especially for multiphysics designs.

The method is also capable of generating potential topo-

logical layouts that are immediately ready for subse-

quent or even simultaneous sizing and shape optimiza-

tion. A potential drawback is that the method is driven

via genetic algorithm, which regardless of innovative

application, is still often more computationally expen-

sive than gradient-based techniques. The following sub-

sections briefly summarize the important aspects of the

biologically-inspired method and highlight novel features

and applications. For more in depth explanation, the reader

is referred to the publications by Kobayashi (2010) and

Pedro and Kobayashi (2011).

5.1 Map-L system

L systems are a type of grammar system originally intro-

duced by biologist Aristid Lindenmayer to model branched

topology in plants. Informally, these systems are rewrit-

ing methods that can generate developmental programs to

describe the construction of a natural or engineered system

(Nakamura et al. 1986). A map is defined as finite set of

regions with each region bounded by a sequence of edges

that intersect at vertices. The maps are analogous to cellular

layers, where the regions represent the cells and the edges

their walls. By using a series of production rules, an exam-

ple of which is given in (17), which govern the processes

that construct the map, interpretations of complex topology

can be obtained.

A → B[+A]x[−A]B

B → A

x → x

(17)

Execution of the production rules in (17) and the axiom

ω = ABAB, which indicates the initial edge labeling, for

the first four steps in the process are shown by Fig. 12.

By utilizing additional rules apart from the simple divi-

sion process demonstrated in the figure, more complex

features, for example adding radii to edges, can be obtained.

In addition, the geometry can be superimposed or stretched

onto non-rectangular domains that can also change shape.
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Fig. 12 First four steps in a

cellular division process (from

Stanford et al. 2012a)

It is also important to note that the topological layout gen-

erated by the map-L system in itself has no physical or

structural meaning attached to it. Thus, the geometry must

be interpreted into structural elements, which can often

be done in a pre-processing step. This is demonstrated in

Fig. 13 where structural topology is defined by the map-L

system, projected to a non-rectangular planform, and inter-

preted into a conceptual 3D wing and spar layout for an

aircraft component (Kolonay and Kobayashi 2010).

5.2 Encoding rules to GA

The map-L system described above is encoded into a binary

representation for use with a GA to perform optimization.

The optimizer is given control of a number of parame-

ters that affect the resulting topology. These include those

that control the growth and dynamics of the development,

developmental rules, and also the definition of the overall

geometry or physical properties of the system. This enables

the GA to modify not only the initial map, but also adjust the

rules that create the topology according to a fitness function.

In an aircraft optimization for example, the fitness function

may be minimum mass with constraints on flutter speed,

efficiency, and stresses. The parameters of the map-L sys-

tem are “designed” by the GA to layout the topology of

internal wing structure.

We note this implicit representation of topology differs

from the explicit representation (where one design variable

for each finite element corresponds to the genome) that

is utilized in other GA-driven topology optimization work

(Wang et al. 2006b). In fact, it is this representation that

allows not only for fewer design variables and more design

freedom, but also avoids other issues such as maintaining

domain connectivity throughout evolution.

5.3 Applications

While the number of applications of the cellular-division

based topology optimization are limited compared to other

methods, it has proven suitable on both benchmark prob-

lems and practical applications. Pedro and Kobayashi

(2011) demonstrated the method on benchmark cantilever

beam problem and Stanford et al. (2012a) demonstrated

the method on a number of applications to flapping wing

Fig. 13 Planar shape and topology mapped to a 3D wing box rib and spar layout for a conceptual aircraft component where 3-D FEM is ready

for preliminary-level physics-based analysis (from Kolonay and Kobayashi 2010)
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flight including wing venation design and compliant mecha-

nism design for actuation (Stanford et al. 2012b). Figure 14

shows a typical solution for a flapping wing flier where both

the actuation mechanism to produce the flapping motion

(whose topology layout is in black) and the stiffening

or venation topology of the wings (layout in red) have

been simultaneously optimized using the cellular-based

method.

Kobayashi et al. (2009b) performed topological substruc-

ture layout for a concept fighter aircraft wing and demon-

strated the ability to design around an internal component

such as a landing gear or other subsystem. In a similar

study, Kolonay and Kobayashi (2010) performed simultane-

ous size, shape, and topology design for aircraft wings. In

this work, the map-L system is utilized to create a topologi-

cal layout and a conventional shape and sizing optimization

is performed on the configuration; however, the system

responses utilized for the overall fitness function in the GA

are from optimal shape and size designs. As such, the over-

all optimization algorithm is afforded control at all levels for

simultaneous size, shape, and topological layout freedom in

a manner different from other works on simultaneous struc-

tural optimization using more conventional methods (Zhou

et al. 2004). This also allows for the coupling of topol-

ogy design onto established shape and sizing capabilities for

alternative physics. For example, in the area of aeroelastic-

ity, it is straightforward to couple cellular-based topology

optimization onto a dedicated aerospace design tool such

as ASTROS or Nastran and utilize industry-accepted meth-

ods for size and shape variables. The method has also been

applied to non-structural topology optimization problems as

well. Kobayashi et al. (2009a), Kobayashi (2010) and Pedro

et al. (2008) demonstrated the method on several dendritic

transport and heat conduction field problems.

6 Summary, recommendations, and perspectives

In an effort to aggregate research works in the field, we have

highlighted advancements and outlined the strengths and

challenges of four different topology optimization meth-

ods: (1) density-based methods, (2) hard-kill methods, (3)

boundary variation methods, and (4) a new biologically

inspired cellular-division method.

The time period from 2000 to the present day has

been one of rapid growth in the topology optimiza-

tion field. We have seen the maturation of existing

methods, including SIMP and other density-based tech-

niques, with the introduction of advanced filters to

increase the quality of topological results, new engineer-

ing applications to disciplines beyond structural mechan-

ics, and the integration of topology optimization capabil-

ities in several commercial software packages. In addi-

tion, more rigorous design metrics including stress con-

straints have extended the scope of structural appli-

cations of density methods beyond compliance, fre-

quency, and micro-actuation. Lively discussions related

to the theory behind hard-kill methods such as ESO

have led to more stable formulations for those tech-

niques. Finally, new formulations utilizing implicit rep-

resentations of the design domain have shown promise

as alternative methods that do not rely on idealiza-

tions of intermediate material and thus avoid many of

the numerical difficulties associated with such ideal-

izations. The results obtained by these methods also

require little post-processing effort to obtain feasible

designs.

6.1 Recommendations

In the following subsections, we provide some short recom-

mendations related to new algorithm development and code

validation for topology optimization.

6.1.1 Algorithm development

Too often new topology optimization algorithms are tested

on problems of pure mechanical compliance (or equiva-

lent energy-based analogue in alternative physics). It is well

known that such an optimization problem is exceptionally

Fig. 14 Simultaneous optimal

topology designs for membrane

wing venation (red) and

compliant mechanism actuator

(black) for a flapping wing

obtained using the

cellular-division method (from

Stanford et al. 2012b)
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well-behaved. This occurs because in minimum compliance

topology optimization, the sensitivity of material addition,

by any technique, is strictly negative and the problem is

self-adjoint. These unique features are lost for most prac-

tical engineering problems that are multiply constrained in

nature or have more complex responses. Thus, algorithm

developers should focus on methods and test cases within

the general setting of real world problems. For example,

in the compliant force inverter problem, sensitivities may

be both positive and negative for material addition, which

tests both the topology methodology and also the choice

of optimizer. Other scenarios include minimum compli-

ance with design dependent body or thermal loads, which

contain contributions to compliance sensitivity from both

stiffness/deformation and loading that generally have oppo-

site magnitudes, and problems with multiple displacement

constraints.

6.1.2 Analytical benchmarks

Analytical solutions to a number benchmark problems for

topology optimization exist in the literature. The community

should actively utilize these to test new algorithm develop-

ments and validate code. In fact, Rozvany, Lewiński, and

colleagues have published several of these works among

other authors (Lewinski and Rozvany 1994, 2007, 2008a, b;

Rozvany and Maute 2011; Rozvany et al. 2006; Sokol and

Rozvany 2012). For brevity, we only reference a few recent

papers but many more exist including those prior to the year

2000. In the same sense, as the topology optimization field

continues to expand past structural responses, analytical

benchmarks covering alternative physics and multi-physics

problems would be an excellent contribution to the field. In

fact, rigorous analytical solutions related to any of the non-

structural topics covered in this review would certainly be

well received.

6.2 Future perspectives

In short, the future of topology optimization is most

exciting and a number of innovative applications await

practitioners in the field. The following subsections, though

certainly not comprehensive, identify some important future

directions and areas that require attention from the field.

Many of these build upon sections previously described in

this document, which we hope may serve as a stepping-

stone for future development.

6.2.1 Design dependent physics

Topology optimization, especially related to compliance

minimization, performs best when applied to problems

where loading is independent of the design. However,

there exist a number of situations where the capabilities of

topology optimization are desirable, but design dependent

physics, including loads, makes implementation challeng-

ing. For example, in the authors’ work related to thermoelas-

tic design for thermal stresses, which is in itself inherently

a material layout problem, the current methods not only

lead to ill-behaved optimization problems, but also pro-

duce solutions that are directly opposed to design practices

related to thermal stresses. Another example includes fluid

flow problems where some methods use different flow mod-

els in the void and solid domains, which leads to different

governing equations for each material phase. These cases

demonstrate the need exists not only for techniques that

can resolve additional challenges from design dependent

physics, but also for new problem formulations that are

more appropriate for the engineering design problems at

hand.

6.2.2 Stress-based topology optimization

Despite the fact that stress is a critical parameter in almost

all structural designs, the overwhelming majority of applica-

tions in structural topology optimization remain concerned

with stiffness criteria, which do not always lead to strength-

optimal designs. While the reasons for this are obvious, we

would be remiss if we did not continue to challenge the

field for innovation in this area. Recent works highlighted

for each method have made considerable progress using

novel applications of techniques deeply rooted in structural

optimization such as constraint aggregation. Despite this

success, we should continue to pursue break-through tech-

niques that can make designing a structure while directly

considering stresses as straightforward as obtaining a mini-

mum compliance solution.

6.2.3 Multidisciplinary and multiphysics applications

The number of topology optimization applications in fields

outside of conventional structures in the last ten years

is impressive. We should continue this trend in not only

alternative applications, but also multiphysics applications

where the design freedom afforded by a coupled design

domain can be best exploited by topology optimization.

This ultimately requires the continued development of effi-

cient coupled sensitivity analysis methods. In addition,

when attempting to extend a topology solution to a new

physical domain, researchers should actively attempt to

address the accepted design criteria for that field rather

than isolating a response that presents the best optimization

problem. Above all, we should remember the most use-

ful alternative physics applications are those that directly

address the specific engineering design issues in that

area.
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6.2.4 Biomedical design and medical applications

Through the completion of this review we have made

the (somewhat unsettling) observation that more optimiza-

tion is performed on aircraft, automobiles, and micro-

devices than biomedical tools and implants that are

placed in the human body! Not to be taken as criti-

cal to anyone, this observation is a compliment to those

who have introduced topology solutions to the medi-

cal industry and a comment on the tremendous poten-

tial of optimization in this field. Despite economic cir-

cumstances, the healthcare industry including medical

research, is ripe with opportunity. The authors’ are opti-

mistic regarding innovative solutions that topology opti-

mization may deliver in biomedical design and encour-

age researchers to explore applications outside of the

“structural-inspired” orthopedic areas highlighted in this

review.

6.2.5 Robust & reliability-based topology

It is well understood that real world systems are not

deterministic due to a number of uncertainties that may

or may not be stochastic in nature. The quantification

of these uncertainties, and their inclusion in design, is

especially important in topology optimization because of

the high sensitivity of results to design criteria such as

loading and boundary conditions. The field is beginning

to address this issue with the application of robust and

reliability-based design to topology optimization as high-

lighted in this review. However, the potential for continued

research in this area is still large to help determine best-

practice techniques for identifying risks and uncertainties in

results.

The field may also begin to consider the uncertainties

introduced by the selection of the physics-based models uti-

lized for analysis. Multiple models usually exist to obtain a

given system response, but differ in the assumptions taken

in their development or solution methods. As a result, dif-

ferent models are more appropriate in some regions of a

design space, some are more computationally expensive

than others, and it is often unknown which is the best to use.

In the general uncertainty quantification (UQ) field, these

types of algorithmic-uncertainties and those associated with

model selection are known as “model-form” or “model”

uncertainties and are currently an active area of research

in the UQ community (Park and Grandhi 2011; Riley and

Grandhi 2011).

6.2.6 Topology to shape & size transition

In practice, the results of a topology optimization often yield

only a conceptual idealization of a component and there is

significant overhead associated with creating more refined

geometric representations and engineering models that are

suitable for subsequent shape and sizing design. While some

methods including Heaviside projections and level set or

phase-field methods, all of which lead to smooth boundary

representation, help to more clearly define topology results,

new methods are required to streamline the transition from

conceptual topology optimization to later stages of design

and analysis. The authors’ imagine that this may be accom-

plished by algorithms that can identify engineering features

in topology results, such as fillets, extrusions, planes, and

beam sections among others. Such a capability, or some

other solution, that can help produce engineering models

for later design stages and high fidelity analysis in an auto-

mated fashion would be extremely desirable in industrial

applications.

6.2.7 Advanced manufacturing capabilities

Advances in additive and freeform manufacturing tech-

nologies offer significant promise in alleviating some

of the challenges related to the practical realization of

designs obtained via topology optimization. Potential ben-

efits that may soon be realized include increased com-

plexity and structural features not obtainable by conven-

tional manufacturing methods at lower cost. The topology

optimization field would be wise to investigate the addi-

tional considerations that are required to efficiently trans-

late topology optimized designs to additive and freeform

manufacturing processes using different materials. These

include improved modeling for residual stresses and inter-

face conditions in addition to process limitation con-

straints such as overhang angle and minimum deposition

tolerances.

6.2.8 HPC and GPU implementation

As the scope of topology optimization problems con-

tinue to grow to in terms of the number of element and

design variables, included physics, and number of sys-

tems/components, so do the demand for computational

resources. One solution to address this growth includes

continued research in the area of high performance com-

puting (HPC) and the utilization of graphics processing

units (GPU). In particular, the capabilities of GPUs are

very interesting. In comparison to conventional proces-

sors that include only a few cores designed for serial

operations, GPUs contain thousands of smaller cores opti-

mized for parallel computing. Thus, new algorithms and

solvers for topology optimization that are compatible with

this massively parallel capability certainly hold the poten-

tial for performance increases measured in orders of

magnitude.
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Klarbring A, Strömberg N (2013) Topology optimization of hypere-

lastic bodies including non-zero prescribed displacements. Struct

Multidiscip Optim 47(1):37–48

Kobayashi MH (2010) On a biologically inspired topology optimiza-

tion method. Commun Nonlinear Sci Numer Simul 15(3):787–

802

Kobayashi MH, Pedro HTC, Coimbra CFM, da Silva AK (2009a) For-

mal evolutionary development of low-entropy dendritic thermal

systems. J Thermophys Heat Transf 23(4):822–827

Kobayashi MH, Pedro HTC, Kolonay RM, Reich GW (2009b) On a

cellular division method for aircraft structural design. Aeronaut J

113(1150):821–831

Kolonay RM, Kobayashi MH (2010) Topology, shape, and sizing

optimization of aircraft lifting surfaces using a cellular division

approach. In: 13th AIAA/ISSMO multidisciplinary analysis and

optimization conference. AIAA/ISSMO, Fort Worth

Kreissl S, Pingen G, Evgrafov A, Maute K (2010) Topology optimiza-

tion of flexible micro-fluidic devices. Struct Multidiscip Optim

42(4):495–516

Kreissl S, Pingen G, Maute K (2011) Topology optimization for

unsteady flow. Int J Numer Methods Eng 87:1229–1253

Krog L, Tucker A, Kemp M (2004) Topology optimization of aircraft

wing box ribs. In: 10th AIAA/ISSMO multidisciplinary analysis

and optimization conference. AIAA/ISSMO, Albany

de Kruijf N, Zhou S, Li Q, Mai YW (2007) Topological design

of structures and composite materials with multiobjectives. Int J

Solids Struct 44:7092–7109

Kwak J, Cho S (2005) Topological shape optimization of geometri-

cally nonlinear structures using level set method. Comput Struct

83(27):2257–2268

Larsen AA, Laksafoss B, Jensen JS, Sigmund O (2009) Topo-

logical material layout in plate for vibration suppression and

wave propagation control. Struct Multidiscip Optim 37(6):585–

594

Lazarov BS, Sigmund O (2011) Filters in topology optimization based

on Helmholtz-type differential equations. Int J Numer Methods

Eng 86(6):765–781

Lazarov BS, Schevenels M, Sigmund O (2012) Topology opti-

mization considering material and geometric uncertainties using

stochastic collocation methods. Struct Multidiscip Optim 46:597–

612

Le C, Norato J, Bruns TE, Ha C, Tortorelli DA (2010) Stress-based

topology optimization for continua. Struct Multidiscip Optim

41(4):605–620

Lee E, Martins JRRA (2012) Structural topology optimization with

design-dependent pressure loads. Comput Methods Appl Mech

Eng 233–236:40–48

Lee E, James KA, Martins JRRA (2012) Stress-constrained topology

optimization with design-dependent loading. Struct Multidiscip

Optim 46(5):647–661

Lee HA, Park GJ (2012) Topology optimization for structures with

nonlinear behavior using the equivalent static loads method. J

Mech Des 134:031004

Leiva JP, Watson B, Iku K (2004) An analytical directional

growth topology parameterization to enforce manufactur-

ing requirements. In: 45th AIAA/ASME/ASCE/AHS/ASC

structures, structural dynamics & materials conference.

AIAA/ASME/ASCE/AHS/ASC, Palm Springs

Leon DM, Souza CE, Fonseca JSO, Silva RGA (2012) Aeroe-

lastic tailoring using fiber orientation and topology optimiza-

tion. Struct Multidiscip Optim 46(5):663–677. doi:10.1007/

s00158-012-0790-8

Lewinski T, Rozvany GIN (1994) Extended exact solutions for least-

weight truss layouts. Part II: unsymmetric cantilevers. Int J Mech

Sci 36:375–398

Lewinski T, Rozvany GIN (2007) Exact analytical solutions for

some popular benchmark problems in topology optimization II:

three-sided polygonal supports. Struct Multidiscip Optim 33:337–

349

Lewinski T, Rozvany GIN (2008a) Analytical benchmarks for topo-

logical optimization IV: square-shaped line support. Struct Multi-

discip Optim 36:143–158

Lewinski T, Rozvany GIN (2008b) Exact analytical solutions for

some popular benchmark problems in topology optimization III:

L-shaped domains. Struct Multidiscip Optim 35:165–174

Li Q, Steven GP, Querin OM, Xie YM (2000) Structural topology

design with multiple thermal criteria. Eng Comput 17(6):715–

734

Li Q, Steven GP, Xie YM (2001a) A simple checkerboard suppres-

sion algorithm for evolutionary structural optimization. Struct

Multidiscip Optim 22(3):230–239

Li Q, Steven GP, Xie YM (2001b) Evolutionary structural optimiza-

tion for connection topology design of multi-component systems.

Eng Comput 18(3):460–479

Li Q, Steven GP, Xie YM (2001c) Thermoelastic topology optimiza-

tion for problems with varying temperature fields. J Therm Stress

24(4):347–366

Li Q, Steven GP, Xie YM, Querin OM (2004) Evolutionary topology

optimization for temperature reduction of heat conducting fields.

Int J Heat Mass Transf 47(23):5071–5083

Liang QQ, Steven GP (2002) A performance-based optimization

method for topology design of continuum structures with mean

compliance. Comput Methods Appl Mech Eng 191(13–14):1471–

1489

Liang QQ, Xie YM, Steven GP (2000a) Optimal topology selection

of continuum structures with displacement constraints. Comput

Struct 77(6):635–644

Liang QQ, Xie YM, Steven GP (2000b) Topology optimization of

strut-and-tie models in reinforced concrete structures using an

evolutionary procedure. ACI Struct J 97(2):322–332

Liang QQ, Xie YM, Steven GP (2001) A performance index for

topology and shape optimization of plate bending problems with

displacement constraints. Struct Multidiscip Optim 21(5):393–

399

Lin CY, Kikuchi N, Hollister SJ (2004) A novel method for bioma-

terial scaffold internal architecture design to match bone elastic

properties with desired porosity. J Biomech 37:623–636

Liu X, Yi WJ (2010) Michell-like 2D layouts generated by genetic

ESO. Struct Multidiscip Optim 42(1):111–123

Liu X, Yi MJ, Li QS, Shen PS (2008a) Genetic evolutionary structural

optimization. J Constr Steel Res 64(3):305–311

Liu Y, Jin F, Li Q, Zhou S (2008b) A fixed-grid bidirectional

evolutionary structural optimization method and its applications

in tunnel engineering. Int J Numer Methods Eng 73:1788–

1810
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