
Received November 27, 2018, accepted December 12, 2018, date of publication December 24, 2018,
date of current version January 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2889395

A Survey of Super-Resolution in Iris Biometrics
With Evaluation of Dictionary-Learning

FERNANDO ALONSO-FERNANDEZ 1, (Member, IEEE),

REUBEN A. FARRUGIA 2, (Senior Member, IEEE), JOSEF BIGUN1, (Fellow, IEEE),

JULIAN FIERREZ 3, (Member, IEEE), AND ESTER GONZALEZ-SOSA 4
1School of Information Technology, Halmstad University, SE 301-18 Halmstad, Sweden
2Department of Communications and Computer Engineering, University of Malta, MSD 2080 Msida, Malta
3Biometrics and Data Pattern Analytics Lab–ATVS, Escuela Politecnica Superior, Universidad Autonoma de Madrid, 28049 Madrid, Spain
4Nokia Bell Labs, 28045 Madrid, Spain

Corresponding author: Fernando Alonso-Fernandez (feralo@hh.se)

This work was supported by the EU COST Action under Grant IC1106. The work of F. Alonso-Fernandez and J. Bigun was supported in
part by the Swedish Research Council, in part by the Swedish Innovation Agency, and in part by the Swedish Knowledge Foundation
through the CAISR/SIDUS-AIR projects. The work of J. Fierrez was supported by the Spanish MINECO/FEDER through the
CogniMetrics Project under Grant TEC2015-70627-R. The authors acknowledge the Halmstad University Library for its support with the
open access fees.

ABSTRACT The lack of resolution has a negative impact on the performance of image-based biometrics.
While many generic super-resolution methods have been proposed to restore low-resolution images, they
usually aim to enhance their visual appearance. However, an overall visual enhancement of biometric images
does not necessarily correlate with a better recognition performance. Reconstruction approaches thus need
to incorporate the specific information from the target biometric modality to effectively improve recognition
performance. This paper presents a comprehensive survey of iris super-resolution approaches proposed
in the literature. We have also adapted an eigen-patches’ reconstruction method based on the principal
component analysis eigen-transformation of local image patches. The structure of the iris is exploited by
building a patch-position-dependent dictionary. In addition, image patches are restored separately, having
their own reconstruction weights. This allows the solution to be locally optimized, helping to preserve local
information. To evaluate the algorithm, we degraded the high-resolution images from the CASIA Interval
V3 database. Different restorations were considered, with 15 × 15 pixels being the smallest resolution
evaluated. To the best of our knowledge, this is the smallest resolutions employed in the literature. The
experimental framework is complemented with six publicly available iris comparators that were used to carry
out biometric verification and identification experiments. The experimental results show that the proposed
method significantly outperforms both the bilinear and bicubic interpolations at a very low resolution. The
performance of a number of comparators attains an impressive equal error rate as low as 5% and a Top-1
accuracy of 77%–84% when considering the iris images of only 15 × 15 pixels. These results clearly
demonstrate the benefit of using trained super-resolution techniques to improve the quality of iris images
prior to matching.

INDEX TERMS Iris hallucination, iris recognition, eigen-patch, super-resolution, PCA.

I. INTRODUCTION

Iris recognition systems are known to achieve very high
accuracywhen captured in controlled environments and using
the near infrared (NIR) spectrum. Nevertheless, recognition
in applications such as mobile biometrics, surveillance and
recognition at a distance has not reached the same level of
maturity [1]. In these environments, the acquisition cannot
be controlled, and performance can significantly drop due

to the lack of pixel resolution [2]. Furthermore, smart cards
or remote applications may further reduce the quality of
the image using JPEG2000 compression [3]. In this con-
text, super-resolution techniques can be used to enhance the
quality of low resolution images, in order to improve the
recognition performance of biometric systems [4].

Two main categories of super-resolution methods are usu-
ally distinguished in the literature [5]: reconstruction-based
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FIGURE 1. Structure of the eigen-patch hallucination system.

and learning-based methods. Reconstruction-based methods
register and fuse a number of consecutive low-resolution
images to estimate the high-resolution image. These methods
are known to achieve relatively small magnification factors
and are most suitable to restore static and non-rigid objects.
On the other hand, learning-based methods use coupled
training dictionaries to learn the mapping relations between
low- and high-resolution image pairs. Learning-based meth-
ods have the advantage of estimating the high-resolution
image using only one low-resolution image as input,
and they are also known to achieve higher magnification
factors [5].
In recent years, there has been an increased interest in

the application of super-resolution to different biometric
modalities, such as face, iris, gait or fingerprint [4]. How-
ever, despite the vast literature of super-resolution meth-
ods [6], [7], such techniques are designed to restore generic
images. They do not exploit the specific structure of biomet-
ric images, which causes the solution to be sub-optimal [8].
Instead, they try to improve visual clarity and perception,
usually by optimizing image fidelity measures such as the
Peak Signal-to-Noise Ratio (PSNR) or the Structural Sim-
ilarity (SSIM) index. But improving the visual quality of
biometric images does not necessarily correlate with a better
recognition performance [4], [9], which is the ultimate aim of
applying super-resolution to biometrics [4]. Thus, adaptation
of super-resolution techniques to the particularities of images
from a specific biometric modality is needed to achieve a
more efficient upsampling [10].
Consequently, this paper addresses the problem of restor-

ing the resolution by exploiting the structure of the iris
to improve recognition performance. After a comprehen-
sive survey of the literature in super-resolution applied to
iris biometrics, we investigate the use of local iris super-
resolution based on Principal Component Analysis (PCA).
In this learning-based approach, an Eigen-transformation is
computed on each local patch of the input low-resolution

image (Figure 1). For this purpose, a dictionary database
of coupled low- and high-resolution patches is employed
(Figure 2). Given a low-resolution patch, it is projected onto a
low-dimensional subspace which captures most of the infor-
mation contained in the patch. The low-dimensional eigen-
space for each patch position is computed by applying PCA
to the set of collocated low-resolution patches of the training
dictionary. The high-resolution patch is then reconstructed by
linear combination of the collocated high-resolution patches
of the dictionary. It is important to emphasize that each patch,
which caters for a specific region of the iris, has its own dis-
tinct coupled dictionaries. Also, each input patch is allowed to
have its own reconstruction weights, so the solution is locally
optimized. Reconstructing each patch separately, with its
own optimum weights, allows to better recover local texture
details. This is essential due to the prevalence of texture-based
methods in ocular biometrics [1].

The present paper extends previous studies [11], [12] with
additional experiments. A related method was proposed and
studied for face super-resolution by Chen and Chien [13],
which was the initial source that motivated the method stud-
ied here. The proposed iris super-resolution method was
evaluated using a dataset of 1,872 iris images captured using
a near infrared sensor. High-resolution images, with a size
of 231×231 pixels and an average iris diameter of 210 pixels,
were down-sampled to different scales, with the smallest
resolution being of 15×15 pixels. Such simulated downsam-
pling is a common approach in the literature, due to the
lack of databases containing very low-resolution images and
their corresponding high-resolution reference images [14]. In
addition to traditional image fidelity metrics between recon-
structed and reference high-resolution images, in this paper
we also report biometric verification and identification exper-
iments using reconstructed iris images. To the best of our
knowledge, this is one of the few iris super-resolution stud-
ies which reports identification experiments. In comparison
to [11], [12], we also incorporate four new iris comparators
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FIGURE 2. Dictionary construction of coupled low- and high-resolution patches using the position-patch
principle.

to our experimental framework [15]–[18] in addition to the
two previously employed [19], [20].
Simulation experiments conducted in this paper show that

the proposed method achieves accuracies superior to those
attained using bilinear and bicubic interpolation schemes.
It is observed that recognition rates degrade more rapidly
with both bilinear and bicubic interpolation as resolution
decreases. At the smallest iris resolution (15×15 pixels), two
particular comparators stand out, with EER values of ∼5%
and a Top-1 accuracy of 77-84% in this extreme case. It
is also shown that recognition performance is not signifi-
cantly degraded with any given comparator until a resolu-
tion of only 29×29 pixels when using our proposed PCA
iris super-resolution method. This allows to reduce the stor-
age or data transmission requirements, or to increase the
distance between the user and the iris sensor, two impor-
tant requirements for biometric technologies to achieve mas-
sive adoption [2]. We have also observed that, despite iris
images reconstructed with PCA have better subjective qual-
ity, the image fidelity measures employed (PSNR and SSIM)
do not have the same sensitivity to reductions in resolu-
tion. This is also acknowledged in other studies which have
pointed out that image fidelity metrics do not behave equally
under the same image degradation [21], [22]. In addition,
each comparator has different behavior when resolution is
reduced. Most of the comparators show a stable authenti-
cation performance until a certain resolution is employed,
but the cut-off resolution is different for each one. On the
other hand, one particular comparator does not suffer a
significant degradation in performance, giving a consistent
accuracy across nearly all resolutions. These differences in
behavior of image fidelity metrics and biometric compara-
tors among themselves highlight the necessity of adapting
super-resolution techniques to cater for the particularities of

a specific biometric modality [10]. It is also crucial not to
assess only the fidelity of the reconstruction in the visual
sense, but to evaluate the capability of the reconstruction
algorithm to improve authentication performance with the
particular recognition features to be employed [9], [23].

The rest of the paper is organized as follows. The remaining
of this section summarizes the main contributions of this
paper. In Section II, we provide a comprehensive overview
of the application of super-resolution techniques to iris bio-
metrics. This is followed in Section III by the description
of the proposed super-resolution algorithm, which adopts
low- and high-resolution coupled dictionaries to learn an
optimal up-scaling function for each patch. Then, this
super-resolution algorithm is studied for iris biometrics.
While this method is employed for iris super-resolution, it is
general enough to be applied to other biometric modali-
ties. The experimental framework, including database, pro-
tocol, and iris recognition algorithms employed, is given in
Section IV, while results are given in Section V. Conclusions
are finally drawn in Section VI.

A. CONTRIBUTIONS

The contributions of this paper are as follows:
• A survey of super-resolution applied to iris biometrics

(Table 1). We give a comprehensive overview of ref-
erences found in the literature (we focus primarily on
papers that appeared in IEEE Xplore, ScienceDirect or
SpringerLink, as these appear to currently be the major
sources of publications in the biometrics field). We pro-
vide a basic algorithmic descriptions of each approach,
including the database employed for its evaluation,
the smallest size of input low-resolution images consid-
ered, the features used for recognition experiments, and
the reported recognition results (if any). We also provide
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TABLE 1. Overview of existing iris super-resolution works. Smallest low-resolution (LR) size refers to the smallest size of the input data used in the
reported experiments (ED=Eye Diameter, refers to the average diameter of the iris in pixels; PI=Polar Image). Simulated downsampling indicates if the
images employed in the study have been down-sampled from high-resolution reference images. The reported accuracy corresponds to the best accuracy
obtained with the smallest iris size (shown in column 7). In all cases, near-infrared (NIR) data is used, except in the works [25], [34], [42], [45]. All other
terms are explained in the text or in referenced papers.

a taxonomy of existing iris super-resolution methods
based on different factors (Figure 3), which include the
domain of operation (pixel or feature domain), the input
data source (iris image, polar image, or feature represen-
tations), or the spatial representation (if the method uses
complete images or local image patches to carry out the
reconstruction).

• A generic super-resolution method which employs
low- and high-resolution coupled dictionaries to learn
the optimal up-scaling function for each patch. This
approach is able to recover important texture detail
which is essential for most biometric recognition

systems, including iris. Following the work of Chen
and Chien initially developed for face biometrics [13], a
PCA Eigen-transformation is computed on local patches
of the input low-resolution image. The high-resolution
patch is then hallucinated as a linear combination of col-
located high- resolution patches contained in the training
dictionary. This way, every patch has its own optimal
coefficients, which allows to reconstruct patches that are
locally optimal and thus, to recover more texture detail.
We evaluate our general super-resolution approach using
iris images of resolution as low as 15×15 pixels (corre-
sponding to an average iris diameter ∼13 pixels). To the
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FIGURE 3. Taxonomy of existing iris super-resolution reconstruction methods.

best of our knowledge, this iris size is much smaller than
any other work reported in the literature, apart from ours
(see Table 1). Another benefit is that, unlike other meth-
ods that restore the normalized polar image, our method
is agnostic of the feature extraction method used, since it
is applied directly on the iris low-resolution image. This
makes the proposed method generic and independent
from the iris comparator used. It also allows the use of
features which are extracted directly from iris images
without conversion to polar coordinates, see [50], [51].

• Multi-algorithmic evaluation. In our previous works
[11], [12], we used only two iris comparators for the
experimental study. Here, we use six different pub-
licly available iris feature extraction methods from
popular and state-of-the-art schemes [52] based on
1D log-Gabor filters [19], the SIFT operator [20], [50],
local intensity variations in iris textures [15], the
Discrete-Cosine Transform [16], cumulative-sum-based
grey change analysis [17], and Gabor spatial filters [18].
The SIFT method exploits local features where discrete
key-points are extracted directly from the iris region,
while the other methods exploit other texture properties
from the iris polar image computed according to Daug-
man’s rubber sheet model [53].

• Comprehensive evaluation on a database of near-

infrared iris images. We employ in our experiments
1,872 images from the CASIA-Iris Interval v3 database
of the Institute of Automation, Chinese Academy of
Sciences (CASIA) [54]. High-resolution images, of size
231×231 pixels and an average iris diameter of 210 pix-
els, are sub-sampled to reduce their size by 1/2, 1/4, 1/6,
1/8, 1/10, 1/12, 1/14 and 1/16. The latter corresponds
to an image size of just 15×15 pixels and an average
iris diameter of ∼13 pixels. The performance of the
iris super-resolution algorithm is measured in terms of
PSNR and SSIM full reference metrics, which compute
the fidelity between the original high-resolution image
and the restored ones. Moreover, we carry out verifica-
tion and identification experiments with the mentioned
iris recognition algorithms, being one of the few studies
in the literature that reports identification experiments.
This is also the most extensive and up-to-date experi-
mental framework in the context of iris super-resolution
literature, providing extensive validation experiments.

II. SUPER-RESOLUTION FOR IRIS BIOMETRICS

Super-resolution (SR) techniques aim to recover the missing
high resolution (HR) image Y given a low-resolution (LR)
imageX . The low-resolution image is considered as awarped,
blurred and down-sampled version of the high-resolution
image. This can be mathematically expressed using

X = DBWY + n (1)

where W is the warping matrix, B is the blurring kernel
(also called point spread function in some studies), D is
the downsampling matrix, and n represents additive noise.
For simplicity, some works omit the warp matrix and noise,
leading to

X = DBY (2)

Super-resolution techniques are classically divided into
two categories [5]: reconstruction- and learning-based meth-
ods. Reconstruction-based methods register and fuse a num-
ber of low-resolution images to estimate the high-resolution
image. Several images are aligned and combined in a
pixel-wise manner to obtain a reconstructed image. Given a
set ofN imagesX i, the super-resolved image Ỹ is estimated as

Ỹ (x, y) =

N
∑

i=1
wiX i(x, y)

N
∑

i=1
wi

(3)

where Ỹ (x, y) is the intensity value at pixel (x, y) of the
super-resolved image, X i(x, y) is the intensity value at the
same location of the input image i, andwi are the combination
weights. While these methods can exploit the correlation and
redundancies present inmultiple frames to restore themissing
detail, they cannot be employed in cases where only one
image is available. Moreover, these methods are known to fail
to reconstruct dynamic non-rigid objects and can only achieve
small magnification factors. On the other hand, learning-
based methods use coupled low- and high-resolution dic-
tionaries to learn the mapping relations between low- and
high-resolution image pairs in order to synthesize a high-
resolution image from the observed low-resolution one.
Learning-based methods have the advantage of needing only
one image as input, and they generally allow to achieve higher
magnification factors [5].
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FIGURE 4. Samples of databases used in iris super-resolution research. Information is also given regarding: the distance between the
individual and the acquisition sensor, the number of available images or videos, the number of individuals captured, and the average iris
diameter in pixels of the images contained in the database (ED=Eye Diameter).

A. TAXONOMY OF IRIS SUPER-RESOLUTION ALGORITHMS

Table 1 gives a summary in chronological order of existing
works on iris super-resolution. Apart from the distinction
between reconstruction- and learning-based methods, they
can be also categorized based on other factors, which are
summarized in Figure 3:

• Domain of operation (pixel or feature domain). The
majority of studies work in the pixel domain (top and
middle part of Table 1), estimating pixel intensity val-
ues of the enhanced image. As a result, a new image
with improved resolution is produced, which translates
to a visual related enhancement. A few studies carry
out the enhancement in the feature space (bottom part
of Table 1), shifting the reconstruction operation from
the pixel domain to the feature domain employed for
recognition [46]–[49]. The latter approaches explicitly
aim at improving the recognition performance, instead
of the visual appearance. On the other hand, they have
the disadvantage of being tied to a particular feature
representation.

• Type of data used as input for enhancement (iris
image, polar image, or feature representation). This
is indicated in column 3 of Table 1. The majority
of pixel-based methods super-resolve the polar image
directly [53], while others reconstruct the entire iris

image. The latter has the advantage of being usable
with feature extraction methods that do not employ polar
representation [50], [51]. Feature-based methods, on the
other hand, receive as input a feature representation of
the low-resolution image. Then, instead of producing
an enhanced image as output, they estimate a feature
representation of the reconstructed image.

• Spatial representation employed (complete image or
local patches). This is indicated in column 4 of Table 1.

Some approaches, also called global methods, carry
out reconstruction of the complete image. Patch-based
methods, on the other hand, hallucinate local patches
separately. The reconstructed high-resolution patches
are then stitched together to form the high-resolution
image. This allows each patch to have its own opti-
mal reconstruction coefficients, providing better quality
reconstructed prototypes with better local detail and
lower distortion [8].

In addition to the aforementioned properties, we also pro-
vide information in Table 1 regarding:

• The database employed (indicated in column 5).
As mentioned in the caption, nearly all studies make
use of near-infrared (NIR) data. Some sample images
from each database are also shown in Figure 4, together
with their most representative information. In particu-
lar, we indicate: the distance to the acquisition sensor,
the number of images or videos available, the num-
ber of individuals, and the average iris diameter of
the images contained in the database. The following is
a short description of each database, highlighting its
most important features not contained in Figure 4. The
Multiple Biometric Grand Challenge Portal database,
or MBGC Portal [55], contains face video sequences
of people walking naturally through a portal located
3m from a fixed-focal-length NIR camera (Pulnix TM-
4000CL). It also contains iris images of good qual-
ity captured with a close-up NIR iris sensor from the
same individuals. The MBGC Iris video database con-
tains videos of irises collected using a close-up NIR
iris camera (Iridian LG EOU 2200). The CASIA Long

Range database contains face images captured at 3 feet
(0.9 m) with a high resolution NIR camera. The CASIA
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Iris Interval database has iris images captured with a
close-up NIR sensor. The CASIA Iris Mobile v1.0 and
v2.0 databases contain face images at varios distances
captured with a NIR imaging module connected to a
smart-phone by USB. TheQ-FIRE database [56] has iris
videos captured at 5, 7, and 11 feet away with a Dalsa
4M30 infrared camera and a Tamron AF 70-300mm
telephoto lens. And finally, the VSSIRIS database [57].
This is the only database in visible range, contain-
ing images captured using the rear camera of two
different smart-phones (Apple iPhone 5S and Nokia
Lumia 1020).

• The number of low-resolution images used by the
reconstruction algorithm to generate a high-resolution
representation (indicated in column 6). Existing
reconstruction-based methods employ a variable
number which goes from four to fifteen, while
learning-based algorithms in the pixel domain only
employ one. It is also found that many learning-based
algorithms working in the feature domain employ sev-
eral images as input. However, since the mapping
between low- and high-resolution manifolds is learned,
we classify these methods as learning-based. Indeed,
nothing prevents learning-based methods to employ
more than one image, although one of their main advan-
tages is that they can generate a high-resolution repre-
sentation from only one low-resolution sample.

• The smallest size of the input low-resolution image
(indicated in column 7). Some databases are natu-
rally captured at a certain distance, as it can be
observed in Figure 4. For example: CASIA Iris Mobile
v2.0 (with images having an average iris diameter
of 132 pixels), Q-FIRE (110 pixels), or the MBGC
Portal database (90 pixels). To achieve a smaller image
size, a number of studies perform sub-sampling of
high-resolution images (indicated in column 8). Sim-
ulated downsampling is a common practice in the
super-resolution literature [14], [58], due to the lack of
databases with very low-resolution images. For exam-
ple, in the work [46], the authors down-sampled images
from the MBGC Iris video database to an average iris
diameter of 50 pixels. Images of the same database
were reduced to an average diameter of 20 pixels
in the work [30]. The CASIA Interval database has
been also used for the same purpose in a number of
studies [11], [12], [38], [44]. The average iris diameter
of sub-sampled images in these studies ranged from
11 to 53 pixels. Finally, in our studies with the VSSIRIS
database [42], [45], we down-sampled iris images to an
average diameter of 13 pixels.

• The features used to carry out recognition experiments
(indicated in column 9). Most studies only employ
the popular Iris Code representation [53]. Very few
works compare two or more feature extraction methods.
Among those, the present paper stands out as the only
one employing six different comparators.

• The biometric authentication results reported (indicated
in columns 10-11) when images of the smallest size are
used for recognition purposes. The present paper is the
only one, together with [37], which reports identification
experiments. We further analyze these authentication
results by plotting in Figure 5 the verification accuracy
given in Table 1 against the iris size. Although the results
are not directly comparable due to different databases
and feature extraction methods being used, there is an
inverse proportion between the EER and the diameter
of the iris. Among the methods making use of very
small iris images, our works with PCA [11], [12], [42]
are among the most competitive. Recent studies adapt-
ing deep-learning frameworks [44], [45] still report
an accuracy significantly worse in some cases.
There is one reconstruction-based method using PCT
enhancement [30] which also stands out for its excellent
performance with an iris diameter of only 20 pixels. It
is also worth noting that other works employing images
with a higher diameter do not provide a significantly
better performance, see for example the work [38],
based on Multi-layer Perceptrons, or the work [46],
based on Bayes MAP probability estimation. The same
appreciation can be done with the works employing the
MBGC Portal, Q-FIRE or CASIA Mobile databases.
Although these employ images with a iris diameter (in
the range of 90-130 pixels), their performance is not
much better in some cases. These results suggest that
there is still room for improving the performance of
super-resolution methods in iris biometrics.

FIGURE 5. Verification accuracy reported by existing iris super-resolution
studies vs. employed iris size (in pixels). The algorithm and/or database
used is also mentioned.
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In the remaining of this section, we provide a brief descrip-
tion of the works summarized in Table 1, categorized by the
domain of operation (pixel or feature domain), and by the
upsampling approach (reconstruction- or learning-based).

B. RECONSTRUCTION-BASED METHODS IN THE

PIXEL DOMAIN

Reconstruction-based methods for iris images started
in 2006 with the work of Barnard et al. [24], where they
employed a multi-lens imaging hardware system to capture
multiple iris images. They carried out the reconstruction
by modelling the least square inverse problem associated
with Equation 1. For this purpose, the blurring kernel, B,
the warp function, W , and the downsampling function, D,
were estimated (the noise termwas omitted). To minimize the
reconstruction error, they used the conjugate gradient method
(CGLS). In their experiments, they employed up to 15 low-
resolution images as input. They measured the quality of the
reconstruction by computing the Hamming Distance between
the Iris Code of a reference high-resolution image, and the
corresponding reconstructed image. Experiments showed a
reduction in the Hamming Distance in comparison with the
distance to a low-resolution image.
Later in 2007, Fahmy [25] proposed an algorithm

where high-resolution iris images were estimated using an
auto-regressive model to fuse a sequence of low-resolution
iris images. He first applied a cross-correlation model to reg-
ister iris images from consecutive frames of videos captured
3 feet away of the subject. Then, an iris image which is 4-
times higher in resolution was constructed from every 9 low
resolution images. This process was iterated until an image
which is 16-times higher was obtained. Two drawbacks of
this method are that registration was done using the whole eye
image, and that they employed only focused images. These
assumptions can be problematic in unconstrained conditions,
where off-angle or out-of-focus images may be present.
Video data from the Multiple Biometric Grand Challenge

database [55] has been used in several studies [26]–[29],
where several polar images were aligned and combined pixel-
wise to obtain a reconstructed image according to Equation 3.
Hollingsworth et al. [29] created a single average polar image
from 10multiple frames of a frontal iris video. Data employed
was from the MBGC Iris NIR database, having an average
iris diameter of 220 pixels. The ten best focused images
from each video were selected by employing the filter kernel
proposed in [59]. They tested both the mean and median
fusion, concluding that the mean is better, since it employs
statistics from all available pixels. The median, on the other
hand, only employs statistics of one or two pixels. They
achieved an EER of 0.7% by fusion of 10 frames, compared
to an EER of 1.56% obtained by employing only one-gallery
and one-probe frame. Nguyen et al. [28] employed the robust
mean, which consist of fusing intensity values of an individ-
ual pixel over multiple frames by taking the mean of values
within two standard deviation from the mean. Data employed
was from the MBGC Portal NIR database, with an average

iris diameter of 90 pixels. Authentication experiments were
done by comparing super-resolved images to high resolution
still iris images captured with a close-up NIR camera, which
are also provided with the MBGC Portal dataset (Figure 4).
The authors argued that in unconstrained environments like
the MBGC Portal database, extreme pixel values can appear
in different locations in different frames due to reflections,
shadows, eyelids, or eyelashes. For this reason, the proposed
approach is more robust against unexpected extreme pixel
values. The obtained EER is of 4.1%, contrasted to 4.6%
when the approach of [29] was applied.

Considering that frames in an iris video sequence can
have different quality when captured in adverse conditions,
Nguyen et al. [26], [27] employed quality measures to com-
pute the weights of Equation 3. In the paper [26], they
employed the focus level of each frame, which was mea-
sured by evaluating the high frequency total energy of the
image. A high-resolution image was then estimated using
the focus-score weighted average of the available frames.
Heavily de-focused frames were discarded from further pro-
cessing, while the others were fused to super-resolve the iris
image. With the proposed approach, they achieved an EER
of 2.1% using the MBGC Portal database. In the paper [27],
the authors combined four quality factors (focus, off-angle,
motion blur, and illumination variation) into a unified quality
score for each iris frame. For this purpose, they employed the
Depmster-Shafer theory proposed in [60]. Another novelty of
this work was that instead of using the conventional weighted
average of Equation 3, frames were fused by using an expo-
nential weighted average. Experiments were also carried out
to determine the optimum number of frames for fusion. The
authors concluded that 5 is the optimal number of frames to
fuse, although they acknowledged that a different dataset may
lead to a different number if the acquisition conditions are
different. The reported EER in this case is of 0.7%. When
the number of frames increases beyond 5, they observed that
the poor quality of the additional frames counteracted the
introduction of extra information. Following a similar vein,
Othman et al. [32], [33] expanded this idea by computing
the quality of local image patches. For this purpose, they
estimated a Gaussian Mixture Model (GMM) of clean iris
texture distribution. Then, during the fusion, each pixel was
weighted individually with the quality value of the associ-
ated local patch, instead of employing a single quality score
for the whole image. This way, regions with better quality
contribute more in the reconstruction of the fused image
than regions with poorer quality. Using the MBGC Portal
database, they reported an EER of 2.58%, compared to an
EER of 4.9% obtained by simple pixel intensity average.
They also employed the Q-FIRE database, which contains
videos captured at 5, 7, and 11 feet awaywith a telephoto lens.
The number of input images employed for reconstruction
varied from 2 to 10, with the frames ranked according to
their quality. In the experiments, the authors observed that
performance with Q-FIRE improved until the best 6 frames
were chosen, then the error increased when extra frames were
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added. The reported FRR@ FAR=0.1%with this database is
of 2.54% (images captured 5 feet away), 4.37% (7 feet), and
2.04% (11 feet).
Some works have included specific preprocessing for

image enhancement purposes. For example, Jillela et al. [30]
applied Principal Component Transform (PCT, variation of
PCA) to polar iris images of the MBGC Iris database
in order to highlight the variance information among the
pixel intensity. Then, the enhanced images were fused
by image averaging. The optimum number of frames per
video was empirically chosen as 6, with the best quality
frames selected manually. Low-resolution data was gen-
erated by sub-sampling the original images by a factor
of 1/2, 1/4, and 1/8. This resulted in low-resolution image
sets with an average iris diameter of 110, 50, and 20 pix-
els, respectively. Authentication experiments were done by
comparing super-resolved images to a separate set of orig-
inal high-resolution images set aside as gallery set. The
reported EER using images with the lowest resolution
is of 1.76%. When no reconstruction is carried out (i.e.
each low-resolution frame is compared separately against
gallery frames), the reported EER is of 6.09%, highlight-
ing the benefit of the proposed approach. In the work by
Hsieh et al. [34] the authors incorporated optical wavefront
coding techniques [61] to increase the depth of field (DoF)
in long-range iris portal acquisition. This was achieved by
optimizing the optical architecture of the acquisition hard-
ware. An extended depth of field (EDoF) allows a higher
capture volume as the subjects walks to the camera. They
also exploited image quality measures to weight the con-
tribution of low-resolution images by exponential weighted
average. They employed their own video data from 16 sub-
jects captured with a telephoto lens. Enrolment images were
captured with subjects standing at 3m, and test images were
captured at 11 defocus positions (from −15 to +15 cm in
3 cm intervals). For each defocus position, two images were
captured, one without the EDoF hardware, and one with the
EDoF hardware. Quality of each frame was assessed by cal-
culating the Hamming distance between all possible pairs of
the 11 test images, and then computing the average distance
of all pair-wise comparisons associated to each test image.
A high quality image is expected to have a lower average
value, and vice versa. A novelty of this approach with respect
to the already mentioned approaches of this section is that
reconstruction is made in local patches. When the 11 test
images captured with the EDoF hardware are fused following
the proposed method, the reported recognition results are
EER=0%, and FFR=0% at a FAR of 0.1%. On the contrary,
when the images are captured without the EDoF hardware,
the paper reports an EER of 11.5%, and a FRR of 37% at a
FAR of 0.1%.
The CASIA Long Range database has also been

used in a number of studies [35], [36]. Deshpande and
Patavardhan [35] employed Gaussian Process Regres-
sion (GPR) and Enhanced Iterated Back Projection (EIBP)
to super-resolve iris images. The best frame was selected

as reference for alignment purposes by using the Discrete
Cosine Transform. To account for local image deforma-
tions, they carried out reconstruction in local patches of
the polar image. A threshold is applied to the intensity
variance of each patch. If the variance is higher than the
threshold, the patch is reconstructed with GPR, otherwise it
is reconstructed with EIBP. The GPR is a time consuming
process, therefore patches with less amount of information
(measured by their variance of intensity) are processed with
the faster EIBP algorithm. Performance was evaluated in [35]
by downsampling iris images, and then super-resolving them.
The authors reported several image fidelity measures in
the pixel domain between original high-quality images and
reconstructed images. Recognition results were also reported,
with a FAR of 3.86% and a FRR of 4.21%. although no
information is given regarding the size of the low-resolution
images involved in the authentication experiments. The same
authors [36] employed an enhanced Total Variation regular-
ization algorithm [62] to super-resolve iris images. Low res-
olution input images were first de-blurred in order to remove
motion blur and then, motion estimation between consec-
utive image frames was computed. In the regularization
process, the estimated blur kernel and motion vectors were
taken into account to iteratively generate a high resolution
reconstructed image. The authors employed six polar images
of 300×40 pixels to estimate one super-resolved image of
twice the input resolution (600×80 pixels). The authors
evaluated the algorithms by reporting several image fidelity
and textural measures between original high-quality images
and reconstructed images. However, no person authentication
experiments were reported. Iterative back projection was also
employed by Ren et al. [31] in a previous work. A frame
was randomly selected as reference for alignment, which
was done in the Fourier domain. The output high-resolution
image was initialized by upsampling the first low-resolution
frame using nearest neighbor interpolation. Then, the esti-
mated high-resolution image was iteratively updated with
the gradient of the total square error in the pixel domain
between the reference image and the low-resolution frames.
When the total square error achieved a threshold value,
the iterative process was finished. The authors employed
iris images from the CASIA 3.0 database in their experi-
ments. Low-resolution data was generated by sub-sampling
polar images of 512×64 pixels to reduce their size by a
factor of 1/2, and 1/4. The resulting polar images were of
size 256×32, and 128×16 pixels, respectively. The EER
reported by the authors without reconstruction is of 12.75%
(with polar images of 256×32 pixels) and 13.7% (polar
images of 128×16). Sub-sampled polar images were then
reconstructed to their original size of 512×64. The num-
ber of input images evaluated for reconstruction was 2,
4 and 6, concluding that 4 images is a good compro-
mise between performance and processing time. With the
proposed algorithm, the reported EER is of 6.87% and
8.69% (using polar images of 256×32 and 128×16 pixels,
respectively).
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C. LEARNING-BASED METHODS IN THE PIXEL DOMAIN

Learning-based iris reconstruction was first proposed
in 2003 by Huang et al. [37]. In this method, the proba-
bilistic relation between different frequency bands is learned,
in order to predict the missing high-frequency informa-
tion of low-resolution images. It is based on the general
purpose method by Freeman et al. [63]. The training set
of high-resolution polar images is first pre-processed as
follows. Each high-resolution image is separated in three
bands: low-frequency, by downsampling and upsampling
the high-resolution image; medium-frequency, by applying a
Circular Symmetric Filter (CSF); and high-frequency, by sub-
tracting the high-resolution and the low-frequency images.
Images are then divided into patches, which each position
having associated a set of low-, medium-, and high-frequency
patches. Given an input low-resolution image to be recon-
structed, it is first up-sampled by cubic interpolation. Then,
a feature image is constructed by applying a Circular Sym-
metric Filter (CSF) to extract the medium-frequency infor-
mation. The image is then divided into patches. For each
patch, the 200 patch sets of the training set whose feature
vectors are closest to the input patch are selected using
the L1 distance. The best matching set from this sub-set
is then computed based on spatial constraints at adjacent
patch borders, and the corresponding high-frequency patch is
selected. A high-frequency image is then obtained by stitch-
ing together the resulting high-frequency patches. The output
reconstructed image is finally obtained by adding the high-
frequency image to the test input image. In the experiments
reported in this paper, low resolution data was generated
by sub-sampling images from the CASIA dataset to three
different low-resolutions (not specified). The experiments
report a significant improvement in rank-1 and EER metrics
in comparison with cubic interpolation, and with the original
method described in [63].

Shin et al. [38] employed multiple Multi-layer Percep-
trons (MLP) to restore local iris patches. Each block of
the input image is classified into one of 3 types (verti-
cal, horizontal, and non-edge) based on difference of pixel
intensities. Three MLPs are trained, one per type of block,
to estimate selected pixel values of the high-resolution patch.
An advantage of this method is that it does not require
accurate image registration. Reconstructed blocks are then
assembled together, and missing pixels are filled by bilinear
interpolation. This is because the MLPs are not trained to
predict all pixels of the high-resolution patch, but only a
part of them. Low-resolution data was generated in [38] by
sub-sampling images from the CASIA Interval v3 database
to 1/3 and 1/4 of the original image size. This resulted in
image sets with an average iris diameter of 70 and 53 pix-
els. The MLPs were trained using 12 randomly selected
images from different eyes. The reported EER using the
smallest images is of 1.39%, compared with 1.49% by bilin-
ear interpolation, or 0.89% with original high-resolution
images.

Sparse representation in over-complete dictionaries was
used in the work of Aljadaany et al. [40]. Traditional
approaches in this regard, such as K-Singular Value Decom-
position (K-SVD), have the limitation that the number of
dictionary items and the number of sparse coefficients has to
be predefined. To overcome this limitation, the authors used
a non-parametric Bayesian approach, named Beta Process
(BP), to build the discriminative over-complete dictionary
and discover the necessary parameters automatically. Dur-
ing the training phase, high-resolution polar images are
down-sampled to create their low-resolution counterparts,
which are then used to learn the relationship between
high- and low-resolution patches. The dictionaries in both
manifolds are assumed to have the same sparse weights,
which simplifies the reconstruction process. During the test-
ing phase, sparse weighs of the low-resolution image are
first computed. Then, the weights are transferred to the
high-resolution manifold, which are then used to calcu-
late the conditional expectation of a high resolution iris
image. This approach was evaluated in a subset of the
CASIA database. Low-resolution images were generated by
sub-sampling images to 25% of their original size and adding
Gaussian noise. The authors reported and improved recogni-
tion performance with the proposed method (EER ∼2%), in
comparison with linear interpolation (EER ∼3%).

Instead of synthesizing high-resolution iris images,
Liu et al. [39] learned a non-linear mapping function in
which homogeneous (high resolution-high resolution) and
heterogeneous (high resolution-low resolution) comparison
scores are non-linearly mapped into a common high dimen-
sional space. In this space, separation between inter- and
intra-class distributions are maximized regardless whether
they originate from homogeneous or heterogeneous sam-
ples. This converts the multi-class problem (discriminat-
ing between different identities) into a two-class problem
(discriminating between inter- and intra-class comparisons).
Each class is composed of two sets: homogeneous compar-
isons (high-to-high resolution) and heterogeneous compar-
isons (high-to-low resolution). During the training phase, all
possible inter/intra-class comparisons of training data are car-
ried out. Polar images are divided into patches, and compar-
isons are done for each patch separately, so given two images,
their comparison results in a set of patch-scores. During the
testing phase, a low-resolution test sample is compared to the
gallery of high-resolution templates, and the resulting scores
are mapped to the learned common space, where a rejec-
tion/acceptance decision can be made. The authors employed
the Q-FIRE database. Data captured at 5 and 11 feet away
were selected respectively as high- and low-resolution sets.
Eye detection and iris segmentation were carried out in
the input iris videos, resulting in multiple images available
for each subject. Heavily de-focused or occluded images
were discarded for further use. A total of 1400 images
(700 low- and 700 high-resolution images) from 100 different
classes were used as training data. The reported EER with
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the proposed method is of 1.6±0.92% (10-fold validation),
compared with ∼4.6% without score mapping.
In the work [11], we presented an iris reconstruction

method based on Principal Component Analysis (PCA) that
is the basis of the present paper. The technique is inspired by
the system of [13] for face images. Given a test low-resolution
image, a PCA Eigen-transformation is conducted for each
patch using a set of low-resolution training images. After the
reconstruction weights are computed in the low-resolution
manifold, they are transferred to the high-resolution mani-
fold, where high-resolution patches are then reconstructed
using a linear combination of collocated high-resolution
patches from training images. The method was evaluated
using the CASIA Interval v3 database, and Log-Gabor
wavelets [19] as feature extraction method. Low-resolution
data was generated by sub-sampling high-resolution images
to reduce their size by a factor from 1/2 to 1/18 (the latter
corresponding to an average iris diameter of 11 pixels). The
paper reported an EER of 6.44% with images of the lowest
resolution, compared with 12.23%when bi-cubic reconstruc-
tion is used.
The current paper extends our previous studies with the

PCA method, including additional comparators and exper-
iments. A limitation of this method is that it assumes that
low- and high-resolution manifolds have similar local geo-
metrical structure. Reconstruction weights are estimated on
the low-resolution manifold, and they are simply transferred
to the high-resolution manifold. However, the geometrical
structure of the low-resolution manifold is distorted by the
one-to-many relationship between low- and high-resolution
patches [64]. Therefore, the reconstruction weights estimated
on the low-resolution manifold do not necessarily correlate
with the actual weights needed to reconstruct the unknown
high-resolution patch. To cope with this limitation, we later
considered to use iterative neighbor embedding of local
patches (LINE) [41], where the geometry of the low- and
high-reconstruction manifolds are jointly taken into account
during the reconstruction. During the testing phase, the recon-
struction weights are computed by minimizing a regular-
ization function that considers the distance of the input
patch to the training dictionary both in the low- and in
the high-resolution manifolds. The lowest resolution eval-
uated consisted of images with an average iris diameter
of 13 pixels. The LINE method compared well with the
PCAmethod, showing additional performance improvements
at very low resolutions. The PCA and LINE methods were
also evaluated in [42] using smart-phone images from the
VSSIRIS database [57]. In this work, high-resolution images
were down-scaled by a factor of 1/22 (corresponding to
an average iris diameter of ∼13 pixels). The experiments
showed a superior performance of the trained reconstruction
approaches in comparison to bilinear or bicubic methods,
with the LINE approach showing better performance than
PCA. The best recognition rates reported were 4.64% (PCA)
and 4.1% (LINE) with the fusion of log-Gabor wavelets and
the SIFT operator.

Recent studies have also adapted deep-learning frame-
works to the task of iris super-resolution [43]–[45].
Zhang et al. [43] adapted Super-Resolution Convolutional
Neural Networks (SRCNN) [65] and Super-Resolution
Forests (SRF) [66] to reconstruct iris images in the polar
domain. The SRCNN employed learns the non-linear map-
ping function between low- and high-resolution images with
3 layers: the first one extract feature maps of low-resolution
patches, the second one maps these feature vectors into
feature maps of corresponding high-resolution patches, and
the last one aggregates high-resolution patches to generate
the output image. The loss function employed is the mean
squared error between the reconstructed images and the
corresponding ground-truth high-resolution image, which in
turn corresponds to a fidelity measure between images, and
not to a performance metric. This is common to all iris
super-resolution studies that employ deep-learning frame-
works, which may explain that their performance is still
behind methods not based on deep-learning. In the SRF
method, Random Forest are used to directly map low-
resolution patches to high-resolution patches. During tree
growing, a regularized objective function that operates on
both output and input domains is used, so higher quality
results can be achieved. Training of SRCNN and SRF was
done with 91 non-iris images, of use in other super-resolution
studies. The two methods were tested using the CASIA
Mobile v1.0 and v2.0 databases, which contain near-infrared
(NIR) images captured with smart-phones by using a NIR
imaging module. The EER achieved with CASIA Mobile
v1.0 is of 3.65% (SRCNN) and 3.61% (SRF), compared
with 3.89% obtained using iris images without enhancement.
These results corresponds to the score fusion of left and
right iris. With CASIA Mobile v2.0, the authors reported
single-eye experiments comparing images captured at vari-
ous distances, namely 20-20 cm, 20-25 cm, and 20-30 cm.
Reported experiments show that applying the SRCNN and
SRF methods results in better performance in comparison
with employing images without enhancement, specially at
low FAR.

In the works by Ribeiro et al. [44], [45], the authors
employed several deep learning methods to reconstruct
iris images. In these works, images were divided into
patches, which were then reconstructed separately using each
respective network to obtain high-resolution patches. The
work [44] employed Super-Resolution Convolutional Neu-
ral Networks (SRCNN) [65] and Stacked Auto-Encoders
(SAE) [67]. The experimental framework used the CASIA
Interval v3 database as in the work [11]. High-resolution
images were down-scaled by a factor from 1/2 to 1/16 (the
latter corresponding to an average iris diameter of 13 pix-
els). Using Log-Gabor wavelets, the PCA method of [11]
still shows better performance at the lowest resolution (EER
of 4.79% vs. 6.26%). However, the paper evaluated a second
comparator based on local SIFT key-points [20], with which
the deep-learning methods showed better recognition perfor-
mance (EER of 19.5% with PCA vs. 17.26% with SRCNN).
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In the work [45], the authors evaluated Super-Resolution
Convolutional Neural Networks (SRCNN) [65], Very Deep
Convolutional Neural Networks (VDCNN) inspired by
VGG-net [68], and Super-Resolution Generative Adversar-
ial Networks (SRGAN) [69]. Besides the CASIA Interval
v3 database, the authors also employed smart-phone images
from the VSSIRIS database in their experiments. As in [44],
images of both databases were down-sampled up to an
average iris diameter of 13 pixels. They also explored the
use of different databases to train the networks for the iris
reconstruction task. The databases employed include texture
databases, natural image databases, and iris databases. The
iris databases contain both near-infrared and visible wave-
length images, while the other two categories only include
visible data. An interesting finding of this paper is that using
texture databases or iris images from other databases for
training provides good reconstruction results, even if captured
with different lightning. At the lowest resolution, the best
recognition performance with CASIA images was given by
SRCNN, with a reported EER of 27.6%. With the VSSIRIS
database, the best performance at the lowest resolution was
given by SRGAN, with an EER of 12%. It should be men-
tioned nevertheless that the recognition features used in [45]
are different than those in previous studies with the same
databases [42], [44], which might explain the differences in
performance.

D. LEARNING-BASED METHODS IN THE

FEATURE DOMAIN

Instead of super-resolving pixel intensity values, the meth-
ods in this section super-resolve images in the feature
space. A commonality found in most of them is that they
employ several input images, so they could be considered
to be reconstruction-based. However, we categorize them as
learning-based since the mapping relation between low- and
high-resolution images is learned using training dictionaries.
In the work published in 2011, Nguyen et al. [46] car-

ried out the reconstruction by modelling the inverse prob-
lem associated with Equation 1. However, they replaced the
low- and high-resolution images X and Y with their PCA
feature representations [70] estimated from gallery images
in the polar domain. Given a low-resolution test image, it is
first projected onto the PCA space. Then, a high-resolution
iris image is estimated by Bayes MAP probability estima-
tion, which is computed using iterative steepest descent.
The method was tested with data from the MBGC Iris NIR
database. Two high quality iris images were selected per
subject, one used as gallery, while the other was degraded
by Gaussian blurring, random warping and downsampling
by a factor of 1/4 to create a series of 16 low resolution
images. The average iris diameter of low-resolution images
in this case was of 50 pixels. In addition, the method was
compared with the quality-weighted pixel average technique
of the same authors, published in [26]. The effectiveness of
the reconstruction was measured by computing the distance
of the reconstructed feature vector to the true feature vector

of the original high-resolution image. Reported experiments
showed that the proposed feature-domain approach produces
closer features than the method in [26], as well as bet-
ter recognition performance. The proposed feature-domain
approach achieved an EER of 4.5%, compared to an EER
of 10% obtained when using the pixel average method.

Nguyen et al. identified as a drawback of the previ-
ous approach that linear features such as PCA are not
optimal for recognition, when compared to nonlinear ones
such as iris codes extracted from Gabor phase-quadrant
encoding [53]. Since Gabor-based features are shown to be
one of the most discriminant features for face [71] and
iris [72], they proposed to super-resolve iris images in the
Gabor domain [47], [48]. A challenge of this approach comes
from the difficulty ofmodelling the relationship between low-
and high-resolution images in non-linear feature domains.
However, they observed that the response to a Gabor wavelet
is linear, whilst the nonlinearity of the process comes from
the phase-quadrant encoding applied to compute the iris code.
Thus, following the same strategy of [46], they replaced the
low- and high-resolution images X and Y of Equation 1
with the complex-valued responses of polar images to Gabor
wavelets. In this occasion, the method was tested with data
from the MBGC Portal NIR database. Four video sequences
of each identity were matched against still high-resolution
images. For each video, the frames with the best quality were
selected according to the Depmster-Shafer quality assess-
ment of [60]. A threshold to remove poor quality frames
was selected through experimentation. With the proposed
approach, they achieved an EER of 0.5%. The method out-
performed other approaches evaluated in the paper, includ-
ing bicubic (EER=1.8%), pixel average [29] (EER=1.4%),
quality-weighted pixel average [26] (EER=0.9%), PCA fea-
ture representation [46] (EER=4.8%), or LDA feature repre-
sentation (EER=2.1%).

Lastly, Liu et al. [49] learnt the statistical relationship
between a set of binary codes from low-resolution images,
and the binary code of the corresponding high-resolution
image. For this purpose, they employed Markov networks.
The co-occurrence of neighboring bits in the high-resolution
iris code was also modeled with the network. Besides the
non-linear relationship between feature codes of low- and
high-resolution iris images, the Markov model is also able
to produce a weight mask which measures the reliability of
each bit in the enhanced iris code. This weight mask can be
used in the computation of the Hamming Distance between
two iris codes to further enhance recognition accuracy. The
authors employed the Q-FIRE database. Images captured at
5 and 11 feet away were selected respectively as high- and
low-resolution sets. Eye detection and iris segmentation was
carried out on the input iris videos, resulting in multiple iris
for each subject. Heavily de-focused or occluded imageswere
discarded for further use. A total of 1000 images (500 low-
and 500 high-resolution images) were used as training data.
The reported EER with the proposed method is of 2.6%.
Reported experiments also show that it outperforms other
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existing algorithms, including [27], [29], and [47], specially
at low FAR. In a later work with the same database [39]
(presented in Section II-C), the same authors improved the
EER further to 1.6±0.92%.

III. EIGEN-PATCH IRIS SUPER-RESOLUTION

The block diagram of the proposed iris super-resolution
method is shown in Figure 1, which is based on the eigen-
patch hallucination method for face images proposed by
Chen and Chien [13]. Each input image X is first sep-
arated into overlapping patches. An eigen-transformation
is then conducted on each patch using collocated patches
of low-resolution iris images from a training set {L̄},
in order to obtain the optimal reconstruction weights of
each patch. The reconstruction weights are then transferred
to the high-resolution manifold, where the high-resolution
patch is rendered using collocated patches of the high-
resolution images in the training set {H̄}. A preliminary
high-resolution image Ỹ ′ is then formed by stitching the
reconstructed high-resolution patches. Finally, a reprojection
operation is applied to further reduce artifacts and make the
output high-resolution image Ỹ more similar to the input
low-resolution image. The methods is described in more
detail in the following sub-sections.

A. EIGEN-PATCHES

Without loss of generality, suppose that our image recognition
problem is iris recognition. Given an input low-resolution iris
image X , it is first separated into N = Nv × Nh overlapping
patches {x} = {x1, x2, · · · , xN }, where Nv and Nh are the
vertical and horizontal number of patches, respectively. Since
we will consider square images in our experiments, we can
assume from the remainder of this paper that Nv = Nh.
Two super sets of basis patches are computed for each

patch position i from collocated patches of a training database
of high resolution images {H̄}. One of the super sets is
obtained from collocated high resolution patches as fol-
lows. For each patch position i, we stack patches at the
same position from the set of M high-resolution training
iris images as shown in Figure 2, which we denote as
H̄i =

{

h1i , h
2
i , · · · , hMi

}

. By degradation (low-pass filter-
ing and downsampling) using the acquisition model defined
in Equation 2, a low-resolution database {L̄} is generated
from {H̄}, and the corresponding low-resolution super set
L̄i =

{

l1i , l
2
i , · · · , lMi

}

is obtained for each patch position
i. This way, the structure of the iris image is exploited
by the construction of position-dependent dictionaries. In
the example in Figure 2, the high-resolution dictionary H̄1
(marked in red) is composed using the top-left position
patches of all M high-resolution images, while the corre-
sponding low-resolution dictionary L̄1 is composed using
the corresponding top-left patches of the M low-resolution
images.
During testing, a PCA Eigen-transformation is conducted

for each low-resolution input patch x i using the collocated

patches of the low-resolution dictionary L̄i to compute the
optimal linear reconstruction weights ci =

{

c1i , c
2
i , · · · , cMi

}

.
More specifically, we first compute the mean-patch of the i-th
low-resolution dictionary using

mLi =
1

M

M
∑

j=1

l
j

i (4)

so that the low-resolution dictionary L̄i for the i-th patch is
centered by removing the mean-patch mLi :

L̄ ′
i = L̄i − mLi (5)

For an input patch x i, the weight vector can be computed
by projecting it onto the eigen-space using

wi = ETi

(

x i − mLi

)

(6)

where the eigen-patches Ei are derived by applying PCA to
the covariance matrix C̄i of the centered dictionary L̄ ′

i :

C̄i = L̄
′T
i L̄

′
i (7)

The matrix Ei can be decomposed using

Ei = L̄ ′
iVi3i

− 1
2 (8)

where Vi and 3i are the eigenvectors and eigenvalues pro-
vided using PCA. In this work, we retain the eigenvectors of
C̄i which contains at least 99% of the variance. The recon-
struction weights are then derived using

ci = Vi3i
− 1

2wi (9)

The i-th high-resolution patch ỹi is then reconstructed from
the collocated patches of the high-resolution dictionary H̄i
using

ỹi =

M
∑

j=1

c
j
ih
j

i + mHi (10)

where mHi is the high-resolution counterpart of Equation 4:

mHi =
1

M

M
∑

j=1

h
j

i (11)

The recovered patches are then stitched together by
averaging overlapping pixels to synthesize the preliminary
high-resolution iris Ỹ ′. It is important to mention here that
every patch, which represents a particular spatial region
within the iris, is optimized using dictionaries of irises at the
same position. Therefore, the different reconstructionweights
are optimized for every region of the iris. This ensures that
iris images of higher quality, which are locally optimized, are
reconstructed.

VOLUME 7, 2019 6531



F. Alonso-Fernandez et al.: Survey of Super-Resolution in Iris Biometrics With Evaluation of Dictionary Learning

FIGURE 6. Resulting high-resolution hallucinated images for different downsampling factors and patch sizes.

B. IMAGE REPROJECTION

A re-projection step is further applied to Ỹ ′ to reduce artifacts
and make the output image Ỹ more similar to the input
image X . The image Ỹ ′ is re-projected to X using the model
of Equation 2 via:

Ỹ t+1 = Ỹ t − τU
(

B
(

DBỸ t − X
))

(12)

where U is the upsampling matrix. The process stops when
|Ỹ t+1 − Ỹ t | is smaller than a threshold. For our experiments
in iris biometrics, we use τ = 0.02 and 10−5 as the difference
threshold.

IV. EVALUATION FRAMEWORK

A. DATASET

For our experiments, we used the CASIA Interval v3 iris
database [54]. It consists of 2,655 NIR images from 249 con-
tributors, captured in 2 sessions (the number of images per
contributor and per session is not constant). A close-up iris
camera was used to capture the images, with a resolution

of 280×320 pixels. Manual annotation of the database is
available [73], [74]. All images were resized via bicubic
interpolation to have the same sclera radius (R = 105,
average sclera radius of the whole database according to
the ground-truth). Then, images were aligned by extracting
a square region of 231×231 pixels around the pupil center,
which corresponds to about 1.1×R. In case that such extrac-
tion was not possible (for example if the eye is close to an
image side), the image was discarded. After this procedure,
1,872 images remained, which were used for our experi-
ments. The dataset of aligned images was further divided
into two sets: a training set comprised of images from the
first 116 contributors (M = 925 images), used as dictio-
nary images to train the eigen-patch hallucination method,
and a test set comprised of the remaining 133 contributors
(947 images), which was used for validation.

The test and dictionary images were down-sampled via
bicubic interpolation using MATLAB’s imresize function
by 1/n, with n ∈ {2, 4, 6, 8, 10, 12, 14, 16}. This resulted in
down-sampled images of 115×115, 57×57, 39×39, 29×29,
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23×23, 19×19, 17×17, and 15×15 pixels respectively. The
dictionaries for each patch and for each downsampling factor
were constructed using the position-patch method described
in Section III-A. Down-sampled test images were then used
as input low-resolution images, from which hallucinated
high-resolution images were computed using the proposed
algorithm. This simulated downsampling is the approach
followed in most previous studies [14], due to the lack
of databases with low-resolution and corresponding high-
resolution reference images. The proposed method was com-
pared with bilinear and bicubic interpolation. The method
were implemented in MATLAB. All simulations were run
using a machine with Intel (R) Core (TM) i7-4600U CPU at
2.10GHz running Windows 64-bit Operating system.

B. IRIS AUTHENTICATION EXPERIMENTS

We conducted verification and identification experiments
in the test set with several iris recognition algorithms
(Section IV-C). We considered two scenarios, shown in
Figure 7: scenario 1), where enrolment samples were taken
from original high-resolution images of the test set, and query
samples from hallucinated images; and scenario 2), where
both enrolment and query samples were hallucinated images.
The first case simulates a controlled enrolment scenario,
where one of the samples is of high-resolution. The second
case, on the other hand, simulates a totally uncontrolled
scenario, where both samples are of low-resolution (albeit for
simplicity, both have similar resolution).

FIGURE 7. Scenarios considered in our identity recognition experiments.

In our authentication experiments, each eye were consid-
ered as a different user of the system. Verification experi-
ments were done as follows. Genuine trials were obtained
by comparing each image of a user to the remaining images
of the same user, avoiding symmetric comparisons. Impostor
trials were obtained by comparing the 1st image of a user
to the 2nd image of the remaining users. With this proce-
dure, we obtained 2,607 genuine and 19,537 impostor scores
per comparator and per scenario. To carry out identification
experiments, we used the first image of each user as enrol-
ment sample, and the remaining images for evaluation. Given
an evaluation sample, the user was recognized by searching
the enrolment samples of all the K subjects in the database
for a match (one-to-many). As a result, the system returned a
ranked list of candidates. For identification experiments, only
users (eyes) with two or more samples were considered. This
resulted in K = 162 available users, and 764 different one-
to-many trials (totaling 124,532 comparisons) per comparator
and per scenario.

C. IRIS RECOGNITION ALGORITHMS

Iris recognition experiments were conducted using six dif-
ferent algorithms according to the state of the art [75],
namely 1D log-Gabor filters (LG) [19], the SIFT oper-
ator (SIFT) [20], local intensity variations in iris tex-
tures (CR) [15], the Discrete-Cosine Transform (DCT) [16],
cumulative-sum-based grey change analysis (KO) [17], and
Gabor spatial filters (QSW) [18].

All algorithms (except SIFT) extract features from a nor-
malized rectangle image which is computed from the iris
image using the Daugman’s rubber sheet model [53]. This
normalization produces a 2D polar array of 20×240 pix-
els, height×width, (LG system) and 64×512 pixels (others),
with horizontal dimensions of angular resolution, and vertical
dimensions of radial resolution. Feature encoding is imple-
mented according to the different feature extraction methods,
leading to fixed-length templates with are matched using
distance measures (details are given in the respective papers).
Rotation is accounted for by shifting the 2D polar array of the
query image in counter- and clock-wise direction and select-
ing the lowest distance, which corresponds to the best match
between the two templates. In the SIFT comparator, SIFT
key points are directly extracted from the iris image (without
normalization), and the recognition metric is the number of
matched key points, normalized by the average number of
detected key-points in the two images under comparison.

We used open source code implementations of these algo-
rithms. The LG implementation is from the Libor Masek
code [19] . SIFT feature extraction and matching was car-
ried out using a free toolkit1 with the adaptations described
in [50] (particularly, it includes a post-processing step to
remove spurious matching points using geometric con-
straints). The remaining algorithms used are from the Univer-
sity of Salzburg Iris Toolkit software package (USIT) [75].

V. EXPERIMENTAL RESULTS

A. IMAGE FIDELITY

This section reports the performance of the hallucina-
tion algorithms by measuring the Peak Signal-to-Noise
ratio (PSNR) and the Structural Similarity (SSIM) index
between the hallucinated image and its corresponding
high-resolution reference image of the test set. We used
MATLAB’s psnr and ssim functions for this pur-
pose. These are the metrics usually employed in the
super-resolution literature [6]. The PSNR is a measure of
the ratio (in dBs) between the maximum possible power of
a signal and the power of corrupting noise that affects the
fidelity of its representation. The noise in this case is defined
as the difference between the reference high-resolution image
Y , and its estimation Ỹ by the reconstruction algorithm.
A higher PSNR generally indicates that the reconstruction is
of higher quality. If the two images are identical, Y = Ỹ , then
PSNR(Y , Ỹ ) = ∞. The SSIM index, on the other hand, is a
perception-based model that considers image degradation as

1http://vision.ucla.edu/∼vedaldi/code/sift/assets/sift/index.html
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TABLE 2. Hallucination results (PSNR and SSIM values) with different downsampling factors and patch sizes (average values on the test dataset). Patch
size is indicated in proportion to the size of the iris image. The best results for each downsampling factor are marked in bold. ‘Diff’ refers to the
difference between the best PCA case and the bicubic method.

FIGURE 8. Hallucination results with different downsampling factors (left: PSNR values, right: SSIM values). The best PCA case for each
downsampling factor is shown (marked in bold in Table 2).

a perceived change in structural information (luminance and
contrast). This is achieved by using first and second order
statistics of grey values on local image windows. The SSIM
index is a decimal value between −1 and 1, and value 1 is
only reachable in the case of two identical images.
Table 2 reports the average PSNR and SSIM values of all

images in the test set. We report PSNR and SSIM metrics
in two cases: i) between the full reconstructed image and
its reference high-resolution image; and ii) between the nor-
malized polar image versions of these two images (with size
20×240 pixels), computed according to the Daugman’s rub-
ber sheet model [53]. Examples of hallucinated iris images
can also be seen in Figure 6 (only for a selection of down-
sampling factors for the sake of space). In the described
PCA method, the size of local image patches is an important
parameter. In order to test the influence of this parameter,
we evaluated the performance of the PCA algorithm with
different patch sizes. In particular, we tested patches of size
equal to 1/4, 1/8, 1/16 and 1/32 of the iris image. We defined
the patch size in proportion to the dimensions of the iris image

to ensure that they cover the same relative size across different
scaling factors. Overlapping between patches was set to 1/3.

Table 2 shows in bold the best result for each downsam-
pling factor. As it can be seen, the eigen-patch hallucination
method outperforms the bilinear and bicubic interpolations
at all resolutions. Also, among bilinear and bicubic interpo-
lations, the latter gives the best results. We can also observe
that, as resolution decreases, the gain of the PCA method
becomes larger, at least as measured by the PSNR. This can
be better assessed in Figure 8, where we plot the results of
Table 2 (the best PCA case for each downsampling factor is
selected). At a resolution of 115×115 pixels, the PSNR gain
of PCA is of 0.61dB over bicubic (full image) and 0.93dB
(iris region), and it becomes larger at lower resolutions. At a
resolution of 15×15 pixels, the gain reaches 1.46dB (full
image) and 1.35dB (iris region), showing the advantage of
the utilized eigen-patch hallucination method at very low
resolutions.

It is also worth noting that, although the average SSIM
values are smaller as resolution decreases, the gain of PCA
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TABLE 3. Verification results (EER values) of the two scenarios considered for different downsampling factors. The best case for each comparator and for
each downsampling factor is marked in bold. The relative EER variation of PCA with respect to bilinear/bicubic (best of the two) is also given.

over bicubic remains between 0.01 and 0.02. In Figure 6,
it can be observed that images reconstructed with bilinear
or bicubic methods have much more blur than those recon-
structed with PCA when the resolution decreases. While this
is reflected in a higher gain in PSNR, it is no the case with
the SSIM. As it has been pointed out in previous studies,
image quality metrics like PSNR or SSIM do not have the
same sensitivity to image degradations [21], [22]. Although
iris images reconstructed with PCA have better subjective
quality, this is not captured well by the SSIM index.
Regarding the appropriate patch size, it can be observed

in Table 2 that the best results are obtained with a big-
ger patch. In particular, 1/4 is the best size at very low-
resolutions. Using a bigger patch results in less artifacts due
to overlapping patches being stitched together. This can be
seen for example in Figure 6 (image of size 57×57 pixels),
where more artifacts appear for patch sizes of 1/16 or 1/32.
It also has computational implications, because there are less
patches to process per image, although they have a bigger
size.
Given than a patch size of 1/4 consistently produces top

results in the experiments of this section, we will employ
this patch size with PCA in the remainder of this paper. This
patch size has also been observed to produce top results in
previously published verification experiments using the LG
comparator [11].

B. BIOMETRIC VERIFICATION

Next, we report results of the verification experiments using
hallucinated iris images. Verification results of the proposed
PCAmethod and the bilinear/bicubic interpolations are given

in Table 3 and Figure 9. We adopt the Equal Error Rate (EER)
as the measure of accuracy. Due to space constraints, we only
report a selection of downsampling factors (those shown
in Figure 6). In Table 3, we also mark in bold the best
EER value for each comparator and for each downsam-
pling factor. In addition, the relative EER variation of PCA
with respect to bilinear/bicubic (best of the two) is given in
brackets.

1) INTERPOLATION METHOD ANALYSIS

It can be seen that the PCA method results in better verifi-
cation performance than bilinear/bicubic interpolations when
the resolution decreases. This highlights the benefits of using
trained methods to enhance very low-resolution iris images.
At an image size of 29×29 pixels (downsampling of 1/8),
any given comparator produces better performance with PCA
than with bilinear or bicubic interpolations. In scenario 1,
for example, the EER reduction of PCA is between 3.7%
(KO comparator) and 37.4% (SIFT); whereas in scenario 2,
it is between 6.9% (KO) and 37.2% (LG). For some com-
parators, the improvement with PCA is evident even at
a resolution of 57×57 pixels (downsampling of 1/4). For
example, the EER reduction in this case is of 36% with
the SIFT comparator, and of 7.5% with the DCT system
(both in scenario 1). But the biggest benefits of PCA occur
at very low-resolutions (15×15 pixels, or downsampling
of 1/16). Here, EER improvements are significantly higher,
as reflected by the wider gap between curves in Figure 9.
With such small image size, an impressive EER reduction of
56-57% is achieved with LG and QSW, followed by 47.8%
with SIFT, and 34% with DCT (all in scenario 2).
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FIGURE 9. Verification results (EER values) with different downsampling factors.

FIGURE 10. Score distributions with PCA enhancement for a downsampling factor of 1/2 (image size 115×115 pixels, black curves) and 1/16 (image
size 15×15 pixels, red curves).

2) SCENARIO ANALYSIS

In this sub-section, we study the difference between the
two scenarios of operation analyzed. It can be observed in
Figure 9 that the performance of scenario 1 and 2 is approx-
imately equal up to a certain resolution. Then, if resolution
is further reduced, scenario 2 performs much better than
scenario 1. This is observed with all comparators, being the
only difference the cut-off point. For example, with LG, KO,
or QSW, the difference between both scenarios only becomes
substantial at a factor of 1/16; but with DCT the difference
starts at 1/8, and even earlier with SIFT and CR.

We further analyse this effect by plotting in Figure 10
the score distributions with PCA of the following two
cases: moderate downsampling (factor 1/2, image size
115×115 pixels, black curves), and extreme downsampling
(factor 1/16, image size 15×15 pixels, red curves). Note that
most comparators employ a distance measure, meaning that
genuine distributions are on the left side of the plot, but
one comparator (SIFT) employ a similarity measure, so its
genuine distributions are on the right side.

In scenario 1, we observe that in most comparators, the dis-
tribution of genuine scores is shifted towards the impostor
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FIGURE 11. Verification results (DET curves) of the iris comparators. Results are given for scenario 2 and a downsampling factor of 1/16 (image size
15×15 pixels).

distribution as resolution decreases. This suggests that the
PCA reconstruction algorithm is not able to fully recover
the information found in the original high resolution image,
at least measured by the features employed by our com-
parators. As a result, the similarity between high-resolution
and reconstructed images of the same user is reduced (recall
that in scenario 1, enrolment samples were taken from
high-resolution images, whereas query samples were taken
from reconstructed images). This is consistent with the results
of Figure 8, which show that the PSNR and SSIM values
between a high-resolution image and its reconstructed coun-
terpart decreases with the resolution. On the other hand,
impostor distributions lie in a similar range in most cases,
regardless of the resolution.
In scenario 2, on the contrary, the distribution of genuine

scores is not shifted significantly towards the impostor dis-
tribution as the resolution changes. Instead, the relative
difference between the two distributions is maintained. In
this scenario, enrolment and query images undergo the
same downsampling and upsampling procedure, regardless
whether they come from genuine or impostor trials. There-
fore, it has sense that the relative difference between genuine
users and impostors is maintained. However, a collateral
effect, given by the loss of information when images are
down-sampled and reconstructed, is that genuine and score
distributions are more spread. This explains the worse EER
performance at low resolution. An exception to these observa-
tions is SIFT.With this comparator, the genuine and impostor
distributions become significantly closer to each other in
scenario 2. For this reason, this is the comparator whose
performance is most significantly degraded with the resolu-
tion (see Figure 9). Another exception, but in the opposite
direction, is the KO comparator. This comparator shows a
high resilience to changes in resolution, as it can be seen by
its nearly ‘flat’ behavior in Figure 9. As a result, its score
distributions are in the same range. It should be remarked,
however, that its EER at high-resolution is already above
12%, while other comparators start below 1%.

3) COMPARATOR ANALYSIS

We further look into the differences between the individual
comparators considered in this paper. As it can be seen in

Figure 9, the performance of any comparator is not degraded
significantly until a downsampling factor of at least 1/8
(image size of 29×29 pixels). This implies that the size of
both gallery and probe images could be kept low without
sacrificing performance, and then simply up-sampled with
the bicubic or even bilinear method. This has positive impli-
cations when lower storage or data transmission capabilities
are required. Some comparators (LG, QSW) even show a
praiseworthy performancewith a downsampling factor of 1/8,
having in this case an EER of 1.11%/1.67% in scenario 1,
and 1.18%/1.91% in scenario 2. It should be noted as well
that these two comparators are based on Gabor wavelets,
so it is reasonable that they behave in a similar fashion. It
is also remarkable the impressive low EER figures obtained
with these comparators when considering very low-resolution
images with a size of only 15×15 pixels. For example,
an EER of 4.78% is obtained with the LG comparator, and
5.55% with QSW in scenario 2. Also, as mentioned above,
the KO comparator shows a high resilience to changes in
resolution, with the EER degrading only from 12.54% to
13.41% in scenario 2.

In terms of absolute performance, the best comparator
at any resolution is LG, followed closely by QSW (recall
that both are based on Gabor wavelets). The third one is
DCT, followed by SIFT, although performance of these two
degrades significantly at very low-resolutions. For example,
DCT has an EER of ∼2% at a resolution of 1/2, but it goes
up to 39.09% at a resolution of 1/16 in scenario 1, and to
11.72% in scenario 2. CR and KO are the worst performing
comparators. They both start with an EER of 10% or higher
already at a resolution of 1/2, although they show higher
resiliency to reductions in resolution, as seen earlier.

For completeness, we provide in Figure 11 the DET curves
of all comparators (only scenario 2 and a downsampling
factor of 1/16). Here, it can be observed the gain of the trained
PCA enhancement in comparison to bilinear and bicubic
interpolations. A consistent improvement across all ranges of
the DET curve is obtained with most comparators.

C. BIOMETRIC IDENTIFICATION

In this section, we report identification experiments
using hallucinated iris images. Results are given in
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TABLE 4. Identification results (Top-1 accuracy) of the two scenarios considered for different downsampling factors. The best case for each comparator
and for each downsampling factor is marked in bold. The relative Top-1 variation of PCA with respect to bilinear/bicubic (best of the two) is also given.

FIGURE 12. Identification results (Top-1 accuracy) with different downsampling factors.

Table 4 and Figure 12. Here, we adopt as metric the clas-
sification accuracy for a hit list size of k = 1 candidate
(also called Top-1 or Rank-1). In Table 4, we also mark in
bold the best accuracy for each comparator and for each
downsampling factor. In addition, the relative Top-1 accuracy
variation of PCA with respect to bilinear/bicubic (best of the
two) is given in brackets. Finally, we provide in Figure 13
the CMC curves of scenario 2 for a downsampling factor
of 1/16.

1) INTERPOLATION METHOD ANALYSIS

Similarly to the verification experiments, we also observe
here a superior performance of the trained PCA enhance-
ment when the resolution decreases. At an image size
of 29×29 pixels (downsampling of 1/8), the PCA method
produces better accuracy than bilinear or bicubic interpola-
tions for any comparator. The Top-1 gain for this image size
in scenario 1 reaches a value of 66.1% (DCT comparator)
and 124.5% (SIFT), whereas in scenario 2, the gain reaches
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FIGURE 13. Identification results (CMC curves) of the iris comparators. Results are given for scenario 2 and a downsampling factor of 1/16 (image size
15×15 pixels).

29.3% (SIFT). In scenario 1, some comparators show a
remarkable improvement even at a resolution of 57×57 pix-
els. Here, CR has an improvement of 13.4%, whereas SIFT
has an improvement of 9.9%. But the advantage of using
the PCA trained method becomes more evident again at very
low resolution (15×15 pixels), as it can be appreciated in the
bigger separation between curves in Figure 12. For example,
in scenario 2, a Top-1 improvement of 309.1% is observed
with SIFT, followed by 30.8% with DCT, and ∼27% with
LG and QSW. In scenario 1, improvements of 483.7% and
217.2% can be observed with SIFT and CR, respectively,
although the Top-1 accuracy of these comparators is far from
being usable in practice (below 15%).

2) SCENARIO ANALYSIS

Regarding the two scenarios of operation employed, similar
observations than in the verification experiments can bemade
here. The performance of a number of comparators (LG,
KO, QSW, DCT) only differs between the two scenarios
when the downsampling factor is of 1/8 or higher, while
the others (SIFT, CR) show differences already at 1/4. Also,
when the two scenarios differ, the best performance is always
obtained in scenario 2. In scenario 1, only query samples
are from low-resolution images, which are matched against
high-resolution enrolment samples. As we observed earlier,
the similarity between a high-resolution image and its recon-
structed version decreases with the resolution, which explains
the worse performance obtained in scenario 1.
It is also specially relevant the poor performance of some

comparators in scenario 1 at a resolution of 1/16. For exam-
ple, SIFT and DCT obtain a Top-1 accuracy of ∼5% or less.
These same comparators also show a high EER in verification
mode (above 36%). This makes these two features unsuitable
to compare images that have very different resolution, as it is
the case in scenario 1. Indeed, the only comparator capable
of handling such differences to some extent is LG. Its Top-1
identification accuracy in scenario 1 is of 73.43%, and it also
shows the best verification accuracy among all comparators
(EER of 7.29%).

3) COMPARATOR ANALYSIS

Finally, we analyse the differences between the individ-
ual comparators when they operate in identification mode.

An effect observed in the verification experiments that we
also see here is that the performance of any comparator
remains without significant degradation until a downsam-
pling factor of at least 1/8. This corresponds to an image
size of 29×29 pixels. Some comparators (like LG or QSW),
are not significantly degraded even with this small image
size, having a Top-1 accuracy of 95-98% in any of the two
scenarios.

In terms of absolute performance, LG and QSW are, again,
the best comparators, with a Top-1 accuracy higher than 98%
across a great range of resolutions. They only degrade at very
low-resolution (15×15 pixels), showing a noteworthy Top-1
accuracy of 84.16% (LG) and 77.23% (QSW) in scenario 2.
The Top-1 accuracy of DCT at this very low-resolution is
71.07%, while accuracy of the other comparators fall below
53%,making them unfeasible for practical applications in this
extreme case.

Regarding the CMC curves at very low-resolution
(Figure 13), if we allow a hit list size of k = 5 candidates,
both LG and QSW show a classification accuracy higher
than 90%, which goes up to 95% for a list of k = 10
candidates. This shows that the proposed PCA approach can
be effectively used to improve iris identification under severe
downsampling. With bilinear or bicubic interpolations, the
accuracy of these two comparators is below 78% (if k = 5)
and 82% (if k = 10) Also, the DCT and CR comparators can
reach 90% accuracy with PCA enhancement, but we need to
increase the size of the hit list to k = 20 or k = 25 candidates,
respectively. KO and SIFT, on the other hand, need a list size
of k = 50 candidates to reach 90% accuracy.

VI. CONCLUSIONS

Iris is regarded as one of the most accurate biometric
modalities [76]. It provides very high accuracy in con-
trolled environments, but deployment in non-controlled envi-
ronments such as at-a-distance or on-the-move is not yet
mature [1]. The use of more relaxed acquisition environ-
ments is pushing image-based biometrics towards the use of
low-resolution imagery. This can pose significant problems
in terms of reduced performance if not tackled properly.
In this context, super-resolution techniques can be used to
enhance the quality of low-resolution iris images and there-
fore, to improve the recognition performance of existing
systems [51].
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Super-resolution is a core topic in computer vision,
with many techniques proposed to restore low-resolution
images [6], [77]. However, compared with the existing lit-
erature in generic super-resolution, super-resolution in bio-
metrics is a relatively recent topic [4]. This is because most
approaches are general-scene, designed to produce an overall
visual enhancement. They try to improve the quality of the
image by minimizing an objective fidelity measure, such as
the Peak Signal-to-Noise Ratio (PSNR), which does not nec-
essarily correlate with better recognition performance [47].
Images from a specific biometric modality have particu-
lar local and global structures that can be exploited to
achieve a more efficient upsampling [10]. For example,
recovering local texture details is essential for iris images
due to the prevalence of texture-based recognition in this
modality [78].
In this paper, we present an extensive up-to-date survey

of super-resolution applied to iris biometrics (Section II).
We provide a comprehensive coverage of the existing liter-
ature, including a taxonomy of existing iris super-resolution
approaches (Figure 3 and Table 1). They can be broadly
classified into reconstruction-based and learning-based
methods [5]. Reconstruction based methods register and fuse
a sequence of low-resolution images by pixel-wise combina-
tion of intensity values, in order to estimate a high-resolution
image. On the other hand, learning based methods use cou-
pled dictionaries to learn the mapping relations between low-
and high-resolution image pairs. The research community has
lately focused on the latter category, since they can provide
higher quality images and larger magnification factors [8].
They also have the advantage of needing only one image
as input. In our survey, we also cover other aspects, from
the database employed in the evaluation of each method,
to the domain of operation (pixel or feature domain), the data
used as input (iris images, polar images, or feature repre-
sentations), the use of local patches, the smallest size of
the input low-resolution image, or the biometric authen-
tication experiments reported in each study. The majority
of works have employed near-infrared (NIR) data. Also,
the majority of works reconstruct the polar representation of
the iris image [53]. It is also very common, specially among
learning-based methods, to restore images at the patch level.
Each patch is allowed to have its optimal reconstruction
coefficients, helping to better recover local texture details,
which are essential in iris recognition [8]. Regarding the
smallest size of the input low-resolution image, it is common
to employ databases where subjects have been naturally cap-
tured at a certain distance, such as the MBGC portal, CASIA
Mobile, or Q-FIRE databases. Images in these databases have
an average iris diameter in the range from 90 to 130 pixels.
This is in the limit of the minimum diameter recommended
as sufficient for iris recognition, which has been found by
experimental studies to be ∼120 pixels [79]. Due to the
lack of databases with smaller resolutions, some works carry
out an artificial downsampling to achieve an smaller image
size, which is a common approach in the super-resolution

literature [14]. In these studies, the average iris diameter
employed is in the range from 11 to 53 pixels.

In the present paper, we also investigate the use of a
trained super-resolution enhancement technique based on
dictionary learning to improve the resolution of near infrared
iris images. We study in depth a technique based on PCA
Eigen-transformation of local image patches (eigen-patches),
inspired by the system of [13] for face images. Iris images are
first resized and aligned such that the eye center and the sclera
are aligned. Then, a dictionary is built for each patch position,
which is done by applying Principal Component Analysis
to a set of collocated patches of low-resolution iris images
from a training set. During testing, given a low-resolution
patch, it is first projected onto the low-dimensional eigen-
space. Then, the reconstruction weights are used to restore
the high-resolution patch using collocated patches contained
in the coupled high-resolution training set. In the employed
method, the structure of the iris image is exploited in two
ways: i) by building a patch position-dependent dictionary,
which caters for a specific region of the iris; and ii) by
allowing that each patch has its own optimum reconstruction
weights, so the solution is locally optimized. In addition,
unlike other methods that reconstruct images in the polar
domain, we reconstruct the iris image directly, although our
method is general enough to be applicable to polar images
too. This makes our approach agnostic of the feature extrac-
tion method employed, given than there are comparators
which do not transform the iris image to the polar domain,
see [50], [51].

To evaluate the proposed method, we conducted
extensive experiments with a database of 1,872 iris
images. Low-resolution images were simulated by down-
sampling high-resolution irises. High-resolution images,
of size 231×231, were sub-sampled by 1/n, with n ∈

{2, 4, 6, 8, 10, 12, 14, 16}. This resulted in low-resolution
images of 115×115, 57×57, 39×39, 29×29, 23×23, 19×19,
17×17, and 15×15 pixels respectively. The latter corre-
sponds to an iris diameter of 13 pixels. Such a small resolution
has not been previously employed in any iris super-resolution
study, apart from ours. This paper expands our previous
studies [11], [12] with a more comprehensive experimental
framework. For the authentication experiments, we used
publicly available feature extraction methods from popular
and state-of-the-art schemes [52]. In particular, we included
in this article four new iris recognition algorithms [15]–[18],
which have been added to the two employed in our previous
work [19], [20]. We also report identification experiments,
which are lacking in the majority of iris super-resolution
studies.

Our experimental section starts by reporting the Peak
Signal-to-Noise Ratio (PSNR) and the Structural Similarity
index (SSIM) between

the hallucinated and the corresponding high-resolution ref-
erence images. The proposed method was compared with
bilinear and bicubic interpolation. Our experiments show
the superiority of the presented PCA approach over these
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two interpolation methods. As resolution decreases, the gain
of the PCA method over bilinear or bicubic becomes more
prominent, at least as measured by the PSNR. At a resolution
of 115×115 pixels, the PSNR of PCA is, on average, 0.61dB
higher than the PSNR of bicubic over the whole image.
At 15×15 pixels, the difference increases to 1.46dB. This is
consistent with a subjective assessment of the reconstructed
images (Figure 6).When the resolution decreases, we observe
that images reconstructed with bilinear or bicubic methods
have much more blur than those reconstructed with PCA. On
the other hand, this subjective difference is not captured by
the SSIM. As we observe in our experiments, the SSIM gain
of PCA over bilinear or bicubic remains around 0.01-0.02
across the whole range of resolutions evaluated. One of
the drawbacks of these image fidelity metrics is precisely
that they are not expected to have the same sensitivity to
image degradations [21], [22]. In our case, the SSIM is not a
good predictor of the subjective differences observed between
images reconstructed with the PCA algorithm and with the
bilinear/bicubic methods. Another drawback acknowledged
in the literature is that while they may reflect the goodness of
the enhancement (in the visual sense), they are not necessarily
good predictors of the recognition accuracy [47]. In other
words, an overall visual enhancement of the image does not
necessarily correlate with a better performance when such
image is used for recognition purposes [9].
Consequently, to evaluate the usefulness of the proposed

PCA reconstruction method to improve authentication accu-
racy, we conducted a series of verification and identification
experiments with six different iris recognition algorithms
based on different features. We considered two operational
scenarios: one where original high-resolution images are
matched against hallucinated images (‘controlled’ enrolment
scenario, or scenario 1), and another scenario where only
hallucinated images are used (‘uncontrolled’ scenario, or sce-
nario 2). The benefit of our trained approach becomes evident
in comparison to bilinear or bicubic interpolations when the
resolution becomes very low. For example, with an image
size of 29×29 pixels or smaller, the PCA method gives better
accuracy than bilinear or bicubic interpolations for any given
comparator, highlighting the superiority of our trained PCA
approach to enhance very low-resolution iris images. With
some comparators, the superiority of PCA is also appreciable
even at a resolution of 57×57 pixels. It is also worth noting
the resilience of some comparators to severe downsampling
(image size of 15×15 pixels) when using PCA reconstruc-
tion. Two particular comparators based on Gabor wavelets
showed impressive EER values of∼5% and a Top-1 accuracy
of 77-84% for this extreme case.
Another observation is the different behavior exhibited

by the comparators employed when resolution is reduced.
The two mentioned Gabor-based comparators do not show
a significant degradation in performance until an image size
of 15×15 pixels is used. The majority of comparators, on the
other hand, show appreciable degradation at a resolution
of 29×29 pixels. However, one particular comparator shows

a high resilience to changes in resolution, with an EER in
the range of 12-13% and a Top-1 accuracy of 48-55% for
any given resolution. This reinforces our previous assumption
that enhancing an image in the visual sense, or measured
by a metric of fidelity, does not necessarily contribute to a
better recognition performance. Since recognition algorithms
are based on different features, and their performance is not
affected by the same factors, a metric of image fidelity may
be useful for a particular algorithm only [9]. For this reason,
focusing on the recognition performance of the algorithms
employed becomes necessary.

Another interesting phenomenon is that since the perfor-
mance of most comparators is not significantly affected until
an image size of 29×29 pixels, it would be feasible to use
both query and test images of reduced size. They could be
then up-sampled simply with bicubic or bilinear interpola-
tion prior to recognition. This is of importance for example
in scenarios where storage or data transmission capacity is
limited. We also observe that the performance in scenario 2
is better than in scenario 1 for any comparator, specially at
low resolutions. To further study this phenomenon, we looked
into the score distributions of each comparator, observing
that genuine scores shift towards the impostor ones in sce-
nario 1 as resolution decreases, an effect not observed in
scenario 2. In scenario 1, enrolment samples were taken
from high-resolution images, whereas query samples were
taken from reconstructed images. As resolution decreases,
it is understandable that the similarity between the two types
of images decreases as well, which explains the shift of the
distributions of genuine scores. In scenario 2, both enrolment
and query images are reconstructed images, therefore it is
expected that their relative similarity does not change to the
same extent than in scenario 1.

The proposed enhancement algorithm assumes that hallu-
cination weights are the same in the low- and high-resolution
manifolds. While this simplifies the problem, the low-
resolution manifold is usually distorted by the one-to-many
relationship between low- and high-resolution patches, so this
assumption may not hold always true [14]. Another simplifi-
cation is the assumption of linearity in the combination of
patches from the training dictionary. In future work, we will
explore methods to remove these two simplifications in order
to increase performance of the hallucination algorithm. In
our most recent work, for example, we are adapting methods
which simultaneously consider the low- and high-resolution
manifolds during the hallucination process [41]. We will also
look into strategies to iteratively update the low-resolution
dictionary to reduce the modality gap between low- and
high-resolution patches contained within the dictionary [80].
Augmentation of the training set is another strategy that we
are considering by adding spatial offset during the extrac-
tion of collocated patches, allowing to better cope with eye
alignment inaccuracies and local image distortions. Lastly,
we are also studying the feasibility of deep learning methods
to provide an end-to-end mapping between low- and high-
resolution iris images [44], [45].
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