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ABSTRACT Routing is a complex and critical stage in the physical design of Very Large Scale Integration

(VLSI), minimizing interconnect length and delay to optimize overall chip performance. With the rapid

development of modern technology, VLSI routing faces enormous challenges such as large delay, high

congestion, and high-power consumption. As a rising optimization method, Swarm Intelligence (SI) inspired

from collective intelligence behaviors through cooperation or interaction with the environment provides

effectiveness and robustness for solving NP-hard problems. Many researchers have consequently used SI

techniques to solve routing-related problems in VLSI. This paper reviews the application of several SI

techniques to the VLSI routing filed. Firstly, five commonly used SI techniques and related models, and

three classic routing problems are described: Steiner tree construction, global routing and detailed routing.

Then an overview of the current state of this field is given according to the above categories, and the survey

offers informative discussions from five aspects: 1) Steiner minimum tree construction; 2) wirelength-driven

routing; 3) obstacle-avoiding routing; 4) timing-driven routing; 5) power-driven routing. Finally, under

three new technology models: X-architecture, multiple dynamic supply voltage and via-pillar, the future

development trends are pointed as follows: 1) suggesting suitable SI techniques to specific routing problems

for advanced technology models; 2) exploring new and available SI techniques that have not yet been applied

to VLSI routing.

INDEX TERMS Particle swarm optimization, swarm intelligence, routing, very large scale integration,

Steiner tree construction.
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I. INTRODUCTION

Very Large Scale Integration (VLSI) is a process of form-

ing an Integrated Circuit (IC) by incorporating thousands of

transistors into a single chip [1]. As integration continues to

increase, more and more features, even a complete system

can be integrated into a single chip. As the pillar of infor-

mation industry, the design and manufacturing of VLSI are

playing an increasingly important role in driving economic

development, deepening industrial structure and lifestyle

changes.

Physical design is the most time-consuming step in the

design process of IC, and it is also one of the most important

and active research field in VLSI computer-aided design

technology. Due to its complexity, the whole process of

physical design is often divided into partition, floorplan-

ning, placement and routing. Routing plays a key role in

VLSI physical design as it determines the specific shape and

layout of interconnect, impacting performance, power and

manufacturability, which is traditionally divided into the two

steps of global and detailed routing. Global routing needs to

connect all nets with all capacity constraints satisfied. While

detailed routing takes a global routing solution with a small

number of capacity violations (overflows), or none at all.

And under the premise of ensuring spacing constraints and

more sophisticated design rules, detailed routing completes

the assignment of wires within the routing area.

With the rapid development of IC, these characteristics

are presented: the feature size is getting smaller and smaller,

the chip area is getting larger and larger, the power sup-

ply voltage is getting lower and lower, and the number of

routing metal layers is also increasing. Traditional routing

algorithms, which operate in isolated layout regions-channels

or switch-boxes, are usually assumed to be routed on the

premise of a small number of metal layers, making it dif-

ficult to accommodate more metal layers. Gradually, over-

the-cell routing with six or multi-layer routing lead to the

adoption of similar graph-theoretical techniques in global and

detailed routing, perhaps with different layouts, resource and

delay models [2]. The routing algorithms require a better

balance between wirelength minimization and congestion.

In general, congestion is optimized by considering constraints

such as obstacles, number of vias, and capacitance. However,

the continuous reduction of process size and the increase of

integration complexity make traditional routing algorithms

unable to perform such multi-objective tasks well, and the

design of routing algorithms faces new challenges.

Swarm Intelligence (SI) is an important category of opti-

mization technique, which is inspired from simple behav-

iors and self-organizing interaction among agents like ant

colonies foraging, bird flocking, animal herding, bacterial

growth, honey bees, fish schooling, and so on [3]. Each

SI algorithm has its own unique advantages. The specific

behaviors of these animals in solving problems have different

help for searching optimal solutions, so the performance of

each SI algorithm is different for different problems. But

these SI algorithms have one thing in common, that is,

each of them has several agents working simultaneously.

And experience learning or information sharing or compe-

tition among individuals can enable swarm to grow rapidly,

improving search efficiency and precision. Therefore, many

researchers have started applying various SI algorithms with

great promise because of their high computational effi-

ciency, reliability, scalability, self-organizing, longevity and

low-cost [4]. In recent years, SI techniques have been widely

used on many practical real-world problems in the fields

of scheduling [5], production [6], facility control [7], [8],

transportation [9] and so on.

The survey has the following four main objectives. First,

we give an introduction about key concepts in VLSI routing,

such as Minimum Spanning Tree (MST), Steiner tree and

related routing issues including global and detailed routing.

Second, the applications of some SI techniques in routing

problems are listed to provide an overview of the current

state of this hot field. Thirdly, we investigate and research

some advanced processes, and give a discussion about the

construction of routing models and evaluation models that

are suitable for such processes. The final important goal is

to identify future trends and research directions to better

guide subsequent research efforts. This study discussed the

contributions which were published in the relevant journals,

conference proceedings and theses.

The rest of the paper is organized as follows. The core def-

initions and related concepts of SI techniques and VLSI rout-

ing issues are respectively presented in Sections II and III,

so that they are easily linked to the rest of the research

in this paper. Then, Section IV focuses on the investigated

routing problems using the five SI algorithms to present

a current state of the art. Section V provides a discussion

of related issues, including multi-layer routing based on

X-architecture, global routing in a Multiple Dynamic Sup-

ply Voltage (MDSV) chip design environment, and routing

problems under the via-pillar process. Section VI clarifies the

future trends and opportunities under each type of problems,

while Section VII is to make a conclusion for this paper.
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TABLE 1. Overview of different types of SI technique.

II. SWARM INTELLIGENCE TECHNIQUES

A system in which unintelligent entities exhibit collective

intelligence behavior through cooperation or interaction with

the environment is called Swarm Intelligence, having the

characteristics of natural distribution and self-organizing

characteristics [10]. It can show obvious advantages without

the premise of centralized control and providing a global

model. Inspired by nature and biology, SI techniques obtain

collective intelligence behaviors through two fundamental

concepts, self-organization and division of labor, and are

widely used in optimization problems. Many heuristic opti-

mization algorithms are developed on the basis of simulating

the behavior of different biological populations.

This section introduces the basic principles and math-

ematical models of five SI algorithms commonly used in

VLSI routing problems: Ant Colony Optimization (ACO),

Particle Swarm Optimization (PSO), Differential Evolution

(DE), Artificial Bee Colony (ABC), Firefly Algorithm (FA).

Table 1 outlines several important characteristics of these

techniques.

A. ACO

1) INSPIRATION AND BASIC IDEAS OF ACO

In the 1990’s, ACO was introduced as a nature-inspired

method for the solution of various combinatorial optimization

problems [11]. The ACO algorithm is inspired by the feeding

behavior of real ant colonies in nature. When looking for

food, the ants will randomly explore the area near the nest.

If an ant finds a source of food, it will evaluate the food
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and brings some food back to the nest, leaving a pheromone

along the way to guide other ants to find the food source. And

the concentration of pheromones may depend on the quantity

and quality of the food. Then the pheromone will gradually

evaporate. If two ants find the same food at the same time

and take different routes to return to the nest, the pheromone

smell on the more complicated path will be lighter, and the

ant colony will tend to another route closer to find food. Thus,

the probability of selecting the path of the ant from the nest is

proportional to the concentration of the pheromone on each

path, and each passing ant will leave a pheromone on the way

to achieve communication between the individuals, forming

a positive feedback phenomenon [16]. The diversity of ant

colonies and the characteristics of positive feedback make the

ACO algorithm both innovative and learning.

2) MATHEMATICAL REPRESENTATION OF ACO

The feasible solution of the problem to be optimized is rep-

resented by the ant’s walking path, and all the paths of the

whole ant colony constitute the solution space of the problem.

Artificial ants construct solutions from sequences of solution

components taken from a finite set of m available solution

components C = {cij}. And a solution construction starts

with an empty partial solution sP = ∅. Then, at each step,

the current partial solution sP is extended by adding a feasible

solution component from the set N (sP) ∈ C\sP, which is

done probabilistically as represented in Eq. (1) [16].

p(cij

∣

∣

∣
sP ) =

ταij · η(cij)
β

∑

cil∈N (sP) τ
α
il · η(cil)

β
, ∀cij ∈ N (sP) (1)

where ταij is the pheromone value associated with compo-

nent cij, and η(·) is a weighting function that assigns a heuris-

tic value to each feasible solution component cij ∈ N (sP)

at each step. α and β are positive parameters determining

the relation between pheromone information and heuristic

information.

The pheromone in Eq. (1) through the following

pheromone evaporation process to increase the pheromone

values associated with good or promising solutions, and

decrease those that are associated with bad ones [17].

τij←

{

(1− ρ)τij + ρ1τ, if τij ∈ sch

(1− ρ)τij, otherwise
(2)

where ρ ∈ (0, 1] is the evaporation rate. Different versions of

ACO algorithms update pheromones in different ways.

B. PSO

1) INSPIRATION AND BASIC IDEAS OF PSO

PSO was first proposed by Kennedy and Eberhart

in 1995 [12]. Its main idea is derived from the study of birds

clustering behavior, using the characteristics of bird popu-

lation attracted by habitat to guide human decision-making

process. At the beginning, the flock flies in the air in no

specific direction until one bird finds its habitat. Trapped by

the habitat, other companions will be affected by neighbor-

ing partners and habitats, and gradually fly to the habitat.

In this process, two kinds of crucial information will be fully

utilized, namely the experience from the bird itself and its

neighboring partners. In the PSO algorithm, each solution

of the optimization problem, called ‘‘particle’’, is regarded

as a bird in the search space. All particles correspond to all

possible solutions in the solution space. Each particle has no

weight and volume, and its fitness value is determined by

the objective function. The speed of a particle determines the

direction and distance of its flight. And the particle completes

the search in the solution space by learning form its own

experience and the optimal particle in the group. In recent

years, many scholars have carried out related research on PSO

due to its simple calculation, easy implementation and low

control parameters.

2) MATHEMATICAL REPRESENTATION OF PSO

In the PSO algorithm, particles dynamically adjust their posi-

tion information by learning their best individual position and

the global best position in the swarm. Consider a minimiza-

tion problem with D-dimensional search space, assuming

that the population size of is M , and the speed and position

update formulas of the Standard Particle SwarmOptimization

(SPSO) [18] are as follows:

V t+1
ij = ω · V t

ij + c1 · r1 · (P
t
ij − X

t
ij)+ c2 · r2 · (G

t
j − X

t
ij)

(3)

X t+1ij = V t+1
ij + X

t
ij (4)

where 1 ≤ i ≤ M , 1 ≤ j ≤ D. In Eq. (3), ω is the inertia

weight to better balance the exploration and exploitation of

the algorithm. c1 and c2 are acceleration coefficients, which

respectively adjust the step size of the particle flying to its per-

sonal best position and the global best position. r1 and r2 are

mutually independent random numbers uniformly distributed

in the interval (0,1). Ptij and G
t
j are the best position of the

particle i and the global optimal position of the population

respectively, satisfying the following formula:

Pti =

{

X ti , if f (X ti ) < f (Pti )

Pt−1i , if f (X ti ) ≥ f (P
t
i )

(5)

Gt = Ptg, g = arg min
1≤i≤M

[f (Pti )] (6)

In 1999, Clerc and Kennedy introduced constriction coef-

ficient [19] in the evolution equation, relaxed the speed limit,

and thus improved the convergence speed of the algorithm.

The speed update formula is as follows:

V t+1
ij = χ · (V t

ij + ϕ1r1(P
t
ij − X

t
ij)+ ϕ2r2(G

t
j − X

t
ij)) (7)

where ϕ1 and ϕ2 are acceleration coefficients, and χ is con-

striction coefficient satisfying:

χ =
2

[2− ϕ −
√

ϕ2 − 4ϕ]
, ϕ = ϕ1 + ϕ2, ϕ > 4

However, some dimensions that are close to the opti-

mal solution are likely to be far from the optimal solution
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although the particle position is improved after updating.

Therefore, a kind of Cooperative Particle Swarm Optimiza-

tion (CPSO) [20] is proposed to solve this problem. CPSO

divides the dimensions of particles into several groups and

each group is optimized with a single particle swarm. Then

calculate the fitness value after combining the dimensions.

Finally, the corresponding update is performed according to

the update rules of the SPSO algorithm.

In order to solve the problem that PSO is easily trapped into

local optimal when dealing with complex multi-peak prob-

lems, Liang et al. [21] proposed Comprehensive Learning

PSO (CLPSO), in which particles have more learning objects

and thus have more potential flight space.

C. DE

1) INSPIRATION AND BASIC IDEAS OF DE

The DE was proposed by Storn and Price on the basis of evo-

lutionary ideas such as Genetic Algorithm (GA) in 1997 [13].

The essence is a multi-objective (continuous variables) evolu-

tionary algorithm. And it is used for solving the overall opti-

mal solution inmultidimensional space. In community of DE,

the individual trial solutions which constitute a population

are called parameter vectors or genomes [22]. DE generates a

population of individuals by encoding with a floating vector,

and the optimization process includes mutation, hybridiza-

tion, and selection operations. The basic idea is described as

follows: Starting from a randomly generated initial popula-

tion, a new individual is generated by summing the vector

difference of any two individuals in the population with a

third individual, and the fitness value is used to determine

whether to retain the old individual. Through continuous

evolution, retaining good individuals, and eliminating inferior

individuals, DE guides search to the optimal solution.

2) MATHEMATICAL REPRESENTATION OF DE

The DE algorithm involves three control parameters, namely

population size NP, scaling factor F , and crossover rate CR.

The optimization process includes the following three

operations.

a: MUTATION OPERATION

After initializing the population, DE employs the mutation

operation to produce a mutant vector. Reference [23] gives

five commonly used variation strategies as follows:

V t
i = X tr1 + F · (X

t
r2
− X tr3 ) (8)

V t
i = X tbest + F · (X

t
r1
− X tr2 ) (9)

V t
i = X ti + F · (X

t
best − X

t
i )+ F · (X

t
r1
− X tr2 ) (10)

V t
i = X tbest + F · (X

t
r1
− X tr2 )+ F · (X

t
r3
− X tr4 ) (11)

V t
i = X tr1 + F · (X

t
r2
− X tr3 )+ F · (X

t
r4
− X tr5 ) (12)

where V t
i = {v

t
i,1, v

t
i,2, . . . , v

t
i,D} is mutant vector. The indices

r1, r2, r3, r4, r5 are mutually exclusive integers randomly

generated within the range [1, NP], and these indices are

randomly generated once for each mutant vector. The scal-

ing factor F is a positive control parameter for scaling the

difference vector. X tbest is the best individual vector with the

best fitness value in the population at generation t .

b: CROSSOVER OPERATION

Crossover operation is applied to each pair of the target vector

X ti and mutant vector V t
i to generate a trial vector: U t

i =

{uti1, u
t
i2, . . . , u

t
iD}. Crossover operation is defined as follows:

utij =

{

vtij, if randj[0, 1) ≤ CR or j = jrand

x tij, otherwise
(13)

where the crossover rate CR is a user-specified constant

within the range [0,1), and controls the fraction of parameter

values copied from the mutant vector.

c: SELECTION OPERATION

Selection operation typically screens individuals based on

fitness values. The selection operation can be expressed as

follows:

X t+1i =

{

U t
i , if f (U t

i ) ≤ f (X
t
i )

X ti , otherwise
(14)

D. ABC

1) INSPIRATION AND BASIC IDEAS OF ABC

The ABC algorithm was proposed by Karaboga in 2005 [14].

The basic idea is that the bee colony cooperates with each

other to complete the process of collecting honey through

individual division of labor and information exchange. The

minimal search model for bee colony to achieve collec-

tive intelligence includes three essential components: food

sources, employed bees and unemployed bees, and two behav-

ior patterns: the recruitment to a rich nectar source and the

abandonment of a poor source [24]. The employed bees

correspond to the collected food sources, store information

about a certain food source, and share the information with

other bees with a certain probability. The unemployed bees

are mainly responsible for finding and mining food sources,

and there are two types of unemployed bees, respectively:

scouts, searching the environment surrounding the nest for

new food sources, and onlookers, waiting in the nest and

establishing a food source through the information shared

by employed bees. In the beginning, all food sources are

discovered by scout bees. Thereafter, the mining of nectar is

completed by employed bees and onlooker bees. The sharing

of food sources information is realized in the form of a swing

dance in the dance area. After finding the food sources and

collect their nectar, employed bees return to the nest and

express the yield rate of food source through the duration

of swing dance. That is, the yield rate is proportional to the

likelihood that the food source is selected. Onlooker bees are

employed after watching the swing dance and begin searching

for the corresponding food source neighborhood and collect-

ing honey. While the employed bee whose food source has

been exhausted becomes a scout bee. ABC works through

the transformation of three different types of roles to find

high-quality honey sources.
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2) MATHEMATICAL REPRESENTATION OF ABC

In ABC, the location of food sources represents the possible

solutions of the problem, and the amount of nectar in a food

source corresponds to the quality (fitness) of the relevant

solution. In the basic form, the number of employed bees is

equal to the number of food sources (solutions).

Assume that the dimension of the problem isD, the number

of food sources is SN , and the position of honey source i

is expressed as X ti = [x ti1, x
t
i2, ..., x

t
iD]. The initial position

of honey source i is randomly generated in the search space

according to Eq. (15):

xij = Lj + rand(0, 1) · (Uj − Lj) (15)

where L and U represent the lower limit and upper limit of

the search space, respectively.

At the beginning of the search, ABC algorithm utilizes the

following expression to generate a new honey source location

V t
i = [vti1, v

t
i2, ..., v

t
iD] around the honey source i:

vij = xij + φ(xij − xkj) (16)

where k ∈ {1, 2, . . . , SN }, and not equal to i. This parameter

indicates that the employed bee randomly selects a nectar

source other than i from SN nectar sources. φ is a random

number between [-1,1], which decides the magnitude of the

perturbation. When the fitness of the new honey source Vi is

better than Xi, the greedy selection is adopted to replace Xi
with Vi, otherwise keep Xi. Eq. (16) indicates that when the

search is close to the optimal solution, the step size will also

be adaptively reduced.

After all the employed bees complete the operation of

Eq. (16), they fly back to the information exchange area

to share the honey source. And an onlooker bee chooses a

food source depending on the probability value pi, which

is associated with food source. And it is calculated by the

following expression:

pi =
fiti

SN
∑

n=1

fitn

(17)

During the search process, if the honey source Xi has

reached a threshold l by a defined number of iterations c

and does not find a better food source, the honey source

will be abandoned, and the corresponding employed bee will

be converted into a scout bee. The scout bee will randomly

generate a new food source in the search space to instead Xi.

The above process is described as Eq. (18):

X t+1i =

{

L + rand(0, 1) · (U − L), ci ≥ l

X ti , ci < l
(18)

E. FA

1) INSPIRATION AND BASIC IDEAS OF FA

FA is a simulation of the biological characteristics of fire-

fly luminescence in nature. It was proposed by Yang to

effectively deal with multi-modal and global optimization

problems [15]. The algorithm simulates the search and opti-

mization processes into the attraction and movement of the

firefly individuals, and measures the objective function of

solving the problem as the position of the individual. In this

algorithm, the reason why fireflies attract each other depends

on two factors: their own brightness and attractiveness. The

fluorescence brightness emitted by fireflies depends on the

target value of their location. The higher the brightness,

the better the position, that is the better the target value.

Attractiveness is proportional to their brightness and they

both decrease as their distance increases. For any two flashing

fireflies, the less bright one will move towards the brighter

one. If no one is brighter than a particular firefly, it will move

randomly.

2) MATHEMATICAL REPRESENTATION OF FA

The FA achieves target optimization through continuous

updating of brightness and attractiveness. And the brightness

of fireflies with distance r is expressed as follows:

I = I0e
−γ r (19)

where I0 is the original light intensity and γ is the light

absorption coefficient.

The attractiveness of a firefly is expressed as below:

β = β0e
−γ r2 (20)

where β0 is the attractiveness at r = 0.

Firefly i is attracted by firefly i′ and the position update

formula is as follows:

X t+1i = X ti + β(X
t
i′ − X

t
i )+ α

tεti (21)

where the third term is randomization with αt being the ran-

domization parameter, and εti is a vector of random numbers

drawn from a Gaussian distribution or uniform distribution

at time t . Furthermore, the randomization εti can easily be

extended to other distributions such as Lévy flights [15].

III. ROUTING PROBLEMS IN VLSI

As the current IC industry continues to advance toward

ultra-deep sub-micron processes, the integration of chips is

further improved. Since more and more circuit components

can be integrated on a single chip with the limitation of stor-

age space and packaging process, the VLSI design approach

faces new challenges. Among them, routing is one of the top

ten problems that the current physical design needs to solve

urgently [25]. In terms of chip size and capacity, the rout-

ing problem requires a circuit chip scale of tens of thou-

sands of large modules and millions of small modules, and

requires this work to be completed within a reasonable time.

In addition, the quality of the routing severely affects other

requirements in the design process, including timing and

interconnection analysis. In order to reduce the high complex-

ity of the routing process in chip design, the routing is usually

divided into two steps: global routing and detailed routing.

The global routing is a rough routing process, its function
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FIGURE 1. A three-pin net connected by (a) a spanning tree and
(b) a Steiner tree, respectively.

is to reasonably distribute each part of the nets to be routed

to each routing area in the chip, thereby clearly defining the

routing problem of each routing area. The detailed routing is

to complete the specific routing of each routing area under

the guidance of the global routing results. This section gives

a list of common subproblems in VLSI routing.

A. STEINER TREE

The shortest path problem of two-pin nets is one of the most

basic problems in VLSI routing, which looks for the shortest

routing path by given the position of the two pins while

considering the obstacles. Commonly found strategies are

maze routing [26], line probe methods [27], pattern rout-

ing [28] and so on. However, in actual routing problems,

there are often more than two pins in a net. A common

approach to dealing with multi-pin nets is to decompose the

multi-terminal net into a set of two-terminal nets, that is,

construct an MST with pins as nodes. In order to reduce

the length of the routing tree, in addition to original nodes

formed by given pins, the final MST can be constructed by

introducing additional nodes called Steiner points. As shown

in Figure 1(a), a three-pin net connected by spanning tree is

given. The Steiner tree connection model corresponding to

the net is shown in Figure 1(b). It can be seen that the length of

the routing tree is greatly reduced after the introduction of the

Steiner point. Therefore, the Steiner tree model has gradually

become the best connection model for multi-pin net which is

a key link in VLSI routing.

1) PROBLEM DESCRIPTION

The Steiner Minimum Tree (SMT) problem is to connect

all pins through some extra points (called Steiner points) to

achieve a minimal total length in VLSI routing.

In most routing problems, the segments can only route

horizontally or vertically. This kind of routing tree is called

Rectilinear Steiner Tree (RST). Rectilinear Steiner Minimum

Tree (RSMT) construction is a NP-hard problem, which is as

follows [29]: Given a set of points in the plane, the RSMT

problem seeks to connect the points with a RST, which is a

tree made up of horizontal and vertical line segments with

the minimum cost. The cost of any edge in the tree is the

rectilinear or Manhattan distance between its endpoints, and

the cost of a tree is the sum of its edge costs.

However, this way of routing only horizontally and

vertically limits the optimization of wirelength, so more

FIGURE 2. (a) Multilayer design. (b) Grid graph for routing.

FIGURE 3. A GRG based on grid-graph.

research-oriented non-Manhattan architectures were pro-

posed [30], [31]. Non-manhattan architecture routing trees

mainly include Hexagonal Steiner Tree (HST) [30] and

Octagonal Steiner Tree (OST) [31]. The routing directions

of HST are considered at 0◦, 60◦ and 120◦ to the horizontal

direction called Y-routing, while OST with X-routing allows

45◦ and 135◦ directions in additon to traditional horizontal

and vertical orientations. The non-Manhattan architecture

related issues involved in this paper refers to X-architecture.

Diversification of interconnection structures improves rout-

ing quality and improves chip performance.

B. GLOBAL ROUTING

The global routing problem is a typical graph theory problem.

The Global Routing Graph (GRG) abstracts the routing area,

routing capacity of each area, pin information of routing

areas, and the relationship between different routing areas

into a grid graph, and then uses the corresponding graph

algorithm to solve this problem.

1) PROBLEM FORMULATION

For global routing, modern designs usually have several metal

layers and two adjacent layers are linked by vias as shown

in Figure 2(b). We use a grid diagram to describe the global

routing model, that is, the entire routing area is divided into

a set of rectangles with rows and columns interlaced. Each

Global Routing Cell (GRC) is represented by one vertex, and

the adjacency relationship between GRCs is represented by

horizontal and vertical edges. For a given set of nets, their

pin sets are mapped to the vertices corresponding to the GRC

according to the placement of this GRC. Figure 3 gives a

GRG which is a set of dotted grids of interlaced rows and

columns. Each dotted grid box represents a GRC, and a pin

set is placed in the corresponding GRC according to the result

of the layout. Each GRC is mapped into GRG as a vertex (v)

of GRG, and two GRCs having an adjacency relation are
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connected by an edge (e) of GRG. So the relationship between

GRC and GRG is one-to-one.

The global routing problem of VLSI can be described as

follows: There is a grid-graph G specifying a set of vertices

V and a set of edges E . As shown in Figure 2, each vertex

vi ∈ V corresponds to a rectangular region (or GRC) of

the chip, and each edge eij ∈ E corresponds to a boundary

between adjacent vertices. And there is a set of nets N , each

net ni ∈ N includes a set of pins Pi and each pin corresponds

to a vertex vi. The routing solution for a net is to find a tree

that connects all pins of the net by using vias and routing

edges. A solution of global routing is a set of SMTs in a grid

graph, and a net corresponds to a Steiner tree that satisfies

constraints. The goal of this phase is to minimize the length

of the Steiner trees.

When evaluating a routing solution, one is typically con-

cerned with three metrics, that is overflow, wirelength,

runtime [32].

Overflow refers to the total amount of demand that exceeds

capacity over all edges, here the demand corresponds to the

number of routes that pass though the vertex [28]. In the

actual design, we want this index to be as small as possible,

ideally zero. The overflow of a routing edge e is defined as

shown below:

overflowe =

{

de − ce, if de > ce
0, otherwise

(22)

where de represents the amount of nets that pass through e.

The capacity ce of routing edge e represents the number of

available routing tracks it contains.

Wirelength is the total length of the segments that need to

be connected for all nets, and it is desirable to be as small as

possible. When using the routing tree models, the wirelength

is generally equal to the length of the routing trees. Therefore,

in many cases, various minimum trees are needed to be

designed to solve the global routing problem. The Steiner tree

mentioned above is one of the most common and effective

models for solving global routing. In multi-dimensional rout-

ing, this calculation can also include vias.

Time is an indicator that we are particularly concerned

about especially when reusing global routing to guide the

layout algorithms [33].

2) COMMON GLOBAL ROUTING TECHNIQUES

Here is a brief list of some common global routing techniques.

a: MAZE ROUTING

Maze routing is one of the most classic ways to solve the

global routing problem, which considers all possible routes

between a given source and a given sink on a routing graph.

This technique finds the routing path with the least cost from

source to sink by applying various shortest path algorithms.

The earliest maze routing algorithm comes from Lee’s algo-

rithm [26], which is the most widely used minimum path

algorithm for finding two-pin nets, but it has the problems of

large search space and high complexity. Subsequently, the A*

search technique [34] is used to improve Lee’s algorithm to

speed up convergence. For the problem of multi-pin nets,

multi-source and multi-sink maze routing [35] developed

from maze routing is applied to the tree edges, which con-

siders more potentially better routes.

b: PATTERN ROUTING

Pattern routing routes a two-pin net with predefined patterns

like L-shaped and Z-shaped patterns, which is more efficient

thanmaze routing. However, the solution qualitymay become

worse because not all possible routes in the bounding box of

a two-pin net are considered [36].

c: DECOMPOSITION TECHNOLOGY FOR MULTI-PIN NETS

This technology decomposes the task of global routing,

that is, a multi-pin net is decomposed into several two-pin

nets. The commonly used methods are SMT construction

and MST construction. SMT often provides tree topologies

with shorter wirelength, while MST shows greater flexibility

because it can produce more L-shaped two-pin nets.

d: LAYER ASSIGNMENT

For multi-layer global routing, layer assignment maps a 2-D

global routing result back to the original multi-layer solution

space. Dynamic programming [37], Integer Linear Program-

ming (ILP) [38], etc. are often used on this problem. Its main

research focus is on minimizing the number of vias.

e: OPTIMIZATION STRATEGIES

In order to improve the quality of solutions, researchers

have put forward various optimization strategies. Rip-up

and reroute [39] allows the nets passing through con-

gested regions be ripped up and rerouted for finding

alternative routes. And negotiated congestion routing can

balance the competing goals of eliminating congestion

and minimizing the performance degrading due to tim-

ing critical paths [40]. This idea based on negotiation

mechanism has been widely used in the design of routing

system.

C. DETAILED ROUTING

Detailed routing realizes exact routing paths consider-

ing geometrical constraints based on the global rout-

ing solution, which is an important stage because it is

directly related to the routing completion and design rule

satisfaction.

1) PROBLEM FORMULATION

For detailed routing based on grid models, the goal is to

find a legal routing path on a given routing grid and detour

the crowded area as much as possible. The relevant defi-

nitions and problem formula for detailed routing are given

below [41].

Definition 1: Channel (Routing Area). A rectilinear

polygonal region between circuit blocks that can be used for

interconnections (shown in Figure 4).
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FIGURE 4. Routing area with obstacles.

Definition 2: Component. A set of pins and wire segments

of a net which have been interconnected. Each unconnected

pin is a trivial component.

The routing area is a right angle polygon. The location

where the pins appear may be in the area or on the boundary.

At the same time, wewould like to take into account obstacles

of various shapes and sizes. Detailed routing requires that

all components of each net be connected within the routing

area. The primary goal is to make the routing area as small

as possible, and second, to minimize the number of vias and

the wirelength of each net. At this stage, many other factors

are also considered like power consumption, delay, coupling

of interconnects, and so on.

2) COMMON DETAILED ROUTING TECHNIQUES

Here is a brief list of some common detailed routing

techniques.

a: BASIC PATH SEARCH ALGORITHM

Like global routing, detailed routing also uses the path search

algorithm to find the wire routes such as Lee’s algorithm, A*,

Soukup’s algorithm [42], LCS* [34], etc.

b: RIP-UP AND REROUTE

Most of detailed routing researches are based on serial

routing. As with the global routing, serial routing is often

optimized by rip-up and reroute. However, such a sequen-

tial net-by-net approach is ineffective in handling congested

designs and it usually creates unnecessary detour [43].

c: PARALLEL ALGORITHMS

In order to reduce the dependence of routing results on the

order of nets, a parallel detailed routing algorithm based on

multi-commodity flow model is proposed [44], which can

simultaneously route for multiple nets. Ozdal [45] presented

an insightful technique to perform escape routing for dense

pin clusters and a Lagrangian relaxation based heuristic was

proposed.

d: TRACK ASSIGNMENT

Track assignment is an ideal bridge between the global and

detailed routing, which can effectively solve the mismatch

between the two, thus better guiding detailed routing. In track

assignment, segments extracted from global routing solution

are assigned to routing tracks. This technology provides a bet-

ter initial routing scheme for detailed routing by considering

constraints such as local nets, congestion, and the location of

vias.

IV. ROUTING PROBLEMS USING SWARM INTELLIGENCE

The purpose of this section is to introduce the application of

SI techniques in VLSI routing. By analyzing the roles of SI

techniques in routing problem, readers can more quickly and

clearly realize the key points and difficulties to be solved in

VLSI routing and advantages of SI in these aspects.

It is known that the basic optimization goal of routing is

to minimize the interconnected wirelength while consider-

ing as many other optimization objectives as possible like

obstacles, power consumption, timing and congestion. There-

fore, every surveyed paper usually involves more than one

routing problem mentioned in Table 2. And the application

of SI techniques on global routing problems in Table 2 is

given according to the most critical optimization objectives

of surveyed papers.

A. APPLICATION OF ACO

1) APPLYING ACO TO SMT CONSTRUCTION

ACO algorithm is widely used to construct SMTs [46]–[48].

In general, we generate the Hanan grid of the terminal set T .

Then place the ants in each terminal that needs to be con-

nected. An ant will determine a new vertex by some rules

and move to that vertex via an edge in Hanan grid. Each ant

maintains its own tabu-list, which records the visited vertices

to avoid revisiting it again [46]. Every time the ants move,

the ants will leave a footprint called pheromone on the edge

that has just passed, which will evaporate at a constant rate.

The process of an ant moving to the next vertex depends

on a higher value pi,j, which is a trade-off between the

desirability and the trail intensity. Given ant m in vertex i,

the desirability of vertex j is defined as follows:

ηmj =
1

c(i, j)+ γ · ψm
j

(23)

where γ is a constant,ψm
j is the shortest distance from vertex

i to all the vertices in the tabu-list of others as quickly as

possible. We use Eq. (2) to update the trail intensity in Hanan

edge (i, j), where the increment of updating is given by the

following formula:

1τi,j =







Q

c(St )
, if (i, j) ∈ Et

0, otherwise

(24)

where c(St ) is the total cost of the current result tree St , Et
is the edge set of it, and Q is a constant which matches the

quantity of the tree cost. Based on Eq. (1), the probability of

an ant using edge (i, j) to move is defined as follows:

pij =











[τij]
α · [ηmj ]

β

∑

k 6=tabu−list(m) [τik ]
α · [ηmk ]

β
, if j ∈ A

0, otherwise

(25)
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TABLE 2. Application of SI techniques to the VLSI routing problems.

Algorithm 1 Construct Steiner Tree by ACO

Input: terminal set T, connection graph

Output: a rectilinear Steiner tree T

1 Place an ant on each vertex in the terminal set T and put

the vertex into its tabu-list;

2 Set the current sub-tree t empty;

3 while ant number > 1 do

4 Select an ant m randomly;

5 AntMove(m);

6 Add the edge m passing into t;

7 if m meets m1 then

8 Add vertices in tabu-list of m to that of m1;

9 m dies;

10 Relocate(m1);

11 Prune(t);

12 Return;

whereA is the set made up of all vertices, which are connected

with i and are not in the tabu-list of ant m [46].

The process of constructing an RST using ACO is shown

in Algorithm 1 [47]. In Step 5, function AntMove(m) decides

the next vertex that the current ant m will move to. And the

encounter between two ants is described in Step 7 to 10.When

ant m encounters ant m1, ant m dies, and the vertices in the

m’s tabu-list are added into m1’s. If m1 is still in the original

position, Relocate(m1) will re-create its position. When there

is only one ant left, the tree is built. At the same time,Prune(t)

is used to delete all 1-degree non-terminal vertices in the tree.

However, using ACO to find SMT is still time consuming

because the ant’s movement is based on the Hanan grid,

FIGURE 5. Definition of distance between two edges.

FIGURE 6. (a) BOTTOM_ORIENT. (b) TOP_ORIENT. (c) BOTTOM_ORIENT
segment. (d) TOP_ORIENT segment.

and only a small segment can be moved per iteration. So [47]

extends the tabu-list of each ant to record the edges instead of

the vertices that this ant has visited so that every movement

is not constrained by Hanan grid. They defined the distance

between the two sides as follows: The distances between edge

L1 and L2 in Figure 5(a), 5(b), 5(c), and 5(d) are h, h+w, h and

h+w, respectively. And there are two possible ways to move

when the shortest path is L-shape, which are TOP_ORIENT

and BOTTOM_ORIENT. One orientation is chosen to move

based on both the trail intensity and the topology. For a given

edge orientation, the rules we find the closest vertex to the

edge are shown in Figure 6. In Figure 6(c) and 6(d), vertex

B represents the current location of an ant, and the closest

vertex out of its tabu-list is vertex C . Next, the ant needs

to decide the orientation of edge (B,C). Figure 6(c) shows

that the closest vertex to edge (B1,C1) is A1 with distance

|A1A
′
1| for BOTTOM_ORIENT. While for TOP_ORIENT,

the distance between A2 and edge (B2,C2) is |A2A
′
2|, which

is shown in Figure 6(d). So the gain in BOTTOM_ORIENT
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is |A2A
′
2|−|A1A

′
1| and the gain in TOP_ORIENT is |D1C1|−

|D2D
′
2|. The authors rewrote Eq. (23) according to this rule

as follows:

ηd =
[gaind ]

λ

distd
(26)

where d is the two orientations (BOTTOM_ORIENT and

TOP_ORIENT), gaind is the gain in orientation d , distd is

the distance from the closest vertex out of its tabu-list to the

edge in orientation d , and λ is a constant that is the trade-off

between the closest distance and gain. In this way, an ant can

cross several edges of Hanan grid in each iteration and one ant

will be removed from the set of alive ants in each movement.

This ACO-Steiner algorithm [47] can be used to construct

initial trees for all nets and optimize the routing tree itera-

tively to further reduce wirelength. Moreover, this algorithm

can generate different topologies with the same wirelength

for a net, which is beneficial to reduce congestion scarifying

only a little wirelength.

Reference [48] presents an Obstacle-Avoiding Rectilin-

ear Steiner Minimum Tree (OARSMT) algorithm based on

ACO. In this algorithm, an efficient graph reduction method,

called T-Reduction, is adopted to reduce the searching space.

This method is implemented by maintaining an FIFO queue.

Firstly all 2-degree vertices are pushed into the queue. Then

pop the first vertex from the queue, delete the vertex and

its adjacent edges, and its adjacent non-terminal vertices are

pushed into the queue while the queue is not empty. Later,

non-terminal convex corner points are reduced. And finally

reduce 1-degree terminals. Such terminals can be deleted

along with their adjacent edges. It’s worth mentioning that

T-Reduction method is very efficient when the case scale is

not large and is also suitable for escape graph reduction. And

a greedy obstacle penalty distance (OP-distance) local heuris-

tic is used in this OARSMT algorithm at the same time, where

the OP-distance is used to estimate the distance between two

vertices in the presence of obstacles. The proposed algorithm

has a high optimization capability of wirelength and can

handle complex obstacle cases including both convex and

concave polygon obstacles.

2) APPLYING ACO TO GLOBAL ROUTING

ACO-Steiner can be easily extended to other routing prob-

lems such as power-driven routing. References [49] and [50]

implement ACO algorithms on both grid-less Manhattan

architectures and non-Manhattan routing architectures that

use diagonal routing, which aim at limiting the power con-

sumption of the chip. The difference is that, [50] actives

power on the chip not only by minimizing wirelength and

vias, but also capacitance.

In [50], the characteristics of ant colony’s memory,

stochastic decision making and strategies of collective and

distributed learning are used to find the shortest possible

routes, then choose the one that minimizes capacitance from

those routes. Unlike [46], an ant will not die when meeting

another ant, but rather a particular connection is marked

as completed. Completing these paths can also reduce redun-

dant paths, thereby decreasing the number of vias. The first

step of the algorithm is to create a Hanan grid, then start

routing nets using ACO. Notice that small nets are routed first

in order to minimize obstruction from bigger nets. The spe-

cific ACO-Route approach can be described as Algorithm 2.

The probability of unvisited nodes are calculated through the

heuristic to minimize the distance between the ant and other

ants and pheromone values (Step 10). If the ant meets another

ant, for both the ants add the routes traveled by one to the

route list of the other. The experiments prove that ACO is suc-

cessful in solving the multi-constraint optimization problem

of VLSI chip power minimization.

Algorithm 2 ACO for Routing

1 Create Hanan grid;

2 Order nets according to degree and then size;

3 Initialize a small amount of pheromone on the whole

grid;

4 while termination condition is not met do

5 Route

6 for each ant do

7 Empty ant’s memory;

8 Place ant at some terminal node;

9 Construct a complete tour for ant;

10 Calculate the probability of unvisited nodes;

11 Deposit pheromone on the paths taken by the

ant;

12 Find the best ant of the iteration;

13 Update the global pheromone value;

14 End Route

15 Find the shortest ant routed solution, and check if

any part of this solution interferes with any other

solution.

B. APPLICATION OF PSO

1) APPLYING PSO TO SMT CONSTRUCTION

The PSO algorithm introduced in Section II is usually used to

solve continuous problems, while VLSI routing is a discrete

problem. For this reason, many scholars have improved SPSO

to solve actual discrete problems. At present, PSO has been

widely used in SMT construction for VLSI routing problem,

and has achieved good results. The key of SMT construction

is the selection of Steiner points.

a: RST CONSTRUCTION USING PSO

Dong et al. [51] proposed a routing algorithm based on

discrete particle swarm optimization (DPSO-RA), aiming at

length and the bound of connectivity rate. The algorithm

adopts a novel encoding and several update operations for

DPSO, and achieves interconnection of all destination nodes

in VLSI.
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FIGURE 7. (a) The establishment of Steiner matrix. (b) Particle coding of
Steiner matrix.

Particle Encoding. Each particle represents an MST.

DPSO-RA encodes the particle by establishing Steiner

Matrix. A particle Xi is a matrix and is expressed as:

x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
. . .

...

xn1 xn2 · · · xnn

where n is the number of components waiting for intercon-

nection. Each bit of the particle encoding corresponds a node

in the Steiner Matrix, and is valued in binary. The nodes to

be connected, called ‘‘terminal nodes’’, are taken as input

from the user or are generated randomly in the form of x

and y-coordinates. If a node is selected to construct the RST,

the value of the bit is ‘1’, otherwise ‘0’. Usually, the matrix

will be reduced by deleting some rows and columns that do

not have any terminal nodes.

Steiner Matrix is established by the horizontal and vertical

lines’ cross-points of the components. And it represents the

possible locations of the Steiner nodes of RST. Figure 7(a)

shows a Steiner Matrix of 10 components (blue) to be con-

nected. Its corresponding particle is shown in Figure 7(b).

The velocity Vi of particle Xi is also a matrix, expressed as

follows:

v11 v12 · · · v1n
v21 v22 · · · v2n
...

...
. . .

...

vn1 vn2 · · · vnn

where each bit of the velocity represents the probability of

selecting the corresponding node in Steiner Matrix.

Fitness Function. The cost of MST is the fitness value of

this particle, which is calculated by Prim’s algorithm.

Update Operation.DPSO-RA redefines the operations of

PSO and uses Eq. (3) and (4) as the position and velocity of

the particle respectively.

Definition 3: ‘‘−’’ Operation. The result of ‘‘−’’ operation

between two particle locations is a velocity.

Definition 4: ‘‘+’’ Operation. The result of ‘‘+’’ operation

between two velocities is a new velocity.

FIGURE 8. Obstacle-avoiding construction by generating virtual vertexes.

Definition 5: ‘‘×’’ Operation. The parameters c1 and c2
are constants, r1 and r2 are random numbers between 0 and 1.

The result of ‘‘×’’ operation between a velocity and parame-

ters is still a velocity.

Algorithm Processes.

Step 1. Initialize the particle swarm.

Step 2. Calculate the fitness value of each particle.

Step 3. Update pbest and gbest .

Step 4. Calculate the self-adaptive inertia weight for each

particle.

Step 5. Update the velocity and position of particles.

Step 6. If the termination condition is met, the algorithm

ends. Otherwise return to Step 2.

References [52] and [53] also use Steiner Matrix to encode

the particles, and introduce the mutation operation of GA

into DPSO. In [52], a matrix corresponding to a particle

represents both position and velocity. Its velocity is updated

by Eq. (3), while Eq. (4) is not used to update the position of

the particle. The algorithm updates the position by selecting

only some bits of the position matrix of the particles from

the previous generation. This is the mutation process they

introduced that can increase the efficiency and robustness of

DPSO. Reference [53] uses PSO algorithm with constriction

factor, that is, Eq. (7) is used to update the velocity and

Eq. (4) is used to update the position. This algorithm adapts

a novel mutation operation by selection of some bits of the

previous position vector along with the information of the

initial Steiner Matrix.

Shen et al. [54] considered wirelength and obstacles at

the same time and then proposed a novel OARSMT con-

struction algorithm, which avoids obstacles by generating

virtual vertexes of the real vertexes. The algorithm designs

the following obstacle-avoiding strategy for the case where

the three types of routing across obstacles shown in Figure 8.

Take Figure 8(a) as an example. First, vertices S and T
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respectively produce corresponding virtual vertices, which

have the same horizontal coordinate with the left (or right)

edge of the obstacle and the same vertical coordinate with the

original vertices. Next, sequentially connect S, S ′, T ′ and T ,

and dismantle the violate edges.

The OARSMT construction is divided into the following

two steps:

(1) Divide all the pins of the net into k groups, and generate

corresponding RSTs based on the above-mentioned obstacle-

avoiding strategy. The algorithm places the pins that are close

to each other in a group, while making the amount of each

group of pins (at least two pins) as small as possible.

(2) Wirelength minimization is the optimization goal, and

then [54] connects all of the groups considered as real ver-

texes to construct the final RST.

In this algorithm, Prüfer number [79] is used to encode

the solution of RST, and 0-1 coding is used to select Steiner

points. For example, a particle is represented by:

X ti =

[

2 5 4 5 4 100

0 1 0 0 1 15

]

where the Prüfer number is {2,5,4,5,4}, and the Steiner point

selection scheme is {0,1,0,0,1}, the total length of this tree is

100 and the obstacles quantities of this particle is 15.

The algorithm introduces crossover and mutation opera-

tors inspired from GA to handle Prüfer numbers which are

discrete magnitude. Based on SPSO (Eq. (3)), the following

position update formula is given for solving the discrete

problems:

X ti = c2 ⊕ F2(c1 ⊕ F1(ω ⊕ F(X
t−1
i ),Pt−1i ),Gt−1i ) (27)

Eq. (27) uses the ‘‘+’’ operation to connect the following

three parts, in other words two operations including mutation

and crossover operation.

(1) Mutation operation:

λti = ω ⊕ F(X
t−1
i ) =

{

F(X t−1i ), r0 ≤ ω

X t−1i , else
(28)

where F represents the mutation operator from GA with

the probability of ω, and r0 is a random number on the

interval [0, 1).

(2) Crossover operation:

δti = c1 ⊕ F1(λ
t
i ,P

t−1
i ) =

{

F1(λ
t
i ,P

t−1
i ), r1 ≤ c1

λti , else
(29)

X ti = c2 ⊕ F2(δ
t
i ,G

t−1
i ) =

{

F2(δ
t
i ,G

t−1
i ), r2 ≤ c2

δti , else
(30)

where F1, F2 represent the crossover operators that influence

self-cognitive and social-cognitive respectively, and the prob-

abilities are c1 and c2. r1 and r2 are random numbers on the

interval [0, 1).

This paper proposes a novel framework of PSO to

solve OARMST problem and extends the application of

SI algorithm in VLSI physical design. Many of the later

FIGURE 9. Four options of Steiner point for a given line segment.

works [55]–[61], [67], [68], [80], [81] are also based on this

PSO framework of Eq. (27).

b: OST CONSTRUCTION USING PSO

Liu et al. [55], [56], Huang et al. [56], [57], and

Liu et al. [58]–[61] have done a lot of research work on the

construction of Octagonal Steiner Minimum Tree (OSMT)

based on the following interconnected structure, and have

achieved excellent results.

Interconnected Structure. There are four choices for line

segment L of connecting pins A and B as shown in Figure 9.

And [55] gives four definitions about selection of Steiner

points.

Definition 6: Choice 0 (as shown in Figure 9(b)). The

Choice 0 of Steiner point corresponding to edge L is defined

as leading rectilinear side first from A to Steiner point S, and

then leading non-rectilinear side to B.

Definition 7: Choice 1 (as shown in Figure 9(c)). The

Choice 1 of Steiner point corresponding to edge L is defined

as leading non-rectilinear side first from A to Steiner point S,

and then leading rectilinear side to B.

Definition 8: Choice 2 (as shown in Figure 9(d)). The

Choice 2 of Steiner point corresponding to edge L is defined

as leading vertical side first from A to Steiner point S, and

then leading horizontal side to B.

Definition 9: Choice 3 (as shown in Figure 9(e)). The

Choice 3 of Steiner point corresponding to edge L is defined

as leading horizontal side first from A to Steiner point S, and

then leading vertical side to B.

Particle Encoding. Based on the above design of inter-

connected wire, [55] uses numerical encoding called Edge-

to-Point encoding to represent each candidate OST: For a

net with n pins, a spanning tree would have n-1 edges,

n-1 Steiner points and one extra bit which is the fitness of

particle. Besides, two bits represent the two vertices of each

edge. Namely, the particle is encoded with a numerical string

of 3×(n-1)+1. For example, a particle can be expressed as

follows:

7 6 0 6 4 1 7 5 1 5 1 2 1 3 0 1 8 1 5 2 2 0.0100

where the number ‘0.0100’ is the fitness of the particle and

each number in bold represents the Steiner point choice.

Taking the first substring (7, 6, 0) for instance, it represents

one edge of the spanning tree which is composed of Vertex 7,

Vertex 6 and the Steiner point choice (Choice 0).

Reference [55] introduces mutation and crossover opera-

tions as particle update strategies like [54]. Like the prob-

lems of RST, we also study related problems of OST
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such as Obstacle-Avoiding Octagonal Steiner Minimum Tree

(OAOSMT). References [56]–[58] consider the construction

of OST with key issues such as obstacles, delay and number

of bends, also based on this encoding method and particle

update strategies, while using Union-Find Sets (UFS) to

prevent the generation of invalid solutions. Reference [60]

constructs OSMT based on self-adapting PSO with an effec-

tive Hybrid Transformation Strategy (HTS) to enlarge the

search space. While [61] presents a unified algorithm for

both octagonal and rectilinear SMT construction, and also

applies HTS to PSO, which can achieve a better wirelength

optimization. These two algorithms both have an ability to

obtain multiple topologies of Steiner trees with the same

wirelength, so that it can provide different topology options

for congestion optimization in global routing.

2) APPLYING PSO TO GLOBAL ROUTING

PSO is also widely used for global routing because of its

simplicity and the ability to quickly converge to an ideal

solution.

Minimizing wirelength and reducing congestion are the

most common and important tasks for global routing.

Liu et al. [68] proposed a high-quality VLSI global router in

X-architecture called XGRouter, which was based on ILP

techniques, partition strategy and PSO. Their ILP formula-

tion, called O-ILP, considers the congestion uniformity to get

a more even routing distribution without generating too many

hot spots and the solution has no overflowed edges. At the

main stage of their algorithm, ILP is formulated from the

original routing sub-region and an improved PSO is designed

to solve the O-ILP formulation. In their proposed PSO,

the 0-1 integer encoding is used for particle encoding, which

can satisfy the completeness and non-redundancy principle.

And based on the update formula of particles (Eq. (27)),

a check strategy is incorporated in the crossover and muta-

tion operators to meet the soundness principle. Finally, not

only the wirelength but also the congestion uniformity is

considered into the fitness function to generate better solu-

tions. Reference [67] presents some enhancements based on

XGRouter. In this paper, some new types of routing are intro-

duced and PSO algorithm is combined with maze routing.

This improved algorithm can be applied tomulti-layer routing

model, which can achieve good results on overflows and total

cost of wirelength.

With the continuous development of the manufacturing

process and design scale of IC, the feature size is continuously

reduced, the parasitic effect of the connection is not negli-

gible, and the interconnection delay exceeds the gate delay,

which becomes the main factor determining the performance

of the circuit. Therefore, it is necessary to consider other typi-

cal performance optimization targets except wirelength, such

as delay and power dissipation. Several techniques have been

used to reduce interconnection delay − wire sizing, buffer

insertion, and buffer sizing. Among them, buffer insertion

is the most effective interconnection optimization method to

reduce delay.

FIGURE 10. (a) Location of obstacles. (b) Corresponding vertex value.

Ayob et al. [63] employed PSO to solve buffer insertion

problem in VLSI routing, with considerations on wire and

buffer obstacles. They used distributed RC network as inter-

connected model and applied the Elmore Delay formulation

to calculate the interconnection delay from source to sink.

a: ELMORE DELAY CALCULATION

For computation delay where the iterative calculation starts

from source then advance to the sink, each node in the wire is

labeled with a resistance-delay pair (r, t) where r is resistance

of wire and t is delay time accumulated up to that node,

respectively [82]. If the subsequent segment is wire, then the

subsequence delay pair (r ′, t ′) is defined as:

r ′ = rw + r (31)

t ′ = (r + rw/2)cw + t (32)

where rw and cw are the resistance and capacitance of the wire

segment, respectively. If the segment consists of wire with

buffer then (r ′, t ′) is defined as:

r ′ = rb (33)

t ′ = r(cw + cb)+ rw(cw/2+ cb)+ db + t (34)

where db, rb and cb are the intrinsic buffer delay, buffer output

resistance and buffer input capacitance, respectively.

b: GRID-GRAPH MODEL

This algorithm utilizes a grid-graph model to represent rout-

ing path and buffer placement location. Figure 10(a) shows

the location of source and sink (dark), buffer obstacle (gray)

and wire obstacle (dark). And Figure 10(b) shows the cor-

responding value of each vertex location. The value is set

to 1, which indicates the presence of wire obstacle for routing

the path. The region whereby buffer is not permitted (buffer

obstacle area) will be set to 2. Value = 0 represents the area

that is possible for routing path and for buffer placement

location.

c: PARTICLE ENCODING

In this problem model, each of the solution of path routing in

each iteration is represented by one particle of PSO. If using a

maximum number of 8 doglegs, each particle can be encoded
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FIGURE 11. PSO VLSI routing mapping.

by a seven-vector of position which is from e1 to e7 shown

in Figure 11. And eeven is the location in grid graph measured

from origin along x-axis and eodd is the location in grid graph

measured from origin along y-axis [63]. One path from source

to sink is generated by connecting these continuous segments:

source→e1→e2→e3→e4→e5→e6→e7→sink. For a more

complex case study, number of doglegs can be increased by

increasing the vector position, e to n value. Thus particle i

with the position and velocity are presented as:

xi =




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
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(35)

d: FITNESS FUNCTION

The fitness of this algorithm is the delay time calculated

accumulatively from source to sink, including both wire

segment and wire segment terminated with buffer. Taking

Figure 11 for instance, the number of total segments used can

be calculated as Eq. (36)

p = (
∑n

a−1
|ea − ea+2|)+ |xsi − en−1| + |xso − e1| (36)

where n is amaximumnumber of dogleg and ea represents the

location of a node in grid graph. xso and xsi are x-axis coordi-

nates for source and sink. For every 6 segments, a buffer will

be placed randomly. From the value of P and the correspond-

ing buffer location, the delay time can be determined using

Elmore delay within iterative calculation.

However, the algorithm did not perform wire and buffer

sizing. Hence, Yusof et al. [64] extended Ayob’s work by

employing Binary Particle Swarm Optimization (BPSO) in

buffer insertion and wire sizing in the presence of wire and

buffer obstacles. In this algorithm, particle position X can be

modelled as follows:

X = [x1x2...xq]
T

where xq represents the type of wire with/without buffer for

the respective to grid segment, q. For each x, seven bits

are used to represent the case study, where the first 3 bits

represent the type of wire used, the fourth bit indicates the use

of buffer, and the last 3 bits represent the type of buffer used.

The fitness function is determined by capacitance-delay pair

(c, t), where c represents the total ground capacitance at node

v in a delay model. And a new capacitance-delay pair (c′, t ′)

for the preceding interconnected segment is determined as

follows:

c′ =

{

cw + c; case1

cw + cb; case2
(37)

t ′ =

{

rw(cw/2+ c)+ t; case1

rw(cw/2+ cb)+ db + rbc+ t; case2
(38)

The particle velocity is updated by Eq. (3), and the positionX ,

is updated for next iteration t for each bit d , using Eq. (39)

based on the probability of the normal distribution.

X t+1id =















1, r <
1

1+ e−v
t+1
id

0, r ≥
1

1+ e−v
t+1
id

(39)

where r is random number of [0,1].

In addition, Yusof et al. [65] also proposed a two-step

BPSO approach to obtain the best path of wire placement

with buffer insertion from source to sink. The algorithm uses

two BPSOs respectively to find the shortest path of wire

placement and the best location of buffer insertion along

the wire. The fitness function used for the second BPSO is

the time delay formulation based on the iterative RLC delay

model.

However, the low exploration capability of BPSO method

sometimes leads to a low convergence rate of the routing algo-

rithm. To overcome this drawback, Nath et al. [66] proposed

a two-step modified constricted PSO with the integration

of the mutation (CPSO-MU). PSO-MU discovers the mini-

mal path of placing the wire at first and explores the finest

location along the wire for inserting the buffer in the final

step. Compared with [65], CPSO-MU can accomplish global

convergence with a slighter number of iterations and produce

a less interconnect delay.

C. APPLICATION OF DE

1) APPLYING DE TO SMT CONSTRUCTION

Manna et al. [69] described an improved DE for finding

RSMT. The entire search space is represented by an n-by-n

null matrix, where n is the dimension of search space. Then

randomly change the element from ’0’ to ’1’ to produce

an initial population. In order to better solve the discrete

problem, they redesigned the three links of DE as follows:

(1) Mutation. Choose one particle randomly, then change

the elements of the matrix randomly from ’0’ to ’1’. The

elements which are already equal to 1 are kept intact. This

new matrix is treated as mutant matrix.
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FIGURE 12. DDE for OSMT construction: (a) mutation operator when
difference set is empty; (b) mutation operator when difference set is not
empty; (c) crossover operator.

(2) Crossover. Crossover is performed between mutant

matrix and target matrix to generate a trial Matrix using

Eq. (13). If a generated random number is greater than the

CR then an entire row (or column) is copied from target par-

ticle’s positionmatrix to newly formed trial particle’s position

matrix. Otherwise the row (or column) is copied from the

mutant matrix.

(3) Selection. The fitness values of trial matrix and target

matrix are compared. The target matrix will be replaced by a

matrix with better fitness value.

The proposed algorithm works well in both small and

large dimensional routing problems. And because of DE’s

simplicity and flexibility, it can also be used in other discrete

optimization problems.

In 2019, Wu et al. [70] proposed a feasible and effective

X-architecture SMT construction algorithm based on Dis-

crete Differential Evolution (DDE). And they designed new

mutation and crossover operators combined with UFS for

DDE. In this work, every particle is encoded as a numerical

string by Edge-to-Point encoding like [55]. And the last bit

represents the length of OSMT, while the fitness is set to the

function of the length. Eqs. (8), (13) and (14) are adopted as

particle updating formulas, respectively representing muta-

tion, crossover and selection operations.

They designed novel operators and the corresponding

evolution of using DE to search for OSMT is shown

in Figure 12.

(1) Mutation. The subtraction operation in Eq. (8) refers

to the difference set operation, and the addition operation

refers to the union operation of the set. Choose three particles

randomly, respectively p1, p2, p3. So the subtraction operation

can be divided into two cases:

• One is that the result of p2 − p3 is empty set. Edge

m1 to be mutated is randomly selected from particle p1,

then delete this edge, and p1 is divided into two sub trees.

Combining with UFS, two points are randomly selected

from the two sub trees respectively and reconnected as

the mutation particle (as shown in Figure 12(a)).

• The other is that the result of p2 − p3 is not empty. The

elements of the difference set are as part of the edges of

mutation result. Then select the remaining from the edge

set of p1 to reconstruct a new tree as the final mutation

particle (as shown in Figure 12(b)).

(2) Crossover. When the mutated particle m crosses with

the current particle i, the following action is performed: The

common edges of the two trees are used as the starting

set, and the remaining edges are used as the candidate set.

Combining with UFS, constantly extract the remaining edges

from candidate set until the crossover result is a legal tree

(as shown in Figure 12(c)).

(3) Selection. A greedy strategy based on fitness is adopted

in selection operation.

Compared with DPSO-based RSMT [29] and OSMT [55]

construction algorithms, this kind of DDE can achieve a

greater wirelength reduction on solving RSMT problem and

in terms of constructing OSMT, the wirelength optimization

ability is similar to that in [55]. It can be seen that DE has

certain advantages over PSO in finding RSMT.

2) APPLYING DE TO GLOBAL AND DETAILED ROUTING

DE is alsowidely used inVLSI global routing. Reference [71]

uses DE for 3D IC global routing to minimize wirelength

with respect to Through Silicon Vias (TSV). The mutation

operation of the algorithm uses Eq. (8), that is, the mutation

operator creates mutant vectors by perturbing a randomly

chosen vector Xr1 with the distinction of two other randomly

chosen vectors Xr2 and Xr3 . The crossover and selection

operations are performed by Eqs. (13) and (14), respectively.

And [72] uses DE for restrictive channel routing and use

the horizontal and vertical constraints in the solution vector

encoding to eliminate unfeasible solution, which leads to

lower complexity and reducing search space.

D. APPLICATION OF ABC

1) APPLYING ABC TO SMT CONSTRUCTION

[73] presents an ABC algorithm for solving the routing

optimization problem, showing noteworthy improvements in

reduction of the total interconnected length. The problem is

to find a RSMT to connect all terminals or pins, without any

severe loss of generality from a grid graph. And the search

space is also represented by Steiner Matrix. Since ABC is

good at exploration but poor at exploitation, they introduced

two steps in the algorithm to improve the exploitation. One

is to design a new probabilistic function for selecting food

sources that takes into account the type and complexity of

the problem, which is described as follows:

pi = e
−
fiti
ρ (40)
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where ρ is a constant depending on the type and complexity

of the problem dealt. The other is a new equation to exploit the

food sources in onlooker bee phase of the algorithm, which

is described as follows:

vij = xbest + φ(xbest − xij) (41)

where xbest is the best solution in the current iteration. Using

Eq. (41), the worst solution will get the best chance for local

search and the best solution in the current population can

modify all other solutions in next generation.

The specific procedures for solving RSMT problem with

ABC are shown in Algorithm 3.

Algorithm 3 Construct RSMT by ABC

1 Define objective function, f (x), maximum number of

iterations, maxit and a counter, c ;

2 Initialize a population of bees xi (i = 1,2,. . . ,NP) and

iteration counter iter = 0;

3 while iter < maxiter do

4 for i = 1:NP/2 (employed bees) do

5 Calculate new solution by Eq. (16);

6 Calculate f (xi) for all i;

7 Calculate pi by Eq. (40);

8 for i = 1:NP/2 (onlooker bees) do

9 Select solution based on pi;

10 Calculate f (xi);

11 Calculate pi by Eq. (40);

12 Use greedy selection;

13 if for particular xi, f (xi) doesn’t improve until c then

14 Scout produces new solution using Eq. (18);

15 iter = iter + 1;

Later in 2015, Zhang and Ye [74] proposed a discrete ABC

for the OARSMT construction which is used for routing the

multi-terminal nets in VLSI design. The algorithm generates

the escape segments for OARSMT firstly, and then use the

discrete ABC to search a near-optimal solution. Compared

with the basic ABC algorithm, their algorithm has the follow-

ing improvements: (1) A key-node-based encoding scheme is

adopted to build a tight searching scope for representing the

feasible solution; (2) For Steiner tree construction, a modified

classic heuristic is presented as the encoder that can construct

the Steiner tree with a good solution quality; (3) A key-node

neighborhood configuration and two local search operators

with an indefinite search step length are applied to the local

search strategy; (4) In addition, a global search operator is

designed to avoid the generation of the same initial solution

every time and a merging operation is used to enhance the

global search.

2) APPLYING ABC TO GLOBAL ROUTING

Bhattacharya et al. [75] utilized ABC to find the optimum

wire length of a chip during global routing. The search space

of the problem is represented by the Steiner Matrix. In this

case, the solutions act as the food sources and the nectar

amount of the food sources decides their fitness.

Three phases are used to obtain a solution:

a: EMPLOYED BEE PHASE

Initialize a number of solutions (equal to half of the popula-

tion size). Each solution is generated by randomly selecting

some elements of its corresponding matrix and setting it to 1

(These points can be regarded as Steiner points in the original

global routing graph), while the original terminal nodes are

kept unchanged.

b: ONLOOKER BEE PHASE

The fitness value of each matrix is obtained using the Prim’s

algorithm. The probability value of each solution (matrix)

is then obtained by Eq. (17). Depending on this probability,

the solutions are selected in the onlooker bee phase.

c: SCOUT BEE PHASE

For any food source (matrix), the solution is discarded and

the algorithm will enter the scout bee phase if the solution

is not improved within the set threshold range. And the new

solutions are generated by randomly selecting points in the

original matrix.

Repeat the above steps until the termination condition is

satisfied. Then the best solution is determined according to

the fitness value and the optimal wirelength is obtained.

In this paper, ABC can work efficiently because the candidate

solutions are obtained from the parents by means of a simple

and elementary operation method. This method is imple-

mented based on finding the difference between randomly

chosen parts of parent solution and a random solution from

the population. So that the convergence of the algorithm is

hastened. Compared with a quick and robust global router

NTHU 2.0 [83], which solves all International Symposium on

Physical Design (ISPD) benchmarks, [75] can generate better

results and more optimum routing configurations.

Zhang and Ye [76] applied the ABC algorithm to the

routing for two-terminal nets and compared its performance

with the maze algorithm. In order to adapt the ABC algorithm

for solving the routing problem of two-terminal nets, several

parts of ABC are altered as follows: (1) The algorithm adopts

a sequence encoding method, which divides the solutions

of the problem into two parts: the row-based solutions and

the column-based solutions; (2) Half of the initial solution

is generated by pattern routing, and the other half is ran-

domly generated to speed up the algorithm convergence;

(3) A local search operation is designed to exchange the

front part sequences or behind part sequences of the auxil-

iary solution and the current solution to generate two new

solutions, and then select the best solution from the new

solutions and the current solutions as the updated current

solution; (4) A dynamic attractiveness probability is designed

for adjusting the positive feedback of this algorithm during

the different stages. The experimental results demonstrate

26282 VOLUME 8, 2020



X. Chen et al.: Survey of SI Techniques in VLSI Routing Problems

that ABC algorithm can find the less cost routing paths

for the routing problem of two-terminal nets than the maze

algorithm.

E. APPLICATION OF FA

1) APPLYING FA TO GLOBAL ROUTING

Nasir et al. [78] applied FA on VLSI routing to find the mini-

mum time delay by choosing the path and placing the buffers

intelligently. The proposed algorithm employs the location

of doglegs to model the firefly that represents the routing

solution. Like the previous model of using PSO to solve

routing problem [63], in this work, a distributed RC network

is still used as interconnected model and the Elmore Delay

formulation is applied to compute the interconnect delay from

source to sink. And the same grid-graph model, as shown

in Figure 8(a) and 8(b), is used to represent the areas that

are possible for routing path and information about obstacles

and buffers. In the model of Figure 9, each firefly represents

a candidate solution of the problem. Similar to the particle

swarm, the position of each firefly in FA is also a seven-vector

from e1 to e7. Thus the general representation of the firefly in

VLSI routing problem as follows:

xi =
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Algorithm 4 FA for VLSI Routing Problem

1 Define objective function f (x), and maximum number of

iterations, maxit;

2 Initialize a population of fireflies xi(i = 1, 2, . . . , q),

parameters: γ , β0, α, and iteration counter iter = 0;

3 Place the buffers randomly for the population;

4 while iter < maxiter do

5 for i=1 : q (all q fireflies) do

6 for j = 1 : q do

7 if Ii < Ij then

8 Move firefly i towards j using Eq. (21);

9 Place the buffers randomly for firefly i;

10 Perform correction if necessary;

11 Evaluate new solution according to the

f (x), update Ii and global best if

necessary;

12 Output the firefly with the highest light intensity;

Algorithm 4 gives the FA algorithm for VLSI routing opti-

mization problem. The algorithm generates the initial firefly

population randomly, and the location of a firefly is evaluated

by the fitness function. And light intensity of firefly Ii at

xi is determined by fitness f (x) using Eq. (31) to Eq. (34).

At each iteration, each firefly will fly to a firefly with larger

light intensity, using Eq. (21) as the position update formula,

where distance r is the Cartesian distance between the two

fireflies. However, after the firefly moves towards another

agent, the new position suggested might be invalid due to

inexact coordinate location. Therefore, the correction strategy

in Step 10 is proposed to mainly focus on two situations: one

is that the solution is a decimal, and the easy way is to round

it off; the other is that the solution exceeds the coordinate

boundary, and the measure taken is to ignore this iteration.

Next (Step 11) is the fitness evaluation of the new firefly and

the update of the light intensity. The final solution is obtained

by continuously iterating and updating the global best. The

author compared this method with PSO-based routing algo-

rithm [63] and the same optimal solution was obtained. For

the routing problem without buffer insertion, the algorithm

process is roughly the same as Algorithm 4, only needing to

omit Step 3 to Step 9.

In [62], FA, the PSOwith inertia weight (PSO-W), the PSO

with constriction factor (PSO-C) and the PSO with muta-

tion (PSO-MU) are used to minimum wirelength in global

routing. And both FA and PSO-MU yield lowest minimum

wirelength, but the calculation time consumed by FA is about

6 times that of PSO-MU and 10 times that of PSO-W. It can

be seen that traditional FA algorithm has a better optimiza-

tion capability than traditional PSO algorithm, but a good

improved PSO algorithm such as PSO-MU can achieve the

same optimization results as traditional FA, and the time

complexity is much lower.

In [77], FA and ABC are used to connect all terminal nodes

under the initial setting of the randomly generated terminal

nodes coordinates. And the performance of the two algo-

rithms in terms of minimizing the interconnected length is

compared. The experimental results show that FA can achieve

shorter wirelength in the search for terminal nodes of RSMT,

but the computational cost is larger. Therefore, if our ultimate

demand is only time delay reduction by minimizing intercon-

nected wirelength, FA is no doubt a better choice. However

if the runtime requirement is higher, it is recommended to

choose ABC.

V. RELATED DISCUSSIONS

At present, most of routing problems are aiming at mini-

mizing interconnected wirelengths, while at the same time

considering more and more factors in the routing process

such as: obstacle-avoiding routing, minimizing the number

of vias, delay and congestion optimization, etc. Chip perfor-

mance can be further optimized through these routing opti-

mization efforts. Therefore, a distribution of SI techniques

per VLSI routing research problem is given in Figure 13,

respectively SMT construction, wirelength-driven routing,

obstacle-avoiding routing, timing-driven routing, power-

driven routing. As can be seen that most of the routing

problems with SI techniques aim at optimizing the wire-

length, while the optimization for delay, obstacle and power
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FIGURE 13. Distribution of SI techniques per VLSI routing subproblem in
the surveyed works.

consumption is rare. As the continuous development of

modern technology, the industry urgently needs an efficient

automated routing process. The researchers summarized the

characteristics of routing problems in different design envi-

ronments, and have built a series of routing models and

evaluation models under various new processes, such as

multi-layer routing based on X-architecture, global routing

for MDSV design, new problem models under the advanced

via-pillar technology, etc.

A. MULTI-LAYER ROUTING BASED ON X-ARCHITECTURE

In recent years, more and more researches [55]–[58], [60],

[61], [70], [84], [85] have been conducted on X-architecture

SMT construction. However, most of the SI algorithms are

used to solve the RSMT problem. Because the early global

routing algorithms are based on Manhattan architecture,

the wirelength and interconnection delay are optimized by

optimizing the Steiner tree topology, transforming the wire

width, and inserting buffers, thereby helping to upgrade per-

formance of the chip. Moreover, when the global routing

based on Manhattan architecture optimizes the interconnect

length, its optimization ability is limited since the rout-

ing direction can only be horizontal and vertical. There-

fore, it is necessary to change the traditional Manhattan

architecture from the root of the problem. The proposed

X-architecture model makes up for the limitation of the

RST routing directions, which can make full use of the

routing area and interconnection resources. So that it can

further reduce the chip area, shorten the wirelength, reduce

power consumption, and make many performance indica-

tors in the physical design get promoted. At present, most

of the research works on solving non-Manhattan architec-

ture Steiner trees are based on exact algorithms [86], [87]

and traditional heuristic algorithms [30], [31]. The time

complexity of the exact algorithms grows exponentially

with the size of the problem, while the traditional heuristic

algorithms are mostly based on greedy strategies and are

prone to local extrema. And when constructing Steiner trees,

they do not make full use of the geometric properties of

non-Manhattan architecture, and cannot guarantee the quality

of Steiner trees. Therefore, it is of great practical significance

to explore routing algorithms based on various SI techniques.

At present, some works [55]–[58], [60], [61] have applied

PSO to X-architecture routing and achieved good results.

As IC design enters the nano-field, the number of routing

metal layers continues to increase, making multi-layer global

routing face a huge challenge. However, the research work

on non-Manhattan architecture mainly focuses on the con-

struction of Steiner tree, and there is a lack of research on

multi-layer global routing algorithms. The current research

status at home and abroad [88]–[90] shows that although

the non-Manhattan structure can effectively reduce the wire-

length and chip area, greatly improve the performance and

density of chips, but the cost of the number of vias are

increased at the same time. In multi-layer routing, the num-

ber and size of vias are key optimization goals. Therefore,

constructing an efficient multi-layer global router under the

non-Manhattan architecture is an important theoretical and

practical work.

B. MDSV DESIGNS FOR GLOBAL ROUTING

With the development of process technologies, nanoscale

Complementary Metal-Oxide-Semiconductor (CMOS) cir-

cuits have experienced a dramatic increase in transistor den-

sity over the past three decades, resulting in increased density

of power consumption in the circuit. According to related

research, the power density on the microprocessor increases

at twice the rate every three years. Such high-density power

consumption will cause the temperature of the wafer to

overheat, which will reduce the reliability of the circuit.

Therefore, the problem of power consumption has to be

taken seriously. However, most current routing algorithms

are proposed to reduce the number of overflows, wirelength

and computation time, and all functions operate in the same

voltage mode. This traditional voltage supply mode can eas-

ily cause excessive unnecessary power consumption. This is

because all of the functions of the chip operate in the same

high-voltage mode, while other devices that can operate in

the lower-voltage mode also operate at high voltages, increas-

ing the power consumption of the chip, thereby reducing

battery life. In order to change this voltage supply model,

industry chip companies and researchers have proposed Mul-

tiple Supply Voltage (MSV) design modes that can control

the voltage of different functional components to effectively

reduce power consumption through complex control strate-

gies. So multi-voltage design is widely used in advanced

applications or low power applications. Compared to MSV

designs, MDSV technology can further reduce power con-

sumption. In the MDSV design, the voltage of each power

domain can be dynamically changed according to the cor-

responding power modes. In some power modes, such as

standby mode and sleep mode, some power domain can even

be set to completely off to save power.

The introduction of MDSV brings new opportunities and

challenges to the physical design of VLSI circuits, and

causes the update of the entire layout domain algorithms.

It puts forward new requirements for the physical design

process with MDSV as the voltage supply model including

layout planning and placement, routing, parameters extrac-

tion, etc. It also poses a great challenge to the study of EDA
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(Electronics Design Automation) tools, which is closely

related to the global routing. Reference [91] is the first time

to build a corresponding global router for a MDSV design

mode. However, this work has oversimplified its mathemat-

ical problems, and failed to conduct corresponding exper-

imental research from the goal of reducing power. In the

MDSV design mode, a net may pass through more than one

power domain, some of which may be off and the other power

domains are still in active modes. For an active net that has

long-distance routing in a closed power domain, a functional

conflict may occur if its repeater is placed in a closed power

domain. Therefore, limiting the routing length of the active

net in the closed power domain is an extremely important

global routing problem in theMDSVdesign. In [92], a length-

limited maze routing algorithm is proposed to control the

wirelength of the routing path. At the same time, [93] also

proposes a fast SMT construction algorithm that considers the

limit of the routable wirelength within obstacles. But none

of them considers that the length constraints under differ-

ent power domains are different. Therefore, the two global

routers [92], [93] may still produce some illegal routing

results under the MDSV design mode.

The existing research work on the MDSV design mode

mainly focuses on some local stages such as layout and clock

tree construction, and lack an effective and complete solution

of global routing under theMDSV design. If the novelMDSV

is introduced into global routing phase, new global routing

issues will arise, including new constraints and mathematical

models. It is necessary to propose more effective algorithms.

In the research of our team and the industry companies

including Cadence Design Systems in the US, we found

that the global routing algorithms under MDSV design can

effectively reduce the large amount of power consumption,

but the current academic community lacks research on the

global routing under MDSV design mode. In fact, in order

to solve the dynamic power problem, scholars have also

developed some new tools based on MSV and other related

technologies. However, in these tools, the relevant routing

algorithms need to be changed to solve the routing problems

in the new design mode. Therefore, it is of great theoretical

value and practical significance to find an effective global

routing algorithm under the MDSV design and construct an

efficient low-power global router.

C. MULTILAYER ROUTING UNDER

ADVANCED VIA-PILLAR PROCESS

Under current manufacturing processes, interconnect delay

has exceeded gate delay and is a major factor in determining

circuit performance. The interconnect delay is mainly opti-

mized during the routing phase. Therefore, it is necessary

to consider more performance optimization targets such as

delay in routing process in order to optimize the performance

of the chip. With the development of process technology,

the resistance of metal wires and vias increases exponen-

tially, which brings more stringent constraints to traditional

routing-related algorithms. It leads to the existing methods

being prone to excessive delay in the solution process, and

increases the difficulty of timing convergence, thereby seri-

ously affecting the performance of chips. To this end, Syn-

opsys and TSMC (Taiwan Semiconductor Manufacturing

Company) jointly launched the key process of via-pillar

in 2017 as a representative technology for chip performance

in designs of 7 nm and below [94]. The via-pillar process is

based on the fundamental problem of high resistance affect-

ing the delay problem,which can greatly reduce the resistance

of themetal wires and vias, thereby greatly providing the opti-

mization of the delay and optimizing the overall performance

of chips.

After introducing the via-pillar process, many problems

in the traditional routing stage need to be updated, includ-

ing layer assignment, track assignment and detailed routing.

It is necessary to construct a new problem model under

the via-pillar process, and then design the corresponding

effective algorithm. Related issues under the via-pillar pro-

cess have become more complex, requiring careful con-

sideration of via location, via size, and delay optimization

issues. However, the research works on the traditional routing

problems mostly regard the vias as having no shape and

size. The size and position of the via are not considered

in the processing of the related routing subproblem, which

leads to the inconsistency between the final routing result

and the actual chip design requirement, and the failure rate

of chip production is increased greatly. At the same time,

the industry still adopts manual implementation for some of

the related routing problems under the via-pillar process, and

there is still lacking an effective automated design process.

Therefore, it is of great theoretical and practical significance

to seek an effective and complete automated routing algo-

rithm under the via-pillar process to construct an efficient

performance-driven multi-layer router.

1) LAYER ASSIGNMENT

In recent years, the work of layer assignment not only aims

at minimizing the number of vias, but further attempts to

reduce the delay [95], [96]. However, these works with con-

siderations for delay optimization do not take into account

the size of vias. It is assumed that the vias do not occupy

routing resources and thus do not affect the routing of metal

wires, which will seriously affect the accuracy of the final

global routing results guiding for detailed routing. Existing

research works on layer assignment either do not consider

the delay problem, or the via size, which are far from the

actual chip design requirements. After the introduction of

the via-pillar process, the relevant routing model needs to

consider the existence of via size, and the key performance

index of delay optimization. Therefore, the existing layer

assignment algorithms are no longer applicable to the prob-

lems under via-pillar process. And it is necessary to design a

corresponding effective algorithm.
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2) TRACK ASSIGNMENT

In order to speed up the detailed routing and enhance

the accuracy of global routing guidance performance, track

assignment is added between global and detailed routing.

However, the existing research works on track assignment

problems do not consider the local nets, or the location of

vias, or time delay, which will further aggravate the mismatch

of global routing to the detailed routing. Reference [97]

applies DPSO on track assignment problem, considering

local nets, overlapped conflict, wirelength and blockages.

And compared with the negotiation-based optimization algo-

rithm [98], it achieves less overlap cost. Thus, it can be seen

that applying SI techniques to track assignment problem is a

wise approach. For track assignment under the via-pillar pro-

cess, it is necessary to re-establish a new model considering

the via location, delay optimization, and avoiding open, while

further reducing the total overlap cost, wirelength and delay.

In order to effectively improve the global routing solution’s

guiding role for detailed routing, it is very important to con-

struct an effective, high-quality, and easily parallelized track

assignment algorithm.

3) DETAILED ROUTING

Detailed routing methods can be divided into serial algo-

rithms and parallel algorithms. In order to make up for the

effect of the order of nets on global results, the serial rout-

ing usually refines the routing results by means of rip-up

and reroute, and can quickly obtain a good quality solution.

But these serial routing methods [99], [100] may generate

some invalid solutions, while the parallel detailed routing

algorithms based on the multi-commodity flow model [44]

can simultaneously route multiple nets. However, these algo-

rithms do not take into account the delay optimization prob-

lem and the complexity is too high, which cannot solve the

performance-driven routing problem well. While the intro-

duction of via-pillar process can effectively optimize the

delay. Therefore, finding an efficient algorithm for detailed

routing under the via-pillar process is also a problem worth

exploring.

VI. PROSPECTS OF FUTURE STUDY

As one of the emerging optimization methods in recent years,

SI is becoming one of the most concerned optimization

areas. The simulation of the intelligent behaviors exhibited

by natural organisms provides new ideas and methods for

solving various complex optimization problems. The five SI

techniquesmentioned above have beenwidely used in various

fields of VLSI, especially in routing problems. Therefore,

the effectiveness and efficiency of SI in the routing filed

deserve scholars to further explore its potential.

A. ROUTING FOR ADVANCED TECHNOLOGY

MODELS USING SI

With the advent of various new processes and new technolo-

gies in the field of IC, more possibilities are provided for the

FIGURE 14. Yearly distribution of VLSI Routing subproblems solved by SI
techniques in the surveyed works.

optimization of routing problems. Figure 14 portrays the fre-

quency of published SI-based works for each surveyed VLSI

routing subproblem per year. To a certain extent, this survey

reflects the research trend of VLSI routing problems in recent

years. It can be seen that since 2009, scholars have begun to

focus on optimizing the time delay and power consumption in

routing. And the highest paper output was achieved in 2015,

while in the past four years, there have been few studies on

solving routing problems by SI techniques. So the appearance

of new processes brings new research prospect for routing

field, which can further optimize the wirelength, time delay,

power consumption and other important objectives, so as to

improve the overall performance of the chip.

1) USE SI TO SOLVE NON-MANHATTAN

ARCHITECTURE ROUTING

From the application of SI in the routing problems in

Section IV, most of routing algorithms are based on grid

graph. However, in the multi-layer routing model, there

are many kinds of routing directions of some metal layers.

If the original methods are directly applied to non-Manhattan

architecture routing problems, the algorithms will become

more complicated and have certain limitations. Therefore,

non-Manhattan architecture and the grid routing model are

not a good combination. Especially in the global routing

phase, it is necessary to rethink some essential problems

like the cost function of the routing edges, allocation of

routing resource, etc. In order to better solve non-Manhattan

construction routing problem of VLSI, it is of great signifi-

cance to explore effective strategies on the SMT construction

based on non-Manhattan architecture, rerouting of the con-

gested area, delay optimization, and the construction of layer

assignment algorithm.

2) USE SI TO SOLVE LOW-POWER GLOBAL

ROUTING IN MDSV DESIGN MODE

Compared with a single voltage mode, the global routing

in MSV design mode are more complicated, either facing a

computational explosion or falling into local extremum and

not being able to approach the global optimal solution, so that

people are beginning to seek various heuristic algorithms.
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FIGURE 15. Yearly distribution of the SI techniques applied to VLSI
routing subproblems in the surveyed works.

A large number of research results show that the SI algorithm

is indeed a powerful optimization tool and has strong vitality

in solving various NP-hard problems. Considering the use

of SI techniques to construct an effective strategy for solv-

ing the low-power global routing problem in MDSV design

mode, to a certain extent, can promote the construction

of an efficient VLSI global router in a MDSV chip design

environment.

3) USE SI TO SOLVE ROUTING UNDER

THE VIA-PILLAR PROCESS

For performance-driven multi-layer routing under the com-

plex via-pillar process, SI techniques are used reasonably

and efficiently to solve problems such as layer assignment,

track assignment and detailed routing. For example, in the

track assignment stage, it is a smart idea to find the optimal

assignment scheme by establishing a multi-objective SI opti-

mization framework when considering the location of vias,

local nets and delay.

B. EXPLORE NEW AND AVAILABLE SI TECHNIQUE

The exploration and exploitation abilities of the SI algorithms

are well played in the VLSI routing problems, and have

contributed greatly to improving the quality and runtime

of the routing algorithms. Among the above-mentioned SI

techniques, PSO is simple and easy to implement, and has

strong global optimization ability. Figure 15 gives a yearly

distribution of the SI techniques applied to VLSI routing sub-

problems in surveyed works. It shows that PSO has become

the most widely used SI technique in surveyed VLSI routing

problems since 2009. Since this technology was proposed,

it has attracted great attention from many scholars. In just a

few years, a research hotspot has been formed and a large

number of research results have been obtained. In recent

years, PSO has been widely used in VLSI partitioning [101],

floorplanning and placement [81], [102], routing [51]–[58]

and other fields [103], [104]. Moreover, in our preliminary

work [29], [55]–[61], [67], [68], [70], [80], [81], [97], PSO

has also been well applied to solve related problems in VLSI

physical design. A large number of experimental results show

that the PSO algorithm is indeed a beneficial optimization

tool and has strong vitality. Therefore, exploring new and

available SI techniques is also one of the research directions

for future VLSI routing problems.

1) QUANTUM PARTICLE SWARM OPTIMIZATION (QPSO)

In the PSO algorithm, the motion state of a particle is

described by position and velocity. With the evolution of

time, the motion track of the particle is fixed. At the same

time, the velocity of the particle is limited, so that the search

space is a finite and gradually decreasing region, and global

convergence cannot be guaranteed. Therefore, QPSO based

on δ-potential well model [105] is proposed and becomes the

most widely researched and used version. In QPSO, all parti-

cles have quantum behavioral properties and no longer follow

the Newtonian equations for the motion state of particles in

PSO, which is a deterministic description. Compared with

PSO, QPSO uses a simpler position-only moving model with

fewer control parameters. More importantly, particles of a

quantum system can appear anywhere at a certain probability

distribution to achieve global search.

In recent years, QPSO has been successfully applied in

various fields such as neural network [106], power sys-

tems [107], electronics and electromagnetics [108]. There-

fore, QPSO has an opportunity to better solve VLSI routing

problems that PSO can solve.

2) CPSO

The traditional PSO needs a mass of particles to deal with

high-dimensional problems, so that the calculation is quite

complicated and it is difficult to get a satisfactory solution.

The general approach to solving high-dimensional problems

is to adopt a divide-and-conquer strategy. Early CPSO algo-

rithms are also based on this strategy. The CPSO proposed by

Van den Bergh and Engelbrecht [20] decomposes the input

vector into multiple sub-vectors and performs PSO for each

sub-vector, and then integrates the search results into a global

swarm. In 2005, Niu et al. [109] introduced the master-slave

mode into PSO. A swarm is formed from one master swarm

and multiple slave swarms. The slave swarms execute PSO

(or its variants) independently to maintain the diversity of

particles, while the master swarm enhances its particles based

on its own knowledge and also the knowledge of the parti-

cles in the slave swarms. Reference [110] combines random

grouping and adaptive weighting, and proposes Coopera-

tively Coevolving Particle Swarm Optimization (CCPSO),

which can perform reasonably well with only a small number

of evaluations. Later based on CCPSO, they adopted a new

PSO position update rule that relies on Cauchy and Gaussian

distributions to sample new points in the search space, and a

scheme to dynamically determine the coevolving subcompo-

nent sizes of the variables [111]. This method has become

a very competitive method to solve complex multimodal

optimization problems.

PSO based on collaborative strategy is a powerful way

to deal with high-dimensional problems. Parallel execu-

tion of multiple populations can speed up the efficiency.
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And information exchange in subgroups can balance explo-

ration and exploitation, reducing the risk of premature con-

vergence and local optimal. In dealing with complex VLSI

routing issues, collaborative PSO has an opportunity to

achieve better solutions.

3) HYBRID SI ALGORITHMS

Each SI technique has its own unique properties and

will have different effects in different application sce-

narios. In recent years, in order to improve the per-

formance of various SI techniques, and further improve

the quality of the solution, various hybrid SI tech-

niques: PSO-ACO [112]–[114], ACO-ABC [115], [116],

DE-ABC [117], [118], FA-DE [119], PSO-DE [120], [121]

and other hybrid SI algorithms [122], [123] are proposed

and successfully applied in various fields. Reference [112]

proposes a two-stage hybrid swarm intelligence optimization

algorithm, using the randomicity, rapidity and wholeness of

PSO and GA for rough searching; and for detailed searching,

they made use of the parallel, positive feedback and high

accuracy of solution of ACO. Kefayat et al. [115] took the

advantages of the global search ability of ABC and the local

search ability of ACO to make up for the shortcomings of

ACO that are easy to fall into local optimum. In the hybrid

DE-ABC algorithm proposed by Yang et al. [117], employed

bees employ the mutation and crossover strategies of DE to

enforce their exploration ability while onlooker bees keep

their original updating strategy to retain the exploitation

ability. This algorithm improves the convergence speed and

searching ability of ABC.

Using a single SI technique is easily affected by the ini-

tial population and parameter settings, while mixing differ-

ent SI technologies, or communicating information through

the co-evolution of different types of populations, or learn-

ing some mechanisms from other SI techniques can greatly

improve the performance of the algorithm and avoid falling

into local extremes as much as possible. The above successful

cases show that the hybrid SI algorithms have opportunity to

be better applied to VLSI routing problems than the single SI

technique.

VII. CONCLUSION AND FUTURE WORK

SI techniques can solve a variety of NP-hard problems in

VLSI routing including Steiner tree construction,wirelength-

driven routing, obstacles-avoiding routing, timing-driven

routing, power-driven routing, etc. In the Steiner tree con-

struction problem, the Manhattan architecture cannot fully

utilize the routing resources because of its limited routing

orientation, while the non-Manhattan architecture was pro-

posed to solve this problem. And more and more research

works are based on non-Manhattan architecture, especially

the X-architecture. In this problem, SI techniques are mainly

used for the selection of Steiner points, and the wirelength

is used as an evaluation index. These evaluation indexes

guide the individuals to develop towards the optimal goal

in the form of functions. For example, in PSO and DE,

they exist in the form of fitness function and in ACO, ABC

and FA, they are respectively reflected as pheromone, food

sources and intensity. In the obstacles-avoiding routing, pres-

ence of obstacles may affect the selection of Steiner points.

By designing effective obstacle-avoiding strategies, mean-

while considering wirelength and the cost of routing through

obstacles, both the wirelength and congestion are minimized.

Timing-driven routing is usually done with a distributed

RC network as the interconnected model, using the Elmore

delay formula to calculate time delay from source to sink.

Power-driven routing, in addition to considering wirelength,

as well as the number of vias, capacitance and other con-

straints. The later study also introduced MDSV to further

reduce power consumption.

We investigate five classic and commonly used SI tech-

niques: PSO, DE, ACO, ABC, and FA in the field of VLSI

routing. Among them, ACO and PSO have been widely used

in most of the routing problems mentioned above, while the

remaining SI techniques are used less, most of which are

only used in the selection of Steiner points and the routing

problem considering the minimum interconnected length.

Therefore, we expect to see more available SI techniques

that will improve the quality of the solution can be applied

to the routing algorithms considering obstacles, delay, and

power consumption. Especially the QPSO, collaborative PSO

and hybrid SI algorithms, which are potential techniques, are

promising for better results.

Furthermore, it is crucial to introduce relevant new tech-

niques and new processes to achieve breakthroughs in the

field of VLSI routing, such as the X-architecture introduced

to make full use of the routing resources, theMDSV designed

to solve the low-power global routing, and the via-pillar pro-

cess introduced to improve the performance of themulti-layer

routing. The traditional routing models are not applicable in

these new design backgrounds, and the complexity is too

high. Therefore, exploring new routing models under these

new technologies and new processes is the development trend

of VLSI routing in the future. As a powerful optimization

tool, SI will continue to play a significant role in VLSI

routing.
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