
1. Introduction

Probabilities and percentiles of statistical probability
distributions have historically been cited from refer-
ence tables published in books, journals, and other pub-
lications. Reference tables of probability distributions
continued to be published from the 1920s through the
1980s and early 1990s. Some tables superceded their
earlier counterparts. Abramowitz and Stegun [1] sur-
veyed the tables published before 1964, and reproduced
some of them. In particular, Abramowitz and Stegun [1]
reproduced the tables of percentiles of chi-square, t-,
and F-distributions from the 1954 edition of Pearson
and Hartley [2]. Other collections of tables of probabil-
ity distributions include Greenwood and Hartley [3]
and Owen [4].

This article is a survey of the tables published about
or after 1964. A few earlier tables are also mentioned
when appropriate. Most of the tables abstracted in this
article are referenced in Pearson and Hartley [2],
Pearson and Hartley [5], Johnson, Kotz, and Kemp [6],
Johnson, Kotz, and Balakrishnan [7], Johnson, Kotz,
and Balakrishnan [8], Johnson, Kotz, and Balakrishnan

[9], and Kotz, Balakrishnan, and Johnson [10]. The
abstracts presented here have been verified from the
original sources, and in some cases corrections and
additions were made. The next three sections contain
the abstracts for discrete univariate, continuous univari-
ate, and multivariate probability distributions.

A random variable is denoted by X, and x denotes a
particular value of X. The cumulative distribution func-
tion of X is F(x) = Pr{X ≤ x}. The survival function of
X is F–(x) = 1–F(x) = Pr{X > x}. For a discrete random
variable f(x) interpreted as Pr{X = x} is the probability
mass function (pmf). For a continuous random variable
f(x) interpreted as dF(x)/dx is the probability density
function (pdf). A particular value, x, is the rth quantile
of X when F(x) = r, for 0 ≤ r ≤ 1. The rth quantile is
commonly referred to as the r × 100th percentile of X.
The expected value or mean, and the variance of X are
denoted by E(X), and V(X), respectively. The abbrevia-
tion nD, for an integer n, denotes n decimal places. An
expression such as 0.01(0.02)0.09 denotes the sequence
of numbers from 0.01 to 0.09 increasing in steps of
0.02. Log denotes natural logs unless indicated other-
wise.
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2. Discrete Univariate Distributions
2.1 Binomial Distribution

The pmf is

for x = 0, 1, . . . , n.
Weintraub [11] tabulated, to 10D, F–(x – 1) for

p = 0.0001(0.0001) 0.0009, 0.001(0.001)0.1, and n =
1(1)100.

Pearson and Hartley [2] tabulated, to 5D, f (x)
for p = 0.01, 0.02(0.02)0.10, 0.10(0.10)0.50, and n =
5(5)30.

2.2 Poisson Distribution

The pmf is

for x = 0, 1, . . . .
Defense Systems Department, General Electric

Company [12] tabulated, to 8D, f (x), F(x), and
F–(x – 1) for θ ranging from 10–7 to 205 with increments
ranging from 10–7 to 5.

Khamis and Rudert [13] tabulated, to 10D, F–(x – 1)
for θ = 0.00005(0.00005)0.0005, 0.0005(0.0005)0.005,
0.005(0.005)0.5, 0.5(0.025)3, 3(0.05)8, 8(0.25)33,
33(0.5)83, and 83(1)125.

Pearson and Hartley [2] tabulated, to 6D, f (x)
for θ = 0.1(0.1)15.0. They also tabulated, to 5D,
F(x) for θ = 0.0005(0.0005)0.005, 0.005(0.005)0.05,
0.05(0.05)1, 1(0.1)5, 5(0.25)10, 10(0.5)20, 20(1)60,
and x = 1(1)35.

2.3 Negative Binomial Distribution

The pmf is

for x = 0, 1, . . . and E (X) = k(1 – p)/p.
Grimm [14] tabulated, to 5D, f(x) and F(x) for

E (X) = 0.1(0.1)1.0, 1.0(0.2)4.0, 4.0(0.5)10.0, and
1/p = 1.2, 1.5, 2.0(1)5.

Williamson and Bretherton [15] tabulated, to 6D,
f(x) and F(x) for the following values of p and k:
p = 0.05 and k = 0.1(0.1)0.5, p = 0.10 and k = 0.1
(0.1)1.0, p = 0.12(0.02)0.20 and k = 0.1(0.1)2.5,
p = 0.22(0.02)0.40 and k = 0.1(0.1)2.5(0.5)5.0, p = 0.42
(0.02)0.60 and k = 0.1(0.1)2.5(0.5)10.0, p = 0.62
(0.02)0.80 and k = 0.2(0.2)5.0(1)20, p = 0.82
(0.02)0.90 and k = 0.5(0.5)10.0(2)50, p = 0.95

and k = 2(2)50(10)200. Deahl [16] extended the
Williamson and Bretherton [15] table of F(x) for
p = 0.02, 0.04, 0.05, 0.06, 0.08, 0.10, and k = 0.10
(0.10)2.00.

Brown [17] tabulated, to 4D, f (x) and F(x)
for E(X) = 0.25(0.25)1.0, 1.0(1)10, and 1/p = 1.5
(0.5)5.0, 5(1)7.

2.4 Hypergeometric Distribution

The pmf is

for max[0, n – N + k] ≤ x ≤ min[k, n].
Lieberman and Owen [18] tabulated, to 6D, f(x)

and F(x) for N = 2(1)100, n = 1(1)50, and all possible
values of k; N = 1000, n = 500, and all possible
values of k; and N = 100(100)2000, n = N/2, and
k = (n – 1).

2.5 Logarithmic Series Distribution

The pmf is

for x = 1, 2, . . . and E(X) = – θ/[(1 – θ) log(1 – θ )].
Patil [19] tabulated, to 4D, E(X) as a function

of θ for θ = 0.01(0.01)0.99. Patil, Kamat, and Wani [20]
tabulated, to 6D, f(x) and F(x) for θ = 0.01(0.01)0.70,

0.70(0.005)0.900, and 0.900(0.001)0.999. Patil and
Wani [21] tabulated, to 4D, parameter θ for
E(X) = 1.02(0.02)2.00, 2.00(0.05)4.00, and 4.00(0.1)8.0,
8.0(0.2)16.0, 16.0(0.5)30.0, 30.0(2)40, 40(5)60,
60(10)140, and 140(20)200.

Williamson and Bretherton [22] tabulated, to 5D,
f (x) and F(x) for E(X) = 1.1(0.1)2.0, 2.0(0.5)5.0,
5.0(1)10.0. They also tabulated θ , to 5D, for E(X) =
1.0(0.1)10.0, and 10.0(1)50.

2.6 Neyman Type A Distribution

This is the Poisson-stopped-summed-Poisson dis-
tribution (Johnson, Kotz, and Kemp [6]). The pmf is

for x = 0, 1, . . . and E(X) = λφ.
Grimm [23] tabulated, to 5D, f (x) for E(X) =

0.1(0.1)1.0, 1.0(0.2)4, 6, 10, and φ = 0.2, 0.5, 1.0, 2,
3, 4 up to f(x) = 0.99900.

68

Volume 110, Number 1, January-February 2005
Journal of Research of the National Institute of Standards and Technology

( ) ( )1 n xxn
f x p p

x
− 

= − 
 

( ) e
!

x

f x
x

−

=
θθ

( ) ( )1
1

1
xkk x

f x p p
k
+ − 

= − − 

( ) k N k N
f x

x n x n
−    

=     −    

( ) ( )log 1

x

f x
x

−=
−  

θ
θ

( ) ( )
0

ee
! !

j xx

j

j
f x

x j

−∞

=

= ∑
φ−λ λφ



2.7 Geometric-Poisson Distribution

The pmf is

for x = 1, 2, . . . ; f(x) = e–θ for x = 0; and E(X) =
θ/(1–p). This distribution is also called Pólya-Aeppli
distribution.

Sherbrooke [24] tabulated, to 4D, f(x) and F(x)
for E(X) = 0.10, 0.25(0.25)1.00, 1.00(0.5)3.0, 3.0(1)10,
and (1 + p)/(1 – p) = 1.5(0.5)5.0, 5.0(1)7.

3. Continuous Univariate Distributions
3.1 Standard Normal (Gaussian) Distribution

The pdf is

Abramowitz and Stegun [1] tabulated the following:
F(x), to 15D, for x = 0.00(0.02)3.00 and, to 10D, for
x = 3.00(0.05)5.00; f (x), to 5D, for x such that
F–(x) = q for q = 0.000(0.001)0.500; and x such that
F–(x) = q for q = 0.000(0.001)0.500, 0.0000(0.0001)
0.0250, and q = 10–m for m = 4(1)23. They also tabu-
lated the derivatives of f(x) up to the order 12.

Pearson and Hartley [5] tabulated, to 10D, quantiles
x and corresponding f (x), where F(x) = p for
p = 0.500(0.001)0.999, and 0.9990(0.0001)0.9999.

White [25] tabulated, to 20D, quantiles x such that
F–(x) = q for q = 0.005(0.005)0.500, and q = 5 × 10–k,
2.5 × 10–k, and 1 × 10–k, where k = 1(1)20.

3.2 Standardized Stable Distributions

The pdfs of standardized stable distributions are
unimodal with shape depending on the parameters β
and α. Although the pdfs are rather complicated,
they can be expressed as convergent series (Johnson,
Kotz, and Balakrishnan [7]).

Fama and Roll [26] tabulated, to 4D, F(x)
for β = 0 and α = 1.0(0.1)1.9, 1.95, 2.0, and x =
0.05(0.05)1.00, 1.00(0.1)2.0, 2.0(0.2)4.0, 4.0(0.4)6.0,
6.0(1)8, 10, 15, and 20. They also tabulated, to
3D, quantiles x such that F(x) = p, for p =
0.52(0.02)0.94, 0.94(0.01)0.97, 0.97(0.005)0.995, and
0.9975.

Holt and Crow [27] tabulated, to 4D, f (x) for
β = – 1.00(0.25)1.00 and α = 0.25(0.25)2.00, and

nonnegative x in steps varying by factors of 10 from
0.001 to 100 such that interpolation is possible. The
tabulation is terminated when f(x) first falls to 0.0001.
The largest such value of x is 338, for α = 0.25 and
β = – 1.00.

Worsdale [28] tabulated, to 4D, F(x) for β = 0
and α = 0.6(0.1)2.0, and x = 0.00(0.05)3.00. For
larger values of x, F(x) is tabulated for log10 x =
0.40(0.05)2.50.

Panton [29] tabulated, to 5D, F(x) for β = 0 and
α = 1.0(0.1)2.0, and x = 0.05(0.05)1.00, 1.00(0.1)2.0,
2.0(0.2)4.00, 4.00(0.4)6.0, 7, 8, 10, 15, 20.

3.3 Inverse Gaussian Distribution

The pdf is

for x > 0, λ > 0, µ > 0, and E(X) = µ and V(X) =
µ3/λ.

Wasan and Roy [30] tabulated, to 4D, quantiles x
such that µ = t, λ = t 2, that is, µ = t = V(X),
and F(x) = p, where t = 0.1(0.1)4.0, 4.0(0.2)6.0,
6.0(1.0)35.0, 35(5)100, 100(10)150, 150(20)250,
300(100)1000, 1000(200)1600, 2000(400)4000, and
p = 0.005, 0.010, 0.025(0.025)0.100, 0.25(0.25)0.75,
0.80, 0.900(0.025)0.975, and 0.990. In order to deter-
mine quantiles of an inverse Gaussian random
variable Y with parameters µ > 0 and λ > 0, use the
fact that the distribution of X = λ Y/µ2 is inverse
Gaussian with parameters t and t 2, where t = λ /µ.

Chan, Cohen, and Whitten [31] tabulated F(x)
of the standardized inverse Gaussian distribution
with E(X) = 0 and V(X) = 1 for various values
of the standardized third moment about the mean
α3 = √––β–

1. They tabulated, to 6D, F(x) for x =
–3.0(0.1)5.9 with α3 = 0.0(0.1)1.2, and x = –1.5(0.1)7.4
with α3 = 1.3(0.1)2.5.

Koziol [32] tabulated quantiles x, to eight significant
digits, such that F(x) = p, µ = t, λ = t 2, where t =
0.02(0.02)4, 4(0.04)6, 6(0.02)35, 35(1)100, 100(2)150,
150(4)250, 250(10)300, 300(20)600, 600(40)2000,
2000(80)4000, and p = 0.001, 0.005, 0.01(0.01)0.99,
0.995, 0.999.

3.4 Incomplete Gamma Function

Harter [33] tabulated, to 9D, the incomplete Γ-func-
tion ratio I(u, p) defined by Pearson [34] as
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for u at intervals of 0.1, starting from 0.0, and
p = – 0.5(0.5)74 and 74(1)164. Harter [35] extended
Harter [33] for p = – 0.95(0.05)4.

3.5 Standard Gamma Distribution

The pdf is

for x ≥ 0 and α > 0.
Wilk, Gnanadesikan, and Huyett [36] tabulated

quantiles x, accurate to about five significant digits,
for α = 0.1(0.1)0.6, 0.6(0.2)5.0, 5.0(0.5)10.0,
10.0(1.0)20.0, and p = 0.1, 0.5, 0.7, 1.0(0.5)3.0,
3.0(1.0)5.0, 7.5, 10.0(5.0)30.0, 30(10)70, 70(5)90,
90.0(2.5)97.5, 98.0, 99.0, 99.5, and 99.9.

Thom [37] tabulated, to 4D, F(x) for α =
0.5(0.5)15.0, 15(1)36, and x = 0.0001, 0.001,
0.004(0.002)0.020, 0.02(0.02)0.80, 0.8(0.1)2.0,
2.0(0.2)3.0, 3.0(0.5)9.0; also tabulated, to 4D, quantiles
x and corresponding f(x) such that F(x) = p for α =
0.5(0.5)15.0, 15(1)36, and p = 0.01, 0.05(0.05)0.95,
0.99.

Harter [38] tabulated, to 5D, quantiles x such
that F(x) = p against the coefficient of skewness
√––β–

1 = µ3 /σ 3 = 2 /√––α for √––β–
1 = 0.0(0.1)4.8, and

4.8(0.2)9.0, and p = 0.0001, 0.0005, 0.0010, 0.0050,
0.0100, 0.0200, 0.0250, 0.0400, 0.0500,
0.1000(0.1000)0.9000, 0.9500, 0.9600, 0.9750, 0.9800,
0.9900, 0.9950, 0.9990, 0.9995 and 0.9999. Harter
[39] extended Harter [38] for p = 0.002000, 0.429624,
0.570376, and 0.998000.

3.6 Chi-Square Distribution

The pdf is

for x > 0 and degrees of freedom ν > 0. If X1, X2,
. . ., Xν have independent standard normal distri-
butions, then
with ν degrees of freedom.

Harter [33] tabulated, to six significant digits, quan-
tiles x such that F(x) = p for p = 0.0001, 0.0005,
0.001, 0.005, 0.01, 0.025, 0.05, 0.1(0.1)0.9, 0.95,
0.975, 0.99, 0.995, 0.999, 0.9995, and 0.9999, and
ν = 1(1)150, and 150(2)330. A subset of these tables
for ν = 1(1)100 is reproduced in Harter [40].

Khamis and Rudert [13] tabulated F(x), to 10D,
for ν = 0.1(0.1)20, 20(0.2)40, 40(0.5)140, and x =
0.0001(0.0001)0.001, 0.001(0.001)0.01, 0.01(0.01)1,
1(0.05)6, 6(0.1)16, 16(0.5)66, 66(1)166, 166(2)250.

Pearson and Hartley [5] tabulated, to six significant
digits, quantiles x such that F(x) = p for p = 0.0001,
0.0005, 0.001, 0.005, 0.01, 0.025, 0.05, 0.1(0.1)0.9,
0.95, 0.975, 0.99, 0.995, 0.999, 0.9995, and 0.9999,
and ν = 0.1(0.1)3.0, 3.0(0.2)10.0, and 10(1)100.

Mardia and Zemroch [41] tabulated, to five significant
digits, quantiles x such that F(x) = p for p = 0.0001,
0.0005, 0.001, 0.005, 0.01, 0.02, 0.025, 0.03(0.01)0.1,
0.2, 0.25, 0.3(0.1)0.7, 0.75. 0.8, 0.9(0.01).97, 0.975,
0.98, 0.99, 0.995, 0.999, 0.9995, 0.9999, and fractional
degrees of freedom ν = 0.1(0.1)3.0, 3.0(0.2)7.0,
7.0(0.5)11, 11(1)30, 30(5)60, 60(10)120.

3.7 Standardized Weibull Distribution

The pdf is

for x > 0 and γ > 0, where γ is the shape parameter.
Plait [42] tabulated, to 8D, f(x) for γ = 0.1(0.1)3,

3(1)10, and tabulated, to 7D, F(x) for γ = 0.1(0.1)4.0.

3.8 Standardized Extreme Value Distribution
—Type 1

The pdf is

Gumbel [43] tabulated, to 7D, f (x) and F(x)
for the following values of x: –3.0(0.1)–2.4,
–2.40(0.05)0.00, 0.0(0.1)4.0, 4.0(0.2)8.0, and
8.0(0.5)17.0. Also, tabulated, to 5D, quantiles x
such that F(x) = p for p = 0.0001(0.0001)0.0050,
0.005(0.001)0.988, 0.9880(0.0001)0.9994, and
0.99940(0.00001)0.99999.

White [44] tabulated, to 7D, the means and variances
of all order statistics for sample sizes 1(1)50
and 50(5)100. Extended tables of means, variances,
and covariances of all order statistics for sample sizes
up to 30 have been provided by Balakrishnan and
Chan [45] and Balakrishnan and Chan [46].

3.9 Incomplete Beta Function

Pearson [47] tabulated, to 7D, the incomplete
B-function ratio I(p, q) defined as

for p, q = 0.5(0.5)11.0(1)50 with p ≥ q and x =
0.00(0.01)1.00. These values are reproduced in Pearson
[48]. Additional values of I(p, q) are given, to 7D, for
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p = 11.5(1.0)14.5, q = 0.5, and x = 0.00(0.01)1.00.
More values of I(p, q) are given, to 7D, for
p = 0.5(0.5)11.0(1)16, q = 1.0(0.5)3.0, and x = 0.975,
0.980, 0.985, 0.988(0.001)0.999. Even more values of
I(p, q) are given for p = 0.5(0.5)11.0(1)16, q = 0.5, and
x = 0.9750, 0.9800, 0.9850, 0.9880(0.0005)0.9985,
0.9988(0.0001)0.9999. For x ≥ 0.988, values are given
to 8D.

3.10 Beta Distribution

The pdf is

for 0 < x < 1, a > 0, b > 0 and B(a, b) =
Γ(a)Γ(b)/Γ(a + b).

Harter [33] tabulated, to 7D, quantiles x such that
F(x) = p for a = 1(1)40, b = 1(1)40, and p = 0.0001,
0.0005, 0.001, 0.005, 0.01, 0.025, 0.05, 0.1(0.1)0.9,
0.95, 0.975, 0.99, 0.995, 0.999, 0.9995, 0.9999.

Vogler [49] tabulated, to six significant digits, quan-
tiles x such that F(x) = p for a = 0.50(0.05)1.00, 1.1,
1.25(0.25)2.50, 2.50(0.5)5.0, 6, 7.5, 10, 12, 15, 20, 30, 60,
b = 0.5(0.5)5.0, 6, 7.5, 10, 12, 15, 20, 30, 60, and
p = 0.0001, 0.001, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5.

Pearson and Hartley [2] tabulated, to five signifi-
cant digits, quantiles x such that F(x) = p for
a = 0.5(0.5)15.0, 20, 30, 60, b = 0.5(0.5)5.0, 6, 7.5, 10,
12, 15, 20, 30, 60, and p = 0.001, 0.0025, 0.005,
0.01, 0.025, 0.05, 0.10, 0.25, 0.50.

3.11 F-Distribution

If X1 and X2 have independent chi-square distribu-
tions with degrees of freedom ν1 and ν2, respectively,
then

has an F-distribution with ν1 (numerator) and ν2

(denominator) degrees of freedom.
Pearson and Hartley [5] tabulated, to five significant

digits, quantiles x such that F(x) = p for p = 0.5,
0.75, 0.90, 0.95, 0.975, 0.99, 0.995, 0.9975, 0.999, and
ν1 = 1(1)10, 12, 15, 20, 24, 30, 40, 60, 120,∞, and
ν2 = 1(1)30, 40, 60, 120, ∞.

Mardia and Zemroch [41] tabulated, to five signifi-
cant digits, quantiles x such that F(x) = p for
p = 0.5, 0.6, 0.7, 0.75, 0.8, 0.90(0.01)0.99, 0.975,
0.995, 0.999, 0.9995, 0.9999, and ν1 = 0.1(0.1)1.0,
1.0(0.2)2.0, 2.0(0.5)5, 5(1)16, 18, 20, 24, 30, 40, 60,
120, ∞, and ν2 = 0.1(0.1)3.0, 3.0(0.2)7.0, 7.0(0.5)11,

11(1)40, 60, 120, ∞. A part of this table is reproduced
in Pearson and Hartley [5].

3.12 t-Distribution
If X1 has the standard normal distribution and X2

has an independent chi-square distribution with ν
degrees of freedom, then

has a Student’s t-distributon with ν degrees of free-
dom.

Fisher and Yates [50] tabulated, to 3D, quantiles
x such that F(x) = p for p = 0.55(0.05)0.95, 0.975,
0.99, 0.995, 0.9995, and ν = 1(1)30, 40, 60, 120.
Lempers and Louter [51] extend these tables for
p = 0.5625(0.0625)0.9375.

Hill [52] tabulated, to 20D or 20 significant digits,
quantiles x such that F(x) = p/2 where p = 0.9(–0.1)0.1,
10–m, 2 × 10–m, 5 × 10–m, for m = 2(1)10(5)30, and
ν = 1(1)30, 30(2)50, 50(5)100, 100(10)150, 200, [240,
300, 400, 600, 1200] × [1, 10, 100], and ∞.

Mardia and Zemroch [41] tabulated, to five signifi-
cant digits, quantiles x such that F(x) = p for p = 0.5,
0.6, 0.7, 0.75, 0.8, 0.90(0.01)0.99, 0.975, 0.995, 0.999,
0.9995, 0.9999, and fractional degrees of freedom
ν = 0.1(0.1)3.0, 3.0(0.2)7.0, 7.0(0.5)11, 11(1)40, 60,
120, and ∞.

3.13 Noncentral Chi-Square Distribution

If X1, X2, · · · , Xν have independent standard normal
distributions and δ1, δ2, · · · , δν are constants then

has a noncentral chi-square distribution with ν degrees
of freedom and noncentrality parameter

Johnson [53] tabulated, to four significant digits,
quantiles x such that F(x) = p for p = 0.001, 0.0025,
0.005, 0.01, 0.025, 0.05, 0.10, 0.25, 0.5, 0.75, 0.90,
0.95, 0.975, 0.99, 0.995, 0.9975, 0.999, ν = 1(1)12,
15, 20, and square root of the noncentrality parameter

Haynam, Govindarajulu, and Leone [54] tabulated
the power 1 – β of chi-square test of significance
as a function of the level of significance α, degrees
of freedom ν, and noncentrality parameter λ for
α = 0.001, 0.005, 0.01, 0.025, 0.05, 0.1, ν = 1(1)30,
30(2)50, 50(5)100, and λ = 0.0(0.1)1.0, 1.0(0.2)3.0,
3.0(0.5)5.0, 5(1)40, 40(2)50, 50(5)100. They also tabu-
lated the noncentrality parameter λ as a function of
α, ν, and 1 – β for the values of α and ν listed above
and 1 – β = 0.1(0.02)0.7, 0.7(0.01)0.99.
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Pearson and Hartley [5] tabulated, to 3D, noncentral-
ity parameter λ as a function of the level of significance
α, degrees of freedom ν, and power 1 – β for
α = 0.05, 0.01, ν = 1(1)30, 30(2)50, 50(5)100, and
1 – β = 0.25, 0.50, 0.60, 0.70(0.05)0.95, 0.97, 0.99.

3.14 Noncentral Chi Distribution

If X1 has a noncentral chi-square distributon then the
distribution of is referred to as noncentral
chi distribution.

Johnson and Pearson [55] tabulated, to four signifi-
cant digits, quantiles x of chi distribution such that
F(x) = p for p = 0.005, 0.01, 0.025, 0.05, 0.95, 0.975,
0.99, 0.995, degrees of freedom ν = 1(1)12, 15, 20, and
square root of the noncentrality parameter √–λ=
0.0(0.2)6.0. Approximate quantiles to three significant
digits are also given for √–λ= 8.0 and 10.0. These tables
are reproduced in Pearson and Hartley [5].

3.15 Noncentral F-Distribution

If X1 has a noncentral chi-square distribution with
ν1 degrees of freedom and noncentrality parameter λ,
X2 has a chi-square distribution with ν2 degrees of free-
dom, and X1 and X2 are independently distributed then

has a noncentral F-distribution with ν1 and ν2 degrees
of freedom and noncentrality parameter λ.

Tiku [56] tabulated, to 4D, the power of the F-test
for the level of significance α = 0.005, 0.01, 0.025,
0.05, ν1 = 1(1)10, 12, and ν2 = 2(2)30, 40, 0, 120, ∞,
and noncentrality parameter λ such that
0.5, 1.0(0.2)2.2, 2.2(0.4)3.0.

3.16 Doubly Noncentral F-Distribution

If X1 has a noncentral chi-square distribution with ν1

degrees of freedom and noncentrality parameter λ1,
X2 has a noncentral chi-square distribution with ν2

degrees of freedom and noncentrality parameter λ2, and
X1 and X2 are independently distributed then

has a doubly noncentral F-distribution with ν1 and 
ν2 degrees of freedom, and noncentrality parameters
λ1 and λ2.

Tiku [57] tabulated, to 4D, the power of the F-test
for the level of significance α = 0.01 and 0.05, degrees
of freedom ν1 = 1(1)8, 10, 12, 24 and ν2 = 2(2)12, 16,

20, 24, 30, 40, 60, noncentrality parameters λ1 and λ2

such that

= 0(1)8. Tiku [57] also tabulated, to 4D, the power of
F-test for the critical values F0 such that u0 = 1/[1 +
(ν1/ν2)F0] = 0.02(0.08)0.50, 0.60, 0.75, 0.95, degrees of
freedom ν1 = ν2 = 4(2)12, and the same noncentrality
parameters as used in the previous table.

3.17 Noncentral t-Distribution

If X1 has the standard normal distribution and X2

has an independent chi-square distribution with ν
degrees of freedom, then

has a noncentral t-distributon with ν degrees of free-
dom and noncentrality parameter δ.

Bagui [58] tabulated, to 5D, quantiles x of noncentral
t-distribution such that F(x) = p for p = 0.01, 0.025,
0.05, 0.10, 0.20, 0.30, 0.70, 0.80, 0.90, 0.95, 0.975,
0.99, degrees of freedom ν = 1(1)60, and noncentrali-
ty parameter δ = 0.1(0.1)8.0.

3.18 Doubly Noncentral t-Distribution

If X1 has the standard normal distribution and X2

has an independent noncentral chi-square distribution
with ν degrees of freedom and noncentrality parameter
λ, then

has a doubly noncentral t-distributon with ν degrees
of freedom, numerator noncentrality parameter δ,
and denominator noncentrality parameter λ.

Bulgren [59] tabulated, to 6D, F(x) of doubly non-
central t-distribution with degrees of freedom ν =
2(1)20, absolute value of numerator noncentrality
parameter |δ | = 0(1)5, denominator noncentrality
parameter λ = 0, 1, 2(2)8, and x = 0.0, 0.1, 0.2(0.2)9.0.

3.19 Distribution of the Sample Correlation
Coefficient From Bivariate Normal 
Distribution

Suppose (Yi, Zi), for i = 1, 2, . . . , n, are independent-
ly distributed and have a common joint bivariate nor-
mal distribution with correlation coefficient ρ.
Then the sample correlation coefficient
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has a distribution that depends only on the correlation
coefficient ρ and the sample size n.

Odeh [60] tabulated, to 5D, quantiles x of the
sample correlation coefficient, where F(x) = p for
p = 0.005, 0.01, 0.025, 0.05, 0.10, 0.25, 0.75, 0.90, 0.95,
0.975, 0.99, 0.995, ρ = 0.0(0.10)0.90, 0.95, and
n = 4(1)30, 30(2)40, 40(5)50, 50(10)100, 100(20)200,
and 200(100)1000.

3.20 Distribution of the Sample Multiple
Correlation Coefficient From Multivariate
Normal Distribution

If the random variables X1, . . ., XM have a joint multi-
variate normal distribution, then the smallest mean
squared error linear predictor of X1 is the conditional
expected value E(X1|x2, . . . , xM). The multiple correla-
tion coefficient R is the correlation between X1

and its smallest mean squared error linear predictor.
The distribution of the sample multiple correlation
coefficient r depends only on the population coeffi-
cient R, number of variates M, and the sample size
N.

Pearson and Hartley [5] tabulated, to 3D, lower
and upper 1 and 5 percent points of the sample
multiple correlation coefficient for R = 0.1(0.1)0.9,
the sample size N such that N – M = 10(10)50, and
M – 1 = 2(2)12, 12(4)24, 30, 34, 40.

4. Multivariate Distributions
4.1 Multivariate Normal Distribution

The multivariate normal density function of the
random vector (X1, . . . , XM) is

where x = (x1, . . . , xM)′, µ = (µ1, . . . , µM)′ is the
mean vector, and ΣΣ = [σij] is the positive definite
covariance matrix. Here (x1, . . . , xM)′, denotes
transpose of the vector (x1, . . . , xM). For the case
µ = (0, . . . , 0)′, σii = 1, σij = ρ, where 0 ≤ ρ < 1
and i, j = 1, . . . , M, i ≠ j, a one-sided upper equico-
ordinate p × 100 percentage point g is such that

and a two-sided upper equicoordinate p × 100 percent-
age point h is such that

where p is a specified value for the probability integral.
Gupta [61] tabulated equicoordinate one-sided proba-

bilities p, to 5D, for g = –3.5(0.1)3.5, M = 1(1)12,
and ρ = 0.100, 0.125, 0.200(0.05)0.300, 1/3, 0.375,
0.400(0.1)0.600, 0.625, 2/3, 0.700(0.05)0.800, 0.875,
and 0.900.

Tong [62] tabulated equicoordinate one-sided and
two-sided percentage points, to 4D, and probability
integrals p, to 5D. The table of one-sided percentage
points gives the values of g for M = 2(1)20,
ρ = 0.0(0.1)0.9, 1/3, 2/3, 1/4, and 3/4, and p = 0.90,
0.95, and 0.99. The table of one-sided probability
integrals gives the values of p for g = –2.0(0.1)4.0, M =
2(1)10, 10(2)20, and ρ = 0.0(0.1)0.9, 1/3, 2/3, 1/4, and
3/4. The table of two-sided percentage points gives the
values of h for the same set of M, ρ, and p as the one-
sided percentage points. The table of two-sided proba-
bility integrals gives the values of p for h = 0.1(0.1)5.0
and the same set of M, and ρ as the one-sided probabil-
ity integrals.

4.2 Multivariate t-Distribution
Suppose the random vector Z = (Z1, . . . , ZM)′ has

a multivariate normal distribution with mean µ = 0
and covariance matrix ΣΣ = [σij ], where σii = 1 for
i, j = 1, . . . , M (that is, ΣΣ is a correlation matrix).
Suppose S is a random variable independent of Z
such that νS has a chi-square distribution with ν
degrees of freedom. Then the joint distribution of
(T1, . . . , TM)′ = (Z1/S, . . . , ZM/S)′ is called a multi-
variate t-distribution with parameters ΣΣ and ν . A one-
sided upper equicoordinate p × 100 percentage
point g is such that

and a two-sided upper equicoordinate p × 100 percent-
age point h is such that

Freeman, Kuzmack, and Maurice [63] tabulated
percentage points g to, 3D, for M = 2, and to, 2D,
for M = 3, 4, 5, for p = 0.95, ν = (M + 1)k for
k = 9(10)99, 199, 499, and the following correlation
structure: ρij = –1/2 for |i – j| = 1 and ρij = 0 for
|i – j| > 1, where 1 ≤ i, j ≤ M. Freeman and Kuzmack
[64] tabulated percentage points g, to 2D, for the
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same correlation structure for M = 5(2)9, 9(5)29, p =
0.90, 0.95, 0.99 and ν = (M + 1)k for k = 9, 19, 49, 99,
499, using Monte Carlo sampling.

Dunn, Kronmal, and Yee [65] computed, using
Monte Carlo sampling, probabilities Pr{max1 ≤ i ≤ M |Ti|
≤ h} = p, to 4D, for M = 2(2)20, ρ = 0.0(0.1)0.9,
h = 0.2(0.2)6.0, and ν = 4(2)12, 12(4)24, 30, ∞.

For the bivariate case M = 2, Krishnaiah,
Armitage, and Breiter [66] tabulated probabilities
Pr{max1 ≤ i ≤ M Ti ≤ g} = p, to 6D, for ±ρ = 0.0(0.1)0.9,
g = 1.0(0.1)5.5, and ν = 5(1)35. Also for M = 2,
Krishnaiah, Armitage, and Breiter [67] tabulated
probabilities Pr{max1 ≤ i ≤ M|Ti| ≤ h} = p, to 6D, for
|ρ| = 0.0(0.1)0.9, h = 1.0(0.1)5.5, and ν = 5(1)35.

Tong [68] tabulated percentage points g for the
following correlation structure: ρij = 1 for i = j,
ρij = 1/2 for i ≠ j and 1 ≤ i, j ≤ m or m < i, j ≤ M,
ρij = –1/2 for 1 ≤ i ≤ m and m < j ≤ M or 1 ≤ j ≤ m
and m < i ≤ M where m = M/2 if M is even and
m = (M + 1)/2 if M is odd. His Table 1 gives g, to 7D,
for M = 1(1)10, 10(2)20, p = 0.50, 0.75, 0.90, 0.95,
0.975, 0.99 and degrees of freedom ν = ∞. His Table 2
gives g, to 5D, for M = 2(1)6, 6(2)12, 12(4)20,
p = 0.50, 0.75, 0.90, 0.95, 0.975, 0.99 and degrees of
freedom ν = 5(1)10,10(2)20, 20(4)60, 60(30)120.

Trout and Chow [69] tabulated two-sided nonequico-
ordinate p × 100 percentage points of trivariate
(M = 3) t-distribution with non-singular correlation
matrix

They tabulated d, to 2D, where

for p = 0.95, ν = 5(1)9(2)29, a = 0.5(0.1)1.5, b =
0.5(0.1)1.5, and a set of 22 triplets (ρ12, ρ13, ρ23),
where ρij = 0.0, 0.1, 0.5, 0.9, (i ≠ j, 1 ≤ i, j ≤ 3).

Dutt [70] tabulated the probabilities Pr{max1 ≤ i ≤ M Ti

≤ g} = p, to 6D, for g = 0.0(0.5)2.0, 2.0(1.0)4.0, and
ν = 8(4)40, and ∞: for M = 3 with (ρ12, ρ13, ρ23) = (0.3,
0.5, 0.7), and (0.1, 0.3, 0.5); and for M = 4 with (ρ12,
ρ13, ρ14, ρ23, ρ24, ρ34) = (0.05, 0.10, 0.15, 0.25, 0.60, 0.80),
and (0.25, 0.35, 0.50, 0.60, 0.65, 0.70).

Bechhofer and Dunnett [71] tabulated one-sided
and two-sided upper equicoordinate percentage
points for M = 2(1)16, 16(2)20, degrees of freedom
ν = 2(1)30, 30(5)50, 60(20)120, 200, ∞, and ρ =

0.0(0.1)0.9, and They tabulate, to 5D, g
and h for p = 0.80, 0.90, 0.95, and 0.99. They also
tabulate equicoordinate and non-equicoordinate
onesided percentage points for block correlation
structure. Bechhofer and Dunnett [71] summarize
previous tables of percentage points for equicorrelated
multivariate normal and t-distributions.

4.3 Distribution of the Wilks’s Likelihood
Ratio Test Statistic

Schatzoff [72], Pillai and Gupta [73], Lee [74], and
Davis [75] tabulate multiplying factors C to obtain
upper percentage points of the distribution of the
Wilks’s Likelihood Ratio Test Statistic – [n – p – (1/2)
(m – r + 1)] logW from the percentage points of
the chi-square distribution for multivariate analysis
of variance. Muirhead [76] has consolidated these into
one large table. Here, n is the number of multivariate
measurements, p is the number of regression parameter
vectors, n – p is the error degrees of freedom, m is
the dimension of multivariate measurements, and r is
the degrees of freedom of the general linear hypothesis.
Factors for the upper α × 100 percent points are
tabulated for α = 0.100, 0.050, 0.025, and 0.005. The
chi-square distribution has mr degrees of freedom.
The degrees of freedom n – p – m + 1 equal 1(1)10,
10(2)20, 24, 30, 40, 60, 120, and ∞. Pairs (m, r) are
such that m = 3(1)10, 12, and r ≥ m, where r is up
to 22 for m = 3, and 4, r is up to 20 for m = 5, 6,
and 7, and r is up to 18, 16, and 14 for m = 8, 9, and
10, respectively. Pairs (m, r) = (6, 11), (6, 13), and
(10, 13) are excluded. For r ≤ m make the substitutions
m → r, r → m, and n – p → n + r – p – m.

4.4 Dirichlet Distribution—Type 1

Sobel, Uppuluri, and Frankowski [77] tabulated, to
10D, the incomplete Dirichlet integral of Type 1:

for p = 1/b, b = 2(1)10, r = 1(1)10, and n ≥ br. This

represents

joint Dirichlet distribution with the specified para-
meters. Also tabulated, to 10D, are values of
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and r = 1(1)10. Values of n are given to, 2D, for which
(r, n) = M for M = 0.75, 0.90, 0.95, 0.975, 0.99,

0.999, 0.9999, p = 1/j, j = b + 1(1)20, b = 1(1)10 and
r = 1(1)10. Additional tables are given for Generalized
Stirling Numbers and for the sample size required for
occupancy problems in multinomial distributions.

4.4 Dirichlet Distribution—Type 2

Sobel, Uppuluri, and Frankowski [78] tabulated the
incomplete Dirichlet integrals of Type 2:

The lower tail integral Ca
(b)(r, m) is tabulated, to 8D,

for the parameters: {r = 1(1)10, b = 1(1)15, m = 1(1)15,
a = 1(1)5, and a–1 = 2(1)5} and {r = m, b = 1(1)10,
a = 0.40(0.10)0.60, a = 0.60(0.05)0.80, and a–1 =
3(1)10}.

The upper tail integral Da
(b)(r, m) is tabulated, to 8D

or 10D, for the parameters: {r = 1(1)10, b = 1(1)15,
m = 1(1)15, a = 1(1)5, and a–1 = 2(1)5}, {r = m, b =
1(1)10, a = 3(1)10, a–1 = 0.40(0.10)0.60, and a–1 =
0.60(0.05)0.80}, {m = r + 1, b = 1(1)10, a = 3(1)10,
a–1 = 0.40(0.10)0.60, and a–1 = 0.60(0.05)0.80}, {r = m,
b = 1(1)10, a = 0.40(0.10)0.60, a = 0.60(0.05)0.80, and
a–1 = 3(1)10}, {m = r + 1, b = 1(1)10, a = 40(0.10)0.60,
0.60(0.05)0.80, and a–1 = 3(1)10}, {m = r + 1, r =
1(1)200, a = 1, and b = 1(1)10}, and {m = r + 2,
r = 1(1)200, a = 1, and b = 1(1)10}. Values of a for
which Da

(b) (r, m) = δ are tabulated for δ = 0.75, 0.95,
0.975, 0.99, 0.995, 0.999, r = 1(1)50, and b = 1(1)10.
A table for expected waiting time in multinomial
problems is also given.

4.6 Zonal Polynomials

Probability density functions and moments of many
multivariate distributions can be evaluated using
zonal polynomials. Parkhurst and James [79] tabulate
zonal polynomials of order 1 through 12 in terms
of sums of powers and in terms of elementary
symmetric functions.

4.7 Distributions of the Largest and Smallest
Eigenvalues of Matrices of Sample
Quantities

Heck [80] charts some upper percentage points of the
distribution of the largest eigenvalue of certain matrices
of sample quantities from multivariate normal
distribution. Edelman [81] tabulates expected values
of the smallest eigenvalue of random matrices of
Wishart type.

5. Summary

This article is a survey of the tables of probability
distributions published about or after the publication
in 1964 of the Handbook of Mathematical Functions,
edited by Abramowitz and Stegun. The abstracts
presented here have been verified from the original
sources. Many of the distributions referenced here
are implemented in commercial or publicly-available
software systems.
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