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ABSTRACT Wireless sensor networks (WSNs) and mobile crowdsensing (MCS) are two important

paradigms in urban dynamic sensing. In both sensing paradigms, task allocation is a significant problem,

which may affect the completion quality of sensing tasks. In this paper, we give a survey of task allocation

in WSNs and MCS from the contrastive perspectives in terms of data quality and sensing cost, which help

to better understand related objectives and strategies. We first analyze the different characteristics of two

sensing paradigms, whichmay lead to difference in task allocation issues or strategies. Then, we present some

common issues in task allocation with objectives in data quality and sensing cost. Furthermore, we provide

reviews of unique task allocation issues in MCS according to its new characteristics. Finally, we identify

some potential opportunities for the future research.

INDEX TERMS Mobile crowdsensing (MCS), task allocation, wireless sensor networks (WSNs).

I. INTRODUCTION

The rapid development of the city highlights the sens-

ing needs for urban environment, target movements and

human activities. Urban sensing tasks are characterized by

large scape and heavy burden. Therefore, collecting sens-

ing data effectively becomes focused issue. Wireless sensor

networks (WSNs) and mobile crowdsensing (MCS) are two

popular sensing paradigms and play important role in urban

dynamic sensing.

WSNs are the specialized infrastructures that constituted

by a large number of spatially distributed sensor nodes,

which can communicate with each other through several

hops of wireless link and collaboratively accomplish mon-

itor tasks and collect corresponding data [1]. Due to the

capacity of sensing, processing and communication, WSNs

technology has found broad applications prospects, such as

The associate editor coordinating the review of this manuscript and
approving it for publication was Alessio Vecchio.

air quality monitoring [2], traffic control [3], [4], agricultural

irrigation [5], etc.

In addition, with the development of wireless communica-

tion and sensor technology, some mobile devices (e.g., smart

phone, iPads and wearable devices) have already equipped

with various types of sensors (e.g., GPS, accelerometers,

camera, gyroscopes, etc.) and show high capability in sensing

and communication. A new sensing paradigm called MCS

[6], in which mobile users leverages senors embedded in their

mobile devices to collect and transmit sensing data, plays an

important role in large-scale sensing and information sharing,

and becomes a research issue in both academia and industry.

The realization ofMCSmainly benefits from two concepts:

crowdsouring [7] and mobile sensing. Concretely, large-scale

sensing tasks that traditionally accomplished by specialized

sensing infrastructures are outsourced to a group of ordi-

nary mobile users. Compared to WSNs, MCS is a kind of

grassroots sensing paradigm and has a number of advantages

[8]: (1). MCS leverages mobile devices to sense or generate
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data instead of deploying specialized infrastructures, thus the

sensing cost is quite low. (2). Different from static wireless

sensor networks, or the sensor nodes move along a intended

route, the inherent mobile users provide sufficient temporal-

spatial coverage. Due to the advantages mentioned above,

a broad range of MCS applications have been studied such as

intelligent transportation [9], [10], environment monitoring

[11], target identification [12], and so on.

Task allocation is a common concern both in WSNs and

MCS. WSNs are composed by a set of sensing nodes with

limited energy. Furthermore, it is infeasible to change or

recharge to the battery because of the specific applications.

So it is an important issue for WSNs to schedule nodes to

accomplish sensing tasks and prolong the lifetime of whole

network while guaranteeing the quality of information (QoI)

in the target area. For MCS system, platform recruits mobile

users to participate in sensing tasks and upload high quality

data. From the perspective of mobile users, collecting and

uploading sensing data devote their time and consume energy

of mobile devices, even require them to change their original

trajectory. Without any incentive to compensate for their

effort, users may be unwilling to participate in sensing tasks.

Besides, users vary in some specific knowledge and expertise,

which causes diversity in data quality. From the perspective

of platform, it expects to get high quality data, but reluctant

to sacrifices much cost. Thus, to get high quality of sensing

data under budget constraint, a advisable way is allocating

the tasks to proper users, while accounting for the various

initial locations of different users, sensing data reliability and

sensing cost. Therefore, task allocation is an important issue

both in WSNs and MCS.

Due to its importance, several studies have been conducted.

These works discussed the task allocation problem in WSNs

or MCS from different aspects, such as quality of sensing

data, sensing cost, etc. For example,Wang et al. [13] analysed

the unique features of MCS compared to general crowdsour-

ing and present an overview of task allocation from different

type of problem formulation. However, few work summa-

rized the common research problems both in WSNs and

MCS, or some emerging problems in MCS. In fact, there are

some similarities and differences in objectives and strategies

for two types of sensing paradigm. Firstly, for some common

issues (e.g., fault tolerant), the strategies of task allocation

in WSNs are almost suitable in MCS. MCS applications can

directly adopt these strategies. Secondly, some issues such

as energy consumption, though the constraints in these two

sensing paradigmsmay be different, the strategies in theMCS

can learn from WSNs according to its new characteristics.

Thirdly, some new issues (e.g., incentivemechanism, location

privacy), which are not necessary discussed in WSNs, should

be explored to meet the increasing requirements of MCS.

To better understand the task allocation in these two sens-

ing paradigms, a comprehensive overview of task allocation

problem in both WSNs and MCS is desirable. In this paper,

we focus on the comparison of task allocation problem in

WSNs and MCS. We firstly analyze the common issues in

these two sensing paradigms. Then, we present some distinct

task allocation issues in MCS due to its new characteristics.

In particular, the contribution of this paper can be concluded

as follows:

• Analyzing the characteristics of WSNs andMCS, which

indicates that the similarity and difference of task allo-

cation problem in two sensing paradigms.

• Discussing some common issues of task allocation in

two types of sensing paradigm, including data quality

and sensing cost. We analyze the different strategies

that adopt in two sensing paradigms, which can help

researchers take good understanding of the problem of

task allocation and corresponding methods.

• Reviewing some unique issues of task allocation in

MCS that WSNs does not consider, such as incentive

mechanism, travel distance of users and location privacy,

which present distinct characteristics of task allocation

in MCS.

• Investigating the some potential research directions in

MCS task allocation, which may be more promising and

meaningful in practical MCS applications.

Our main contribution can be concluded in Fig.1.

The remainder of this paper is organized as follows: in

Section 2, the characteristic of WSNs and MCS are analyzed.

In Section 3, the common issues of task allocation in two

types of sensing paradigm are discussed. Then, some distinct

issues of task allocation in MCS are introduced in Section 4.

Following that, we discuss research opportunities of task

allocation in MCS in Section 5. Finally, conclusions drawn

from this study are presented in Section 6.

II. CHARACTERISTICS OF TWO SENSING PARADIGMS

In this section, we briefly summarize the framework and

present the characteristics of WSNs and MCS, which may

lead to difference in objectives and constraints of task alloca-

tion problem.

The framework of WSNs is shown as Fig. 2, which con-

sists of sensor nodes, sink nodes, Internet and task manage

system. Typically, sensor nodes are embedded with a sen-

sor unit, a processor, wireless communication module and

power supply module, thus having processing, storage and

communication capabilities. Sensor nodes not only collect

and process the sensing data from their monitored area,

but also store and manage the data transferred from other

nodes. The sink nodes can be either a intensified sensor node,

which equipped with enough energy to provide morememory

resources and computing power, or a special gateway device

only with wireless communication interface but no monitor-

ing function. They usually has stronger processing, storage

and communication capabilities. They mainly play the role

in communicating between sensor nodes and wireless sensor

networks, transmitting collected data information to external

networks. Generally, sensor nodes collect and transmit the

required information to the sink nodes by a hop or multi
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FIGURE 1. The main contribution of this work.

FIGURE 2. The framework of WSNs.

FIGURE 3. The framework of MCS.

hop wireless communication link. Then, the sink nodes send

processed data to the task management system via satellite,

Internet or mobile communication.

Different from WSNs, a MCS system consists of three

components: service requestor, MCS platform and users.

We show the framework of MCS in Fig. 3. The service

requestors create sensing tasks and upload task requirements

(e.g., the task context, the location and time, the number

of users, etc.) to the MCS platform. MCS platform usually

consists of a set of servers, which can store, analyze and

integrate crowd data. After receiving the requirements from

service requestors, MCS platform publishes the tasks and

recruits well-suited users to perform tasks. Users leverage

mobile devices sensing and upload the up-to-date local data

to the MCS platform. MCS platform analyzes and aggregates

the sensing data, then transmits to service requestor accord-

ing to the requirements. To compensate for the users, MCS

platform leverages incentive mechanism to pay some reward

to users for their contribution.

According to the framework of WSNs and MCS, the par-

ticipation of users is the chief difference between WSNs and

MCS. The success of MCS benefits from the concept of

‘‘crowdsourcing’’, which is defined as outsouring a burden-

some task to a large group of people [14]. In other words,

a large-scale sensing task that traditionally completed by a

specific infrastructure can be allocated to ordinary users who

use their carry-on devices to collect sensing data. Mobile

users collaborate consciously or unconsciously to complete

the sensing tasks that is impossible completed by individuals

alone. From the following perspectives, we analyze the differ-

ences of two sensing paradigms, which may cause different

strategies or some unique issues in task allocation due to the

new characteristics of MCS.

A. MOBILITY

Traditional WSNs deploy static or intended moving sensor

nodes, which collect sensing data in a specific area and trans-

mit the collected sensing data to their neighbor sink nodes

by one hop or multi hops. Thus, coverage and communica-

tion distance of WSNs are limited. By contrast, the inher-

ent mobility of users provides high spatiotemporal coverage

compared to the WSNs [8]. According to whether users

should change their regular routine to participate in sensing

tasks, MCS can be classified into participatory sensing and

opportunistic sensing. Participatory sensing indicates that

users should change their routine to participate in sensing

tasks. In this case, the travel distance is the main concern

for users to determine whether participate in sensing tasks.

In opportunistic sensing, users do not need to change their
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TABLE 1. Characteristics of WSNs and MCS.

routine and participate in sensing tasks unconsciously. How-

ever, to recruit proper users, an efficient trajectory predic-

tion is important in this case. Furthermore, sensing tasks

are usually location-based. Collecting related data for these

tasks may exposure the location of users. Thus, some new

techniques should be adopt to protect users’ privacy.

B. UNIVERSALITY

Traditional WSNs deploy application-specific infrastructures

to collect sensing data. Consequently, it costs much money to

deploy and maintain sensor nodes. To reduce the cost, a com-

mon practice is deploying much sensor nodes in the areas

that are urgent need and few nodes in desolate areas. Thus,

the collected data is not spatial-uniformly. Furthermore, sen-

sor nodes consume battery energy during data collection and

transmission. When the energy is exhausted, sensor nodes

cannot be recharged or replaced due to the practical applica-

tion [15]. Thus, it is difficult for WSNs to perform the large-

scale sensing and data transmission tasks for long time.

MCS is a pervasive sensing paradigm. Instead of deploying

application-specific infrastructures, MCS applications recruit

original citizens to participate in sensing task. Even if some

users may drop out collecting data during the required time,

the platform will recruit new users to complete the task. With

the development of city, MCS plays an important role in

data collecting. However, some factors of users should be

considered. Firstly, users may be unwilling to participate in

sensing tasks due to the inherent selfishness. To motivate

the mobile users’ participation, incentive mechanisms should

be considered in the process of task allocation. Secondly,

with the development of MCS, sensing tasks become more

and more complex and may require the users’ expertise in

some special field or carry the mobile devices embedded

with required sensors to accomplish sensing tasks. Thus,

the capability heterogeneity of users should be considered.

C. SENSING DEVICE

Sensor nodes in WSNs are elaborated to collect specific type

of data (e.g., the air monitor only collect the air-quality data

in a specific area). Due to the specificity, the quality of

sensing data from WSNs is usually high. However, specific

sensor nodes are hard to apply to collecting other type of

data (e.g., traffic information video). Thus, the reusability of

WSNs is low.

With the development of sensor technology, mobile

devices such as mobile phone, wearable devices are embed-

ded with various types of sensors, which can accomplish

different types of tasks. The related departments do not need

to deploy specific network infrastructures. However, different

sensing devices vary in sensor type and performance, the col-

lected data suffer from the issues of quality because of sensor

performance. Due to the advantages of MCS, more and more

applications leverage MCS to collect sensing data. From the

perspective of individual user, how to cooperate sensors to

maximize his benefit under limited sensing capability is also

an important issue in MCS.

D. SENSING MODE

WSNs are physical sensing paradigm that composed of a

set of sensor nodes with the ability of sensing, storage, and

communication. These nodes cover the target area and col-

laboratively collect the sensing data. Once the system sets

the sensing requirements of a task, WSNs can execute the

sensing program according to the requirements without the

involvement of users. For example, if the sensing cycle is set

to one hour, the system will automatically collect the sensing

data once a hour.

With the development of social network, platforms such as

Twitter, Foursquare provide users’ information. These infor-

mation include location-based information and user content

information [16]. Except for collect data from physical space,

the information from social network play an important role

in MCS to collect crowd sensing data. Because of the par-

ticipation of users, the sensing data may integrate human

intelligence and machine intelligence, which provides more

intelligent information than WSNs. Take the task that sens-

ing traffic information of a street as an example, except for

the uploaded pictures, some comments from users can also

provide important information to service requestor.

The summarization of the difference of characteristic

between WSNs and MCS are shown in Table 1.

According to analysis above, in terms of task allocation,

there are some difference in objects and constraints. On the

one hand, there are some similar common issues that two

paradigms concerned. However, due to the different con-

straints, the strategies may be different. On the other hand,

with the participate of mobile users and other new character-

istics ofMCS, there are some new issues should be concerned

in the task allocation. In the following two sections, we will

present a systemic reviews of common issue of two sensing

paradigms and new issues in MCS, respectively.

III. COMPARATIVE STUDY ON COMMON ISSUES

Data quality and sensing cost are two important concerns

in task allocation. There are some common objects of task

allocation in WSNs and MCS from these two perspectives.
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However, Due to the differences in framework characteris-

tics and application scenarios, the strategies adopted in the

two sensing paradigms may be different. In this section,

we present reviews of strategies that two sensing paradigms

adopt to tackle the problem of data quality and sensing cost.

A. DATA QUALITY

Data quality is one of most important concern of two sens-

ing paradigms in the process of task allocation. However,

it difficult to give a common definition of data quality. Most

researchers investigate the data quality problem from the two

aspects: coverage and fault tolerant.

1) COVERAGE

Coverage is a key indicator for a sensing platform. It indicates

how well the target areas can be observed. According to

[17], the coverage can be described as monitor-quality of

a network in the target area. The definition of coverage is

closely related to applications but usually can be categorized

into three types: point coverage, region coverage and barriers

coverage [18]. Point coverage reflects the condition that a

set of target points can be covered. In the region coverage,

the objective is to cover a two-dimensional region. Barrier

coverage indicates that sensor nodes detect a moving object

which invade the deployment area [19]. Generally speaking,

the definition of coverage in two sensing paradigms are not

differ too much. However, there are some difference between

strategies of getting high coverage.

a: COVERAGE IN WSNs

In the last few years, researchers are actively exploring the

coverage problem in WSNs. In the process of sensor deploy-

ment, Yoon and Kim [20] studied the sensor deployment

problem that aims to maximize the Boolean disk coverage

under the giving type and number of sensor constraint. Then

they devised a novel genetic algorithms to tackle this prob-

lem. Cao et al. [21] transferred the deployment problem to

anmulti objective problem, which simultaneously considered

three objectives: extensive coverage, long network lifetime

and high reliability. Then, they proposed a distributed parallel

multi objective evolutionary algorithm to solve this problem.

After deployed, sensor nodes in the network collect and

transmit the sensing data to the sink nodes. Since the energy

of sensor node is limited, the performance of network may

degrades with the time. In fact, the sensor nodes in WSNs

share the same sensing task. It is not necessary to keep all

node working during the whole lifetime. In addition, some

applications like temperature monitoring may not require

100% coverage for whole target area. To reduce the energy

consumption and prolong the lifetime of network, a practical

strategy is selecting sensor nodes work alternatively, while

meeting the coverage requirement. Danratchadakorn and Por-

navalai [22] proposed a decentralized sleep scheduling pro-

tocol to maximize the coverage of network. In this protocol,

every sensor create a neighbor table and cell value table,

then exchange the coverage information with their neighbor

sensor to decide which mode it should be on. Movassagh and

Aghdasi [23] proposed a distribute method that exploiting

game theory to select active sensor node to cover the target

area. Sensor nodes compete to be active or inactive accord-

ing to their coverage redundancy, activation cost, number of

neighbors and uncovered regions. Similarly, Wang et al. [24]

considered the coverage control in the underwater acoustic

sensor networks (UASNs) and proposed a memetic algorithm

to minimize the number of active nodes while guaranteeing

coverage.

b: COVERAGE IN MCS

Different from WSNs, MCS does not need to deploy ded-

icated infrastructures. Alternatively, the platform in MCS

directly selects suitable mobile users to meet the required

spatial-temporal coverage. Typically, the platform divides the

sensing duration into several cycles and specifies the target

area into a set of subareas. It is assumed that if mobile users

reach a subarea in a specific cycle, then he covers the subarea-

cycle tuple. Due to the mobility of users, the application

usually predicts the mobility of users before allocating the

tasks. For example, Reddy et al. [25] considered the loca-

tion, time constraints and transportation mode of users to

model the mobility profile of users. Then, they proposed

a coverage-based framework to select well-suited users to

maximize spatial coverage. Zhang et al. [26] predicted the

mobility of users using a Poisson model and then selected

minimum number of users to meet the predefined temporal-

spatial coverage. Xiong et al. [27] defined a temporal-spatial

coverage called k-depth coverage, then they predicted the

mobility of users and discussed task allocation problem with

different incentive and coverage objectives/constraints in the

Piggyback Crowdsensing (PCS) task model. Another work

[28] defined a novel coverage metric called ‘‘t-sweep k-

coverage’’, and proposed two methods to select smallest set

of candidate users based on their check-in data to satisfy pre-

defined coverage requirements. Zhang et al. [29] investigated

coverage quality and proposed a approximation algorithm to

select a subset of mobile users to maximize coverage quality

under constrained budget. In [30], a greedy based multi tasks

allocation framework for participatory sensing is proposed,

which aims to maximize the overall coverage under shared

budget. Wang et al. [31] firstly leveraged a strategy to discov-

ery the mobility patterns of users from history trace and then

devised different greedy-based task matching algorithm with

the objectives of minimizing the cost and maximizing the

coverage.

Besides, with the development of MCS, more and more

applications leverage MCS framework to recruit mobile

users. However, different tasks are heterogeneous in spatial-

temporal requirements. For example, a spatial-temporal gran-

ularity of collecting noise data is different from collecting

air quality, because noise changes more sharply with the

time and space. Therefore, tasks allocation for heterogeneous

tasks the should be considered. For example, Li et al. [32]

estimated the probability of a participant to make a phone
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at target location and proposed a greedy-based participant

selection algorithm for heterogeneous tasks to minimize the

number of users while guaranteeing a certain level of cover-

age. Wang et al. [33] studied the heterogeneous multi tasks

allocation problem, in which the involved tasks are different

in spatial-temporal granularity but share the same partici-

pant resource. They constructed spatial-temporal correlation

representation between multiple tasks and then proposed a

decomposition and combination framework to tackle this

problem. Song et al. [34] invested multi tasks allocation

problem and proposed a metric called quality of informa-

tion (QoI), which can be expressed as the ratio of the num-

ber of measurements of collected and needed for each task.

The problem can be transformed to a knapsack problem and

a greedy-based selection strategy is designed to solve the

problem.

c: SUMMARY OF COVERAGE

According to analysis above, we conclude that there are

two differences in coverage problem. Firstly, compared to

the intended deploying sensor nodes in WSNs, MCS selects

suitable users to participate in sensing tasks according to

their trajectories. Probabilistic models are usually adopted in

opportunity sensing to estimate the mobility of users. Thus,

the coverage metrics in the MCS are usually probabilistic-

based. Secondly, due to the coexist of multiple heterogenous

tasks, the definition of coverage in MCS may be also het-

erogenous in term of spatial-temporal granularity.

2) FAULT TOLERANT

Fault tolerant is another important metric of quality of service

of sensing network. It reflects the ability that the network

works correctly even some unexpected circumstances occur.

Thus, fault tolerant is also an important issue that should be

considered.

a: FAULT TOLERANT IN WSNs

WSNs consist of a lot of sensor nodes that with lim-

ited energy. When the left energy blows a certain value,

the sensor node may not work correctly. In addition, sensor

nodes are usually deployed in hostile environment and easily

be destroyed by malicious behavior of human, villainous

weather, etc. Thus, fault tolerance mechanisms are necessary

in task allocation to deal with serious consequences caused

by sudden failure of nodes, and ensure the tasks successfully

completed before the specified deadline.

The primary/backup (P/B) copy is the most popular tech-

nique for fault-tolerant in WSNs. It allows copy of tasks

run on different sensor nodes. There are two modes of copy

for a task, which named primary copy and backup copy.

According to the execution time of backup copy, The pri-

mary/backup technique can be classified into three modes:

active backup copy mode, passive backup copy mode and

overlapping backup copy mode.

In the active backup copy mode, primary and backup copy

are executed in different sensor nodes. The backup copy can

execute normally even the primary copy failed to guarantee

the correct results of the tasks. There is no requirement for the

running time of these two copies of task, i.e., the two copies

need not be synchronized. However, it will consume twice

resource compare to the nonfault situation. Study in [35] con-

sidered the task allocation in industrial systemwhere periodic

and aperiodic tasks are coexist. Due to the unpredictability of

aperiodic tasks, authors leveraged active backup copy mode

to schedule primary and backup copies of aperiodic tasks by

using the reserved processor time of periodic tasks.

Different from active backup copy mode, the passive

backup copy mode runs the backup copy under the situation

that primary copy fails. It does not run the backup copy if

there is no fault in primary copy. But the disadvantage is that

it encounter more time requirement. Pathan and Jonsson [36]

proposed a fault tolerant global multiprocessor scheduling

algorithm (FTGS), which leveraged the passive backup copy

scheme to tolerate both task errors and processor failures

that occur at any time even during the execution of recovery

operation.

The overlapping backup copy mode combines the advan-

tage of above modes. In this mode, primary and backup copy

overlap in their running time and improve the performance

of tasks. Guo et al. [37] proposed soft real-time task fault-

tolerant allocation algorithm, which based on particle swarm

optimization (PSO) in WSNs to minimize tasks execution

time, save node energy cost, and balance network load. The

proposed algorithm employs P/B technology and backup

copy overlapping technology to achieve fault-tolerant mech-

anism. Zhu et al. [38] considered the quality of service and

heterogeneous features of clusters, then proposed a fault-

tolerant scheduling algorithm called QAFT, which employed

the backup-copy overlapping technology striving to advance

the start time of primary copies and delay the start time of

backup copies under the time constraints.

b: FAULT TOLERANT IN MCS

For MCS, fault tolerant is also necessary. Users leverage the

mobile devices to sense and upload sensing data, there are

some circumstances that may affect the completion quality

of sensing tasks. Firstly, similar to the sensing nodes in

WSNs, mobile sensors may be blocked. Secondly, due to the

heterogeneity of sensing devices, the quality of sensing data

from different users vary greatly. Thirdly, users may exhibit

some malicious behaviors and contribute sensing incorrect

data intensionally. Finally, users in MCS may leave the target

area before they complete the tasks, causing the sensing data

can not be successfully sensed or uploaded.

In response to the above situations, MCS applications usu-

ally adopt strategies similar to the active backup copy mode

in WSNs. That is, recruiting multiple users at one time to

complete one task. For example, studies in [27] and [39],

authors defined a spatial-temporal coverage and discussed

how to select multiple users to maximize the coverage quality

under budget constraint. To guarantee the validity of sensing

data, recently, some mechanisms are proposed to quantify
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the trustworthiness of sensing data. For example, Pouryazdan

et al. [40] proposed a new metric called collaborative reputa-

tion score to quantify the trustworthiness of sensing data. This

metric is based on statistical reputation and social reputation.

It is a weighted sum of previous and current reputation.

The experiment results showed that the new metric can get

better performance compared to solely vote-based or anchor-

assisted scheme.

c: SUMMARY OF FAULT TOLERANT

Fault tolerant mechanisms in two sensing paradigms are sim-

ilar. That is, they allocate the tasks to multiple sensor nodes.

WSNs allocate tasks to multiple sensor nodes in case of tasks

are unable to be completed on time due to the sensor nodes

break down. For MCS, it recruits multiply users to guarantee

data quality in case of mobile device failure or low-quality

sensing data uploaded bymalicious users. Furthermore, some

trustworthiness mechanisms are introduced to measure the

trustworthiness of users.

B. SENSING COST

The sensing cost is another concern in task allocation.

An effective way to lower the cost is reducing the energy

consumption and prolonging the lifetime of network. In addi-

tion, the workload of sensor nodes should also be considered.

Because a energy-exhausted sensor nodes may affect the

completion of tasks. Thus, we discuss the sensing cost from

the perspectives of energy consume and workload balancing.

1) ENERGY CONSUMPTION

Energy expenditure for a sensing node is inevitable. For

example, Verizon consumers 8.9TWh energy, that’s the

0.24% of the total energy consumption of the U.S. [41]. The

energy consumption grows exponentially with related appli-

cations. With the escalations of wireless network and mobile

devices, energy-efficient wireless network has attracted a

significant amount of research effort these years. The key

problem for this issue is to trade off the energy consumption

and quality of information. From the task allocation of view,

researchers focus on how to schedule sensing nodes to partic-

ipate in data collecting with low energy expenditure.

a: ENERGY CONSUMPTION IN WSNs

Sensor nodes in the WSNs are usually battery-constrained.

And it is impractical to recharge battery during the running

state of network [42]. Thus, deploying large number of sens-

ing nodes and keep all node works to collect related data is

infeasible and energy-consuming. An alternative approach is

scheduling a subset of sensors in the working mode while

others keep sleep mode to save energy and prolong the life-

time of network [43]. Zhao and Gurusamy [44] proposed an

approach to schedule the active sensors and maximize the

lifetime of WSNs, which can maintain a full coverage of

target areas and can be connected to sink nodes by direct links

or by multi hops route traversing. If the full coverage or the

predefined connectivity cannot be satisfied, Zhao assumed

that the deployed WSNs reached its lifetime. Chen et al. [45]

introduced Trap Cover Optimization (TCO) algorithm to

achieve the goal that scheduling the activation sensor nodes

while guarantee the uncovered hole is no greater than a given

threshold. Lu et al. [46] attempted to prolong the lifetime of

WSNs by switching on the sleep-mode sensor in target spots.

Yu et al. [47] considered the energy consumption of sensing,

computing communication and sleeping, they mapped the

workload distribution problem into graph partition problem

and formulate the energy consumption and the time constraint

of the nodes in WSNs.

Node clustering is an another way to reduce the energy

consume and prolong the life of network. Every cluster is

managed by the cluster head (CH). CH play an important

role in coordinating the nodes’ activities. Nodes in the cluster

transmit to the CH, then CH transmits the aggregated data to

other CH or sink nodes, thus it can reduce the energy con-

sumption [48]. Naranjo et al. [49] proposed a new technique,

named P-SEP, which attempt to select CH to save energy and

prolong the lifetime of network. P-SEP considers the number

of sensor nodes that associate with CH and minimizes the

distance between CH fog nodes. Simulations indicated that P-

SEP prolong the lifetime of network compared to the baseline

algorithm.

b: ENERGY CONSUMPTION IN MCS

Similarly, it is important for MCS system to minimize the

energy consumption of mobile users’ devices because high

energy consumption reduce the users’ participation willing-

ness [50]. An energy-efficient task allocation scheme aims to

select minimal number of users while ensuring a predefined

data quality. Sherchan et al. [51] proposed a framework,

Context-Aware Real-time Open Mobile Miner (CAROMM),

to reduce the amount of data sent and energy usage in the

process of data collection while providing comparable level

of accuracy to traditional sensing model. Lane et al. [52] pro-

posed PCS system, which collects mobile sensing data when

mobile users place phone calls or use applications to lower

the energy overhead of users. Zhang et al. [26] proposed a

user recruiting framework, CrowdRecruiter, which aims to

select minimal number of users while satisfying probability

coverage constraint. Liu et al. [53] modeled an energy-aware

recommended sampling behavior and computed the task

rejection probability. Then, they formulated a constraint opti-

mization problem and devised a suboptimal solution to tackle

the problem. The study in [54] proposed an energy-efficient

data collection framework, whose objective is tominimize the

energy consumption while maximize the utility of collected

data. Then, authors developed an Android application to mea-

sure the performance of proposed framework. Anjomshoa

and Kantarci [55] proposed a scheme called SOBER-MCS to

assign tasks to users, which considers sociability and mobile

battery level.

Another way of reducing the energy consumption is

to reduce the number of allocated tasks in view of

spatial-temporal correlations. For example, sparse mobile
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crowdsensing [56], which selecting small portion of subar-

eas for sensing and inferring data of remaining subareas

according to spatial-temporal correlation among subareas,

thus lowering the energy consumption and incentive. Based

on this conception, CCS-TA [57] was proposed to monitor

real-time temperature and air-quality in the city. It iteratively

selects salient cell to collect sensing data until the predefined

data quality are satisfied. Then, the missing data is deduced

by combining with Bayesian inference and active learning

mechanisms. Evaluation results on real-world datasets show

the applicability of CCS-TA.

c: SUMMARY OF ENERGY CONSUMPTION

Though both two sensing paradigms consider the energy

consumption, the strategies are different. WSNs alternately

select subset of sensor nodes keeping in active state and the

others in sleep state tomaximize the performance and prolong

the lifetime of network. Then, node clustering mechanism

is introduced to reduce the consumption of communication

energy. In MCS, researchers aim to minimize the number

of task allocation. For example, recruiting minimal number

of users, or selecting minimal number of subareas to collect

sensing data.

2) WORKLOAD BALANCING

Except for minimizing energy consumption, the workload

balancing should be considered. Because overload to some

specific sensor nodes may lead to premature death and affect

the performance of network. In this section, we will discuss

the workload balancing strategies in two sensing paradigms.

a: WORKLOAD BALANCING IN WSNs

Aswe know, the CH consumes more energy than other sensor

nodes in the cluster. That is, the workload is unbalance among

sensor nodes. To solve this problem, a popular way is reclus-

tering and rotating the CH among the sensor nodes. Neam-

atollahi et al. [58] proposed Round-Based Policy (RBP),

which splits network operations into several rounds and group

sensors into clusters at the beginning of every round to extend

the lifetime of network. However, RBP also consumes much

energy because of the unnecessary reclusterings. Authors

further proposed a Dynamic Hyper Round Policy (DHRP) to

mitigate this situation by clustering only in the dynamic hyper

round. DHRP is applicable to data collection and outperforms

than well-known clustering protocol. In [59], a hierarchical

clustering-task scheduling method is proposed, which includ-

ing local clustering and global clustering. During the local

clustering, only a part of nodes execute the clustering process

in each super round for the load balancing goal. Global

clustering is performed at the end of every end of global hyper

round to refresh the entire network structure.

b: WORKLOAD BALANCING IN MCS

With the development of MCS, more and more appli-

cations leverage the MCS platform to recruit users.

These applications compete with each other in a limited user

resource [60]. For individual user, due to the limit battery

and other computing resource, the maximum number of tasks

that each user can completed is limited. To avoid overloading

to individual user, a common way is assuming a maximum

workload for each user. Recently, several works consid-

ered this situation and proposed the multi tasks allocation

frameworks in MCS. In [60], a novel multi tasks allocation

framework named PSAllocator, which considers the max-

imum workload of each user, was proposed. PSAllocator

defined a system utility which considers the spatial-temporal

coverage. To get optimal system utility, PSAllocator predicts

the possibility of users to connect to cell towers according

to their historical mobility data. Then, an iterative greedy

algorithm is proposed to optimize the task allocation. In our

previous work [61], we investigated a multi tasks allocation

problem that considers the heterogeneity of users (including

the type of sensors and the maximum workload of users).

A greedy discrete particle swarm optimization with genetic

algorithm operation is proposed to maximize the number of

completed tasks.

c: SUMMARY OF WORKLOAD BALANCING

Both WSNs and MCS consider the workload balance. WSNs

adopt the active-sleep scheduling and the cluster head rotation

to prevent sensor nodes premature death and affecting the

data collecting in target area. However, MCS considers the

resource limitation of individual by and assuming amaximum

workload to every user. Since heavy burden will hurt the

enthusiasm of users to collect sensing data.

Table 2 lists the subset of related works about common

issues of task allocation in two sensing paradigms. We hope

that it can help readers quickly retrieve the related papers and

understand the related strategies.

IV. UNIQUE ISSUES FOR MCS

The involvement of mobile users in theMCS is the chief char-

acteristic compared to traditional WSNs. So some important

factors caused by mobile users should be considered in the

process of task allocation in MCS. These factors lead to some

new directions in MCS, In this section, we will talk about

some unique issues in the MCS.

A. INCENTIVE MECHANISMS

Incentive is important to motivate the users to participate

in MCS applications. Firstly, when users participate sens-

ing tasks, it is inevitable to consume resource of users’

devices, including computation, communication, and energy

[62]. Particularly, for some special applications, mobile users

should change their intended routine and move to the specific

location to complete sensing task. In addition, participat-

ing in sensing task may expose location of users. Without

an effective incentive mechanism, users may not willing to

keep active to participate in sensing tasks sharing their data.

Generally, the incentive mechanisms can be categorized into

monetary incentive and nonmonetary incentive from the per-

spective of incentive type.
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TABLE 2. A summary of common issues of WSNs and MCS and task allocation strategies.

1) MONETARY INCENTIVE

Monetary incentive encourages users by paying them rewards

and usually shows a better incentive effect [63]. Auction

mechanism is themost popularmethod inmonetary incentive,

which indicates that users bid for the sensing data, then plat-

form selects subset of users with lowest bidding to contribute

the sensing data.

Reverse auction incentive mechanism has attracted sub-

stantial attentions these years. In reverse auction, platform

publishes the tasks. Users compete with each other to accom-

plish these tasks by lowering their bids until the bids keep

unchanged. This mechanism selects the subset of users with

minimal cost to maximize the profit of platform. To avoid

the users who lost in the previous reverse auction drop-

ping out, Lee and Hoh [64] proposed a novel Reverse

Auction Dynamic Price with Virtual Participation Credit

(RADP-VPC) incentive mechanism, which grants them a

virtual credit and increases the chance that they can win in

the next auction. Compared to Random Selection with Fixed

Price (RSFP) incentive mechanism, RADP-VPC not only

reduces the incentive cost but also improves the fairness of

incentive distribution and social welfare. Jaimes et al. [65]

combined the RADP-VPC with location of users, coverage

and budget constraints, then proposed a greedy-based incen-

tive algorithm (GIA). Simulation results show that the GIA

increases the coverage with the similar budget compared

to RADP-VPC. Zhao et al. [66] investigated the task

allocation problem, whose objective is selecting subset of

users to maximize the total value of service under a constraint

budget. To motivate the mobile users’ participation, they

proposed two types of online incentive mechanism, called

OMZ and OMG. In [67], a combinatorial reverse auction

mechanism is proposed, in which users bid for the tasks

according to their location and service coverage. Platform’s

incentive mechanism consists two components. The first one

is the winning bids determining and the second one deter-

mines the critical payment to each winning bid. The study in

[68] proposed a Lyapunov-based VCG auction policy, which

consists of allocation rule, payment rule and updating rule.

Allocation rule selects the winner who maximize the social

welfare in each time slot. Payment rule pays one user biding

according to the total cost of other users. Updating rule adjust

the updating strategies according to the users’ truthfulness.

The results show that the proposed strategies not only reduce

the users’ dropping probability, but also increase the social

welfare. Recently, a data-enhanced reverse auction incentive

mechanism, TaskMe is proposed in [69]. In TaskMe, users

upload their collecting data and bid to the platform. Platform

dynamic selects the winner based the data quality and bid.

Stackelberg game is a game model with two roles called

leader and followers. The leader firstly takes action and the

followers can only adjust their actions according to the leader

to maximize their utility. This game is used to design incen-

tive mechanism due to the similar behavior. Duan et al. [70]

used the Stackelberg game to model the interaction between

platform and users. Specifically, the platform announces the
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total reward and the predefined number of users. Each user

decides whether to participate in the task according to the

total reward and number of users. When it reaches the state of

Nash equilibrium (NE), the platform selects subset of users

with lowest cost to maximize its profit. Similarly, in [71],

a platform-centric incentive mechanism is proposed, in which

platform plays the role of leader and announces its reward,

each mobile user plays the role of follower and strategies its

sensing time to maximize the utility.

2) NONMONETARY INCENTIVES

The popular nonmonetary incentive includes gaming incen-

tive, social relation incentive and virtual credit incentive.

Gaming incentive incorporates game element into crowdsens-

ing and stimulates users to participate in sensing tasks. For

example, the study in [72] introduced a gaming incentive to

motivate users to participate in location-based services. The

incentive mechanism determines the game points and coupon

points according to the quality of service, which computed

by online machine learning. Then users determine whether

participate in collecting data.

Social relation incentive refers to make use of relation-

ship in social network and motivate users participate in

sensing tasks. Considering the intrinsic selfish of users,

Bigwood and Henderson [73] used preexisting social net-

work information to detect and discourage the selfish users.

In virtual credit incentive mechanism, users get virtual

credit, which can be directly or indirectly transferred into

real currency, as reward after participate in sensing tasks.

Chou et al. [74] and Lan et al. [75] introduced a incentive

mechanism based virtual credit tomotivate users to contribute

their bandwidth and data. The amount of credit that users earn

depends on their unity of data. For example, a participate who

upload a high resolution video clip earn more credits than

who upload low resolution video clip.

B. TRAVEL DISTANCE

For some special crowd sensing applications, platform

requires users to move from their current location to the

location of task. For example, taking photos for a building,

collecting traffic dynamics information for a specific street,

etc. In this case, the moving distance become primary con-

cern for users. Generally speaking, the reward is propor-

tional to moving distance. So researchers try to minimize the

moving distance of users and reduce the sensing cost. Guo

et al. [76] investigated the participant selection problem for

time-sensitive tasks. Due to the emergency of tasks, platform

should select users who are nearest to the location of tasks.

To address this problem, authors proposed greedy-enhanced

genetic algorithms, which firstly designed a greedy algorithm

to select task-worker tuple with least distance and assign

the task to corresponding worker. Then genetic algorithm is

elaborately designed to further improve the results of greedy

algorithm. In [77], to minimize the total distance of users,

authors divided the spatial task assignment problem in two

stages. In the first stage, platform solves the task assignment

problem using cloaked locations. In the second stage, users

individually fine-tuned their assignments using their own

exact locations. The proposed greedy algorithms at each stage

show the efficient and robustness. Liu et al. [78] considered

the FPMT (few users, more tasks) problem, and used Mini-

mum Cost Maximum Flow (MCMF) theory to maximize the

completed tasks and minimize the total distance of users. Liu

et al. [79] studied task allocation in food delivery network,

which select minimum number of taxis and travel distance to

reduce the cost. Then, they designed two-stage algorithm to

solve the problem.

C. TRUST

As a open data-collecting paradigm, there may be some

unreliable users who are intend to provide a wrong sensing

data [80]. Assessing and guaranteeing the data quality is a

nontrivial work in MCS [81]. Furthermore, trust mechanism

is an important measure of data quality and has been consid-

ered by researchers. For example, [82] proposed a reputation-

based scheme, called Trustworthy Sensing for Crowd

Management (TSCM) to assign task to mobile devices.

Amintoosi and Kanhere [83] proposed a application-

agnostic reputation framework for social participatory sens-

ing systems, which assess the both quality of contribution

and the trustworthiness level of users, then assigned

a reputation score to user using PageRank algorithm.

Pouryazdan et al. [84] adopted vote-based trustworthiness

with trusted entities to assess trustworthiness of a smart-

phone user. The trusted entities called trustworthy anchor,

who have 100% reputation and with the capable of voting for

trustworthiness of other users. Zhao et al. [85] defined a user

reputation model, which considered the history reputation

and users’ contribution for current task. Then, a reputation-

based user selection method is proposed to guarantee the data

quality. Because of the limited budget, the platform can only

select the users with higher reputation.

D. LOCATION PRIVACY

Different fromWSNs, in which sensor nodes are deployed in

target areas and it is nothing to expose the location of nodes.

In MCS, however, the platform should know the location of

mobile users so that the tasks can assigned to proper users,

who are near to the location of tasks. This indicates that users

risk their location privacy when they participate in sensing

tasks, which reduces the users’ participation [86]. Though the

selected users can be compensatedwith incentive, the remain-

ing users may get discouraged because their location privacy

sacrificed in vain. Therefore, location privacy should be care-

fully considered during the process of task allocation.

The popular location privacy-preserving mechanisms

include cloaking [87] and dummy points [88]. However, their

common drawback is that expected privacy will be impaired

if the adversary has prior knowledge about users and location

[89]. To address this problem, differential privacy has been

introduced to protect location. It works bymapping one actual

location to another according to a predefined probability
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matrix P, in which the probability of any two actual location

map to the same obfuscate location is similar. Typically,

more similar the probability is, more harder for adversary

to distinguish the actual location. Wang et al. [90] proposed

a location-preserving task allocation framework which uses

differential geo-obfuscation to protect users’ location during

the process of task allocation.

E. COMPOSITE TASK ALLOCATION

Typically, WSNs deploy specific sensor nodes to collect one

type of sensing data. However, there are some complex tasks

in real-world scenarios, which consist of several subtasks

and each subtask requires different types of sensor to sense

data. The final sensing data aggregated from these subtasks.

Such complex task can be called composite tasks [13]. For

example, air quality monitoring task is an composite task and

require multiple types of sensor (e.g., CO2 sensor, CO sen-

sor). To complete composite tasks, plenty of different types

of sensor nodes should be deployed in WSNs and one type of

senor nodes can only collect one type. Fortunately, a mobile

device of MCS can afford multiple and various types of

sensors embedded in it.

However, the users may not preassemble the required

sensor, or the remaining battery power cannot support for

the whole composite task, causing the task allocation for

composite tasks more complicated. There are two challenges

in task allocation for composite tasks. Firstly, the solution

space grows exponentially because the granularity elaborates

to the subtask rather than the whole composite task. Sec-

ondly, the optimal allocation of composite tasks should also

take some complex factors into consideration, such as the

trade off between the overall quality and total cost, users’

sensing capacity for different subtasks, the heterogeneous

spatiotemporal granularity of each subtask, etc. There are

already some works in composite task allocation. For exam-

ple, Cheng et al. [91] investigated the assignment for multi

skills oriented spatial tasks, the objective is to map the

required skills of tasks to skills of users and maximize the

users’ benefit under the budget constraint.

Furthermore, tasks are usually belong to different domains.

Traditional WSNs is elaborated to collect high quality

data for special domain. As for MCS, users have dif-

ferent qualities on different domains. To get high qual-

ity of sensing data, it is important to select users who

with the skills that tasks involved. Zheng et al. [92] lever-

aged domain knowledge to model the users’ quality and

designed a online task assignment algorithm to assign k

tasks with the highest benefit to the users. In [93], a frame-

work for task assignment in knowledge-intensive crowd-

souring is proposed, which considered the users’ exper-

tise, wage requirements, and availability. Reference [94]

modeled the tasks and users using a skill taxonomy tree,

which allowing to reason about skill substitutions and assign

the task to suitable users in participatory crowdsouring.

Song et al. [95] proposed a specialty-aware task alloca-

tion problem, in which tasks are complex and require users

complete tasks collaboratively. They designed two heuristics

algorithms to maximize the completed tasks according to

tasks’ budget and users’ skills.

V. FUTURE RESEARCH OPPORTUNITIES

Although task allocation in the MCS has made great success.

There are still some limitation in current research. In this

section, we highlight some picture novel and exciting oppor-

tunities for the future research.

A. HYBRID DESIGN OF WSNS AND MCS

Existing work about task allocation is solely based on either

WSNs or MCS framework, and the interlinking of these two

forms of paradigm has little been explored. WSNs can get

high quality of sensing data but it costs much to deploy and

maintain the network. MCS is a novel sensing paradigm but

lose efficiency under the circumstance that there are few

users available. Based nature of these two sensing paradigms,

there may be a hybrid sensing paradigm, which integrates

the WSNs and MCS and can better coordinates the data

quality and the sensing cost. For example, a hybrid frame-

work that collaborates the cyber-physical-social space are

proposed in [16]. There are several advantages of hybrid

sensing paradigm. From the spatial-temporal perspective,

on one hand, there is more chance to recruit users in the

flourishing region and easily to get higher quality sensing

data. In some remote areas, the poor user resource hardly

support theMCS to get adequate sensing data. TheWSNs can

compensate for this situation. On the other hand, users can

accomplish most of sensing tasks during the daytime. Sensor

nodes in the WSNs can keep a sleep mode to reduce energy

consume. During the nighttime, there are few users available,

hybrid sensing paradigm can schedule the sensor nodes in

WSNs to collect related data. Thus, the hyper sensing system

can get almost full spatial-temporal coverage. From the data

quality perspective, the aggregated data from WSNs and

MCS can provide more intelligent service. However, in the

hybrid sensing framework, how to jointly schedule this two

paradigm to guarantee the data quality is a higher level task

allocation problem and remains a challenge issue.

B. LEARNING ASSISTED TASK ALLOCATION

Generally, users in MCS are heterogenous. Related assump-

tions for heterogeneous users are based on devices. For

example, different users carry different type of devices and

can complete different types of sensing task. Our previous

work [61] considered the type of sensors in mobile devices.

However, the human factor should be considered in practice.

Users are differ in participate willing, participation habits,

abilities and reputation. For participate willing, users may

reject the assigned sensing tasks due to lack of time. For

participation habits, users may prefer to complete sensing

tasks without changing their intended routine or update sens-

ing data without take mobile phone out of their packet.

Also, the level of skills to satisfy the required ability are

vary among users. These factors should be considered in

process of task allocation. To get information of these factors,
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a straightforward way is provided by users when they apply

for the sensing tasks. However, some malicious users may

lie about their related information to get more reward from

platform. Alternatively, we can learn these information from

their historical data. For example, logistic-regression is used

in [96] to learn users’ attributes such as proximity to target

area, payment and task context from historical data. Micholia

et al. [97] identified social media users expertise according

to their past media activities and encouraged them to perform

some task under limited budget. Unfortunately, due to the

reason of privacy, the historical data of users are not always

available [98]. A promising way to tackle this situation is

learn users’ behavioral pattern from some similar tasks and

get some valuable information before task assignment.

C. SPATIAL AND TEMPORAL CORRECTION

Existing MCS task allocation for multiple tasks assumed

that tasks do not run independently but compete with each

other for the shared participant resource. However, for some

specific situations, tasks can share same sensing data or the

sensing data of one task can be inferred from other task due

to the spatial and temporal correction. For example, there are

two sensing tasks that aim to collecting information of traffic

flow in the closer areas at same sensing cycles, respectively.

In this situation, platform just recruits users to collect one

task, and inferred the related information of the others to

reduce the number of users. To achieve this, two challenges

should be considered. Firstly, the relationship between two

task should be analyzed, including sensing context, spatial

and temporal correction. Secondly, how to design an efficient

task allocation scheme that not only collecting data for the

target task, but also inferring the data of other related task

with high accuracy.

D. CLUSTER-BASED TASK ALLOCATION

The existing task allocation operated with the ‘‘platform-

users’’ model, in which platform allocates the task to the

users and users upload the sensing data to the platform

directly. There are some shortcomings for this model. Firstly,

the data collecting lacks a supervision mechanism, users may

upload a low quality data deliberately. Secondly, uploading

sensing data from every user increases the communication

energy consumption. Inspired the clustering mechanism in

WSNs, a rational way is establishing a three level sensing

model, i.e., ‘‘platform-cluster-users’’. Platform firstly groups

users into cluster according to their location or other related

factors, and selects a user as cluster head. Then, platform

assigns the sensing tasks to cluster head. Cluster head fur-

ther assigns the sensing tasks to the users in his cluster.

Users transmit the sensing data to cluster head and cluster

head uploads the aggregated data to platform. However, there

may be some new shortcomings for this mechanism. For

example, users and cluster head may collude with each other

to upload low quality data together. Therefore, a effective

mechanism to make cluster head and users supervise each

other is urgent needed.

VI. CONCLUSION

Task allocation is an important issue both inWSNs andMCS.

In this paper, we present a survey of task allocation problem

in these two sensing paradigms from the contrastive perspec-

tive. Firstly, we analyze different characteristics of WSN and

MCS,whichmay cause some different issues and strategies in

task allocation. Then, we provide a review of common issues

in terms of data quality and sensing cost in these two sensing

paradigms. Further, we give a review of unique issues of task

allocation in MCS because of the involvement of human.

Finally, we outline some potential opportunities in the future

research.
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