
A Surv ey of T echniques for F ormal Veri�cation of Combinational

Circuits

Jawahar Jain1 Amit Nara yan2 M. Fujita1 A. Sangiovanni-Vincentelli 2

With the increase in the complexity of present day systems,
proving the correctness of a design has become a major concern.
Simulation based methodologies are generally inadequate to val-
idate the correctness of a design with a reasonable con�dence.
More and more designers are moving towards formal methods to
guarantee the correctness of their designs. In this paper we sur-
vey some state-of-the-art techniques used to perform automatic
veri�cation of combinational circuits.

We classify the current approaches for combinational veri�ca-
tion into two categories: functional and structural. The functional

methods consist of representing a circuit as a canonical decision
diagram. Two circuits are equivalent if and only if their decision
diagrams are equal. The structural methods consist of identifying

related nodes in the circuit and using them to simplify the problem
of veri�cation. We brie
y describe some of the methods in both

the categories and discuss their merits and drawbacks.

1 Introduction
Successful design of a complex digital system requires verifying

the correctness of the implementation with respect to its intended
functionality. Traditionally, the task of design validation is car-

ried out by means of simulation. In a simulation based approach,
the designer needs to create a complete set of test vectors which

represents all possible inputs to the system. The outputs for each
of these test vectors are analyzed to guarantee the correctness of

the design. This process is highly CPU-time intensive; in almost
all practical situations it is infeasible to exhaustively simulate a

design to guarantee its correctness.

Due to the limitations of a simulation based approach, various
formal veri�cation strategies are becoming increasingly popular.

By using these techniques, it is possible to guarantee the correct-
ness of a design under all possible input combinations.

The process of designing a complex system usually starts with

an abstract model of the system. This model is subjected to exten-
sive simulation after which it becomes the \golden speci�cation"of
the design. From this abstract model, a detailed implementation
is derived in a hierarchical manner. First the abstract model is

translated into a synthesizable behavioral RTL model represent-
ing the block structure behavior of the design. This behavioral
RTL model is then translated into a structural model which is a

logic level description of the system. From the structural RTL
model a transistor netlist and subsequently the physical layout of
the design is derived.

In a successful design methodology it is essential to catch bugs
early in the design cycle. For this, the functionality of the design is

veri�ed at every level of hierarchy against the original (\golden")
speci�cation. This kind of formal veri�cation in which di�erent
implementations of the same design are compared to check their
equivalence is known as implementation veri�cation. Implemen-

1Fujitsu Laboratories of America, Santa Clara, CA 95054
2Department of Electrical Engineering and Computer Sciences,

University of California, Berkeley, CA 94720

tation veri�cation typically proceeds in two phases. In the �rst
phase, a Boolean network representing the original design is ex-
tracted from the RTL description or the transistor level netlist
[40, 14, 15, 38, 63]. In the second phase, the correctness of this
Boolean network is veri�ed using some formal methods.

In this paper we will focus only on the second phase. We will
describe some recent advances made in the area of verifying the
equivalence of two Boolean networks. More speci�cally, we will fo-
cus only on the veri�cation of combinational circuits i.e., circuits

in which the outputs depend only on the current inputs (as op-
posed to sequential circuits in which the outputs depend not only

on the present inputs but also on the past sequence of inputs).
Some sequential veri�cation problems can also be reduced to a
combinational veri�cation problem (e.g. when the corresponding

latches in the two designs can be identi�ed). Although techniques
exist for verifying general sequential circuits, currently it is not

practical to verify large industrial designs using them.

The combinational veri�cation problem can be stated as fol-

lows: Given two Boolean netlists, check if the corresponding out-
puts of the two circuits are equal for all possible inputs. This

problem is NP-hard and hence a general solution which can han-
dle arbitrary Boolean functions is not likely to exist. However,

since the functions that are implemented in practice are not ran-
dom Boolean functions, various techniques have been developed

which can successfully verify large designs.

Research in combinational equivalence checking has seen sig-

ni�cant and rapid improvements since introduction of OBDDs
[13]. Thus, details of numerous equivalence checking techniques

[19, 27, 29, 45, 55, 59, 64, 65, 66, 68], developed before an exten-
sive investigation of OBDDs based procedures began in late 1980s,
have not been covered in this survey. The work in equivalence

checking, especially as done in the last decade, can be classi�ed
into two main categories:

� The �rst approach consists of transforming the output func-
tions of the two networks into a unique (i.e. canonical) rep-
resentation. Two circuits are equivalent if and only if the

canonical representations of the corresponding outputs are
the same. The most popular canonical representations are

based on Binary Decision Diagrams (BDDs). We will dis-
cuss methods based on BDDs in Section 2. In the worst case
these methods can require exponential space (in the number
of inputs). We will discuss some techniques for dealing with
this \memory explosion" problem in BDD representations.

� The second approach consists of identifying equivalent points
and implications between the two circuits. Using this infor-

mation the process of equivalence checking can be simpli�ed.
Since a typical design proceeds by a series of local changes, in

most cases there are a large number of implications between
the two circuits to be veri�ed. These implication based tech-
niques have been very successful in verifying large circuits
and form the basis of most combinational veri�cation sys-
tems. We will discuss some of these techniques in section 3.

1

Proceedings of the 1997 International Conference on Computer Design (ICCD '97)
0-8186-8206-X/97 $10.00 © 1997 IEEE

2 Methods Based on Decision Diagrams
In this approach, the output functions of the two networks are

represented as canonical BDDs. The two circuits are equivalent
if and only if the BDDs of their corresponding outputs are equal
(i.e. isomorphic).

A BDD over a set of Xn = fx1; : : : xng of Boolean variables is
a directed acyclic graph with one source and at most two sinks
labeled by 0 and 1. Each non-sink (internal) node is labeled
by a variable in Xn and has two outgoing edges - correspond-
ing to where the variable evaluates to a 0 or to a 1. For a given
assignment to the variables, the function value is evaluated by
tracing a path from the root to the terminal. For a given input
m = (m1; : : : ;mn), the evaluation starts at the root and at an in-
ternal node with label xi the outgoing edge with labelmi is chosen
(see Figure 1).

0 0

0

00

0 0

0 0

00 0

(a) (b)

x1

x2 x2 x2

x2x3 x3 x3

x3

1

1

1

1

1

1

1

1

1

1

1

x1

1

Figure 1: (a) ROBDD and (b) Free BDD

Though BDDs have been researched for about four decades [46,

1], they found widespread use only after Bryant [13] showed that
such graphs, under two restrictions, are canonical and can be easily

manipulated. The �rst restriction is that a total ordering of the
variables is enforced in the graph. That is, if we consider variables
to be ordered as x1 < x2 < : : : < xn, then every path from the

root to a sink encounters the variables in that order. The second
restriction is that the graph is reduced. A graph can be reduced

by the repeated application of the following two rules until they
are no longer applicable. These rules are:

� Merging Rule: Two isomorphic subgraphs should be merged.

� Deletion Rule: A vertex whose two branches point to the

same vertex should be deleted.

The resulting BDD is called a Reduced Ordered BDD (an

ROBDD). The important symbolic manipulation procedures in-
troduced by Bryant were apply and compose; these techniques op-

erate on two identically orderedROBDDs. Apply allows two ROB-
DDs to be combined under some Boolean operation, and compose
allows the substitution of an ROBDD variable with a function.

Since ROBDDs are canonical, they can be used directly for
checking the equivalence of two Boolean circuits. Two circuits are
equivalent if and only if the ROBDDs representing the correspond-
ing outputs of the two circuits are equal. ROBDDs are typically
constructed using some variant of Bryant's apply procedure [13];

the ROBDD for a gate g is synthesized by the symbolic manipula-
tion of the ROBDDs of its inputs, based on the functionality of g.
The gates of the circuit are processed in a depth-�rst manner until
the ROBDDs of the desired output gate(s) are constructed. For

details on ROBDDs, and the implementation of a typical ROBDD
package, please refer to [10, 13, 16].

Although ROBDDs are canonical and hence can directly be
used for combinational veri�cation, their construction is often a
time and memory intensive process. The size of an ROBDD rep-
resenting a Boolean function can be exponential in the number
of primary inputs in the worst case. This problem is commonly
referred to as the \memory explosion" problem. In the follow-
ing sections we will discuss various methods which deal with the
memory explosion problem during ROBDD construction.

2.1 Variable Ordering
The size of an ROBDD is strongly dependent on the order-

ing of its variables. Much of the prior research in ROBDDs has
focused on �nding good variable orders to reduce the size of an
ROBDD representing a Boolean function. Given a combinational
netlist, [47, 24] discuss some heuristics for ordering the primary
input variables which lead to a compact ROBDD representation

of the outputs. These techniques for the �rst time successfully
demonstrated that ROBDDs could be used for verifying large cir-

cuits. Another signi�cant advance in variable ordering was made
with the introduction of dynamic variable reordering [60]. In this

procedure a periodic reordering of variables is attempted to re-
duce the memory requirement. Given a graph G, a variable v is
successively moved to each position in the ordering list and the

resulting graph size is examined. The variable is �nally assigned
the position which results in the smallest graph size. This process

is known as sifting and is repeated for each variable in the graph.
Sifting n variables, in a graph of size G, requires O(n � jGj) ef-

fort. A less expensive procedure may also be used where variables
are reordered in a window of say, 3 consecutive variables. This
window is then moved forward to include the next variable in the

graph, and the process is repeated till all n variables have been
considered. Improvements to sifting based reordering techniques

were suggested by [57] where the number of sift operations were
reduced by grouping, and thereby sifting together, the symmet-

ric variable pairs. Further improvements were suggested in [56]
where the concept of extended symmetry was introduced to group

a larger block of variables.

Though computationally somewhat expensive, dynamic re-

ordering techniques are widely used as they allow the variable
ordering to adapt to the changing functions that are being rep-

resented. Although good variable ordering methods have consid-
erably increased the class of functions which can be e�ciently ver-
i�ed using ROBDDs, there are still many functions for which any
ROBDD is exponential in the number of inputs (e.g. integer mul-
tiplier). Further, the problem of �nding optimum variable orders

is an intractable problem and there are many instances where al-
though a good orderings might exist, the heuristics are unable to

�nd them.

2.2 Breadth First Manipulation
In [54, 3], it was shown that by manipulating ROBDDs in a

breadth-�rst fashion much larger ROBDDs can be processed than
is possible by the conventional apply procedure [13] which oper-
ates as a depth �rst algorithm. This gain in memory is achieved by

keeping only a few levels of ROBDDs in the main memory at any
given time and storing the rest in the secondary memory which is
typically much larger. Breadth �rst algorithms allow an orderly
memory access. This results in fewer page faults and consequently

a signi�cant improvement in performance, especially for large cir-
cuits. Recently a completepackage was implemented [61] using the

Proceedings of the 1997 International Conference on Computer Design (ICCD '97)
0-8186-8206-X/97 $10.00 © 1997 IEEE

breadth-�rstmanipulation idea which gives an order of magnitude
performance gain over the conventional ROBDD packages.

The main drawback of this approach is that as only a few levels
are kept in themainmemoryat a time, it is di�cult to dynamically
reorder the ROBDD during an operation.

2.3 Node Decompositions
ROBDDs employ a decomposition known as the \Shannon De-

composition" in which a function f is decomposed in terms of a
variable x as follows:

f = xfx + xfx (1)

Here fx represents the positive cofactor of f with respect to x and
is obtaining by replacing variable x by the value 1. Similarly, fx
represents the negative cofactor with respect to x and is obtained
by replacing x by 0.

Canonical but fundamentally di�erent data structures such as
ordered Functional Decision Diagrams (OFDDs) [39] and Ordered
Kronecker Functional Decisions Diagrams (OKFDDs) [22] have
also been proposed to extend the set of functions that can be

e�ciently symbolically manipulated. In OFDDs the function is
decomposedusing the \Reed-Muller" (\Davio") expansion. In this

decomposition, the function f is represented as either:

f = fx � (x(fx � fx)); or f = fx � (x(fx � fx)) (2)

OFDDs are canonical like ROBDDs and hence can be used in

veri�cation. There are some functions for which ROBDDs are ex-
ponential but OFDDs are polynomial. Thus OFDDs extend the
class of functions which can be veri�ed in polynomial memory re-

sources, but conversely there are functions for which OFDDs are
exponentially larger than ROBDDs. OKFDDs try to bene�t from

both decompositions; each variable has an associated decomposi-
tion which can be either Reed-Muller or Shannon. Variables are

ordered and every occurrenceof a given variablemust use the same
decomposition. Although in theory OKFDDs can be exponentially
more compact than both OFDDs and ROBDDs, in practice they

seem to have provided only a modest improvement over ROBDDs
(approx. 35%).

2.4 Non-Canonical BDDs
Non-canonical BDD representations such as XBDDs [37], gB-

DDs [4], IBDDs [32] have been explored to obviate OBDD memory
explosion, often leading to more e�cient veri�cation. For example,

in IBDDs any variable can appear multiple times on any path from
the root to the terminal; an order is imposed on the multiplicity

of the occurrence. In other words, an IBDD can be considered
as \layered" BDD such that within each layer the appearances
of variables obey a linear order as in ROBDDs. It was shown in
[32] that some functions intractable for ROBDDs such as hidden-
weighted-bit function, Booth-encoded as well as integer multiplier,
etc. can be veri�ed in polynomial time using IBDDs. However, due
to lack of detailed experimental results and/or publicly available
function manipulation packages, we feel that further research is
warranted to gauge the true potential of these novel non-canonical

data structures.
Another strategy to reduce the BDD sizes in function repre-

sentation is to relax the total ordering requirement of ROBDDs.
One such relaxation is to allow variables to occur in any order but
at most once along any path from the root to the terminal. Such

BDDs are called Free BDDs (Figure 1(b)). In general free BDDs
are not canonical and their manipulation is an intractable problem
[23]. However, in [26] it was shown that restricted forms of free
BDDs known as typed-Free BDDs are canonical and can be easily

manipulated. In typed-Free BDDs, for any given variable assign-
ment, the resulting paths in all graphs contain variables in the
same order. The variable ordering for di�erent assignments might
be di�erent. Unfortunately, the practical problems in choosing a
good type can greatly reduce the
exibility gained from relaxing
the variable ordering constraints. Some heuristics for generating
typed Free BDDs were presented in [8, 7]. Typed-free BDDs ex-
tend the class of functions which can be represented in polynomial
space but there are still some practical functions for which Free
BDDs are exponential (e.g. integer multiplier).

2.5 Partitioned ROBDDs
All the BDD methods discussed so far represent a function over

the entire Boolean space as a single graph (rooted at a unique
source). It was shown in [33, 31, 53] that exponentially more com-
pact representations can be obtained by partitioning the Boolean
space and representing the functionality over each partition as a
separate graph. This compactness in representation is achieved

without sacri�cing the desirable properties of the underlying graph
which is used to represent each partition. In [33, 31] this notion of

partitioning was used to discuss a function representation scheme
called partitioned-ROBDD,which was then extensively developed,

theoretically as well as experimentally, in [53]. In partitioned-
ROBDD every partition of the Boolean space is represented as
an ROBDD. Di�erent partitions can have di�erent ordering. It

was shown that partitioned-ROBDDs provide a compact, canon-
ical and e�ciently manipulable representation for Boolean func-

tions. The notion of partitioning is general and can be applied to
any BDD representation.

It was shown in [33, 31, 53] that the class of functions repre-

sentable in polynomial space by monolithic ROBDDs is strictly
contained in the class of functions that have a polynomially sized

partitioned-ROBDD representation. Similarly, it was shown in
[53] that the class of functions with polynomially sized Free BDDs

is strictly contained in the class of functions with polynomially
sized partitioned-Free BDDs. Note, partitioned-ROBDDs can be
exponentially smaller than even free BDDs. Further, for combi-

national veri�cation only one partition needs to be present in the
memory at a given time. This further reduces the total memory

requirement of veri�cation. Using this representation, some in-
dustrial circuits could be veri�ed for the �rst time [53]. One can

try to construct only a limited number of partitions and abort the
computation after some preset time limit. Thus, even though only
part of the Boolean space could be analyzed, at least some partial
information about the function can be obtained. Also, when a
design is erroneous, there is a high likelihood that the erroneous
minterms are distributed in more than one partition and can be
detected by processing only a few partitions. Experience with er-
roneous circuits suggests that in almost all cases the errors can be
detected by constructing only one or two partitions [33].

Partitioned-ROBDDs allow a control on the space/time re-
sources and functional-coverage as well as on the success of veri-
�cation experiments. Using such data structures the success of a
veri�cation experiment may possibly be ensured by changing the
parameters of decomposition and the number of partitions that

need to be created. Since this data structure is still a subject of
intensive research, its full impact can be judged only with time.

2.6 Com bining Bottom-up and T op-down
approaches of ROBDD construction

In this section we discuss a mixed bottom-up/top-down ap-
proach for ROBDD construction which attempts to minimize the

Proceedings of the 1997 International Conference on Computer Design (ICCD '97)
0-8186-8206-X/97 $10.00 © 1997 IEEE

intermediate peak memory requirement during ROBDD construc-
tion - a critical issue in practical use of OBDDs. Though the fol-
lowing discussion is with respect to ROBDDs, it should be equally
applicable to other BDD methods as well.

Traditionally,ROBDDs for a given netlist are built in a bottom-
up manner. To construct the ROBDD for a given node, ROBDDs
of all the nodes that are present in the transitive fan-in of that
node are constructed in terms of the primary inputs before the
ROBDD of the target node is constructed. In this method, the
peak intermediate memory requirement can often far exceed the
�nal (canonical) representation size of the given function. This
places a limit on the complexity of circuits that can be veri�ed
using ROBDDs, and also usually dictates the time required for
ROBDD construction. In [52, 36], techniques to reduce the inter-
mediate peak memory requirement by a suitable combination of
bottom-up and top-down approaches were presented. Using these
techniques, ROBDDs for many circuit outputs can be constructed
for which the conventional method fails. The reduction in peak
memory is often accompanied by a signi�cant speed up in the

ROBDD construction process as well.

Let us look at an example where the memory requirement
for a bottom-up scheme is exponential while the decomposi-

tion/composition approach requires only polynomial resources.
Consider the function shown in Figure 2. Here f and g are two

internal nodes. Assume that the ROBDD of g is exponential in
terms of the primary inputs (PIs) for any variable ordering. Fur-
ther assume that all the other internal nodes of the function require

only polynomialmemory resources. If we try to build the ROBDD
of the primary output y in a bottom-up fashion, we will need to

build the ROBDD of g in terms of the PIs. But since the ROBDD
of g is exponential for any given variable ordering, the peak mem-

ory required in the bottom up scheme will be exponential. The
functionality of y can be expressed in terms of f and g by the

equation y = f _ (f ^ g). This simpli�es to y = f . Therefore,
to construct the ROBDD of y we do not need to construct the
ROBDD of g. We can introduce a new variable representing g and

build the ROBDD of y in terms of this variable. Since g is eventu-
ally not present in y, we need not ever construct the ROBDD of g.

This can let us get an exponential reduction in the peak memory
requirement and extend the class of circuits that can be e�ciently

processed using ROBDDs.

The previous example shows that in a typical ROBDD con-
struction procedure there is frequent functional simpli�cation due

to Boolean Absorption: x_ (x^ y) = x and Boolean Cancelation:
x ^ x ^ y = 0. This means that the �nal output function can of-
ten be simpler (i.e. has a smaller ROBDD) than the intermediate
functions that are used to implement it. The bottom-up methods
may fail when any node in the transitive fan-in of the target node

requires an exponentially large graph.

The procedures of [36] and [52] try to avoid building ROBDDs

of the intermediate functions having a large ROBDD representa-
tion by introducing suitable decompositionpoints. The ROBDD of
the output is then built in terms of these decomposition points and
PIs. The functionality of the decomposition points is expressed as
ROBDDs in terms of previously introduced decomposition points

and PIs. Finally, the decomposition points are composed back to
obtain a canonical ROBDD of the output function.

Two issues need to be addressed here:

� Finding a good decomposition set

� Determining a good order of composition of the decompo-
sition variables to get the monolithic representation so that
the intermediate memory explosion during the composition
phase is low.

PRIMARY INPUTS

PRIMARY OUTPUT

AND

f g

CUTSET

OR

Figure 2: Example where decomposition can avoid expo-
nential blowup

Heuristics for introducing good structural and functional de-
composition points were described in [36] and for �nding good

order of composition were discussed in [52]. A reduction in mem-
ory is achieved since the intermediate points of large ROBDD sizes
are avoided and also because dynamic variable reordering has to

focus only on the target function and hence is more e�ective. Such
an approach is fully compatible with other approaches of reducing

memory (like variable ordering) and can be seamlessly integrated
within any ROBDD package. Therefore, there seems to be no

apparent trade-o� in using it.

2.7 Probabilistic Veri�cation
Another importantway of verifying two circuits is to probabilis-

tically check their equivalence [9, 34]. In probabilistic veri�cation,
every minterm of a function f is converted into an integer value

under some random integer assignment � to the input variables.
All the integer values are then arithmetically added to get the hash

code H�(f) for f . One can assert, with a low probability of error,
that f � g i� H�(f) = H�(g). The arithmetic evaluations are car-

ried in an integer �eld, that is, all arithmetic operations are done
modulo some prime p. If f; g are functions of n-variables, and �

denotes the upper bound on the error probability, then if p � n,
a reasonable assumption, � � n=p. Otherwise � � 1� e�n=p. The
probability of erroneously deciding that functions are equivalent

decreases exponentially with the number of runs: after k runs, the
error probability is �k .

[9] suggested probabilistic veri�cation of Boolean functions

through hashing their free BDD representation to an integer value
under some random integer assignment � to the input variables.

Alternately, it was shown in [34] that we can also transform arbi-
trary representation of Boolean functions by �rst interpreting the
given function as an integer-valued arithmetic expression. This

arithmetic expressioncan then be evaluatedon integer assignments
to its input variables. By using the properties of such integer-

valued arithmetic transformations, many analysis techniques were
developed to probabilistically verify Boolean as well as other dis-

crete functions with a negligible probability of error. For example,
by decomposing a circuit into regions which have mutually disjoint

Proceedings of the 1997 International Conference on Computer Design (ICCD '97)
0-8186-8206-X/97 $10.00 © 1997 IEEE

variable support set, and using such arithmetic transforms it was
shown that an n-bit ALU requiring �(n2) time using ROBDDs
requires only linear resources with the probabilistic method [34].

In [34] some other methods for exploiting Boolean function
properties for e�cient hashing were also discussed. For exam-
ple, it was shown that if the space of each function is partitioned
into mutually disjoint subspaces then the hash code of the function
corresponding to each partition can be calculated independently;
the hash code of the function is the sum of the hash codes of in-
dividual partitions. This implies that to check if H�(f) = H�(g),
we can partition and hash both f and g independently. We do not
need to keep the partitions of both f , and g, in the memory at the
same time. Further, it is not necessary that both f and g have
been partitioned identically. The e�ectiveness of this technique
was shown on special classes of functions like Hidden-Weighted-
Bit (HWB) function in [34]. The techniques presented in [53] are
directly applicable to probabilistic veri�cation as well and provide
automatic ways to generate such partitions.

Another technique called collapse-with-compose [34] allows ef-
�cient hashing of functions when orthogonal partitions cannot be
easily found. This algorithm generates the hash code of the func-

tion directly from a decomposed representation without having to
build the monolithic ROBDD of the output. For many di�cult

circuits in ISCAS-85 benchmark circuits, it was shown in [34] that
this method can signi�cantly outperform the monolithic ROBDD
methods.

Since one is deriving the integer representation of a function
rather than its Boolean representation, one can often obtain the

hash code by exploiting the algebraic properties of a higher level
representation, circumventing its conversion to a Boolean represen-

tation. This was illustrated in [34] where hash code for an n-input
HWB function was computed from its abstract speci�cation in
�(n3) time using only �(n) space. Similarly, the hash code for in-

teger multiplier could be obtained 5 times more e�ciently from the
arithmetic speci�cation of the multiplication function than from

its circuit description using only a minimal of space.

2.8 Veri�cation of Arithmetic Circuits
So far we have discussed methods to compare two logic cir-

cuits at the bit-level. For many arithmetic circuits this may not

be a desirable thing. First, the BDD data structure that is used
for bit level veri�cation may grow exponentially with the size of

the circuit (for example, integer multiplication). Secondly, even if
we can guarantee that the two netlists are equivalent that doesn't

necessarily imply that the circuit is implementing the correct spec-
i�cation. To overcome these limitations of bit-level veri�cation, a
di�erent approach for verifying arithmetic circuits was proposed

in [44, 17]. Here a logic circuit represented as a vector of Boolean

functions
!

f is compared against the speci�cation which is repre-
sented as a word level function F . The basic idea of this method-
ology is illustrated in Figure 3 [17]. Here the primary inputs are

grouped into two sets,
!

x1 and
!

x2. For each set
!

xi, we are given

an encoding function ENCi describing a word-level interpretation
of the signals, e.g., unsigned binary, two's complement, BCD etc.

The logic network is described as a set of Boolean functions given

by
!

f (
!

x1;
!

x2) and an encoding,ENCo for the outputs. The speci-

�cation is given as a word-level function F (X1;X2). The problem
consists of verifying the following equation:

ENCo(
!

f (
!

x1;
!

x2)) = F (ENC1(
!

x1); ENC2(
!

x2)) (3)

For the word-level veri�cation problem we need a data struc-
ture which can e�ciently represent both bit-level and word-level

ENC

ENC

ENC

Bit Level

Word Level

f

F

z
->

->

-> ->

x2

x1

X1

X2

Figure 3: Word-Level Veri�cation

functions. Many data structures have been proposed for this pur-
pose, e.g., MTBDDs [21], ADDs [5], EVBDD [44], *BMD [17],

Hybrid Decision Diagrams (HDDs) [20]. Out of these, the *BMD
and the HDD data structures are of particular interest as they can

represent integer multiplication e�ciently. However, the veri�ca-
tion strategy presented in [17] can not take advantage of this fact.

This is because in the veri�cation methodology, a bit level rep-
resentation of the multiplier has to be created �rst which is then
translated into the word-level representation. To circumvent this

problem, [17] proposes a hierarchical veri�cation strategy. This
strategy requires a well-de�ned structure for the multiplier which

has to be known a priory. This manual intervention somewhat
reduces the appeal of both *BMDs and HDDs. In [28] a heuris-

tic to e�ciently construct *BMDs is presented which works well
for integer multipliers but unfortunately not for other circuits like
dividers and exponentiation.

[25] proposes a veri�cation method which uses the recurrence
equations of various arithmetic circuits such as multipliers, square
functions, cube functions etc. to verify them. For example, a
multiplier satis�es the recurrence equation, f(x+1;y) = f(x;y)+y
where f(x; y) = xy. Thus, to prove f(x; y) represents a multiplier,
we need to prove f(x + 1; y) = f(x; y) + y, where x; y are input
vectors for given circuit. Each side of the equation is represented
as a separate circuit, and both circuits are e�ciently compared

by techniques such as such as [48, 35] which exploit the fact that
the given circuits have very similar internal structures. As only a

multiplier obeys the above recurrence relation, we can verify that
the given circuit is indeed a multiplierwithout needing to represent
the speci�cation.

2.9 Boolean Expression Diagrams
Boolean expression diagrams [2] are a generalization of BDDs,

and can be thought of as BDDs extended with Boolean operator
vertices. The variable vertices are de�ned in BEDs identically to

how they are de�ned for BDDs, and the Boolean operator vertices
have the standard de�nition. Due to the use of the Boolean op-

Proceedings of the 1997 International Conference on Computer Design (ICCD '97)
0-8186-8206-X/97 $10.00 © 1997 IEEE

erator vertices, there is straightforward linear size transformation
from a combinational circuit, with a 2-input and-or-not decom-
position, to its corresponding BED. To manipulate such diagrams
they use observations similar to ones used in the MORE [30] ap-
proach. MORE is based on the observation that the BDD for f_g
can be constructed by introducing a new variable x, and creating
a function (x^f) _ (x_g) where x is then implicitly existentially
quanti�ed out. To quantify out x we move towards the termi-
nal vertices using the sifting procedures similar to ones used in
[60]. BEDs can be seen as extending this idea to allow arbitrary
operators and allowing these operators to remain in the graph.
Equivalence of f; g can be checked by sifting variables/operators
through a graph of f � g till it can be determined to reduce to
0. Such techniques can be e�cient if a good order in which vari-
ables should be sifted can be easily determined. However given
the fact BEDs are quite sensitive to the order in which the vari-
ables/operators should be sifted, more research needs to be done
to determine an appropriate sifting order.

x y z

0 1

Figure 4: A BED for (x _ y _ z) ^ (x _ y) () (x _ y)

3 Com binational Veri�cation Using In-

ternal Correspondences
Typically during synthesis at the gate level, the designer makes

local modi�cations to the logic network for adjusting timing, area,
delay and other characteristics. Since the changes that are made to
the networks are localized in nature, most of the original network
remains structurally unchanged. Various techniques have been
developed which exploit the internal correspondences in the two
circuits to speed up the process of veri�cation. We will �rst explain

the terminology used in the rest of this section and then describe
some of the methods that make use of the internal correspondences

in combinational veri�cation.

3.1 Terminology
We assume that the reader is familiar with the basic de�nitions

of Boolean networks, fanins, fanouts, transitive fanins (TFIs) and

transitive fanouts (TFOs) [12].

De�nition 1 Given a Boolean network � = (V;E), a cutset in
the TFI of a node v 2 V is de�ned as a set S = fv1; v2; : : : ; vkg of

nodes in the TFI of v such that any path from the primary inputs
to v must pass through a node vi 2 S. The size of the cutset is
k. (Where unambiguous, we will use the terms nodes and gates
interchangeably.)

De�nition 2 A gate G is said to be unjusti�ed under the
present set of value assignments (preassigned values) to some of
its fanin and fanout signals (preassigned signals) if among the
assignments possible on the remaining signals there are (a) multi-
ple assignments which are consistent with the preassigned signals,
and (b) at least one assignment which can produce value at some
signal that is inconsistent with its preassigned values.

Examples of unjusti�ed gates are shown in Figure 5. For in-
stance, in the AND gate, suppose the output has already been
assigned a Boolean value of 0. Now, if an assignment fa = 1; b =
1; c = 1g is made, there is a con
ict at this gate. Similarly, there
exist multiple assignments that can be made at its inputs such as
fa = 0; b = X;c = Xg for which the output value 0 can be pro-

duced. Thus, this is an example of an unjusti�ed gate. Similarly,
the reader can observe that for the output c = 0, the XOR gate in
Figure 5 represents an unjusti�ed gate.

a
b
c

d
a

b

c0
X

X
X

X

X

0

Figure 5: Example of Unjusti�ed Gates

De�nition 3 Given an initial assignment of Boolean values to a
subset of nodes in a Boolean network �, the process of determin-

ing the Boolean values at other nodes in � using the connectivity
information of the nodes and the truth tables of the Boolean func-
tions at the nodes is called direct implication. Boolean values

at nodes that cannot be derived by direct implication but can be
derived using the law of contrapositum [67] involve indirect im-

plication. The process of deriving indirect implications is called
learning.

Figure 6 shows examples of a direct implication and an indirect

implication. In the circuit on the left, if we set signal a = 1 then
by a simple simulation (looking only at circuit connections, and
the functionality of each circuit node) we can conclude that the
signal f is forced to be a 0. Hence, a = 1 ! f = 0 is called a

direct implication. Similarly for the circuit on the right, by law
of contrapositum we can deduce that f = 1 ! a = 0. However,

the reader can check that such a deduction could not have been
arrived at by a naive simulation process such as the one used to
derive the direct implication; thus, f = 1 ! a = 0 is an indirect
implication.

3.2 Learning Techniques: Techniques for
Detecting Indirect Implications

There are several veri�cationmethods that extract and use in-

ternal correspondences between two given networks using learning
based methods. Learning involves the extraction of indirect impli-
cations between nodes in a circuit. Recursive Learning (RL) [43],
and Functional Learning (FL) [50, 35] are two of the more popular
learning techniques. The concepts of FL and RL are illustrated
below by means of an example.

Proceedings of the 1997 International Conference on Computer Design (ICCD '97)
0-8186-8206-X/97 $10.00 © 1997 IEEE

a

c e

d

f

x

x

1

0

0

0

b

a

c e

d

f

x

x

x

x

b

10

a = 1 f = 0 Learning : f = 1 a = 0
direct indir

Figure 6: Indirect Implication

Hx1
x2

x3

x4
x5

G = 1

G = 1 H = 0

a

b

0 1

a

b

0 1

0

1
10

1

0

01

G H

Ic

b

a

cutset

Figure 7: Example of Functional Learning

Consider the circuit shown in Figure 7. Suppose that a Boolean

1 is injected at gate G. We wish to learn what G = 1 implies at
gateH. Let us choose a cutset � = fa; b; cg of internal gates in the

circuit. In FL, we build the ROBDDs for gates G and H based on
�. The ROBDDs for G and H are shown in the Figure 7. From
these two BDDs we can infer that G = 1) H = 0. Also, note

that this relation between G and H cannot be derived by using
direct implication. This is because after a Boolean 1 is injected

at G, it becomes unjusti�ed. Therefore, direct implication based
simulation due to G = 1 cannot result in Boolean values being

implied at any other gate in the circuit. However, G = 1) H = 0
can be derived by carrying out the Boolean operation: G^H and
examining the resultingROBDD for equivalencewithG. The time

complexity of functional learning is controlled by the size of BDDs
and is impractical when the BDDs grow quite large.

In RL we note thatG=1 can be satis�ed by eitherH=0; I=X

or H=X; I = 0. However, I = 0 implies that b=1 which in turn
implies that H=0. Therefore,G = 1 impliesH = 0. Here, given a
value assignment in the circuit, the deduction process recursively

analyzes the e�ect of each justi�cation vector, and intersects the
common \e�ect" of every justi�cation vector that can satisfy the
given circuit condition. The result of this intersection process is
the implication of the original value assignment in the circuit. The
time complexity of recursive learning is exponential in the number

of recursion levels, and in practice is limited to two or three levels
of recursions. Both recursive learning as well as functional learn-

ing are called a complete method for learning in digital circuits,
i.e. given su�cient time, they can determine all constant-value re-
lationships in the circuit, i.e., all cases where a constant Boolean
value v 2 f0;1g at a given gate implies another constant Boolean
value at another gate. However, since FL is based upon BDD
based manipulations, it can, relatively more conveniently, detect
more complex relationshipsbetween a set of functionswith another
set of functions: for example, a gate f = 0 may simply imply that
disjunction of a set of functions must be 1. Or, under f = 0, some
gates must assume identical value.

3.3 Techniques for Exploiting Internal
Equivalences

There are several veri�cationmethods that exploit internal cor-
respondences between two given networks. Berman et al. [6] pro-
posed a technique to use internal equivalences in order to establish
the functional equivalence of two networks. A min-cut based al-
gorithm for decomposing networks was proposed to break down
the entire veri�cation problem into smaller sub-problems. A set of
potentially equivalent gate pairs are identi�ed in the two networks;
later the equivalenceof the paired gates is decided using exhaustive
simulation. Now, using a cut of equivalent gates, it is attempted
to verify if the given circuits are also equivalent. However, this
method was plagued with the problem of false-negatives. A false
negative refers to a situation where although the two functions
which are being compared are equivalent, the veri�cation algo-
rithm incorrectly classi�es them as di�erent. Figure 8 shows an
example of false-negative. F and G are equivalent outputs (both
being equal to b) and node d1 is functionally equivalent to node
d2. However, if a veri�cation of F and G is attempted in terms of
the cutsets shown by dotted lines in Figure 8, F will turn out to be
inequivalent to G. Although they note that the false negatives can

be resolved if the given cut can be composed in terms of primary
input variables using OBDDs, they do not give relevant details of

corresponding procedures, or any empirical results outlining the
e�ciency of such a technique.

a

b

a

b

c

d1

d2

F

G

Figure 8: False Negative

Cerny and Mauras [18] introduced the notion of cross-
controllability and cross-observability among the internal nodes

on the appropriate cutsets in the two given networks to check for
equivalence. By cross-controllability at a cutset � they refer to
the combination of Boolean values that can be produced at �; by
cross-observability at � they refer to the combination of Boolean
values which if produced at � will imply that given primary output

pairs will assume identical Boolean values. The circuits are now
equivalent if it can be proved that cross-controllability � cross-

observability for any cutset �. However, no systematic algorithm
for choosing an \appropriate" cutset was presented and we do not
know of any wide scale utilization of this technique.

Brand [11] proposed an ATPG based technique to determine
equivalences between the internal nodes in two given circuits. This

method can �nd nodes which are equivalent under the observabil-
ity don't care (ODC) set. Given two circuits C1 and C2, and two
potentially equivalent nodes n1 2 C1 and n2 2 C2, a new XOR
gate Y , is introduced in C1 such that n1 and n2 are the two fanins

of Y .1 Fig. 9 shows an example of such a miter circuit. The dot-
ted lines show the original circuit connections. A new XOR gate is

1In veri�cation algorithms, potential equivalent nodes between

Proceedings of the 1997 International Conference on Computer Design (ICCD '97)
0-8186-8206-X/97 $10.00 © 1997 IEEE

introduced and the outputs of the XOR gate feeds the nodes that
were originally fed by node n1. Next, an ATPG tool is used to test
the fault s-a-0 at Y as shown in the �gure. If the fault is proved
to be redundant then n2 can replace n1 in circuit C1. However,
this method of �nding equivalent nodes can become ine�cient if
the faults that are tested to determine internal equivalences are
intractable or if not too many internal equivalences exist in the
two designs.

n1

Y

n3

IN
P

U
T

S

n2

node from circuit C2

Circuit C1

Output

Figure 9: Testing node equivalences by creating a miter

3.4 Learning Based Veri�cation Techniques
Recently, several learning based techniques for combinational

veri�cation have been proposed. In [42], a combinational veri�ca-
tion tool, HANNIBAL, based on recursive learning was presented.
HANNIBAL operates in two distinct phases. In the �rst phase,

learning is carried out at all the nodes in the two networks for a
user speci�ed number of learning levels; often, this phase itself can

verify several primary outputs of the two networks. In the second
phase, using the learning information derived in the �rst phase, an

ATPG tool is invoked for verifying the remaining primary outputs.
In [49] another veri�cation tool, VERIFUL, was presented which
is based on functional learning. This tool also has two phases

like HANNIBAL. Here learning is carried out at each gate g using
ROBDDs. These ROBDDs are built using a cutset that is at a

structural distance2 d away from g. Here d can vary from 1 to
a predetermined maximum distance dmax. The amount of learn-

ing obtained in a network can be increased by increasing dmax.
However, the sizes of the ROBDDs that are built usually increase
with the increase in d. This results in an increase in the time
and space resources required. Two other learning based veri�ca-
tion algorithms were presented in [35, 58]. Both of these methods

consist of an initial learning phase followed by an ROBDD based
equivalence-checking phase. Methods to reduce the ROBDD sizes

using the learning information were presented. In [58] the ROB-
DDs were pruned with an ATPG tool that uses the learning in-
formation derived in the �rst phase. In [35] invariants3 based
on learnings are used to simplify the ROBDDs. This technique
also successively composes BDDs in terms of cutsets of internal
equivalent gates till the functional equivalence is resolved.

two circuits are typically decided by simulating the given circuits
on some k simulation vectors. Two nodes are now called poten-

tially equivalent if they have an equivalent output on each of the
k vectors. The value of k can be decided dynamically or a priori.

2The structural level in functional learning of [49] is a close
analogue of the level of learning in recursive learning.

3If a) b, where a and b are two nodes, then a+b is an invariant.

The learning based techniques have several limitations. First,
they are unable to derive all internal equivalences in limited com-
putational resources. All the known learning techniques discover
equivalences between internal gates in circuits using two indirect
implications: to �nd if f � g they individually determine if f) g,
and then if g) f . However, �nding indirect implications, whether
through ROBDD operations [49] or techniques such as recursive
learning [43], can be relatively expensive. Another problem is that
there is no simple method to determine, a priori, the number of
levels of learning that will be required on a given pair of circuits.
Hence, a complete automation of learning based veri�cation tools
may be di�cult.

Recently another e�cient technique that analyzes internal sim-
ilarities between circuits using ROBDDs was proposed in [48].
Beginning from gates closest to primary inputs, function (g � h)
is calculated for all potentially equivalent gate pairs (g;h) using
ROBDDs. The equivalent gates between two circuits are merged
as shown in Figure 9. The ROBDDs are built using internal vari-
ables which are usually introduced at gates that have already been
shown to be equivalent. The set of internal variables (gates) is cho-
sen such that we minimize gates that have a path to another gate

in the same set. This technique gives up to an order of magnitude
speed-up over [58] on many benchmark circuits.

3.5 BDD Hash Based T echniques
Using such techniques many internal equivalent gates can be

identi�ed rather easily without always explicitly carrying out an
XOR between pair of potentially equivalent candidates [41, 51].

While constructing OBDDs for a given circuit, the OBDD con-
struction is suspended at some well de�ned intervals, and the OB-

DDs of the set of the gates already processed is examined; if any
two gates possess an identical OBDD then a common variable is

introduced at both the gates. The equivalent gates can be merged
to produce a simpler network. After examining all gates whose
OBDD was already processed, the OBDD construction for the rest

of the circuit is again resumed. To identify such equivalent gates,
the primary inputs of given circuits form the �rst cutset for build-

ing BDDs for the gates in the network and the gates are processed
in a breadth �rst order. The gates are hashed into a hash table,

BDD-hash, using the pointer to their BDDs as the keys. The
hashing mechanism is shown in Figure 10. The dotted lines show

cutset1 and cutset2 respectively. The cutset1 consists of the pri-
mary inputs to the network. BDDs for the gates n3, n4 and n5 are
built in terms of cutset1. The gates n4 and n5 hash to the same

collision chain inBDD-hash because they have identical BDDs in
terms of cutset1. Heuristics based on the size of the shared BDD

data structure and the number of structural levels of circuitry for
which BDDs are built using any cutset are used to limit the size
of BDDs at any time. They are also used to introduce new cut-
sets based on already discovered equivalent gates. If false negative
is required to be resolved between any two potentially equivalent
candidate gates g; h, then we can compose the g � h OBDD in
terms of the cutset of gates where for each member on this cutset
we have already found a functionally equivalent gate.

4 Conclusion
Due to the memory explosion problem, BDDs alone appear un-

suitable for verifying large designs. However, they form a crucial
representation vehicle for the internal correspondence based ver-
i�cation techniques. A practical combinational veri�cation tool
must consolidate diverse techniques for extracting internal corre-
spondences. Such a techniquemust use the state of the art BDDs,
ATPG, as well as implication based techniques. For example, it
has been observed that a veri�cation technique based on exploiting

Proceedings of the 1997 International Conference on Computer Design (ICCD '97)
0-8186-8206-X/97 $10.00 © 1997 IEEE

n5

n6

n7

Bdd-hash

n4

n2

n4 n6

n7

cutset2

n3

Network
cutset1

n1

n5

Figure 10: Hashing of gates with equivalent internal
BDDs

internal equivalences can fail on circuits that have relatively few
equivalent nodes. Therefore, such a technique needs to be com-
binedwith a learningalgorithmtomake use of the indirect implica-
tion relations that exist between the nodes of the two circuits. To
verify inequivalent circuits or internal nodes, use of ATPG tech-
niques appears essential. Finally, in cases where both internal
equivalence and learning techniques prove inadequate, veri�cation

techniques should be augmented by functional partitioning, possi-
bly using representations such as partitioned-ROBDDs.

5 Acknowledgemen t
We would like to thank Rajarshi Mukherjee for his assistance

with this paper. The second author was supported by CA State

MICRO program grant #94-110 and SRC 95-DC-324.

References

[1] S. B. Akers. Binary decision diagrams. IEEE Transactions on

Computers, C-27:509{516, June 1978.

[2] H. R. Andersen and H. Hulgaard. Boolean Expression Di-

agrams. IEEE Conference on Logics in Computer Science

(LICS), July 1997.

[3] P. Ashar and M. Cheon. E�cient breadth-�rst manipulation

of binary-decision diagrams. ICCAD, 1994.

[4] P. Ashar, A. Ghosh, and S. Devadas. Boolean satis�ability and

equivalence checking using general binary decision diagrams.

ICCD, 1991.

[5] R. Bahar et. al. Algebraic decision diagrams and their appli-

cations. ICCAD, 1993.

[6] C. L. Berman and L. H Trevyllian. Functional comparison of

logic designs for vlsi circuits. ICCAD, 1989.

[7] J. Bern, C. Meinel, and A. Slobodova. E�cient OBDD-Based

Boolean Manipulation in CAD Beyond Current Limits. DAC,

1995.

[8] J. Bern, C. Meinel, and A. Slobodova. Some Heuristics for

Generating Tree-like FBDD Types. IEEE Transactions on

Computer-Aided Design, pages 127{134, January 1996.

[9] M. Blum et. al. Equivalence of free Boolean graphs can be de-

cided probabilistically in polynomial time. Information Pro-

cessing Letters, 10:80{82, March 1980.

[10] K. S. Brace, R. L. Rudell, and R. E. Bryant. E�cient Imple-

mentation of a BDD Package. DAC, 1990.

[11] D. Brand. Veri�cation of large synthesized designs. ICCAD,

1993.

[12] R. K. Brayton, R. Rudell, A. L. Sangiovanni-Vincentelli, and

A. R. Wang. MIS: A Multiple-Level Logic Optimization Sys-

tem. IEEE Transactions on Computer-Aided Design, CAD-

6(6):1062{1081, November 1987.

[13] R. E. Bryant. Graph-based Algorithms for Boolean Function

Manipulation. IEEE Transactions on Computers, C-35:677{

691, August 1986.

[14] R. E. Bryant. Boolean Analysis of MOS Circuits. IEEE

Transactions on Computer-Aided Design, pages 634{649, July

1987.

[15] R. E. Bryant. Extraction of gate level models from transistor

circuits by four-valued symbolic analysis. ICCAD, 1991.

[16] R. E. Bryant. Symbolic boolean manipulation with ordered

binary decision diagrams. ACM Computing Surveys, 24:293{

318, September 1992.

[17] R. E. Bryant and Y. Chen. Veri�cation of arithmetic circuits

with binary moment diagrams. DAC, 1995.

[18] E. Cerny and C. Mauras. Tautology checking using cross-

controllability and cross-observability relations. ICCAD, 1990.

[19] Chandrasekhar et al. Application of term rewriting tech-

niques to hardware design veri�ca tion. 24th Design Automa-

tion Conference, 1987.

[20] E. M. Clarke, M. Fujita, and X. Zhao. Hybrid decision dia-

grams. ICCAD, 1995.

[21] E. M. Clarke et. al. Spectral transforms for large boolean

functions with applications to technology mapping. DAC,

1993.

[22] R. Drechsler et. al. E�cient representation and manipulation

of switching functions based on Ordered Kronecker Functional

Decision Diagrams. DAC, 1994.

[23] L. Fortune et. al. The complexity of equivalence and contain-

ment for free single variable programschemes. Lecture Notes in

Computer Science 62, Springer-Verlag, pages 227{240, 1978.

[24] M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and Im-

provements of Boolean Comparison Method Based on Binary

Decision Diagrams. ICCAD, 1988.

[25] M. Fujita. Veri�cation of Arithmetic Circuits by Comparing

Two Similar Circuits. CAV, 1996.

[26] J. Gergov and C. Meinel. E�cient Boolean Manipulation

With OBDD's can be Extended to FBDD's. IEEE Transaction

on Computers, 43(10):1197{1209, 1994.

[27] G. D. Hachtel and R. M. Jacoby. Algorithms for multi-level

tautology and equivalence. IEEE International Symposium on

Circuits and Systems, 1985.

[28] K. Hamaguchi, A. Morita, and S. Yajima. E�cient construc-

tion of binary moment diagrams for verifying arithmetic cir-

cuits. ICCAD, 1995.

[29] F. K. Hanna and N Daeche. Speci�cation and veri�cation of

digital systems using higher-orde r logic. IEE Proc., 133, Pt.

E., No. 5:242{254, Sept. 1986.

[30] A. Hett, R. Drechsler, and B. Becker. MORE: Alternative

implementation of BDD-packages by multi-operand synthesis.

European Design Conference, 1996.

Proceedings of the 1997 International Conference on Computer Design (ICCD '97)
0-8186-8206-X/97 $10.00 © 1997 IEEE

[31] J. Jain. On analysis of boolean functions. Ph.D Dissertation,

Dept. of Electrical and Computer Engineering, The University

of Texas at Austin, 1993.

[32] J. Jain, J. Bitner, M. Abadir, D. S. Fussell, and J. A. Abra-

ham. Indexed BDDs: Algorithmic advances in techniques to

represent and verify Boolean functions. To be published in

IEEE Transactions on Computers.

[33] J. Jain, J. Bitner, D. S. Fussell, and J. A. Abraham.

Functional partitioning for veri�cation and related problems.

Brown/MIT VLSI Conference, 1992.

[34] J. Jain, J. Bitner, D. S. Fussell, and J. A. Abraham. Prob-

abilistic veri�cation of Boolean functions. Formal Methods in

System Design, 1: 61 { 115, 1992.

[35] J. Jain, R. Mukherjee, and M. Fujita. Advanced Veri�cation

Techniques Based on Learning. DAC, 1995.

[36] J. Jain, A. Narayan, C. Coelho, S. Khatri, A. Sangiovanni-

Vincentelli, R. Brayton, and M. Fujita. Decomposition Tech-

niques for E�cient ROBDD Construction. Formal Methods in

CAD 96, LNCS. Springer-Verlag, 1996.

[37] S.-W. Jeong, B. Plessier, G. Hachtel, and F. Somenzi. Struc-

tural BDDs: Trading canonicity for structure in veri�cation

algorithms. ICCAD, 1991.

[38] T. Kam and P. A. Subrahmanyam. Comparing Layouts with

HDL Models: A Formal Veri�cation Technique. IEEE Trans-

actions on Computer-Aided Design, pages 503{509, April

1995.

[39] U. Kebschull et. al. Multilevel logic synthesis based on Func-

tional Decision Diagrams. European DAC, 1992.

[40] A. Kuehlmann, A. Srinivasan, and D. P. LaPotin. A For-

mal Veri�cation Program for Custom CMOS Circuits. IBM

Journal of Research and Development, January 1995.

[41] A. Kuehlmann and F. Krohm. Equivalence Checking Using

Cuts and Heaps. DAC, pages 263-268, 1997.

[42] W. Kunz. HANNIBAL: An E�cient Tool for Logic Veri�ca-

tion Based on Recursive Learning. ICCAD, 1993.

[43] W. Kunz and D. K. Pradhan. Recursive learning: An at-

tractive alternative to the decision tree for test generation in

digital circuits. ITC, 1992.

[44] Y-T Lai and S. Sastry. Edge-valued binary decision diagrams

for multi-level hierarchical veri�cation. DAC, 1992.

[45] P. Lammens, L. Claesen, and H. De Man. Correctness veri�-

cation of VLSI modules supported by a very e�c ient Boolean

prover. ICCAD, 1989.

[46] C. Y. Lee. Representation of switching circuits by binary-

decision programs. Bell Syst. Tech. J., 38:985{999, 1959.

[47] S. Malik et. al. Logic Veri�cation using Binary Decision Di-

agrams in a Logic Synthesis Environment. ICCAD, 1988.

[48] Y. Matsunaga. An E�cient Equivalence Checker for Combi-

national Circuits. DAC, 1996.

[49] R. Mukherjee, J. Jain, and M. Fujita. VERIFUL: VERI�ca-

tion using FUnctional Learning. EDAC, 1995.

[50] R. Mukherjee, J. Jain, and D. K. Pradhan. Functional Learn-

ing: A new approach to learning in digital circuits. IEEE VLSI

Test Symp., 1994.

[51] R. Mukherjee, J. Jain, K. Takayama, M. Fujita, J. A. Abra-

ham, D. S. Fussell. E�cient Combinational Veri�cation Using

BDDs and a Hash Table. ISCAS, 1997.

[52] A. Narayan, S. P. Khatri, J. Jain, M. Fujita, R. K. Bray-

ton, and A. Sangiovanni-Vincentelli. A Study of Composi-

tion Schemes for Mixed Apply/Compose Based Construction

of ROBDDs. Intl. Conf. on VLSI Design, 1996.

[53] A. Narayan, J. Jain, M. Fujita, and A. L. Sangiovanni-

Vincentelli. Partitioned-ROBDDs - A Compact, Canonical and

E�ciently Manipulable Representation for Boolean Functions.

ICCAD, 1996.

[54] H. Ochi, K. Yasouka, and S. Yajima. Breadth-�rst manipu-

lation of very large binary-decision diagrams. ICCAD, 1993.

[55] G. Odawara, M. Tomita, O. Okuzawa, T Ohta, and Z Zhuang.

A logic veri�er based on Boolean comparison. 23rd Design

Automation Conference, pages 208{214, 1986.

[56] S. Panda and F. Somenzi. Who Are the Variables in Your

Neighborhood. ICCAD, 1995.

[57] S. Panda, F. Somenzi, and B. Plessier. Symmetry Detection

and Dynamic Variable Ordering of Decision Diagrams. IC-

CAD, 1994.

[58] S. M. Reddy,W. Kunz, and D. K. Pradhan. Novel Veri�cation

Framework Combining Structural and OBDD Methods in a

Synthesis Environment. DAC, 1995.

[59] J. P. Roth. Hardware veri�cation. IEEE Transactions on

Computers, C-26(12):1292{1294, December 1977.

[60] R. L. Rudell. Dynamic Variable Ordering for Ordered Binary

Decision Diagrams. ICCAD, 1993.

[61] J. V. Sanghavi,R. K. Ranjan, andA. Sangiovanni-Vincentelli,

and R. K. Brayton. High Performance BDD Package by Ex-

ploiting Memory Hierarchy. DAC, 1996.

[62] A. Shen, S. Devadas, and A. Ghosh. Probabilistic construc-

tion and manipulation of free Boolean diagrams. In Digest

of Technical Papers of the IEEE International Conference on

Computer-Aided Design, pages 544{549, 1993.

[63] K. J. Singh and P. A. Subrahmanyam. Extracting RTL mod-

els from transistor netlists. ICCAD, 1995.

[64] G. L. Smith, R. J. Bahnsen, and H. Halliwell. Boolean com-

parison of hardware and
owcharts. IBM Journal of Research

and Development, 26(1):106{116, January 1982.

[65] K. Son and Z. Kishimoto. A formal veri�cation method for

hierarchial designs. IEEE Conference on Computer-Aided De-

sign, 1981.

[66] E. P. Stabler and H. Bingol. Boolean comparison by simu-

lation. 24th Design Automation Conference, pages 584{587,

1987.

[67] D. F. Stantat and D. A. McAllister. Discrete Mathematics

in Computer Science. Intl. Series in Applied Mathematics.

Prentice-Hall, Englewood Cli�s, N.J., 1977.

[68] R. S. Wei and A. Sangiovanni-Vincentelli. Proteus: A logic

veri�cation system for combinational logic circuit. Proceedings

of the International Test Conference, 1986.

Proceedings of the 1997 International Conference on Computer Design (ICCD '97)
0-8186-8206-X/97 $10.00 © 1997 IEEE

