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A SURVEY OF TECHNIQUES TO REDUCE/MINIMIZE THE CONTROL PART/ROM OF A MICRO-

PROGRAMMED DIGITAL COMPUTER

I.  Introduction

In this report a survey of the research to date in microprogram

minimization is presented.  We discuss the works of Glushkov, Casaglia,

et. al., Flynn and Rosin, Mischenko, Schwartz, Grasselli and Montanari and

r,Das et. al.  The techniques are classified into three broad categories:

the Glushkov Approach, the Ad Hoc or Engineering Approach and the Schwartz

Approach.  The authors' views are summarized in the conclusion but the survey

presents more than sufficient detail for the reader to draw his own.

II. The Glushkov Approach

Glushkov's main aim is to construct an abstract model of an electronic

computer based  on an enlarged concept  of an automaton   [6,7]  , This abstract

model enables him to formalize a whole series of problems important from

the point of view of logical design.  One of these problems is the.minimiza-

tion of the control unit.

Glushkov views a digital system as a composition of two automata,

called respectively, the operational and control automata. (These are also

called "operation  part"   (OP) and "control  part"   (CP)   in the literature   [  1] . )

1
The  OP  is generally a finite Moore automaton .  All the combinatorial and

and sequential networks needed to perform the logical and arithmetic functions

of the computer can be included in the OP.  The number of states of the OP is

thus enormous and Glushkov feels that it may be better to replace the finite

1.  A finite state automaton  M is a quintuple M = (I,O,S,6,h) where I,0 and

S are finite, nonempty sets of input states respectively;  6:  I x S+S i s the
state transition function,   A i s the output function  such  that     A  :I x S+0
for Mealy machines,A:  S  +0 for Moore machines .

.-
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OP by an infinite, multiregister automaton  of the type described in [4].

The output signals of the OP are the strings of values of logical condi-

tions X1' X2' ...' Xm formed during certain elementary operations.  Each logical

condition Xi is associated with a subset U. of the Bet of states of the OP.1

X. = 1 if and only if the current state belongs to U..  Thus the output depends
1 1

only on the current state and not on the signal at the input.  Let the set of out-

put signals be {yi3.  The input signals al' a2' ... a  of the OP are identifiedn

with certain transformations of the set of states of this automaton. Thus each

input signal contains the commands for executing the elementary operations

(micro operations).

The CP which works  together with the OP is a finite Moore or Mealy automaton.

The input signals to the CP coincide with the output signals of the OP and the out-

put signals of the CP with the input signals of the OP.  The number of states of

the CP will usually be relatively small.

In general, there is a third part to this dual system, i.e. Memory and I/0,

(MIO).  Information passes from MIO to the OP and the results of micro operations

pass from the OP to MIO.  MIO also send information to the CP regarding their own

functioning and also about which instruction is to be executed next.  The CP

communicates with MIO and initiates their operations from time to time.  The general

system is shown in figure 1.

However, by assuming that memory and I/0 are buffered, the buffer registers

can be considered to be part of the OP and the reduced scheme shown in figure 2

is obtained.

Let the CP be a Mealy automaton.  The problem then is to reduce the number

of states of this automaton. For a completely specified finite state automaton

the first step would be to try and minimize the number of states by partitioning

them into equivalence classes. (For details the reader is referred to [10]).

Since the minimal partition is unique, there is a unique minimal solution.  The

CP may be incompletely specified to start off with because for some combinations of
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states and inputs the output values may not be critical and are left unspeci-

fied.  The following point is more important:  i.e. the CP and OP are acting

in conjunction. Thus, even if it is possible to select any state of the OP

as the initial state, it is not, generally speaking, possible for all a priori

conceivable sequences of input signals to arrive at the input of the CP. Because,

of this it may be possible to convert the original completely specified minimal

machine to an incompletely specified one.  The incompletely specified machin can

then be minimized by known techniques [10].  We will illustrate Glushkov's

technique [8] by means of an example.  Let the outputs of the OP be {yl' y2} and

inputs {al' a2 .  Let the OP be described by the table in figure 3.

The CP thus has inputs {Yl, Y2} and outputs {al' a2 .  Let it be

described by the table in figure 3.

Assume also that initially  the CP is in state 1 and the only input that

can arrive is y . The OP is first examined. The output signals of the OP, i.e.
1

yl and Y2 are identified with the set of states marked by these signals.  Therefore

Yl =  Pl' P3  and y2 = <P2' P41.  Let Saj denote the state entered when the current

input is a. and current state is S.  Let Yi a  denote the union of all sets yk
J

which tontain states of the form Saj where S E yi.  Thus Ylal = V2' V2 al = V2'

yl a2 = (yl, Y2) and Y2 a2 = yl.  For any set of output signals M = {yil' ...' yik1

let Ma  denote the union of all sets yil aj, ... yik aj.  Thus, Yl al = y2' Yl a2 =

( 1'  2)'  2 al =  2' Y2 a2 =  1' ( 1' Y2) al - ( 1' y2)' and (yl' y2) a2 = ( 1' 2)'

Define M (Yi, a ) to be Yl a  if Yi E M and. $ otherwise. Therefore,  1(Yl'al) -

Y2' Yl CYl' a2  = CYl'  2  = Yl'  2 ' Y2 C 2' al  = Y2'  2CY2'a2) =  1' ( l' Y2 

(Yl' al) - (Yl' Y2) ( 2' al) = Y2' ( 1' Y2) (Yl' a2) = (Yl'  2)' ( 1' Y2) (Y2' a2 

= yl.  All other combinations have a value  .  The produce MN where N is any set

of pairs (Yi, a ) is defined as the union of the products Mq for all q EN.

-i.
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The CP is now examined.  For any pair (bs' br) of this automaton

define B   to be the set of all pairs (Yi, a ) such that the effect of thesr

input Yi is to make the CP pass from bs to br.  Thus, Bll = (y2' al)'

812 = (Yl,a2) ' 813 = 4, 821 =  ' 822 = (yl' al) ' 823 = (y2'a2) ' 831 = (y2'a2) '
0

B   = $  B   = (yl,a2).  Define M£ =4 for all k 0 1 and Ml to be the set of32    '  33

signals that can reach the CP initially.  Thus Ml = yl.  Define next, the

following recurrence relations:

'C' - Mi U 0 M Bik (k = 1, 2, ... p)
i=1

where p is the number of states in the CP.  The sequence {M }, j = 0, 1, ...

will stabilize at some stage j (i.e. M  1.1  = M  for all k).  Let M ' k = 1,2,...p

denote the stabilized values.  For simultaneous operation of the OP and CP,

when CP is in state k the only signals that can possibly arrive at its input

are those belonging to M c.  In the particular example under discussion, the

sequences obtained are as follows:

M  =  (yl) '   Ml =  (Y2) '  M  =   0

M  =   Yl) '   Df2 =  (Y2) '  M  =   (Y1)

M    =   (yl) '      M3   =   (]'2) '   M    =      (Yl'   Y2)

M4 =  (yl) '   M4 =  (Y2) '  M4 =  (yl' y2)

We thus conclude that in state 1, Y2 can never arrive at the input of

the CP and in state 2, Yl cannot arrive.  The corresponding entries can now be

deleted from the table in figure 4 to yield the incompletely specified CP of

figure 5.

States 1 and 2 are now consistent and can be combined to yield a single

state.  Figure 6 represents the final reduced CP.

Comments:

The example presented was a very simple one and even then the procedure
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to obtain the minimal CP was quite laborious. In a practical situation

one does not deal with machines with 2 or 3 states.  Using the automata theory ap-

proach   Glushkov would be out of the question for any modern digital

system where the machines have billions of states.  Thus even though the

approach taken by Glushkov is significant from a theoretical point of view,

the techniques he suggests are infeasible for all practical purposes.

It must also be pointed out that even if an incompletely specified CP

is obtained a reduced machine need not be minimal.  Lower and upper bounds

on the number of states in the reduced machine can easily be found and merger

graphs/tables and compatibility graphs can be used to obtain a systematic pro-

cedure   [ 3] . However, there  is no simple precise  way to obtain a minimal

machine from an incompletely specified one and a cartain amount of "trial and

11                                                                                                                                                                        'Ierror is unavoidable.

III. The Ad Hoc or Engineering Approach

Here we present some of the minimization techniques proposed by Casaglia

e.t., al. [11], Mischenko [11,12], Flynn and Rosin [4 ].  The contol part

can be defined by means of a microprogram which is a sequence of microinstructions.

As  pointed out in  [  1], this microprogram can be written in one of two languges

which we will discuss here.

Let 01, 02' ...' 0n be the list of all possible elementary operations

of the OP of a system. These are called simple micro operations.  A complex

micro operation a  is a set of Oi's  such that all the Oi's can be executed

simultaneously.  Thus the a.'s are the possible outputs of the CP.  Recall
J

that the inputs Yi to the CP are logical conditions {xl' ...' xm} formed as

a result of the execution of certain micro operations in the OP (figure 2).  An

unconditional microins truction  is an expression

|h I a , k                                (1)

where  |h| is the label of the micro instruction being considered, k is the

i
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label of the next microinstruction.  Thus a. defines the complex microinstruction
J

to be executed by the OP and k the transfer to be executed by the CP.  A conditional

microinstruction can be represented by the following general statement

h  if logical condition Xl' then a. , k. else
]1  1

if logical condition X2' then a.   k  elseJ 2'  2

.....................

if logical condition X , then aj , k .

which takes the symbolic form:

 h  (Xl) ajl' kl; (X2) aj 2' k2; .....; (Xp) aj k (2)
PP

C Xr),
a conditional expression, stands for an expression such as

( ,     X2'     X7    =    001,
110) which indicates    that a subset    of the signals    Xi   mus t

equal a specified binary combination.  The pair a,k i s called a phrase and
j

the expression  (X )  a , k a conditional phrase. A phrase structured (ps) language

is defined as one where every microinstruction is formed by a one phrase micro-

instruction (1) or by a set of conditional phrases where (a) all the conditional

expressions and phrases are different and (b) one and only one of the logical

conditions is satisfied.  A microinstruction structured (ms) language is diectly

derived  from  a ps language  with the additional condition:' "all phrases  in  any

microinstruction differ only in the transfers. A microinstruction in an ms"

language can thus be written as:

 h  al (Xi) kl; (X2) k2; .... ; (Xp) kp.
Assume that there are two microprograms one written in the ps language

and the other in the ms.  These microprograms can be viewed as definitions

of the control part and from each definition a particular CP can be realized.·

Figures 7 and 8 show the CP's corresponding to the ps and ms languages respectively.

Let us now discuss the possible ways of reducing the CP's.

(1)  If in the ms microinstructions the maximum number of alternate

transfers is reduced, this will reduce the size of the ROM word in figure 8.



Page 7

(2)  If the alternate transfers of every ms microinstruction are all con-

strained to be coded by addresses that are relative to a "base address" and this ad-

dress is stored in the ROM memory, then the ROM word length can be considerably reduced.

(3)  Given an ms microprogram let there be a set of microinstructions

such that (a) all microinstructions in the set differ only in the component

a. and (b)  logical conditions exist which can distinguish the different a 's.
For example, let the set be:

 sll al (Xl) E; (X2) s; (15) P

1

821     a2     (Xi)     52 ;     C X2)     s;     C X3)     P

.................

 sn' an (Xl) £; (1(2) s; (X3) P.

The following reductions are possible:

(i)  Instead' of having n words in memory we have only one  a  £, s, p

A small combinatorial network introduced at point B in Figure 8 can be used

to provide the correct output.

(ii)   The n potential transfer
addresses  sl,...,  sn are reduced  to

one, i.e. s.  Therefore the complexity of CN should decrease.

(4)  If in a ps microporgram there is a microinstruction such that all

its phrases differ only in the component a., then this microinstruction can
3

be written as

Ih I [(21) al' (X2) a2' ...' (Xp) apl, k.

The p memory cells corresponding to this instruction can be reduced to 1, i.e.

a k and a combinatiorial network can be used to generate the

desired output.

(5)  Let there be a set of ps microinstructions,

11111, Ih2|' ''''  Ihm|'

each of which has n conditional phrases. If when all occurrence of
#.

hl, h2' ...' hm are replaced by h,  the m microinstructions
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become identical then they can be replaced by a single ps microinstruction.

Here again m potential transfer addresses have been replaced by one and mn

memory cells by n.

(6) Consider the following m ps microinstructions

1 hl'   (Xl)   al,  kl

11121 (X2) a2' 1(2

....

 hm|     (Xm)    am'    k3

If one and only one of the conditions Xl' X2' ... X  can be satisfied at anym

time  and  if   (al '  kl) '   (a2 '   k 2) ' . . . '   (am'   km)   are
all different then these

can be combined into a single instruction

 h  (Xl) al' kl; (X2) 82' k2;   ' (Xm) am' km'
Instructions with more than one conditional phrase can similarly be combined.

Here we do not get a reduction in ROM but since the number of poetntial

transfer points has been reduced, CN should become less complex.  Note:

In 3, 5, and 6 where a number of addresses are being replaced by one through-

out the microprogram, care should be taken to establish that the entire

program is still a valid ps or ms micrprogram as the casd may be.

Finally, we would   like to mention   the very general scheme of "residual

control" in dynamic microprogramming proposed by Flynn and Rosin  [  4] .    The

basic idea is as follows:  much information specified in the microinstruction

is   static. The status remains unchanged during the execution  of a number of

microinstructions. If this static information and specifications is filtered

out  of the microinstruction and placed  in  "set up" registers, the combination

of a particular field of microinstruction with its corresponding set up register

would completely define the control for resource.  As Dr. Flynn has pointed

out (private communication) this technique is closely related to the well

known Huffman coding problem and its solution. In this latter problem one
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is  given an alphabet   {al '   a2 '   . . . '   an} for transmission with probability  of

occurrence of ai equal to Pi.  The problem is to encode the elements of the
n

alphabet so that   fi-  2   p  is minimized, where Zi is the length of code
.L.. 1 i
1=1

assigned to ai.  Thus one is interested in minimizing the expected value of

the length of transmitted code.  The problem is solved, naturally, by

assigning the codes in d manner so that the higher the probability of

occurrence of an element the shorter the code assigned to it.

In residual control the problem is analogous.  The fields in a micro-

instruction represent information to be transmitted.  In a certain field in

the microinstruction let the information represented by some of the bits

(say n in number) have a high probability p of remaining static. These n bits

take on ·a few definite values with high probabilities.  Because certain

configurations of these n bits have a high frequency oftoccurrence, the

corresponding information should be minimally encoded.  This is done by placing

the information in set up registers and introducing k bits instead of n (k < n)

which indicate how the information in the set up register changes.  For this

method to work, some appropriate fixed probability p  has to be determined

so that only if p > po will the information be placed in a set up register.

In some of the techniques proposed by Casaglia et. al. the ROM is reduced

at  the cost of introducing special combinatorial networks. Thus there  is  a  loss

of flexibility and  a change in the ROM necessitates a change in the special

circuitry. In the residual control method, the loss of flexibility is minimal.

Comments:

Compared to the "Glushkov Approach" the "Engineering Approach" has

obvious practical advantages.  The techniques suggested in this section naturally

do not guarantee a minimal CP.  However, in practical use, these techniques

should be quite effective.  Also, complete minimization  of an automaton

as ·we find in the Glushkov approach is not necessarily realizable with minimal
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apparatus cost.  The techniques presented in this section are thus more

down to earth, more what a CP designer would be interested in.

The Schwartz Approach;

Schwartz  [13 ] is concerned with minimizing  the ·bit dimension  of  ROM's

employed in the control part of a microprogrammed digital computer and

attempts to provide an algorithm to do so.  The ROM is an array of storage

elements consisting of W words of B bits each.  Each word specifies one or

more elementary operations of the control part which can be executed  in

parallel.  The sequencing of ROM words is not of concern.  It is therefore

assumed·that the words do not contain address fields and all B bits are

used for specifying subcommands.  Figure 9 gives an example of ROM specification.

There are several ways of coding the B bits to reduce size.  One

important consideration, flexibility, should be kept in mind:  the control

microprogram should be easily modifiable.  There are two extreme prossibilities

for encoding the ROM:

1)  Each bit of W is used to encode one subcommand. Thus the number

of bits in W is equal to the number of distinct subcommands.  The latter will us-

ually  be very large compared to the actual number of subcommands in any word.

Thus this method is extremely inefficient with regard to the bit dimension B.

The advantage is maximum flexibility. Since no combinational circuit is

required at the output of the ROM, the contents of the ROM can be arbitrarily

changed.

2)  The ROM words are minimally encoded, i.e. B = [log Wul where W  is
U

the number of unique words in the ROM W < W.  In this case all advantages
U-

of  microprogramming are  lost.     The  ROM  is  used  only to sequen e words  in

the microprograms since the ROM word address is already an encoding of the

corresponding word.  A large combinatorial network would be required at the

output of the ROM.  If this is to remain unchanged with changes in the                   0
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..    i
microprogram, then any such change would have to result in a word already in

the system.

Schwartz takes a midway position.  The bit dimension is partitioned into

groups.  Each group represents a number of subcommands, no two of which

occur together in the same word.  The essential feature however is that each

group represents only one subcommand in any given word.

The problem now is th minimize B. Schwartz realizes this but is

unable to solve the problem.  He gives instead an alogrithm that partitions

the subcommands into a·minimal number of groups.  The basic procedure is

as follows:  Find the word W  with the largest number of subcommands S .

Thus B must be partitioned into at least S  groups.  The remaining words are

taken one at a time and the subcommands contained in each are assigned to

groups.  The following constraints have to be met at each stage:  all sub-

commands in the same word must be placed in different groups.  When words are

encountered with previously assigned subcommands, it must be ascertained

that no two of them have been assigned to the same group.  Any new subcommand

in such words must be assigned to groups not in prior use in the word.  The

algorithm is basically   one of exhaustive evaluation. However, there   is   no

guarantee that a solution of·S  groups exists.  If the solution for S  groups

does not exist, the entire procedure is repeated for S  + 1 groups.1

As Grasselli and Montanari [ 9] point out, a minimimum group solution

does not imply a minimum B solution.  The minimum group solution of Schwartz

for the ROM in Figure 9 is {a},  {b,g},  {c,j,k},  {d,i}.  Number of groups

= 5, B = 10 (Each group also contains the subcommand NO OP).  The solution

suggested by Grasselli and Montanari ls: fa}, {b}, {c}, {d,g,j}, {e}, {f,i,k}

{h}.  Number of groups = 6, B = 9.



Page 12

Thus one has to look beyond the minimum group solution.  Schwartz

now gives an upper bound on the number of groups that need be considered.

He shows that if a minimum group solution has a bit dimension of size B  and
m

if ST is the total number of subcommands then the largest number of groups

that could have a smaller bit dimension is C where Cm is given by
m+1

log2 (ST  - Cm + 2) = Bm -Cm

Ndting the inability of Schwartz to give an algorithm for minimizing

B, the problem was reformulated by Grasselli and Montanari in the framework

of switching theory. The main minimization problem was reduced to a set

covering problem of the prime implicant type.

The ROM words are considered to be a set of subcommands:

Wa = {Sal'
S
a2'  aa

S}

WB = {Sbl' Sb2'    ' SbB 

...

WT = {Stl' St2'    ' St4}

A compatibility relation is defined among the subcommands.Si and S  are com-

patible.  If

Si E WH => Sj  0 WH V H

A compatibility class Ci of subcommands is a class whose members are

pairwise compatible. (compatibility is not an equivalence relation)   A

maximal compatibility class is one to which no subcommand can be added with-

out violating pairwise compatibility.  Let the set of subcommands be A.  Then

a minimal solution is a set of compatibility classes: {Cil' Ci2' , .' Cih1
h                         h

such that C.  = A  and B = 3-  Flog(#Ci  + 11 is
minimal.  Here # ein

n=1 n=1          n
ln

denotes the number of subcommands in Cin.
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Grasselli and Montanari shows that the only classes that need be considered

for a minimal solution are prime compatibility classes defined below:

1)  Ci is nonmaximal and # Ci = 2h - 1.  (h.= 1, 2, ...)

2)     Ci
is

maximal  and '#  Ci  0  2k     (k  =  1,   2,   . . . )

The minimal cover is obtained by solving a covering table of the prime

implicant type.  The table has a column. corresponding to every subcommand S 

and a row corresponding to every prime class.  The cost of row i is the

Rnst  nf the  corrcoponding cldss  C..   The alm  is  to select' rows  so  that  the
1

total cost is minimized and each column is covered.

The three basic reduction rules for solving a covering table are:

1)  Row essentiality.

2)  Row dominance.

3)  Column dominance.

Rule 3 is never applicable because of the peculiar nature of the covering

table  and Rule 2 can be replaced by :  2')  Any row i of cost Wi (Wi > 1) in

Wi-1which the number of crosses is not greater than 2 , dan be erased from the

table.

We will now present a well known technique of integer programming to

solve this problem.  Rule 1 and 2' can be very easily applied in any reduced

cover table. Since the method to be presented involved solving reduced tables,

it should be particularly suited for our problem.

Let there be m distinct aubcommands and let {Cl' (2' ...' C } be then

prime compatibility classes,  and  Wi  the  cost  of  Ci'  1 5 i 1 n.    Let  {aij}nxm

denote the covering table where aij = 1 if the subcommand corresponding to

column j belongs to class Ci.  Let there be n variables x , x-, ..., x .  Then12  n

a solution is an assignment of values 0 or 1 to the variables xi.  Class Ci

is selected if and only if xi = 1.  Let x be a solution.  The cost of x is z -
n

i  1     Wi   xi
· x is a feasible solution if  1  alj i  2 1,  1< j< m.
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x is a minimal solution if it is feasible and in addition  2 W  x  is

4 i=l
i  i

minimal.  Let Pk be a vector that represents an assignment of 0 or 1 to some

of the variables xi.  Thus if P  = (1, 3, 9 then xl = 1, x3 = 1 and x4 = 0.

The above covering problem can be formulated as an integer programming

problem.     af the constrants xi =l o r  0,1  < .i  <  n are replaced  by  xi  2.  0

1 < i < n,w e get the following linear program:

n

miri X W  x
i=1    i  i

subject to the constraints

n

X.  aij xi 2. 1 lij<m
i=1

X,  > 0 1<i<n
1

- - -

If x' is the solution of this linear program with cost z' then let <x > =

E  W   <xl>. 0 i f x i=0 1
and <z°>

i=1   i
1  otherwise

Stage k:

*

Let x* be the best solution so far with cost z  and let a particular

Pk be given.  Define Sk+ =  {i l i E Pk '  Sk =  {i l i e  Pk 

Flc   -    {i  |  i     ¢   S  +       S -   andl .S i i n} .kk

k ' 1  Get a reduced cover table from the original one by deleting the

set  {Ci   i E Sk  U S k- ' and deleting columns j for which X aij >1.
it S+        -

k '2   Reduce the cover table further by applying rules 1 and 2'.  Formulate

a linear program for the final reduced table (In a manner similar

to that described above for the complete table).  Solve this

linear program.  Pk together with steps k·1 and k.2 gives a solution.

The following are possible:

a)  An optimal integer solution xk* is obtained.  Let its cost be Z *.

If Z* <Z* let the new value of Z* be Z* and x* be x* . If all entries
k                                      k              k

of Pk are underlined, go to Quit.  Else get P    from Pk by underliningk+1

the rightmost'nonunderlined entry in Pk and erasing all entries to the
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t

t         1

right of it.  Start stage k +1.

b)  There is no feasible solution.  If all entries of P  are underlined,·k

go to Quit. Else, get P as in a) and start stage k+1.
k+1

c)  An optimal noninteger solution x * is obtained, with cost Z *.

i)  <ZIC*> 2. Z*.  If all entries of Pk are underlined, go to Quit.

Else obtain Pkn as in a) and start stage k+1.

ii) <Z *> < Z*, then <xk*> defines a feasible solution better than x*.

However, a much better solution, called a prime solution can be obtained

by the following simple heuristic.

Consider the original cover table.  Delete all rows except those correspond-

ing to {Ci   i E Fk and xi = 1} Delete the columns corresponding to the sub-

commands covered  by  {Ci       ie  Sk 1 '

i)  Reduce the table further according to rules 1 and 2 .

ii)  Select the row C. with the least cost
| column. (Calculated1

by dividing the cost of Ci by the number of columns covered

by Ci after step (i).)  If there is more than one, select any.

Delete the columns covered.

Repeat (i) and (ii) until the cover is complete.  Let Sk be the set of rows

selected by repeated application of (i) and (ii).  Sk+ and Sk define a

k

solution xk' with cost Z '.  Let the new value of x* be x ' and Z  be Z '.
- -

Define P so that S+ =S+ S  and S =S. Start stage k + 1.k+1 k+1    k k k+1    k

Quit:     Stop the computation. x* gives the minimal solution  with  cost Z *.

Thus the Procedure is as follows:

Start at
stage 0 with Po= 0, So += So = 0  and Fo = {1, 2, ..., n};

Z* = 00 and x* undefined. If steps 0·1 and 0'2 yield an integer solution,

we are done.  Even if a noninteger solution is obtained the heuristic yields

a  result that is near minimal.  (Let 0·1 and 0.2  yield a minimum cost Zo*,

not necessarily integral). Then continue with stages 1,2,... till Quit is
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reached or a solution with Z * = [Z *1 is obtained.

One further heuristic may decrease computation by indicating directly

that no feasible solution exists at a particular stage.  Let p be the number

th
of columns selected in the heuristic at the end of the 0 stage. For ·the original

cover table determine the minimum number of rows that must be selected, using

the method proposed by Du  3]. Let the number be r. Note that if there

is no feasible solution using 1 s maximal compatibility classes, then there

is no feasible solution using only  s rows. Thus by examining the numbers

between r and p (possibly by doing a binary search if p-r i s large) and the

maximal compatibility classes only, we can find very quickly, a number t,

r i t  < p so that we are guaranteed that any solution of the covering table

must have at least t rows.  The closer that t is to p, the better the heuristic

will work.  At any stage k (k > 0) we run a quick check on Pk and count the

number of underlined indices.  Let the number be Pk.  If n - Pk < t we can

immediately conclude that there is no feasible solution and go directly to

stage k + 1.

Finally, Das et. al f 2] start with the same basic formulation as

Grasselli and Montanari.  However, they start directly with the maximal com-

patibility classes, MCC's whose number is usually small.  The basic procedure

is as follows:

Given a set of microcommands  {Sl' S2' ... Sk}  and a set of MCC's

< Cml, C'#2' "' Culn 
obtained from the set of microcommands, a table is

constructed by writing Sl' S2' ... Sk in 6 row and by entering Cm  below Si

if Si E Cmj.  This table is called a CM cover table.· The MCC's that appear

alone in some columns are called globally essential.  The CM cover table ran

be reduced by

1.  Selecting globally essential MCC's and deleting the columns in

which these MCC's appear.

2.  Deleting all but one of the columns having identical sets of MCC's.
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3.  Deleting dominated columns.

Figure 10 gives a CM cover table corresponding to Figure 9 and Figure 11 a

reduced CM cover table. The MCC's are :

Cl = {a,g,k}, (2 = {b,g,k}, (3 ={c,j,k}, (4 = {d,g,j}, (5 = {d,i},

(6 = {e,g,j,k}, (7 = {e,h}, (8 = {e,i,k}, (9 = {f,g,j,k}. C   = {f,i,k}.'  10

The reduced CM cover table is then solved. One thus obtains the

following irredundant oolutions:

1)C C C C C C123-4 7 10'

2) Clc2C3C4C7C8C9,

3)C  Cccc2 3 5 7 10'

4) Clc2C3C5C 7C9.

These solutions are irredundant because if any class is dropped from any

solution we no longer have a feasible solution (i.e., at least one microcommand

will not be covered).

The following procedure is now carried out for each irredundant solution

Ij.                                                     .   ,

A table (solution CM table) is constructed similar to the CM cover

table where we restrict ourselves only to classes belonging to I..  The
J

table corresponding to the solution ClC2C C C C   is given in Eigure 12.3 4 7 10

The solution CM table indicates which particular MCC (or its subclass)

has to be retained in the solution in order that all microcommands are included

in the MCC's (or their subclasses).

The table in figure 12, for example, tells us that a can be covered only

by Cl or a subclass of Cl containing a.  Also, microcommands g,j,k can be

covered by more than one MCC.  To find the different covers a reduced table is

constructed (figure 13).

This cover table is solved and irredundant solutions Clc3' (1(4'  C2£3'
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C C and C C are found. For each of these solutions the following procedures
2 4 4 10

is adopted:

Suppose we decide to cover g, j, k by (3 and (4.  Then,·retaining g,j,k

in C3 and C4 and deleting their appearance from all other MCC's, the following

solutions are obtained: (Remember that the overall irredundant solution is

CccCCC )
1 2 3 4 7 1 0'

{al, {b},{c,j,k}, {e,h}, {d,g},{f,i}

{a}, {b}, {c,k}, {e,h}, {d,g,j}, {f,i}.

After going through  all the iterations, the minimal solution is obtained.

Das et. al. also give  two theorems which supposedly reduce the overall

effort.

Comments:

We see in the Schwartz approach that the problem was formulated in

the   framework of switching theory. Two methods for solving the problem  in  this

framework were presented:  the integer programming method and the method of

Das et. al.  Which of these methods is better practically can only be decided

by using both for minimizing real systems.  It appears that the integer pro-

gramming method can be easily programmed for a computer.  Maybe a combination

of the two methods would be the best.

Conclusions:

In this report we have surveyed most of the important research to

date on minimizing the contol part of a microprogrammed digital computer.

We feel that the results are largely negative, i.e., the Glushkov approach

does not seem feasible in any practical environment and we have our reser-

vations regarding the Schwartz approach. If the requirements of minimal

solution are removed so that one would be satisfied with a near minimal solu-

tion, the integer programming method can be used since a very good solution

is usually obtained after the first iteration.
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For reducing the overall control  unit, the engineering approach

(Casaglia, et. al., Flynn and Rosin and Mishenko ) seems to be the only

feasible one.
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