
Chapter 6

A SURVEY OF TEXT CLASSIFICATION
ALGORITHMS

Charu C. Aggarwal
IBM T. J. Watson Research Center
Yorktown Heights, NY

charu@us.ibm.com

ChengXiang Zhai
University of Illinois at Urbana-Champaign
Urbana, IL

czhai@cs.uiuc.edu

Abstract The problem of classification has been widely studied in the data mining,
machine learning, database, and information retrieval communities with
applications in a number of diverse domains, such as target marketing,
medical diagnosis, news group filtering, and document organization. In
this paper we will provide a survey of a wide variety of text classification
algorithms.

Keywords: Text Classification

1. Introduction

The problem of classification has been widely studied in the database,
data mining, and information retrieval communities. The problem of
classification is defined as follows. We have a set of training records
D = {X1, . . . , XN}, such that each record is labeled with a class value
drawn from a set of k different discrete values indexed by {1 . . . k}. The
training data is used in order to construct a classification model, which
relates the features in the underlying record to one of the class labels. For
a given test instance for which the class is unknown, the training model

164 MINING TEXT DATA

is used to predict a class label for this instance. In the hard version
of the classification problem, a particular label is explicitly assigned to
the instance, whereas in the soft version of the classification problem,
a probability value is assigned to the test instance. Other variations of
the classification problem allow ranking of different class choices for a
test instance, or allow the assignment of multiple labels [52] to a test
instance.

The classification problem assumes categorical values for the labels,
though it is also possible to use continuous values as labels. The latter
is referred to as the regression modeling problem. The problem of text
classification is closely related to that of classification of records with
set-valued features [28]; however, this model assumes that only informa-
tion about the presence or absence of words is used in a document. In
reality, the frequency of words also plays a helpful role in the classifica-
tion process, and the typical domain-size of text data (the entire lexicon
size) is much greater than a typical set-valued classification problem. A
broad survey of a wide variety of classification methods may be found in
[42, 62], and a survey which is specific to the text domain may be found
in [111]. A relative evaluation of different kinds of text classification
methods may be found in [132]. A number of the techniques discussed
in this chapter have also been converted into software and are publicly
available through multiple toolkits such as the BOW toolkit [93], Mallot
[96], WEKA 1, and LingPipe 2.

The problem of text classification finds applications in a wide variety
of domains in text mining. Some examples of domains in which text
classification is commonly used are as follows:

News filtering and Organization: Most of the news services
today are electronic in nature in which a large volume of news arti-
cles are created very single day by the organizations. In such cases,
it is difficult to organize the news articles manually. Therefore, au-
tomated methods can be very useful for news categorization in a
variety of web portals [78]. This application is also referred to as
text filtering.

Document Organization and Retrieval: The above applica-
tion is generally useful for many applications beyond news filtering
and organization. A variety of supervised methods may be used
for document organization in many domains. These include large
digital libraries of documents, web collections, scientific literature,

1http://www.cs.waikato.ac.nz/ml/weka/
2http://alias-i.com/lingpipe/

A Survey of Text Classification Algorithms 165

or even social feeds. Hierarchically organized document collections
can be particularly useful for browsing and retrieval [19].

Opinion Mining: Customer reviews or opinions are often short
text documents which can be mined to determine useful informa-
tion from the review. Details on how classification can be used in
order to perform opinion mining are discussed in [89] and Chapter
13 in this book.

Email Classification and Spam Filtering: It is often de-
sirable to classify email [23, 27, 85] in order to determine either
the subject or to determine junk email [113] in an automated way.
This is also referred to as spam filtering or email filtering.

A wide variety of techniques have been designed for text classification.
In this chapter, we will discuss the broad classes of techniques, and their
uses for classification tasks. We note that these classes of techniques also
generally exist for other data domains such as quantitative or categorical
data. Since text may be modeled as quantitative data with frequencies
on the word attributes, it is possible to use most of the methods for
quantitative data directly on text. However, text is a particular kind of
data in which the word attributes are sparse, and high dimensional, with
low frequencies on most of the words. Therefore, it is critical to design
classification methods which effectively account for these characteristics
of text. In this chapter, we will focus on the specific changes which are
applicable to the text domain. Some key methods, which are commonly
used for text classification are as follows:

Decision Trees: Decision trees are designed with the use of a hi-
erarchical division of the underlying data space with the use of dif-
ferent text features. The hierarchical division of the data space is
designed in order to create class partitions which are more skewed
in terms of their class distribution. For a given text instance, we
determine the partition that it is most likely to belong to, and use
it for the purposes of classification.

Pattern (Rule)-based Classifiers: In rule-based classifiers we
determine the word patterns which are most likely to be related to
the different classes. We construct a set of rules, in which the left-
hand side corresponds to a word pattern, and the right-hand side
corresponds to a class label. These rules are used for the purposes
of classification.

SVM Classifiers: SVM Classifiers attempt to partition the data
space with the use of linear or non-linear delineations between the

166 MINING TEXT DATA

different classes. The key in such classifiers is to determine the
optimal boundaries between the different classes and use them for
the purposes of classification.

Neural Network Classifiers: Neural networks are used in a wide
variety of domains for the purposes of classification. In the context
of text data, the main difference for neural network classifiers is to
adapt these classifiers with the use of word features. We note that
neural network classifiers are related to SVM classifiers; indeed,
they both are in the category of discriminative classifiers, which
are in contrast with the generative classifiers [102].

Bayesian (Generative) Classifiers: In Bayesian classifiers (also
called generative classifiers), we attempt to build a probabilistic
classifier based on modeling the underlying word features in differ-
ent classes. The idea is then to classify text based on the posterior
probability of the documents belonging to the different classes on
the basis of the word presence in the documents.

Other Classifiers: Almost all classifiers can be adapted to the
case of text data. Some of the other classifiers include nearest
neighbor classifiers, and genetic algorithm-based classifiers. We
will discuss some of these different classifiers in some detail and
their use for the case of text data.

The area of text categorization is so vast that it is impossible to cover
all the different algorithms in detail in a single chapter. Therefore, our
goal is to provide the reader with an overview of the most important
techniques, and also the pointers to the different variations of these
techniques.

Feature selection is an important problem for text classification. In
feature selection, we attempt to determine the features which are most
relevant to the classification process. This is because some of the words
are much more likely to be correlated to the class distribution than
others. Therefore, a wide variety of methods have been proposed in
the literature in order to determine the most important features for the
purpose of classification. These include measures such as the gini-index
or the entropy, which determine the level of which the presence of a
particular feature skews the class distribution in the underlying data.
We will also discuss the different feature selection methods which are
commonly used for text classification.

The rest of this chapter is organized as follows. In the next section, we
will discuss methods for feature selection in text classification. In section

A Survey of Text Classification Algorithms 167

3, we will describe decision tree methods for text classification. Rule-
based classifiers are described in detail in section 4. We discuss naive
Bayes classifiers in section 5. The nearest neighbor classifier is discussed
in section 7. In section 7, we will discuss a number of linear classifiers,
such as the SVM classifier, direct regression modeling and the neural
network classifier. A discussion of how the classification methods can be
adapted to text and web data containing hyperlinks is discussed in sec-
tion 8. In section 9, we discuss a number of different meta-algorithms for
classification such as boosting, bagging and ensemble learning. Section
10 contains the conclusions and summary.

2. Feature Selection for Text Classification

Before any classification task, one of the most fundamental tasks that
needs to be accomplished is that of document representation and feature
selection. While feature selection is also desirable in other classification
tasks, it is especially important in text classification due to the high
dimensionality of text features and the existence of irrelevant (noisy)
features. In general, text can be represented in two separate ways. The
first is as a bag of words, in which a document is represented as a set of
words, together with their associated frequency in the document. Such a
representation is essentially independent of the sequence of words in the
collection. The second method is to represent text directly as strings,
in which each document is a sequence of words. Most text classification
methods use the bag-of-words representation because of its simplicity
for classification purposes. In this section, we will discuss some of the
methods which are used for feature selection in text classification.

The most common feature selection which is used in both supervised
and unsupervised applications is that of stop-word removal and stem-
ming. In stop-word removal, we determine the common words in the doc-
uments which are not specific or discriminatory to the different classes.
In stemming, different forms of the same word are consolidated into a
single word. For example, singular, plural and different tenses are con-
solidated into a single word. We note that these methods are not specific
to the case of the classification problem, and are often used in a vari-
ety of unsupervised applications such as clustering and indexing. In the
case of the classification problem, it makes sense to supervise the feature
selection process with the use of the class labels. This kind of selection
process ensures that those features which are highly skewed towards the
presence of a particular class label are picked for the learning process.
A wide variety of feature selection methods are discussed in [133, 135].
Many of these feature selection methods have been compared with one

168 MINING TEXT DATA

another, and the experimental results are presented in [133]. We will
discuss each of these feature selection methods in this section.

2.1 Gini Index

One of the most common methods for quantifying the discrimination
level of a feature is the use of a measure known as the gini-index. Let
p1(w) . . . pk(w) be the fraction of class-label presence of the k different
classes for the word w. In other words, pi(w) is the conditional proba-
bility that a document belongs to class i, given the fact that it contains
the word w. Therefore, we have:

k∑
i=1

pi(w) = 1 (6.1)

Then, the gini-index for the word w, denoted by G(w) is defined3 as
follows:

G(w) =

k∑
i=1

pi(w)
2 (6.2)

The value of the gini-index G(w) always lies in the range (1/k, 1). Higher
values of the gini-index G(w) represent indicate a greater discriminative
power of the word w. For example, when all documents which contain
word w belong to a particular class, the value of G(w) is 1. On the other
hand, when documents containing word w are evenly distributed among
the k different classes, the value of G(w) is 1/k.

One criticism with this approach is that the global class distribution
may be skewed to begin with, and therefore the above measure may
sometimes not accurately reflect the discriminative power of the un-
derlying attributes. Therefore, it is possible to construct a normalized
gini-index in order to reflect the discriminative power of the attributes
more accurately. Let P1 . . . Pk represent the global distributions of the
documents in the different classes. Then, we determine the normalized
probability value p′i(w) as follows:

p′i(w) =
pi(w)/Pi∑k
j=1 pj(w)/Pj

(6.3)

3The gini-index is also sometimes defined as 1 −∑k
i=1 pi(w)2, with lower values indicating

greater discriminative power of the feature w.

A Survey of Text Classification Algorithms 169

Then, the gini-index is computed in terms of these normalized probabil-
ity values.

G(w) =

k∑
i=1

p′i(w)
2 (6.4)

The use of the global probabilities Pi ensures that the gini-index more
accurately reflects class-discrimination in the case of biased class dis-
tributions in the whole document collection. For a document corpus
containing n documents, d words, and k classes, the complexity of the
information gain computation is O(n · d · k). This is because the com-
putation of the term pi(w) for all the different words and the classes
requires O(n · d · k) time.

2.2 Information Gain

Another related measure which is commonly used for text feature
selection is that of information gain or entropy. Let Pi be the global
probability of class i, and pi(w) be the probability of class i, given that
the document contains the word w. Let F (w) be the fraction of the
documents containing the word w. The information gain measure I(w)
for a given word w is defined as follows:

I(w) = −
k∑

i=1

Pi · log(Pi) + F (w) ·
k∑

i=1

pi(w) · log(pi(w)) +

+(1− F (w)) ·
k∑

i=1

(1− pi(w)) · log(1− pi(w))

The greater the value of the information gain I(w), the greater the dis-
criminatory power of the word w. For a document corpus containing n
documents and d words, the complexity of the information gain compu-
tation is O(n · d · k).

2.3 Mutual Information

This mutual information measure is derived from information theory
[31], and provides a formal way to model the mutual information between
the features and the classes. The pointwise mutual information Mi(w)
between the word w and the class i is defined on the basis of the level
of co-occurrence between the class i and word w. We note that the
expected co-occurrence of class i and word w on the basis of mutual
independence is given by Pi · F (w). The true co-occurrence is of course
given by F (w) ·pi(w). In practice, the value of F (w) ·pi(w) may be much

170 MINING TEXT DATA

larger or smaller than Pi ·F (w), depending upon the level of correlation
between the class i and word w. The mutual information is defined in
terms of the ratio between these two values. Specifically, we have:

Mi(w) = log

(
F (w) · pi(w)
F (w) · Pi

)
= log

(
pi(w)

Pi

)
(6.5)

Clearly, the word w is positively correlated to the class i, when Mi(w) >
0, and the word w is negatively correlated to class i, when Mi(w) < 0.
We note that Mi(w) is specific to a particular class i. We need to
compute the overall mutual information as a function of the mutual
information of the word w with the different classes. These are defined
with the use of the average and maximum values of Mi(w) over the
different classes.

Mavg(w) =

k∑
i=1

Pi ·Mi(w)

Mmax(w) = maxi{Mi(w)}
Either of these measures may be used in order to determine the relevance
of the word w. The second measure is particularly useful, when it is more
important to determine high levels of positive correlation of the word w
with any of the classes.

2.4 χ2-Statistic

The χ2 statistic is a different way to compute the lack of independence
between the word w and a particular class i. Let n be the total number of
documents in the collection, pi(w) be the conditional probability of class
i for documents which contain w, Pi be the global fraction of documents
containing the class i, and F (w) be the global fraction of documents
which contain the word w. The χ2-statistic of the word between word
w and class i is defined as follows:

χ2
i (w) =

n · F (w)2 · (pi(w)− Pi)
2

F (w) · (1− F (w)) · Pi · (1− Pi))
(6.6)

As in the case of the mutual information, we can compute a global χ2

statistic from the class-specific values. We can use either the average of
maximum values in order to create the composite value:

χ2
avg(w) =

k∑
i=1

Pi · χ2
i (w)

χ2
max(w) = maxiχ

2
i (w)

A Survey of Text Classification Algorithms 171

We note that the χ2-statistic and mutual information are different
ways of measuring the the correlation between terms and categories.
One major advantage of the χ2-statistic over the mutual information
measure is that it is a normalized value, and therefore these values are
more comparable across terms in the same category.

2.5 Feature Transformation Methods:
Supervised LSI

While feature selection attempts to reduce the dimensionality of the
data by picking from the original set of attributes, feature transforma-
tion methods create a new (and smaller) set of features as a function of
the original set of features. A typical example of such a feature trans-
formation method is Latent Semantic Indexing (LSI) [38], and its prob-
abilistic variant PLSA [57]. The LSI method transforms the text space
of a few hundred thousand word features to a new axis system (of size
about a few hundred) which are a linear combination of the original word
features. In order to achieve this goal, Principal Component Analysis
techniques [69] are used to determine the axis-system which retains the
greatest level of information about the variations in the underlying at-
tribute values. The main disadvantage of using techniques such as LSI is
that these are unsupervised techniques which are blind to the underlying
class-distribution. Thus, the features found by LSI are not necessarily
the directions along which the class-distribution of the underlying doc-
uments can be best separated. A modest level of success has been ob-
tained in improving classification accuracy by using boosting techniques
in conjunction with the conceptual features obtained from unsupervised
pLSA method [17]. A more recent study has systematically compared
pLSA and LDA (which is a Bayesian version of pLSA) in terms of their
effectiveness in transforming features for text categorization and drawn
a similar conclusion and found that pLSA and LDA tend to perform
similarly.

A number of techniques have also been proposed to perform the fea-
ture transformation methods by using the class labels for effective super-
vision. The most natural method is to adapt LSI in order to make it work
more effectively for the supervised case. A number of different methods
have been proposed in this direction. One common approach is to per-
form local LSI on the subsets of data representing the individual classes,
and identify the discriminative eigenvectors from the different reductions
with the use of an iterative approach [123]. This method is known as
SLSI (Supervised Latent Semantic Indexing), and the advantages of the
method seem to be relatively limited, because the experiments in [123]

172 MINING TEXT DATA

show that the improvements over a standard SVM classifier, which did
not use a dimensionality reduction process, are relatively limited. The
work in [129] uses a combination of class-specific LSI and global analy-
sis. As in the case of [123], class-specific LSI representations are created.
Test documents are compared against each LSI representation in order
to create the most discriminative reduced space. One problem with this
approach is that the different local LSI representations use a different
subspace, and therefore it is difficult to compare the similarities of the
different documents across the different subspaces. Furthermore, both
the methods in [123, 129] tend to be computationally expensive.

A method called sprinkling is proposed in [21], in which artificial terms
are added to (or “sprinkled” into) the documents, which correspond to
the class labels. In other words, we create a term corresponding to
the class label, and add it to the document. LSI is then performed on
the document collection with these added terms. The sprinkled terms
can then be removed from the representation, once the eigenvectors have
been determined. The sprinkled terms help in making the LSI more sen-
sitive to the class distribution during the reduction process. It has also
been proposed in [21] that it can be generally useful to make the sprin-
kling process adaptive, in which all classes are not necessarily treated
equally, but the relationships between the classes are used in order to
regulate the sprinkling process. Furthermore, methods have also been
proposed in [21] to make the sprinkling process adaptive to the use of a
particular kind of classifier.

2.6 Supervised Clustering for Dimensionality
Reduction

One technique which is commonly used for feature transformation is
that of text clustering [7, 71, 83, 121]. In these techniques, the clus-
ters are constructed from the underlying text collection, with the use of
supervision from the class distribution. The exception is [83] in which
supervision is not used. In the simplest case, each class can be treated as
a separate cluster, though better results may be obtained by using the
classes for supervision of the clustering process. The frequently occur-
ring words in these supervised clusters can be used in order to create the
new set of dimensions. The classification can be performed with respect
to this new feature representation. One advantage of such an approach
is that it retains interpretability with respect to the original words of the
document collection. The disadvantage is that the optimum directions
of separation may not necessarily be represented in the form of clusters
of words. Furthermore, the underlying axes are not necessarily orthonor-

A Survey of Text Classification Algorithms 173

mal to one another. The use of supervised methods [1, 7, 71, 121] has
generally led to good results either in terms of improved classification
accuracy, or significant performance gains at the expense of a small re-
duction in accuracy. The results with the use of unsupervised clustering
[83, 87] are mixed. For example, the work in [83] suggests that the use
of unsupervised term-clusters and phrases is generally not helpful [83]
for the classification process. The key observation in [83] is that the
loss of granularity associated with the use of phrases and term clusters
is not necessarily advantageous for the classification process. The work
in [8] has shown that the use of the information bottleneck method for
feature distributional clustering can create clustered pseudo-word repre-
sentations which are quite effective for text classification.

2.7 Linear Discriminant Analysis

Another method for feature transformation is the use of linear discrim-
inants, which explicitly try to construct directions in the feature space,
along which there is best separation of the different classes. A common
method is the Fisher’s linear discriminant [46]. The main idea in the
Fisher’s discriminant method is to determine the directions in the data
along which the points are as well separated as possible. The subspace
of lower dimensionality is constructed by iteratively finding such unit
vectors αi in the data, where αi is determined in the ith iteration. We
would also like to ensure that the different values of αi are orthonormal
to one another. In each step, we determine this vector αi by discriminant
analysis, and project the data onto the remaining orthonormal subspace.
The next vector αi+1 is found in this orthonormal subspace. The quality
of vector αi is measured by an objective function which measures the
separation of the different classes. This objective function reduces in
each iteration, since the value of αi in a given iteration is the optimum
discriminant in that subspace, and the vector found in the next iteration
is the optimal one from a smaller search space. The process of finding
linear discriminants is continued until the class separation, as measured
by an objective function, reduces below a given threshold for the vector
determined in the current iteration. The power of such a dimensionality
reduction approach has been illustrated in [18], in which it has been
shown that a simple decision tree classifier can perform much more ef-
fectively on this transformed data, as compared to more sophisticated
classifiers.

Next, we discuss how the Fisher’s discriminant is actually constructed.
First, we will set up the objective function J(α) which determines the
level of separation of the different classes along a given direction (unit-

174 MINING TEXT DATA

vector) α. This sets up the crisp optimization problem of determining the
value of α which maximizes J(α). For simplicity, let us assume the case
of binary classes. Let D1 and D2 be the two sets of documents belonging
to the two classes. Then, the projection of a documentX ∈ D1∪D2 along
α is given by X ·α. Therefore, the squared class separation S(D1, D2, α)
along the direction α is given by:

S(D1, D2, α) =

(∑
X∈D1

α ·X
|D1| −

∑
X∈D2

α ·X
|D2|

)2

(6.7)

In addition, we need to normalize this absolute class separation with the
use of the underlying class variances. Let V ar(D1, α) and V ar(D2, α)
be the individual class variances along the direction α. In other words,
we have:

V ar(D1, α) =

∑
X∈D1

(X · α)2
|D1| −

(∑
X∈D1

X · α
|D1|

)2

(6.8)

The value of V ar(D2, α) can be defined in a similar way. Then, the
normalized class-separation J(α) is defined as follows:

J(α) =
S(D1, D2, α)

V ar(D1, α) + V ar(D2, α)
(6.9)

The optimal value of α needs to be determined subject to the constraint
that α is a unit vector. Let μ1 and μ2 be the means of the two data sets
D1 and D2, and C1 and C2 be the corresponding covariance matrices.
It can be shown that the optimal (unscaled) direction α = α∗ can be
expressed in closed form, and is given by the following:

α∗ =
(
C1 + C2

2

)−1
(μ1 − μ2) (6.10)

The main difficulty in computing the above equation is that this compu-
tation requires the inversion of the covariance matrix, which is sparse and
computationally difficult in the high-dimensional text domain. There-
fore, a gradient descent approach can be used in order to determine
the value of α in a more computationally effective way. Details of the
approach are presented in [18].

Another related method which attempts to determine projection di-
rections that maximize the topical differences between different classes
is the Topical Difference Factor Analysis method proposed in [72]. The
problem has been shown to be solvable as a generalized eigenvalue prob-
lem. The method was used in conjunction with a k-nearest neighbor

A Survey of Text Classification Algorithms 175

classifier, and it was shown that the use of this approach significantly
improves the accuracy over a classifier which uses the original set of
features.

2.8 Generalized Singular Value Decomposition

While the method discussed above finds one vector αi at a time in or-
der to determine the relevant dimension transformation, it is possible to
be much more direct in finding the optimal subspaces simultaneously by
using a generalized version of dimensionality reduction [58, 59]. It is im-
portant to note that this method has really been proposed in [58, 59] as
an unsupervised method which preserves the underlying clustering struc-
ture, assuming the data has already been clustered in a pre-processing
phase. Thus, the generalized dimensionality reduction method has been
proposed as a much more aggressive dimensionality reduction technique,
which preserves the underlying clustering structure rather than the in-
dividual points. This method can however also be used as a supervised
technique in which the different classes are used as input to the di-
mensionality reduction algorithm, instead of the clusters constructed in
the pre-processing phase [131]. This method is known as the Optimal
Orthogonal Centroid Feature Selection Algorithm (OCFS), and it di-
rectly targets at the maximization of inter-class scatter. The algorithm
is shown to have promising results for supervised feature selection in
[131].

2.9 Interaction of Feature Selection with
Classification

Since the classification and feature selection processes are dependent
upon one another, it is interesting to test how the feature selection pro-
cess interacts with the underlying classification algorithms. In this con-
text, two questions are relevant:

Can the feature-specific insights obtained from the intermediate
results of some of the classification algorithms be used for creating
feature selection methods that can be used more generally by other
classification algorithms?

Do the different feature selection methods work better or worse
with different kinds of classifiers?

Both these issues were explored in some detail in [99]. In regard to
the first question, it was shown in [99] that feature selection which was
derived from linear classifiers, provided very effective results. In regard
to the second question, it was shown in [99] that the sophistication of

176 MINING TEXT DATA

the feature selection process itself was more important than the specific
pairing between the feature selection process and the classifier.

Linear Classifiers are those for which the output of the linear predic-
tor is defined to be p = A ·X+b, where X = (x1 . . . xn) is the normalized
document word frequency vector,A = (a1 . . . an) is a vector of linear co-
efficients with the same dimensionality as the feature space, and b is
a scalar. Both the basic neural network and basic SVM classifiers [65]
(which will be discussed later in this chapter) belong to this category.
The idea here is that if the coefficient ai is close to zero, then the corre-
sponding feature does not have a significant effect on the classification
process. On the other hand, since large absolute values of aj may sig-
nificantly influence the classification process, such features should be
selected for classification. In the context of the SVM method, which
attempts to determine linear planes of separation between the different
classes, the vector A is essentially the normal vector to the correspond-
ing plane of separation between the different classes. This intuitively
explains the choice of selecting features with large values of |aj |. It was
shown in [99] that this class of feature selection methods was quite ro-
bust, and performed well even for classifiers such as the Naive Bayes
method, which were unrelated to the linear classifiers from which these
features were derived. Further discussions on how SVM and maximum
margin techniques can be used for feature selection may be found in
[51, 56].

3. Decision Tree Classifiers

A decision tree [106] is essentially a hierarchical decomposition of the
(training) data space, in which a predicate or a condition on the at-
tribute value is used in order to divide the data space hierarchically. In
the context of text data, such predicates are typically conditions on the
presence or absence of one or more words in the document. The division
of the data space is performed recursively in the decision tree, until the
leaf nodes contain a certain minimum number of records, or some condi-
tions on class purity. The majority class label (or cost-weighted majority
label) in the leaf node is used for the purposes of classification. For a
given test instance, we apply the sequence of predicates at the nodes, in
order to traverse a path of the tree in top-down fashion and determine
the relevant leaf node. In order to further reduce the overfitting, some of
the nodes may be be pruned by holding out a part of the data, which are
not used to construct the tree. The portion of the data which is held out
is used in order to determine whether or not the constructed leaf node
should be pruned or not. In particular, if the class distribution in the

A Survey of Text Classification Algorithms 177

training data (for decision tree construction) is very different from the
class distribution in the training data which is used for pruning, then it
is assumed that the node overfits the training data. Such a node can be
pruned. A detailed discussion of decision tree methods may be found in
[15, 42, 62, 106].

In the particular case of text data, the predicates for the decision tree
nodes are typically defined in terms of the terms in the underlying text
collection. For example, a node may be partitioned into its children
nodes depending upon the presence or absence of a particular term in
the document. We note that different nodes at the same level of the tree
may use different terms for the partitioning process.

Many other kinds of predicates are possible. It may not be necessary
to use individual terms for partitioning, but one may measure the simi-
larity of documents to correlated sets of terms. These correlated sets of
terms may be used to further partition the document collection, based
on the similarity of the document to them. The different kinds of splits
are as follows:

Single Attribute Splits: In this case, we use the presence or
absence of particular words (or even phrases) at a particular node
in the tree in order to perform the split. At any given level, we pick
the word which provides the maximum discrimination between the
different classes. Measures such as the gini-index or information
gain can be used in order to determine the level of entropy. For
example, the DT-min10 algorithm [81] is based on this approach.

Similarity-based multi-attribute split: In this case, we use
documents (or meta-documents such as frequent word clusters),
and use the similarity of the documents to these words clusters in
order to perform the split. For the selected word cluster, the docu-
ments are further partitioned into groups by rank ordering the doc-
uments by similarity value, and splitting at a particular threshold.
We select the word-cluster for which rank-ordering by similarity
provides the best separation between the different classes.

Discriminant-based multi-attribute split: For the
multi-attribute case, a natural choice for performing the split is
to use discriminants such as the Fisher discriminant for perform-
ing the split. Such discriminants provide the directions in the data
along which the classes are best separated. The documents are pro-
jected on this discriminant vector for rank ordering, and then split
at a particular coordinate. The choice of split point is picked in or-
der to maximize the discrimination between the different classes.

178 MINING TEXT DATA

The work in [18] uses a discriminant-based split, though this is
done indirectly because of the use of a feature transformation to
the discriminant representation, before building the classifier.

Some of the earliest implementation of classifiers may be found in [80,
81, 87, 127]. The last of these is really a rule-based classifier, which can
be interpreted either as a decision tree or a rule-based classifier. Most of
the decision tree implementations in the text literature tend to be small
variations on standard packages such as ID3 and C4.5, in order to adapt
the model to text classification. Many of these classifiers are typically
designed as baselines for comparison with other learning models [65].

A well known implementation of the decision tree classifier is based on
the C4.5 taxonomy of algorithms [106] is presented in [87]. More specif-
ically, the work in [87] uses the successor to the C4.5 algorithm, which
is also known as the C5 algorithm. This algorithm uses single-attribute
splits at each node, where the feature with the highest information gain
[31] is used for the purpose of the split. Decision trees have also been
used in conjunction with boosting techniques. An adaptive boosting
technique [48] is used in order to improve the accuracy of classification.
In this technique, we use n different classifiers. The ith classifier is con-
structed by examining the errors of the (i − 1)th classifier. A voting
scheme is applied among these classifiers in order to report the final la-
bel. Other boosting techniques for improving decision tree classification
accuracy are proposed in [116].

The work in [43] presents a decision tree algorithm based on the
Bayesian approach developed in [22]. In this classifier, the decision tree
is grown by recursive greedy splits, where the splits are chosen using
Bayesian posterior probability of model structure. The structural prior
penalizes additional model parameters at each node. The output of the
process is a class probability rather than a deterministic class label for
the test instance.

4. Rule-based Classifiers

Decision trees are also generally related to rule-based classifiers. In
rule-based classifiers, the data space is modeled with a set of rules, in
which the left hand side is a condition on the underlying feature set, and
the right hand side is the class label. The rule set is essentially the model
which is generated from the training data. For a given test instance,
we determine the set of rules for which the test instance satisfies the
condition on the left hand side of the rule. We determine the predicted
class label as a function of the class labels of the rules which are satisfied
by the test instance. We will discuss more on this issue slightly later.

A Survey of Text Classification Algorithms 179

In its most general form, the left hand side of the rule is a boolean con-
dition, which is expressed in Disjunctive Normal Form (DNF). However,
in most cases, the condition on the left hand side is much simpler and
represents a set of terms, all of which must be present in the document
for the condition to be satisfied. The absence of terms is rarely used,
because such rules are not likely to be very informative for sparse text
data, in which most words in the lexicon will typically not be present in
it by default (sparseness property). Also, while the set intersection of
conditions on term presence is used often, the union of such conditions
is rarely used in a single rule. This is because such rules can be split
into two separate rules, each of which is more informative on its own.
For example, the rule Honda ∪ Toyota ⇒ Cars can be replaced by two
separate rules Honda ⇒ Cars and Toyota ⇒ Cars without any loss of
information. In fact, since the confidence of each of the two rules can
now be measured separately, this can be more useful. On the other hand,
the rule Honda ∩ Toyota ⇒ Cars is certainly much more informative
than the individual rules. Thus, in practice, for sparse data sets such as
text, rules are much more likely to be expressed as a simple conjunction
of conditions on term presence.

We note that decision trees and decision rules both tend to encode
rules on the feature space, except that the decision tree tends to achieve
this goal with a hierarchical approach. In fact, the original work on de-
cision tree construction in C4.5 [106] studied the decision tree problem
and decision rule problem within a single framework. This is because a
particular path in the decision tree can be considered a rule for classifi-
cation of the text instance. The main difference is that the decision tree
framework is a strict hierarchical partitioning of the data space, whereas
rule-based classifiers allow for overlaps in the decision space. The gen-
eral principle is to create a rule set, such that all points in the decision
space are covered by at least one rule. In most cases, this is achieved
by generating a set of targeted rules which are related to the different
classes, and one default catch-all rule, which can cover all the remaining
instances.

A number of criteria can be used in order to generate the rules from
the training data. Two of the most common conditions which are used
for rule generation are those of support and confidence. These conditions
are common to all rule-based pattern classifiers [88] and may be defined
as follows:

Support: This quantifies the absolute number of instances in
the training data set which are relevant to the rule. For example, in
a corpus containing 100,000 documents, a rule in which both the
left-hand set and right-hand side are satisfied by 50,000 documents

180 MINING TEXT DATA

is more important than a rule which is satisfied by 20 documents.
Essentially, this quantifies the statistical volume which is associ-
ated with the rule. However, it does not encode the strength of
the rule.

Confidence: This quantifies the conditional probability that
the right hand side of the rule is satisfied, if the left-hand side
is satisfied. This is a more direct measure of the strength of the
underlying rule.

We note that the afore-mentioned measures are not the only measures
which are possible, but are widely used in the data mining and machine
learning literature [88] for both textual and non-textual data, because
of their intuitive nature and simplicity of interpretation. One criticism
of the above measures is that they do not normalize for the a-priori
presence of different terms and features, and are therefore prone to mis-
interpretation, when the feature distribution or class-distribution in the
underlying data set is skewed.

The training phase constructs all the rules, which are based on mea-
sures such as the above. For a given test instance, we determine all the
rules which are relevant to the test instance. Since we allow overlaps, it
is possible that more than one rule may be relevant to the test instance.
If the class labels on the right hand sides of all these rules are the same,
then it is easy to pick this class as the relevant label for the test instance.
On the other hand, the problem becomes more challenging when there
are conflicts between these different rules. A variety of different meth-
ods are used to rank-order the different rules [88], and report the most
relevant rule as a function of these different rules. For example, a com-
mon approach is to rank-order the rules by their confidence, and pick
the top-k rules as the most relevant. The class label on the right-hand
side of the most number of these rules is reported as the relevant one.

Am interesting rule-based classifier for the case of text data has been
proposed in [5]. This technique uses an iterative methodology, which
was first proposed in [128] for generating rules. Specifically, the method
determines the single best rule related to any particular class in the
training data. The best rule is defined in terms of the confidence of the
rule, as defined above. This rule along with its corresponding instances
are removed from the training data set. This approach is continuously
repeated, until it is no longer possible to find strong rules in the training
data, and complete predictive value is achieved.

The transformation of decision trees to rule-based classifiers is dis-
cussed generally in [106], and for the particular case of text data in [68].
For each path in the decision tree a rule can be generated, which repre-

A Survey of Text Classification Algorithms 181

sents the conjunction of the predicates along that path. One advantage
of the rule-based classifier over a decision tree is that it is not restricted
to a strict hierarchical partitioning of the feature space, and it allows
for overlaps and inconsistencies among the different rules. Therefore,
if a new set of training examples are encountered, which are related to
a new class or new part of the feature space, then it is relatively easy
to modify the rule set for these new examples. Furthermore, rule-based
classifiers also allow for a tremendous interpretability of the underlying
decision space. In cases in which domain-specific expert knowledge is
known, it is possible to encode this into the classification process by
manual addition of rules. In many practical scenarios, rule-based tech-
niques are more commonly used because of their ease of maintenance
and interpretability.

One of the most common rule-based techniques is the RIPPER tech-
nique discussed in [26–28]. The RIPPER technique essentially deter-
mines frequent combinations of words which are related to a particular
class. The RIPPER method has been shown to be especially effective in
scenarios where the number of training examples is relatively small [25].
Another method called sleeping experts [26, 49] generates rules which
take the placement of the words in the documents into account. Most
of the classifiers such as RIPPER [26–28] treat documents as set-valued
objects, and generate rules based on the co-presence of the words in the
documents. The rules in sleeping experts are different from most of the
other classifiers in this respect. In this case [49, 26], the left hand side of
the rule consists of a sparse phrase, which is a group of words close to one
another in the document (though not necessarily completely sequential).
Each such rule has a weight, which depends upon its classification speci-
ficity in the training data. For a given test example, we determine the
sparse phrases which are present in it, and perform the classification by
combining the weights of the different rules that are fired. The sleeping
experts and RIPPER systems have been compared in [26], and have been
shown to have excellent performance on a variety of text collections.

5. Probabilistic and Naive Bayes Classifiers

Probabilistic classifiers are designed to use an implicit mixture model
for generation of the underlying documents. This mixture model typi-
cally assumes that each class is a component of the mixture. Each mix-
ture component is essentially a generative model, which provides the
probability of sampling a particular term for that component or class.
This is why this kind of classifiers are often also called generative classi-
fier. The naive Bayes classifier is perhaps the simplest and also the most

182 MINING TEXT DATA

commonly used generative classifers. It models the distribution of the
documents in each class using a probabilistic model with independence
assumptions about the distributions of different terms. Two classes of
models are commonly used for naive Bayes classification. Both models
essentially compute the posterior probability of a class, based on the
distribution of the words in the document. These models ignore the ac-
tual position of the words in the document, and work with the “bag of
words” assumption. The major difference between these two models is
the assumption in terms of taking (or not taking) word frequencies into
account, and the corresponding approach for sampling the probability
space:

Multivariate Bernoulli Model: In this model, we use the pres-
ence or absence of words in a text document as features to represent
a document. Thus, the frequencies of the words are not used for
the modeling a document, and the word features in the text are
assumed to be binary, with the two values indicating presence or
absence of a word in text. Since the features to be modeled are
binary, the model for documents in each class is a multivariate
Bernoulli model.

Multinomial Model: In this model, we captuer the frequencies
of terms in a document by representing a document with a bag
of words. The documents in each class can then be modeled as
samples drawn from a multinomial word distribution. As a result,
the conditional probability of a document given a class is simply
a product of the probability of each observed word in the corre-
sponding class.

No matter how we model the documents in each class (be it a multi-
variate Bernoulli model or a multinomial model), the component class
models (i.e., generative models for documents in each class) can be used
in conjunction with the Bayes rule to compute the posterior probability
of the class for a given document, and the class with the highest posterior
probability can then be assigned to the document.

There has been considerable confusion in the literature on the dif-
ferences between the multivariate Bernoulli model and the multinomial
model. A good exposition of the differences between these two models
may be found in [94]. In the following, we describe these two models in
more detail.

A Survey of Text Classification Algorithms 183

5.1 Bernoulli Multivariate Model

This class of techniques treats a document as a set of distinct words
with no frequency information, in which an element (term) may be either
present or absent. The seminal work on this approach may be found in
[82].

Let us assume that the lexicon from which the terms are drawn are
denoted by V = {t1 . . . tn}. Let us assume that the bag-of-words (or
text document) in question contains the terms Q = {ti1 . . . tim}, and the
class is drawn from {1 . . . k}. Then, our goal is to model the posterior
probability that the document (which is assumed to be generated from
the term distributions of one of the classes) belongs to class i, given that
it contains the terms Q = {ti1 . . . tim}. The best way to understand the
Bayes method is by understanding it as a sampling/generative process
from the underlying mixture model of classes. The Bayes probability
of class i can be modeled by sampling a set of terms T from the term
distribution of the classes:

If we sampled a term set T of any size from the term distribution
of one of the randomly chosen classes, and the final outcome is the
set Q, then what is the posterior probability that we had originally picked
class i for sampling? The a-priori probability of picking class i is equal
to its fractional presence in the collection.

We denote the class of the sampled set T by CT and the corresponding
posterior probability by P (CT = i|T = Q). This is essentially what
we are trying to find. It is important to note that since we do not
allow replacement, we are essentially picking a subset of terms from V
with no frequencies attached to the picked terms. Therefore, the set Q
may not contain duplicate elements. Under the naive Bayes assumption
of independence between terms, this is essentially equivalent to either
selecting or not selecting each term with a probability that depends upon
the underlying term distribution. Furthermore, it is also important to
note that this model has no restriction on the number of terms picked.
As we will see later, these assumptions are the key differences with the
multinomial Bayes model. The Bayes approach classifies a given set Q
based on the posterior probability that Q is a sample from the data
distribution of class i, i.e., P (CT = i|T = Q), and it requires us to
compute the following two probabilities in order to achieve this:

1 What is the prior probability that a set T is a sample from the term
distribution of class i? This probability is denoted by P (CT = i).

184 MINING TEXT DATA

2 If we sampled a set T of any size from the term distribution of class
i, then what is the probability that our sample is the set Q? This
probability is denoted by P (T = Q|CT = i).

We will now provide a more mathematical description of Bayes mod-
eling. In other words, we wish to model P (CT = i|Q is sampled). We
can use the Bayes rule in order to write this conditional probability in
a way that can be estimated more easily from the underlying corpus. In
other words, we can simplify as follows:

P (CT = i|T = Q) =
P (CT = i) · P (T = Q|CT = i)

P (T = Q)

=
P (CT = i) ·∏tj∈Q P (tj ∈ T |CT = i) ·∏tj �∈Q(1− P (tj ∈ T |CT = i))

P (T = Q)

We note that the last condition of the above sequence uses the naive
independence assumption, because we are assuming that the probabilities
of occurrence of the different terms are independent of one another. This
is practically necessary, in order to transform the probability equations
to a form which can be estimated from the underlying data.

The class assigned to Q is the one with the highest posterior proba-
bility given Q. It is easy to see that this decision is not affected by the
denominator, which is the marginal probability of observing Q. That is,
we will assign the following class to Q:

î = argmax
i

P (CT = i|T = Q)

= argmax
i

P (CT = i) ·∏
tj∈Q

P (tj ∈ T |CT = i) ·
∏
tj �∈Q

(1− P (tj ∈ T |CT = i)).

It is important to note that all terms in the right hand side of the
last equation can be estimated from the training corpus. The value of
P (CT = i) is estimated as the global fraction of documents belonging to
class i, the value of P (tj ∈ T |CT = i) is the fraction of documents in the
ith class which contain term tj , and the value of P (tj ∈ T) is the fraction
of documents (in the whole corpus) containing the term tj . We note that
all of the above are maximum likelihood estimates of the corresponding
probabilities. In practice, Laplacian smoothing [124] is used, in which
small values are added to the frequencies of terms in order to avoid zero
probabilities of sparsely present terms.

In most applications of the Bayes classifier, we only care about the
identity of the class with the highest probability value, rather than the

A Survey of Text Classification Algorithms 185

actual probability value associated with it, which is why we do not need
to compute the normalizer P (T = Q). In fact, in the case of binary
classes, a number of simplifications are possible in computing these Bayes
“probability” values by using the logarithm of the Bayes expression, and
removing a number of terms which do not affect the ordering of class
probabilities. We refer the reader to [108] for details.

Although for classification, we do not need to compute P (T = Q),
some applications necessitate the exact computation of the posterior
probability P (CT = i|T = Q). For example, in the case of supervised
anomaly detection (or rare class detection), the exact posterior proba-
bility value P (CT = i|T = Q) is needed in order to fairly compare the
probability value over different test instances, and rank them for their
anomalous nature. In such cases, we would need to compute P (T = Q).
One way to achieve this is simply to take a sum over all the classes:

P (T = Q) =
∑
i

P (T = Q|CT = i)P (CT = i).

This is based on the conditional independence of features for each class.
Since the parameter values are estimated for each class separately, we
may face the problem of data sparseness. An alternative way of com-
puting it, which may alleviate the data sparseness problem, is to further
make the assumption of (global) independence of terms, and compute it
as:

P (T = Q) =
∏
j∈Q

P (tj ∈ T) ·
∏
tj �∈Q

(1− P (tj ∈ T))

where the term probabilities are based on global term distributions in
all the classes.

A natural question arises, as to whether it is possible to design a Bayes
classifier which does not use the naive assumption, and models the de-
pendencies between the terms during the classification process. Methods
which generalize the naive Bayes classifier by not using the independence
assumption do not work well because of the higher computational costs
and the inability to estimate the parameters accurately and robustly in
the presence of limited data. The most interesting line of work in relax-
ing the independence assumption is provided in [112]. In this work, the
tradeoffs in spectrum of allowing different levels of dependence among
the terms have been explored. On the one extreme, an assumption of
complete dependence results in a Bayesian network model which turns
out to be computationally very expensive. On the other hand, it has
been shown that allowing limited levels of dependence can provide good
tradeoffs between accuracy and computational costs. We note that while
the independence assumption is a practical approximation, it has been

186 MINING TEXT DATA

shown in [29, 39] that the approach does have some theoretical merit.
Indeed, extensive experimental tests have tended to show that the naive
classifier works quite well in practice.

A number of papers [19, 64, 74, 79, 108, 113] have used the naive
Bayes approach for classification in a number of different application
domains. The classifier has also been extended to modeling temporally
aware training data, in which the importance of a document may decay
with time [114]. As in the case of other statistical classifiers, the naive
Bayes classifier [113] can easily incorporate domain-specific knowledge
into the classification process. The particular domain that the work in
[113] addresses is that of filtering junk email. Thus, for such a problem,
we often have a lot of additional domain knowledge which helps us de-
termine whether a particular email message is junk or not. For example,
some common characteristics of the email which would make an email
to be more or less likely to be junk are as follows:

The domain of the sender such as .edu or .com can make an email
to be more or less likely to be junk.

Phrases such as “Free Money” or over emphasized punctuation
such as “!!!” can make an email more likely to be junk.

Whether the recipient of the message was a particular user, or a
mailing list.

The Bayes method provides a natural way to incorporate such additional
information into the classification process, by creating new features for
each of these characteristics. The standard Bayes technique is then used
in conjunction with this augmented representation for classification. The
Bayes technique has also been used in conjunction with the incorpora-
tion of other kinds of domain knowledge, such as the incorporation of
hyperlink information into the classification process [20, 104].

The Bayes method is also suited to hierarchical classification, when
the training data is arranged in a taxonomy of topics. For example,
the Open Directory Project (ODP), Yahoo! Taxonomy, and a variety of
news sites have vast collections of documents which are arranged into
hierarchical groups. The hierarchical structure of the topics can be ex-
ploited to perform more effective classification [19, 74], because it has
been observed that context-sensitive feature selection can provide more
useful classification results. In hierarchical classification, a Bayes classi-
fier is built at each node, which then provides us with the next branch
to follow for classification purposes. Two such methods are proposed in
[19, 74], in which node specific features are used for the classification
process. Clearly, much fewer features are required at a particular node

A Survey of Text Classification Algorithms 187

in the hierarchy, because the features which are picked are relevant to
that branch. An example in [74] suggests that a branch of the taxon-
omy which is related to Computer may have no relationship with the
word “cow”. These node-specific features are referred to as signatures
in [19]. Furthermore, it has been observed in [19] that in a given node,
the most discriminative features for a given class may be different from
their parent nodes. For example, the word “health” may be discrimi-
native for the Y ahoo! category @Health, but the word “baby” may be
much more discriminative for the category @Health@Nursing. Thus, it
is critical to have an appropriate feature selection process at each node
of the classification tree. The methods in [19, 74] use different methods
for this purpose.

The work in [74] uses an information-theoretic approach [31] for
feature selection which takes into account the dependencies be-
tween the attributes [112]. The algorithm greedily eliminates the
features one-by-one so as the least disrupt the conditional class
distribution at that node.

The node-specific features are referred to as signatures in [19].
These node-specific signatures are computed by calculating the
ratio of intra-class variance to inter-class variance for the different
words at each node of the tree. We note that this measure is the
same as that optimized by the Fisher’s discriminant, except that
it is applied to the original set of words, rather than solved as a
general optimization problem in which arbitrary directions in the
data are picked.

A Bayesian classifier is constructed at each node in order to determine
the appropriate branch. A small number of context-sensitive features
provide One advantage of these methods is that Bayesian classifiers work
much more effectively with a much smaller number of features. Another
major difference between the two methods is that the work in [74] uses
the Bernoulli model, whereas that in [19] uses the multinomial model,
which will be discussed in the next subsection. This approach in [74] is
referred to as the Pachinko Machine classifier and that in [19] is known
as TAPER (Taxonomy and Path Enhanced Retrieval System).

Other noteworthy methods for hierarchical classification are proposed
in [11, 130, 95]. The work [11] addresses two common problems asso-
ciated with hierarchical text classification: (1) error propagation; (2)
non-linear decision surfaces. The problem of error propagation occurs
when the classification mistakes made at a parent node are propagated
to its children node. This problem was solved in [11] by using cross vali-
dation to obtain a training data set for a child node that is more similar

188 MINING TEXT DATA

to the actual test data passed to the child node from its parent node
than the training data set normally used for training a classifier at the
child node. The problem of non-linear decision surfaces refers to that
the decision boundary of a category at a higher level is often non-linear
(since its members are the union of the members of its children nodes).
This problem is addressed by using the tentative class labels obtained
at the children nodes as features for use at a parent node. These are
general strategies that can be applied to any base classifier, and the
experimental results in [11] show that both strategies are effective.

5.2 Multinomial Distribution

This class of techniques treats a document as a set of words with
frequencies attached to each word. Thus, the set of words is allowed to
have duplicate elements.

As in the previous case, we assume that the set of words in doc-
ument is denoted by Q, drawn from the vocabulary set V . The set
Q contains the distinct terms {ti1 . . . tim} with associated frequencies
F = {Fi1 . . . Fim}. We denote the terms and their frequencies by [Q,F].
The total number of terms in the document (or document length) is
denoted by L =

∑m
j=1 F (ij). Then, our goal is to model the posterior

probability that the document T belongs to class i, given that it contains
the terms in Q with the associated frequencies F . The Bayes probability
of class i can be modeled by using the following sampling process:

If we sampled L terms sequentially from the term distribution of
one of the randomly chosen classes (allowing repetitions) to create
the term set T , and the final outcome for sampled set T is the set Q with
the corresponding frequencies F , then what is the posterior probability
that we had originally picked class i for sampling? The a-priori proba-
bility of picking class i is equal to its fractional presence in the collection.

The aforementioned probability is denoted by P (CT = i|T = [Q,F]).
An assumption which is commonly used in these models is that the
length of the document is independent of the class label. While it is
easily possible to generalize the method, so that the document length is
used as a prior, independence is usually assumed for simplicity. As in
the previous case, we need to estimate two values in order to compute
the Bayes posterior.

1 What is the prior probability that a set T is a sample from the term
distribution of class i? This probability is denoted by P (CT = i).

A Survey of Text Classification Algorithms 189

2 If we sampled L terms from the term distribution of class i (with
repetitions), then what is the probability that our sampled set T
is the set Q with associated frequencies F? This probability is
denoted by P (T = [Q,F]|CT = i).

Then, the Bayes rule can be applied to this case as follows:

P (CT = i|T = [Q,F]) =
P (CT = i) · P (T = [Q,F]|CT = i)

P (T = [Q,F])

∝ P (CT = i) · P (T = [Q,F]|CT = i) (6.11)

As in the previous case, it is not necessary to compute the denominator,
P (T = [Q,F]), for the purpose of deciding the class label for Q. The
value of the probability P (CT = i) can be estimated as the fraction of
documents belonging to class i. The computation of P ([Q,F]|CT = i) is
much more complicated. When we consider the sequential order of the
L different samples, the number of possible ways to sample the different
terms so as to result in the outcome [Q,F] is given by L!∏m

i=1 Fi!
. The

probability of each of these sequences is given by
∏

tj∈Q P (tj ∈ T)Fj , by

using the naive independence assumption. Therefore, we have:

P (T = [Q,F]|CT = i) =
L!∏m

i=1 Fi!
·
∏
tj∈Q

P (tj ∈ T |CT = i)Fj (6.12)

We can substitute Equations 6.12 in Equation 6.11 to obtain the class
with the highest Bayes posterior probability, where the class priors are
computed as in the previous case, and the probabilities P (tj ∈ T |CT = i)
can also be easily estimated as previously with Laplacian smoothing
[124]. We note that the probabilities of class absence are not present
in the above equations because of the way in which the sampling is
performed.

A number of different variations of the multinomial model have been
proposed in [53, 70, 84, 95, 97, 103]. In the work [95], it is shown that
a category hierarchy can be leveraged to improve the estimate of multi-
nomial parameters in the naive Bayes classifier to significantly improve
classification accuracy. The key idea is to apply shrinkage techniques to
smooth the parameters for data-sparse child categories with their com-
mon parent nodes. As a result, the training data of related categories
are essentially ”shared” with each other in a weighted manner, which
helps improving the robustness and accuracy of parameter estimation
when there are insufficient training data for each individual child cate-
gory. The work in [94] has performed an extensive comparison between

190 MINING TEXT DATA

the bernoulli and the multinomial models on different corpora, and the
following conclusions were presented:

The multi-variate Bernoulli model can sometimes perform better
than the multinomial model at small vocabulary sizes.

The multinomial model outperforms the multi-variate Bernoulli
model for large vocabulary sizes, and almost always beats the
multi-variate Bernoulli when vocabulary size is chosen optimally
for both. On the average a 27% reduction in error was reported in
[94].

The afore-mentioned results seem to suggest that the two models may
have different strengths, and may therefore be useful in different scenar-
ios.

5.3 Mixture Modeling for Text Classification

We note that the afore-mentioned Bayes methods simply assume that
each component of the mixture corresponds to the documents belonging
to a class. A more general interpretation is one in which the compo-
nents of the mixture are created by a clustering process, and the class
membership probabilities are modeled in terms of this mixture. Mixture
modeling is typically used for unsupervised (probabilistic) clustering or
topic modeling, though the use of clustering can also help in enhancing
the effectiveness of probabilistic classifiers [86, 103]. These methods are
particularly useful in cases where the amount of training data is limited.
In particular, clustering can help in the following ways:

The Bayes method implicitly estimates the word probabilities
P (ti ∈ T |CT = i) of a large number of terms in terms of their
fractional presence in the corresponding component. This is clearly
noisy. By treating the clusters as separate entities from the classes,
we now only need to relate (a much smaller number of) cluster
membership probabilities to class probabilities. This reduces the
number of parameters and greatly improves classification accuracy
[86].

The use of clustering can help in incorporating unlabeled docu-
ments into the training data for classification. The premise is that
unlabeled data is much more copiously available than labeled data,
and when labeled data is sparse, it should be used in order to assist
the classification process. While such unlabeled documents do not
contain class-specific information, they do contain a lot of informa-
tion about the clustering behavior of the underlying data. This can

A Survey of Text Classification Algorithms 191

be very useful for more robust modeling [103], when the amount
of training data is low. This general approach is also referred to
as co-training [9, 13, 37].

The common characteristic of both the methods [86, 103] is that they
both use a form of supervised clustering for the classification process.
While the goal is quite similar (limited training data), the approach used
for this purpose is quite different. We will discuss both of these methods
in this section.

In the method discussed in [86], the document corpus is modeled with
the use of supervised word clusters. In this case, the k mixture compo-
nents are clusters which are correlated to, but are distinct from the k
groups of documents belonging to the different classes. The main differ-
ence from the Bayes method is that the term probabilities are computed
indirectly by using clustering as an intermediate step. For a sampled
document T , we denote its class label by CT ∈ {1 . . . k}, and its mix-
ture component by MT ∈ {1 . . . k}. The k different mixture components
are essentially word-clusters whose frequencies are generated by using
the frequencies of the terms in the k different classes. This ensures
that the word clusters for the mixture components are correlated to the
classes, but they are not assumed to be drawn from the same distri-
bution. As in the previous case, let us assume that the a document
contains the set of words Q. Then, we would like to estimate the prob-
ability P (T = Q|CT = i) for each class i. An interesting variation of
the work in [86] from the Bayes approach is that it does not attempt
to determine the posterior probability P (CT = i|T = Q). Rather, it
simply reports the class with the highest likelihood P (T = Q|CT = i).
This is essentially equivalent to assuming in the Bayes approach, that
the prior distribution of each class is the same.

The other difference of the approach is in terms of how the value of
P (T = Q|CT = i) is computed. As before, we need to estimate the
value of P (tj ∈ T |CT = i), according to the naive Bayes rule. However,
unlike the standard Bayes classifier, this is done very indirectly with the
use of mixture modeling. Since the mixture components do not directly
correspond to the class, this term can only be estimated by summing up
the expected value over all the mixture components:

P (tj ∈ T |CT = i) =

k∑
s=1

P (tj ∈ T |MT = s) · P (MT = s|CT = i) (6.13)

The value of P (tj ∈ T |MT = s) is easy to estimate by using the frac-
tional presence of term tj in the sth mixture component. The main
unknown here are the set of model parameters P (MT = s|CT = i).

192 MINING TEXT DATA

Since a total of k classes and k mixture-components are used, this re-
quires the estimation of only k2 model parameters, which is typically
quite modest for a small number of classes. An EM-approach has been
used in [86] in order to estimate this small number of model parameters
in a robust way. It is important to understand that the work in [86] is
an interesting combination of supervised topic modeling (dimensionality
reduction) and Bayes classification after reducing the effective dimen-
sionality of the feature space to a much smaller value by clustering. The
scheme works well because of the use of supervision in the topic mod-
eling process, which ensures that the use of an intermediate clustering
approach does not lose information for classification. We also note that
in this model, the number of mixtures can be made to vary from the
number of classes. While the work in [86] does not explore this direc-
tion, there is really no reason to assume that the number of mixture
components is the same as the number of classes. Such an assumption
can be particularly useful for data sets in which the classes may not be
contiguous in the feature space, and a natural clustering may contain
far more components than the number of classes.

Next, we will discuss the second method [103] which uses unlabeled
data. The approach is [103] uses the unlabeled data in order to improve
the training model. Why should unlabeled data help in classification at
all? In order to understand this point, recall that the Bayes classifica-
tion process effectively uses k mixture components, which are assumed
to be the k different classes. If we had an infinite amount of training
data, it would be possible to create the mixture components, but it
would not be possible to assign labels to these components. However,
the most data-intensive part of modeling the mixture, is that of deter-
mining the shape of the mixture components. The actual assignment
of mixture components to class labels can be achieved with a relatively
small number of class labels. It has been shown in [24] that the ac-
curacy of assigning components to classes increases exponentially with
the number of labeled samples available. Therefore, the work in [103]
designs an EM-approach [36] to simultaneously determine the relevant
mixture model and its class assignment.

It turns out that the EM-approach, as applied to this problem is
quite simple to implement. It has been shown in [103] that the EM-
approach is equivalent to the following iterative methodology. First, a
naive Bayes classifier is constructed by estimating the model param-
eters from the labeled documents only. This is used in order to as-
sign probabilistically-weighted class labels to the unlabeled documents.
Then, the Bayes classifier is re-constructed, except that we also use
the newly labeled documents in the estimation of the underlying model

A Survey of Text Classification Algorithms 193

parameters. We again use this classifier to re-classify the (originally un-
labeled) documents. The process is continually repeated till convergence
is achieved.

The ability to significantly improve the quality of text classification
with a small amount of labeled data, and the use of clustering on a large
amount of unlabeled data has been a recurring theme in the text mining
literature. For example, the method in [122] performs purely unsuper-
vised clustering (with no knowledge of class labels), and then as a final
step assigns all documents in the cluster to the dominant class label of
that cluster (as an evaluation step for the unsupervised clustering process
in terms of its ability in matching clusters to known topics).4 It has been
shown that this approach is able to achieve a comparable accuracy of
matching clusters to topics as a supervised Naive Bayes classifier trained
over a small data set of about 1000 documents. Similar results were ob-
tained in [47] where the quality of the unsupervised clustering process
were shown to comparable to an SVM classifier which was trained over
a small data set.

6. Linear Classifiers

Linear Classifiers are those for which the output of the linear predictor
is defined to be p = A ·X + b, where X = (x1 . . . xn) is the normalized
document word frequency vector,A = (a1 . . . an) is a vector of linear
coefficients with the same dimensionality as the feature space, and b is
a scalar. A natural interpretation of the predictor p = A · X + b in
the discrete scenario (categorical class labels) would be as a separating
hyperplane between the different classes. Support Vector Machines [30,
125] are a form of classifiers which attempt to determine “good” linear
separators between the different classes. One characteristic of linear
classifiers is that they are closely related to many feature transformation
methods (such as the Fisher discriminant), which attempt to use these
directions in order to transform the feature space, and then use other
classifiers on this transformed feature space [51, 56, 99]. Thus, linear
classifiers are intimately related to linear feature transformation methods
as well.

Regression modeling (such as the least squares method) is a more
direct and traditional statistical method for text classification. However,
it is generally used in cases where the target variable to be learned is
numerical rather than categorical. A number of methods have been

4In a supervised application, the last step would require only a small number of class labels
in the cluster to be known to determine the dominant label very accurately.

194 MINING TEXT DATA

x

x x

x x

x
x

x

o

o

o

o

o

o

o

o

A
B

C

Figure 6.1. What is the Best Separating Hyperplane?

proposed in the literature for adapting such methods to the case of
text data classification [134]. A comparison of different linear regression
techniques for classificationm including SVM, may be found in [138].

Finally, simple neural networks are also a form of linear classifiers,
since the function computed by a set of neurons is essentially linear. The
simplest form of neural network, known as the perceptron (or single layer
network) are essentially designed for linear separation, and work well for
text. However, by using multiple layers of neurons, it is also possible
to generalize the approach for non-linear separation. In this section, we
will discuss the different linear methods for text classification.

6.1 SVM Classifiers

Support-vector machines were first proposed in [30, 124] for numeri-
cal data. The main principle of SVMs is to determine separators in the
search space which can best separate the different classes. For example,
consider the example illustrated in Figure 6.1, in which we have two
classes denoted by ’x’ and ’o’ respectively. We have denoted three differ-
ent separating hyperplanes, which are denoted by A, B, and C respec-
tively. It is evident that the hyperplane A provides the best separation
between the different classes, because the normal distance of any of the
data points from it is the largest. Therefore, the hyperplane A represents
the maximum margin of separation. We note that the normal vector to
this hyperplane (represented by the arrow in the figure) is a direction in
the feature space along which we have the maximum discrimination. One
advantage of the SVM method is that since it attempts to determine the
optimum direction of discrimination in the feature space by examining
the appropriate combination of features, it is quite robust to high dimen-

A Survey of Text Classification Algorithms 195

sionality. It has been noted in [64] that text data is ideally suited for
SVM classification because of the sparse high-dimensional nature of text,
in which few features are irrelevant, but they tend to be correlated with
one another and generally organized into linearly separable categories.
We note that it is not necessary to use a linear function for the SVM
classifier. Rather, with the kernel trick [6], SVM can construct a non-
linear decision surface in the original feature space by mapping the data
instances non-linearly to an inner product space where the classes can be
separated linearly with a hyperplane. However, in practice, linear SVM
is used most often because of their simplicity and ease of interpretabil-
ity. The first set of SVM classifiers, as adapted to the text domain were
proposed in [64–66]. A deeper theoretical study of the SVM method has
been provided in [67]. In particular, it has been shown why the SVM
classifier is expected to work well under a wide variety of circumstances.
This has also been demonstrated experimentally in a few different sce-
narios. For example, the work in [41] applied the method to email data
for classifying it as spam or non-spam data. It was shown that the SVM
method provides much more robust performance as compared to many
other techniques such as boosting decision trees, the rule based RIPPER
method, and the Rocchio method. The SVM method is flexible and can
easily be combined with interactive user-feedback methods [107].

We note that the problem of finding the best separator is essentially
an optimization problem, which can typically be reduced to a Quadratic
Programming problem. For example, many of these methods use New-
ton’s method for iterative minimization of a convex function. This can
sometimes be slow, especially for high dimensional domains such as text
data. It has been shown [43] that by breaking a large Quadratic Pro-
gramming problem (QP problem) to a set of smaller problems, an effi-
cient solution can be derived for the task. The SVM approach has also
been used successfully [44] in the context of a hierarchical organization
of the classes, as often occurs in web data. In this approach, a different
classifier is built at different positions of the hierarchy.

The SVM classifier has also been shown to be useful in large scale
scenarios in which a large amount of unlabeled data and a small amount
of labeled data is available [120]. This is essentially a semi-supervised
approach because of its use of unlabeled data in the classification process.
This techniques is also quite scalable because of its use of a number of
modified quasi-newton techniques, which tend to be efficient in practice.

196 MINING TEXT DATA

6.2 Regression-Based Classifiers

Regression modeling is a method which is commonly used in order to
learn the relationships between real-valued attributes. Typically, these
methods are designed for real valued attributes, as opposed to binary
attributes. This is however not an impediment to its use in classification,
because the binary value of a class may be treated as a rudimentary
special case of a real value, and some regression methods such as logistic
regression can also naturally model discrete response variables.

An early application of regression to text classification is the Linear
Least Squares Fit (LLSF) method [134], which works as follows. Suppose
the predicted class label be pi = A · Xi + b, and yi is known to be the
true class label, then our aim is to learn the values of A and b, such
that the Linear Least Squares Fit (LLSF)

∑n
i=1(pi − yi)

2 is minimized.
In practice, the value of b is set to 0 for the learning process. let P be
1 × n vector of binary values indicating the binary class to which the
corresponding class belongs. Thus, if X be the the n × d term-matrix,
then we wish to determine the 1 × d vector of regression coefficients
A for which ||A · XT − P || is minimized, where || · || represents the
Froebinus norm. The problem can be easily generalized from the binary
class scenario to the multi-class scenario with k classes, by using P as a
k × n matrix of binary values. In this matrix, exactly one value in each
column is 1, and the corresponding row identifier represents the class to
which that instance belongs. Similarly, the set A is a k× d vector in the
multi-class scenario. The LLSF method has been compared to a variety
of other methods [132, 134, 138], and has been shown to be very robust
in practice.

A more natural way of modeling the classification problem with re-
gression is the logistic regression classifier [102], which differs from the
LLSF method in that the objective function to be optimized is the like-
lihood function. Specifically, instead of using pi = A ·Xi + b directly to
fit the true label yi, we assume that the probability of observing label
yi is:

p(C = yi|Xi) =
exp(A ·Xi + b)

1 + exp(A ·Xi + b).

This gives us a conditional generative model for yi given Xi. Putting it
in another way, we assume that the logit transformation of p(C = yi|Xi)
can be modeled by the linear combination of features of the instance Xi,
i.e.,

log
p(C = yi|Xi)

1− p(C = yi|Xi)
= A ·Xi + b.

A Survey of Text Classification Algorithms 197

Thus logistic regression is also a linear classifier as the decision boundary
is determined by a linear function of the features. In the case of binary
classification, p(C = yi|Xi) can be used to determine the class label
(e.g., using a threshold of 0.5). In the case of multi-class classification,
we have p(C = yi|Xi) ∝ exp(A · Xi + b), and the class label with the
highest value according to p(C = yi|Xi) would be assigned to Xi. Given
a set of training data points {(X1, yi), ...(Xn, yn)}, the logistic regres-
sion classifier can be trained by choosing parameters A to maximize the
conditional likelihood

∏n
i=1 p(yi|Xi).

In some cases, the domain knowledge may be of the form, where
some sets of words are more important than others for a classification
problem. For example, in a classification application, we may know that
certain domain-words (Knowledge Words (KW)) may be more important
to classification of a particular target category than other words. In
such cases, it has been shown [35] that it may be possible to encode
such domain knowledge into the logistic regression model in the form
of prior on the model parameters and use Bayesian estimation of model
parameters.

It is clear that the regression classifiers are extremely similar to the
SVM model for classification. Indeed, since LLSF, Logistic Regression,
and SVM are all linear classifiers, they are thus identical at a concep-
tual level; the main difference among them lies in the details of the
optimization formulation and implementation. As in the case of SVM
classifiers, training a regression classifier also requires an expensive opti-
mization process. For example, fitting LLSF requires expensive matrix
computations in the form of a singular value decomposition process.

6.3 Neural Network Classifiers

The basic unit in a neural network is a neuron or unit. Each unit
receives a set of inputs, which are denoted by the vector Xi, which in
this case, correspond to the term frequencies in the ith document. Each
neuron is also associated with a set of weights A, which are used in
order to compute a function f(·) of its inputs. A typical function which
is often used in the neural network is the linear function as follows:

pi = A ·Xi (6.14)

Thus, for a vector Xi drawn from a lexicon of d words, the weight vector
A should also contain d elements. Now consider a binary classification
problem, in which all labels are drawn from {+1,−1}. We assume that
the class label of Xi is denoted by yi. In that case, the sign of the
predicted function pi yields the class label.

198 MINING TEXT DATA

x

x x

x x

x
x

x

o

o

o

o

o

o

o

o
A

x

o

o

Figure 6.2. The sign of the projection onto the weight vector A yields the class label

In order to illustrate this point, let us consider a simple example in
a 2-dimensional feature space, as illustrated in Figure 6.2. In this case,
we have illustrated two different classes, and the plane corresponding to
Ax = 0 is illustrated in the same figure. It is evident that the sign of
the function A ·Xi yields the class label. Thus, the goal of the approach
is to learn the set of weights A with the use of the training data. The
idea is that we start off with random weights and gradually update them
when a mistake is made by applying the current function on the training
example. The magnitude of the update is regulated by a learning rate μ.
This forms the core idea of the perceptron algorithm, which is as follows:

Perceptron Algorithm
Inputs: Learning Rate: μ

Training Data (Xi, yi) ∀i ∈ {1 . . . n}
Initialize weight vectors in A to 0 or small random numbers
repeat
Apply each training data to the neural network to check if the

sign of A ·Xi matches yi;
if sign of A ·Xi does not match yi, then

update weights A based on learning rate μ
until weights in A converge

The weights in A are typically updated (increased or decreased) propor-
tionally to μ ·Xi, so as to reduce the direction of the error of the neuron.
We further note that many different update rules have been proposed
in the literature. For example, one may simply update each weight by
μ, rather than by μ · Xi. This is particularly possible in domains such

A Survey of Text Classification Algorithms 199

x

x

x

x

oo

o
o

oxo

o

o

x

x

o

o
o o

o
ox

Figure 6.3. Multi-Layered Neural Networks for Nonlinear Separation

as text, in which all feature values take on small non-negative values of
relatively similar magnitude. A number of implementations of neural
network methods for text data have been studied in [34, 90, 101, 117,
129].

A natural question arises, as to how a neural network may be used,
if all the classes may not be neatly separated from one another with
a linear separator, as illustrated in Figure 6.2. For example, in Figure
6.3, we have illustrated an example in which the classes may not be
separated with the use of a single linear separator. The use of mul-
tiple layers of neurons can be used in order to induce such non-linear
classification boundaries. The effect of such multiple layers is to induce
multiple piece-wise linear boundaries, which can be used to approximate
enclosed regions belonging to a particular class. In such a network, the
outputs of the neurons in the earlier layers feed into the neurons in the
later layers. The training process of such networks is more complex, as
the errors need to be back-propagated over different layers. Some ex-
amples of such classifiers include those discussed in [75, 110, 126, 132].
However, the general observation [117, 129] for text has been that lin-
ear classifiers generally provide comparable results to non-linear data,
and the improvements of non-linear classification methods are relatively
small. This suggests that the additional complexity of building more in-
volved non-linear models does not pay for itself in terms of significantly
better classification.

6.4 Some Observations about Linear Classifiers

While the different linear classifiers have been developed indepen-
dently from one another in the research literature, they are surprisingly
similar at a basic conceptual level. Interestingly, these different lines of
work have also resulted in a number of similar conclusions in terms of

200 MINING TEXT DATA

the effectiveness of the different classifiers. We note that the main dif-
ference between the different classifiers is in terms of the details of the
objective function which is optimized, and the iterative approach used
in order to determine the optimum direction of separation. For exam-
ple, the SVM method uses a Quadratic Programming (QP) formulation,
whereas the LLSF method uses a closed-form least-squares formulation.
On the other hand, the perceptron method does not try to formulate
a closed-form objective function, but works with a softer iterative hill
climbing approach. This technique is essentially inherited from the it-
erative learning approach used by neural network algorithms. However,
its goal remains quite similar to the other two methods. Thus, the differ-
ences between these methods are really at a detailed level, rather than
a conceptual level, in spite of their very different research origins.

Another general observation about these methods is that all of them
can be implemented with non-linear versions of their classifiers. For ex-
ample, it is possible to create non-linear decision surfaces with the SVM
classifier, just as it is possible to create non-linear separation boundaries
by using layered neurons in a neural network [132]. However, the general
consensus has been that the linear versions of these methods work very
well, and the additional complexity of non-linear classification does not
tend to pay for itself, except for some special data sets. The reason for
this is perhaps because text is a high dimensional domain with highly
correlated features and small non-negative values on sparse features.
For example, it is hard to easily create class structures such as that in-
dicated in Figure 6.3 for a sparse domain such as text containing only
small non-negative values on the features. On the other hand, the high
dimensional nature of correlated text dimensions is especially suited to
classifiers which can exploit the redundancies and relationships between
the different features in separating out the different classes. Common
text applications have generally resulted in class structures which are
linearly separable over this high dimensional domain of data. This is
one of the reasons that linear classifiers have shown an unprecedented
success in text classification.

7. Proximity-based Classifiers

Proximity-based classifiers essentially use distance-based measures in
order to perform the classification. The main thesis is that documents
which belong to the same class are likely to be close to one another
based on similarity measures such as the dot product or the cosine metric
[115]. In order to perform the classification for a given test instance, two
possible methods can be used:

A Survey of Text Classification Algorithms 201

We determine the k-nearest neighbors in the training data to the
test instance. The majority (or most abundant) class from these k
neighbors are reported as the class label. Some examples of such
methods are discussed in [25, 54, 134]. The choice of k typically
ranges between 20 and 40 in most of the afore-mentioned work,
depending upon the size of the underlying corpus.

We perform training data aggregation during pre-processing, in
which clusters or groups of documents belonging to the same class
are created. A representative meta-document is created from each
group. The same k-nearest neighbor approach is applied as dis-
cussed above, except that it is applied to this new set of meta-
documents (or generalized instances [76]) rather than to the orig-
inal documents in the collection. A pre-processing phase of sum-
marization is useful in improving the efficiency of the classifier, be-
cause it significantly reduces the number of distance computations.
In some cases, it may also boost the accuracy of the technique, es-
pecially when the data set contains a large number of outliers.
Some examples of such methods are discussed in [55, 76, 109].

A method for performing nearest neighbor classification in text data
is the WHIRL method discussed in [25]. The WHIRL method is es-
sentially a method for performing soft similarity joins on the basis of
text attributes. By soft similarity joins, we refer to the fact that the
two records may not be exactly the same on the joined attribute, but a
notion of similarity used for this purpose. It has been observed in [25]
that any method for performing a similarity-join can be adapted as a
nearest neighbor classifier, by using the relevant text documents as the
joined attributes.

One observation in [134] about nearest neighbor classifiers was that
feature selection and document representation play an important part
in the effectiveness of the classification process. This is because most
terms in large corpora may not be related to the category of interest.
Therefore, a number of techniques were proposed in [134] in order to
learn the associations between the words and the categories. These
are then used to create a feature representation of the document, so
that the nearest neighbor classifier is more sensitive to the classes in
the document collection. A similar observation has been made in [54],
in which it has been shown that the addition of weights to the terms
(based on their class-sensitivity) significantly improves the underlying
classifier performance. The nearest neighbor classifier has also been
extended to the temporally-aware scenario [114], in which the timeliness
of a training document plays a role in the model construction process.

202 MINING TEXT DATA

In order to incorporate such factors, a temporal weighting function has
been introduced in [114], which allows the importance of a document to
gracefully decay with time.

For the case of classifiers which use grouping techniques, the most
basic among such methods is that proposed by Rocchio in [109]. In this
method, a single representative meta-document is constructed from each
of the representative classes. For a given class, the weight of the term tk
is the normalized frequency of the term tk in documents belonging to that
class, minus the normalized frequency of the term in documents which
do not belong to that class. Specifically, let fk

p be the expected weight of
term tk in a randomly picked document belonging to the positive class,
and fk

n be the expected weight of term tk in a randomly picked document
belonging to the negative class. Then, for weighting parameters αp and
αn, the weight fk

rocchio is defined as follows:

fk
rocchio = αp · fk

p − αn · fk
n (6.15)

The weighting parameters αp and αn are picked so that the positive
class has much greater weight as compared to the negative class. For
the relevant class, we now have a vector representation of the terms
(f1

rocchio, f
2
rocchio . . . f

n
rocchio). This approach is applied separately to each

of the classes, in order to create a separate meta-document for each class.
For a given test document, the closest meta-document to the test doc-
ument can be determined by using a vector-based dot product or other
similarity metric. The corresponding class is then reported as the rele-
vant label. The main distinguishing characteristic of the Rocchio method
is that it creates a single profile of the entire class. This class of methods
is also referred to as the Rocchio framework. The main disadvantage of
this method is that if a single class occurs in multiple disjoint clusters
which are not very well connected in the data, then the centroid of these
examples may not represent the class behavior very well. This is likely
to be a source of inaccuracy for the classifier. The main advantage of
this method is its extreme simplicity and efficiency; the training phase is
linear in the corpus size, and the number of computations in the testing
phase are linear to the number of classes, since all the documents have
already been aggregated into a small number of classes. An analysis of
the Rocchio algorithm, along with a number of different variations may
be found in [64].

In order to handle the shortcomings of the Rocchio method, a number
of classifiers have also been proposed [1, 14, 55, 76], which explicitly
perform the clustering of each of the classes in the document collection.
These clusters are used in order to generate class-specific profiles. These
profiles are also referred to as generalized instances in [76]. For a given

A Survey of Text Classification Algorithms 203

test instance, the label of the closest generalized instance is reported by
the algorithm. The method in [14] is also a centroid-based classifier, but
is specifically designed for the case of text documents. The work in [55]
shows that there are some advantages in designing schemes in which the
similarity computations take account of the dependencies between the
terms of the different classes.

We note that the nearest neighbor classifier can be used in order to
generate a ranked list of categories for each document. In cases, where a
document is related to multiple categories, these can be reported for the
document, as long as a thresholding method is available. The work in
[136] studies a number of thresholding strategies for the k-nearest neigh-
bor classifier. It has also been suggested in [136] that these thresholding
strategies can be used to understand the thresholding strategies of other
classifiers which use ranking classifiers.

8. Classification of Linked and Web Data

In recent years, the proliferation of the web and social network tech-
nologies has lead to a tremendous amount of document data, which is
expressed in the form of linked networks. The simplest example of this is
the web, in which the documents are linked to one another with the use
of hyper-links. Social networks can also be considered a noisy example
of such data, because the comments and text profiles of different users
are connected to one another through a variety of links. Linkage infor-
mation is quite relevant to the classification process, because documents
of similar subjects are often linked together. This observation has been
used widely in the collective classification literature [12], in which a sub-
set of network nodes are labeled, and the remaining nodes are classified
on the basis of the linkages among the nodes.

In general, a content-based network may be denoted byG = (N,A,C),
where N is the set of nodes, A is the set of edges between the nodes,
and C is a set of text documents. Each node in N corresponds to a
text document in C, and it is possible for a document to be the empty,
when the corresponding node does not contain any content. A subset of
the nodes in N are labeled. This corresponds to the training data. The
classification problem in this scenario is to determine the labels of the
remaining nodes with the use of the training data. It is clear that both
the content and structure can play a useful and complementary role in
the classification process.

An interesting method for combining linkage and content information
for classification was discussed in [20]. In this paper, a hypertext cate-
gorization method was proposed, which uses the content and labels of

204 MINING TEXT DATA

neighboring web pages for the classification process. When the labels of
all the nearest neighbors are available, then a Bayesian method can be
adapted easily for classification purposes. Just as the presence of a word
in a document can be considered a Bayesian feature for a text classifier,
the presence of a link between the target page, and a page (for which
the label is known) can be considered a feature for the classifier. The
real challenge arises when the labels of all the nearest neighbors are not
available. In such cases, a relaxation labeling method was proposed in
order to perform the classification. Two methods have been proposed in
this work:

Fully Supervised Case of Radius one Enhanced Linkage
Analysis: In this case, it is assumed that all the neighboring class
labels are known. In such a case, a Bayesian approach is utilized
in order to treat the labels on the nearest neighbors as features for
classification purposes. In this case, the linkage information is the
sole information which is used for classification purposes.

When the class labels of the nearest neighbors are not
known: In this case, an iterative approach is used for combining
text and linkage based classification. Rather than using the pre-
defined labels (which are not available), we perform a first labeling
of the neighboring documents with the use of document content.
These labels are then used to classify the label of the target doc-
ument, with the use of both the local text and the class labels of
the neighbors. This approach is used iteratively for re-defining the
labels of both the target document and its neighbors until conver-
gence is achieved.

The conclusion from the work in [20] is that a combination of text and
linkage based classification always improves the accuracy of a text clas-
sifier. Even when none of the neighbors of the document have known
classes, it seemed to be always beneficial to add link information to
the classification process. When the class labels of all the neighbors
are known, then the advantages of using the scheme seem to be quite
significant.

An additional idea in the paper is that of the use of bridges in order
to further improve the classification accuracy. The core idea in the use
of a bridge is the use of 2-hop propagation for link-based classification.
The results with the use of such an approach are somewhat mixed, as
the accuracy seems to reduce with an increasing number of hops. The
work in [20] shows results on a number of different kinds of data sets
such as the Reuters database, US patent database, and Yahoo!. Since
the Reuters database contains the least amount of noise, and pure text

A Survey of Text Classification Algorithms 205

classifiers were able to do a good job. On the other hand, the US patent
database and the Yahoo! database contain an increasing amount of noise
which reduces the accuracy of text classifiers. An interesting observa-
tion in [20] was that a scheme which simply absorbed the neighbor text
into the current document performed significantly worse than a scheme
which was based on pure text-based classification. This is because there
are often significant cross-boundary linkages between topics, and such
linkages are able to confuse the classifier. A publicly available implemen-
tation of this algorithm may be found in the NetKit tool kit available in
[92].

Another relaxation labeling method for graph-based document clas-
sification is proposed in [4]. In this technique, the probability that the
end points of a link take on a particular pair of class labels is quanti-
fied. We refer to this as the link-class pair probability. The posterior
probability of classification of a node T into class i is expressed as sum
of the probabilities of pairing all possible class labels of the neighbors
of T with class label i. We note a significant percentage of these (ex-
ponential number of) possibilities are pruned, since only the currently
most probable5 labelings are used in this approach. For this purpose,
it is assumed that the class labels of the different neighbors of T (while
dependent on T) are independent of each other. This is similar to the
naive assumption, which is often used in Bayes classifiers. Therefore, the
probability for a particular combination of labels on the neighbors can
be expressed as the product of the corresponding link-class pair proba-
bilities. The approach starts off with the use of a standard content-based
Bayes or SVM classifier in order to assign the initial labels to the nodes.
Then, an iterative approach is used to refine the labels, by using the
most probably label estimations from the previous iteration in order to
refine the labels in the current iteration. We note that the link-class pair
probabilities can be estimated as the smoothed fraction of edges in the
last iteration which contain a particular pair of classes as the end points
(hard labeling), or it can also be estimated as the average product of
node probabilities over all edges which take on that particular class pair
(soft labeling). This approach is repeated to convergence.

Another method which uses a naive Bayes classifier to enhance link-
based classification is proposed in [104]. This method incrementally
assigns class labels, starting off with a temporary assignment and then
gradually making them permanent. The initial class assignment is based
on a simple Bayes expression based on both the terms and links in the

5In the case of hard labeling, the single most likely labeling is used, whereas in the case of
soft labeling, a small set of possibilities is used.

206 MINING TEXT DATA

document. In the final categorization, the method changes the term
weights for Bayesian classification of the target document with the terms
in the neighbor of the current document. This method uses a broad
framework which is similar to that in [20], except that it differentiates
between the classes in the neighborhood of a document in terms of their
influence on the class label of the current document. For example, docu-
ments for which the class label was either already available in the training
data, or for which the algorithm has performed a final assignment, have
a different confidence weighting factor than those documents for which
the class label is currently temporarily assigned. Similarly, documents
which belong to a completely different subject (based on content) are also
removed from consideration from the assignment. Then, the Bayesian
classification is performed with the re-computed weights, so that the
document can be assigned a final class label. By using this approach the
technique is able to compensate for the noise and inconsistencies in the
link structures among different documents.

One major difference between the work in [20] and [104], is that the
former is focussed on using link information in order to propagate the
labels, whereas the latter attempts to use the content of the neighboring
pages. Another work along this direction, which uses the content of the
neighboring pages more explicitly is proposed in [105]. In this case, the
content of the neighboring pages is broken up into different fields such
as titles, anchor text, and general text. The different fields are given
different levels of importance, which is learned during the classification
process. It was shown in [105] that the use of title fields and anchor
fields is much more relevant than the general text. This accounts for
much of the accuracy improvements demonstrated in [105].

The work in [2] proposes a method for dynamic classification in text
networks with the use of a random-walk method. The key idea in the
work is to transform the combination of structure and content in the
network into a pure network containing only content. Thus, we trans-
form the original network G = (N,A,C) into an augmented network
GA = (N ∪Nc, A∪Ac), where Nc and Ac are an additional set of nodes
and edges added to the original network. Each node in Nc corresponds
to a distinct word in the lexicon. Thus, the augmented network contains
the original structural nodes N , and a new set of word nodes Nc. The
added edges in Ac are undirected edges added between the structural
nodes N and the word nodes Nc. Specifically, an edge (i, j) is added
to Ac, if the word i ∈ Nc occurs in the text content corresponding to
the node j ∈ N . Thus, this network is semi-bipartite, in that there are
no edges between the different word nodes. An illustration of the semi-
bipartite content-structure transformation is provided in Figure 6.4.

A Survey of Text Classification Algorithms 207

1

2

3

4

STRUCTURAL NODES

WORD NODES

DASHED LINES => WORD PRESENCE IN NODES

Figure 6.4. The Semi-bipartite Transformation

It is important to note that once such a transformation has been
performed, any of the collective classification methods [12] can be applied
to the structural nodes. In the work in [2], a random-walk method
has been used in order to perform the collective classification of the
underlying nodes. In this method, repeated random walks are performed
starting at the unlabeled nodes which need to be classified. The random
walks are defined only on the structural nodes, and each hop may either
be a structural hop or a content hop. We perform l different random
walks, each of which contains h nodes. Thus, a total of l · h nodes
are encountered in the different walks. The class label of this node
is predicted to be the label with the highest frequency of presence in
the different l · h nodes encountered in the different walks. The error
of this random walk-based sampling process has been bounded in [12].
In addition, the method in [12] can be adapted to dynamic content-
based networks, in which the nodes, edges and their underlying content
continuously evolve over time. The method in [2] has been compared
to that proposed in [18] (based on the implementation in [92]), and it
has been shown that the classification methods of [12] are significantly
superior.

Another method for classification of linked text data is discussed in
[139]. This method designs two separate regularization conditions; one
is for the text-only classifier (also referred to as the local classifier), and

208 MINING TEXT DATA

the other is for the link information in the network structure. These reg-
ularizers are expressed in the terms of the underlying kernels; the link
regularizer is related to the standard graph regularizer used in the ma-
chine learning literature, and the text regularizer is expressed in terms
of the kernel gram matrix. These two regularization conditions are com-
bined in two possible ways. One can either use linear combinations of
the regularizers, or linear combinations of the associated kernels. It
was shown in [139] that both combination methods perform better than
either pure structure-based or pure text-based methods. The method us-
ing a linear combination of regularizers was slightly more accurate and
robust than the method which used a linear combination of the kernels.

A method in [32] designs a classifier which combines a Naive Bayes
classifier (on the text domain), and a rule-based classifier (on the struc-
tural domain). The idea is to invent a set of predicates, which are
defined in the space of links, pages and words. A variety of predicates
(or relations) are defined depending upon the presence of the word in
a page, linkages of pages to each other, the nature of the anchor text
of the hyperlink, and the neighborhood words of the hyperlink. These
essentially encode the graph structure of the documents in the form of
boolean predicates, and can also be used to construct relational learners.
The main contribution in [32] is to combine the relational learners on the
structural domain with the Naive Bayes approach in the text domain.
We refer the reader to [32, 33] for the details of the algorithm, and the
general philosophy of such relational learners.

One of the interesting methods for collective classification in the con-
text of email networks was proposed in [23]. The technique in [23] is
designed to classify speech acts in email. Speech acts essentially char-
acterize, whether an email refers to a particular kind of action (such as
scheduling a meeting). It has been shown in [23] that the use of se-
quential thread-based information from the email is very useful for the
classification process. An email system can be modeled as a network
in several ways, one of which is to treat an email as a node, and the
edges as the thread relationships between the different emails. In this
sense, the work in [23] devises a network-based mining procedure which
uses both the content and the structure of the email network. However,
this work is rather specific to the case of email networks, and it is not
clear whether the technique can be adapted (effectively) to more general
networks.

A different line of solutions to such problems, which are defined on
a heterogeneous feature space is to use latent space methods in order
to simultaneously homogenize the feature space, and also determine the
latent factors in the underlying data. The resulting representation can

A Survey of Text Classification Algorithms 209

be used in conjunction with any of the text classifiers which are designed
for latent space representations. A method in [140] uses a matrix factor-
ization approach in order to construct a latent space from the underlying
data. Both supervised and unsupervised methods were proposed for con-
structing the latent space from the underlying data. It was then shown
in [140] that this feature representation provides more accurate results,
when used in conjunction with an SVM-classifier.

Finally, a method for web page classification is proposed in [119]. This
method is designed for using intelligent agents in web page categoriza-
tion. The overall approach relies on the design of two functions which
correspond to scoring web pages and links respectively. An advice lan-
guage is created, and a method is proposed for mapping advice to neural
networks. It is has been shown in [119] how this general purpose system
may be used in order to find home pages on the web.

9. Meta-Algorithms for Text Classification

Meta-algorithms play an important role in classification strategies be-
cause of their ability to enhance the accuracy of existing classification
algorithms by combining them, or making a general change in the differ-
ent algorithms to achieve a specific goal. Typical examples of classifier
meta-algorithms include bagging, stacking and boosting [42]. Some of
these methods change the underlying distribution of the training data,
others combine classifiers, and yet others change the algorithms in order
to satisfy specific classification criteria. We will discuss these different
classes of methods in this section.

9.1 Classifier Ensemble Learning

In this method, we use combinations of classifiers in conjunction with
a voting mechanism in order to perform the classification. The idea is
that since different classifiers are susceptible to different kinds of over-
training and errors, a combination classifier is likely to yield much more
robust results. This technique is also sometimes referred to as stacking
or classifier committee construction.

Ensemble learning has been used quite frequently in text categoriza-
tion. Most methods simply use weighted combinations of classifier out-
puts (either in terms of scores or ranks) in order to provide the final
classification result. For example, the work by Larkey and Croft [79]
used weighted linear combinations of the classifier scores or ranks. The
work by Hull [60] used linear combinations of probabilities for the same
goal. A linear combination of the normalized scores was used for classi-
fication [137]. The work in [87] used classifier selection techniques and

210 MINING TEXT DATA

voting in order to provide the final classification result. Some examples
of such voting and selection techniques are as follows:

In a binary-class application, the class label which obtains the
majority vote is reported as the final result.

For a given test instance, a specific classifier is selected, depending
upon the performance of the classifier which are closest to that
test instance.

A weighted combination of the results from the different classifiers
are used, where the weight is regulated by the performance of
the classifier on validation instances which are most similar to the
current test instance.

The last two methods above try to select the final classification in a
smarter way by discriminating between the performances of the clas-
sifiers in different scenarios. The work by [77] used category-averaged
features in order to construct a different classifier for each category.

The major challenge in ensemble learning is to provide the appropriate
combination of classifiers for a particular scenario. Clearly, this combi-
nation can significantly vary with the scenario and the data set. In order
to achieve this goal, the method in [10] proposes a method for proba-
bilistic combination of text classifiers. The work introduces a number of
variables known as reliability variables in order to regulate the impor-
tance of the different classifiers. These reliability variables are learned
dynamically for each situation, so as to provide the best classification.

9.2 Data Centered Methods: Boosting and
Bagging

While ensemble techniques focus on combining different classifiers,
data-centered methods such as boosting and bagging typically focus on
training the same classifier on different parts of the training data in order
to create different models. For a given test instance, a combination of the
results obtained from the use of these different models is reported. An-
other major difference between ensemble-methods and boosting methods
is that the training models in a boosting method are not constructed in-
dependently, but are constructed sequentially. Specifically, after i classi-
fiers are constructed, the (i+1)th classifier is constructed on those parts
of the training data which the first i classifiers are unable to accurately
classify. The results of these different classifiers are combined together
carefully, where the weight of each classifier is typically a function of
its error rate. The most well known meta-algorithm for boosting is the

A Survey of Text Classification Algorithms 211

AdaBoost algorithm [48]. Such boosting algorithms have been applied to
a variety of scenarios such as decision tree learners, rule-based systems,
and Bayesian classifiers [49, 61, 73, 100, 116, 118].

We note that boosting is also a kind of ensemble learning methodology,
except that we train the same model on different subsets of the data
in order to create the ensemble. One major criticism of boosting is
that in many data sets, some of the training records are noisy, and
a classification model should be resistant to overtraining on the data.
Since the boosting model tends to weight the error-prone examples more
heavily in successive rounds, this can cause the classification process to
be more prone to overfitting. This is particularly noticeable in the case
of noisy data sets. Some recent results have suggested that all convex
boosting algorithms may perform poorly in the presence of noise [91].
These results tend to suggest that the choice of boosting algorithm may
be critical for a successful outcome, depending upon the underlying data
set.

Bagging methods [16] are generally designed to reduce the model over-
fitting error which arises during the learning process. The idea in bag-
ging is to pick bootstrap samples (samples with replacement) from the
underlying collection, and train the classifiers in these samples. The
classification results from these different samples are then combined to-
gether in order to yield the final result. Bagging methods are generally
used in conjunction with decision trees, though these methods can be
used in principle with any kind of classifier. The main criticism of the
bagging method is that it can sometimes lead to a reduction in accuracy
because of the smaller size of each individual training sample. Bagging
is useful only if the model is unstable to small details of the training
algorithm, because it reduces the overfitting error. An example of such
an algorithm would be the decision tree model, which is highly sensitive
to how the higher levels of the tree are constructed in a high dimen-
sional feature space such as text. Bagging methods have not been used
frequently in text classification.

9.3 Optimizing Specific Measures of Accuracy

We note that the use of the absolute classification accuracy is not
the only measure which is relevant to classification algorithms. For ex-
ample, in skewed-class scenarios, as often arise in the context of appli-
cations such as fraud detection, and spam filtering, it is more costly
to misclassify examples of one class than another. For example, while
it may be tolerable to misclassify a few spam emails (thereby allowing
them into the inbox), it is much more undesirable to incorrectly mark

212 MINING TEXT DATA

a legitimate email as spam. Cost-sensitive classification problems also
naturally arise in cases in which one class is more rare than the other,
and it is therefore more desirable to identify the rare examples. In such
cases, it is desirable to optimize the cost-weighted accuracy of the clas-
sification process. We note that many of the broad techniques which
have been designed for non-textual data [40, 42, 45] are also applicable
to text data, because the specific feature representation is not material
to how standard algorithms for modified to the cost-sensitive case. A
good understanding of cost-sensitive classification both for the textual
and non-textual case may be found in [40, 45, 3]. Some examples of
how classification algorithms may be modified in straightforward ways
to incorporate cost-sensitivity are as follows:

In a decision-tree, the split condition at a given node tries to max-
imize the accuracy of its children nodes. In the cost-sensitive case,
the split is engineered to maximize the cost-sensitive accuracy.

In rule-based classifiers, the rules are typically quantified and or-
dered by measures corresponding to their predictive accuracy. In
the cost-sensitive case, the rules are quantified and ordered by their
cost-weighted accuracy.

In Bayesian classifiers, the posterior probabilities are weighted by
the cost of the class for which the prediction is made.

In linear classifiers, the optimum hyperplane separating the classes
is determined in a cost-weighted sense. Such costs can typically
be incorporated in the underlying objective function. For example,
the least-square error in the objective function of the LLSF method
can be weighted by the underlying costs of the different classes.

In a k-nearest neighbor classifier, we report the cost-weighted ma-
jority class among the k nearest neighbors of the test instance.

We note that the use of a cost-sensitive approach is essentially a
change of the objective function of classification, which can also be for-
mulated as an optimization problem. While the standard classification
problem generally tries to optimize accuracy, the cost-sensitive version
tries to optimize a cost-weighted objective function. A more general
approach was proposed in [50] in which a meta-algorithm was proposed
for optimizing a specific figure of merit such as the accuracy, preci-
sion, recall, or F1-measure. Thus, this approach generalizes this class
of methods to any arbitrary objective function, making it essentially an
objective-centered classification method. A generalized probabilistic de-
scent algorithm (with the desired objective function) is used in conjunc-

A Survey of Text Classification Algorithms 213

tion with the classifier of interest in order to derive the class labels of
the test instance. The work in [50] shows the advantages of using the
technique over a standard SVM-based classifier.

10. Conclusions and Summary

The classification problem is one of the most fundamental problems
in the machine learning and data mining literature. In the context of
text data, the problem can also be considered similar to that of clas-
sification of discrete set-valued attributes, when the frequencies of the
words are ignored. The domains of these sets are rather large, as it com-
prises the entire lexicon. Therefore, text mining techniques need to be
designed to effectively manage large numbers of elements with varying
frequencies. Almost all the known techniques for classification such as
decision trees, rules, Bayes methods, nearest neighbor classifiers, SVM
classifiers, and neural networks have been extended to the case of text
data. Recently, a considerable amount of emphasis has been placed on
linear classifiers such as neural networks and SVM classifiers, with the
latter being particularly suited to the characteristics of text data. In re-
cent years, the advancement of web and social network technologies have
lead to a tremendous interest in the classification of text documents con-
taining links or other meta-information. Recent research has shown that
the incorporation of linkage information into the classification process
can significantly improve the quality of the underlying results.

References

[1] C. C. Aggarwal, S. C. Gates, P. S. Yu. On Using Partial Supervi-
sion for Text Categorization, IEEE Transactions on Knowledge and
Data Engineering, 16(2), 245–255, 2004.

[2] C. C. Aggarwal, N. Li. On Node Classification in Dynamic Content-
based Networks, SDM Conference, 2011.

[3] I. Androutsopoulos, J. Koutsias, K. Chandrinos, G. Paliouras, C.
Spyropoulos. An Evaluation of Naive Bayesian Anti-Spam Filtering.
Workshop on Machine Learning in the New Information Age, in
conjunction with ECML Conference, 2000.
http://arxiv.org/PS_cache/cs/pdf/0006/0006013v1.pdf

[4] R. Angelova, G. Weikum. Graph-based text classification: learn
from your neighbors. ACM SIGIR Conference, 2006.

[5] C. Apte, F. Damerau, S. Weiss. Automated Learning of Decision
Rules for Text Categorization, ACM Transactions on Information
Systems, 12(3), pp. 233–251, 1994.

214 MINING TEXT DATA

[6] M. Aizerman, E. Braverman, L. Rozonoer. Theoretical foundations
of the potential function method in pattern recognition learning,
Automation and Remote Control, 25: pp. 821–837, 1964.

[7] L. Baker, A. McCallum. Distributional Clustering of Words for Text
Classification, ACM SIGIR Conference, 1998.

[8] R. Bekkerman, R. El-Yaniv, Y. Winter, N. Tishby. On Feature Dis-
tributional Clustering for Text Categorization. ACM SIGIR Con-
ference, 2001.

[9] S. Basu, A. Banerjee, R. J. Mooney. Semi-supervised Clustering by
Seeding. ICML Conference, 2002.

[10] P. Bennett, S. Dumais, E. Horvitz. Probabilistic Combination of
Text Classifiers using Reliability Indicators: Models and Results.
ACM SIGIR Conference, 2002.

[11] P. Bennett, N. Nguyen. Refined experts: improving classification in
large taxonomies. ACM SIGIR Conference, 2009.

[12] S. Bhagat, G. Cormode, S. Muthukrishnan. Node Classification in
Social Networks, Book Chapter in Social Network Data Analytics,
Ed. Charu Aggarwal, Springer, 2011.

[13] A. Blum, T. Mitchell. Combining labeled and unlabeled data with
co-training. COLT, 1998.

[14] D. Boley, M. Gini, R. Gross, E.-H. Han, K. Hastings, G. Karypis,
V. Kumar, B. Mobasher, J. Moore. Partitioning-based clustering
for web document categorization. Decision Support Systems, Vol.
27, pp. 329–341, 1999.

[15] L. Brieman, J. Friedman, R. Olshen, C. Stone. Classification and
Regression Trees, Wadsworth Advanced Books and Software, CA,
1984.

[16] L. Breiman. Bagging Predictors. Machine Learning, 24(2), pp. 123–
140, 1996.

[17] L. Cai, T. Hofmann. Text categorization by boosting automatically
extracted concepts. ACM SIGIR Conference, 2003.

[18] S. Chakrabarti, S. Roy, M. Soundalgekar. Fast and Accurate Text
Classification via Multiple Linear Discriminant Projections, VLDB
Journal, 12(2), pp. 172–185, 2003.

[19] S. Chakrabarti, B. Dom. R. Agrawal, P. Raghavan. Using taxon-
omy, discriminants and signatures for navigating in text databases,
VLDB Conference, 1997.

[20] S. Chakrabarti, B. Dom, P. Indyk. Enhanced hypertext categoriza-
tion using hyperlinks. ACM SIGMOD Conference, 1998.

A Survey of Text Classification Algorithms 215

[21] S. Chakraborti, R. Mukras, R. Lothian, N. Wiratunga, S. Watt,
D. Harper. Supervised Latent Semantic Indexing using Adaptive
Sprinkling, IJCAI, 2007.

[22] D. Chickering, D. Heckerman, C. Meek. A Bayesian approach for
learning Bayesian networks with local structure. Thirteenth Con-
ference on Uncertainty in Artificial Intelligence, 1997.

[23] V. R. de Carvalho, W. Cohen. On the collective classification of
email ”speech acts”, ACM SIGIR Conference, 2005.

[24] V. Castelli, T. M. Cover. On the exponential value of labeled sam-
ples. Pattern Recognition Letters, 16(1), pp. 105–111, 1995.

[25] W. Cohen, H. Hirsh. Joins that generalize: text classification using
Whirl. ACM KDD Conference, 1998.

[26] W. Cohen, Y. Singer. Context-sensitive learning methods for text
categorization. ACM Transactions on Information Systems, 17(2),
pp. 141–173, 1999.

[27] W. Cohen. Learning rules that classify e-mail. AAAI Conference,
1996.

[28] W. Cohen. Learning with set-valued features. AAAI Conference,
1996.

[29] W. Cooper. Some inconsistencies and misnomers in probabilistic
information retrieval. ACM Transactions on Information Systems,
13(1), pp. 100–111, 1995.

[30] C. Cortes, V. Vapnik. Support-vector networks. Machine Learning,
20: pp. 273–297, 1995.

[31] T. M. Cover, J. A. Thomas. Elements of information theory. New
York: John Wiley and Sons, 1991.

[32] M. Craven, S. Slattery. Relational learning with statistical predicate
invention: Better models for hypertext. Machine Learning, 43: pp.
97–119, 2001.

[33] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K.
Nigam, S. Slattery. Learning to Extract Symbolic Knowledge from
the Worldwide Web. AAAI Conference, 1998.

[34] I. Dagan, Y. Karov, D. Roth. Mistake-driven Learning in Text Cat-
egorization, Proceedings of EMNLP, 1997.

[35] A. Dayanik, D. Lewis, D. Madigan, V. Menkov, A. Genkin. Con-
structing informative prior distributions from domain knowledge in
text classification. ACM SIGIR Conference, 2006.

[36] A. P. Dempster, N.M. Laird, D.B. Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statis-
tical Society, Series B, 39(1): pp. 1–38, 1977.

216 MINING TEXT DATA

[37] F. Denis, A. Laurent. Text Classification and Co-Training from
Positive and Unlabeled Examples, ICML 2003 Workshop: The
Continuum from Labeled to Unlabeled Data. http://www.grappa.
univ-lille3.fr/ftp/reports/icmlws03.pdf.

[38] S. Deerwester, S. Dumais, T. Landauer, G. Furnas, R. Harshman.
Indexing by Latent Semantic Analysis. JASIS, 41(6), pp. 391–407,
1990.

[39] P. Domingos, M. J. Pazzani. On the the optimality of the simple
Bayesian classifier under zero-one loss. Machine Learning, 29(2–3),
pp. 103–130, 1997.

[40] P. Domingos. MetaCost: A General Method for making Classifiers
Cost-Sensitive. ACM KDD Conference, 1999.

[41] H. Drucker, D. Wu, V. Vapnik. Support Vector Machines for Spam
Categorization. IEEE Transactions on Neural Networks, 10(5), pp.
1048–1054, 1999.

[42] R. Duda, P. Hart, W. Stork. Pattern Classification, Wiley Inter-
science, 2000.

[43] S. Dumais, J. Platt, D. Heckerman, M. Sahami. Inductive learn-
ing algorithms and representations for text categorization. CIKM
Conference, 1998.

[44] S. Dumais, H. Chen. Hierarchical Classification of Web Content.
ACM SIGIR Conference, 2000.

[45] C. Elkan. The foundations of cost-sensitive learning, IJCAI Con-
ference, 2001.

[46] R. Fisher. The Use of Multiple Measurements in Taxonomic Prob-
lems. Annals of Eugenics, 7, pp. 179–188, 1936.

[47] R. El-Yaniv, O. Souroujon. Iterative Double Clustering for Unsu-
pervised and Semi-supervised Learning. NIPS Conference, 2002.

[48] Y. Freund, R. Schapire. A decision-theoretic generalization of on-
line learning and an application to boosting. In Proc. Second Eu-
ropean Conference on Computational Learning Theory, pp. 23–37,
1995.

[49] Y. Freund, R. Schapire, Y. Singer, M. Warmuth. Using and combin-
ing predictors that specialize. Proceedings of the 29th Annual ACM
Symposium on Theory of Computing, pp. 334–343, 1997.

[50] S. Gao, W. Wu, C.-H. Lee, T.-S. Chua. A maximal figure-of-merit
learning approach to text categorization. SIGIR Conference, 2003.

[51] R. Gilad-Bachrach, A. Navot, N. Tishby. Margin based feature se-
lection – theory and algorithms. ICML Conference, 2004.

A Survey of Text Classification Algorithms 217

[52] S. Gopal, Y. Yang. Multilabel classification with meta-level features.
ACM SIGIR Conference, 2010.

[53] L. Guthrie, E. Walker. Document Classification by Machine: Theory
and Practice. COLING, 1994.

[54] E.-H. Han, G. Karypis, V. Kumar. Text Categorization using
Weighted-Adjusted k-nearest neighbor classification, PAKDD Con-
ference, 2001.

[55] E.-H. Han, G. Karypis. Centroid-based Document Classification:
Analysis and Experimental Results, PKDD Conference, 2000.

[56] D. Hardin, I. Tsamardinos, C. Aliferis. A theoretical characteriza-
tion of linear SVM-based feature selection. ICML Conference, 2004.

[57] T. Hofmann. Probabilistic latent semantic indexing. ACM SIGIR
Conference, 1999.

[58] P. Howland, M. Jeon, H. Park. Structure Preserving Dimension Re-
duction for Clustered Text Data based on the Generalized Singular
Value Decomposition. SIAM Journal of Matrix Analysis and Appli-
cations, 25(1): pp. 165–179, 2003.

[59] P. Howland, H. Park. Generalizing discriminant analysis using the
generalized singular value decomposition, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 26(8), pp. 995–1006,
2004.

[60] D. Hull, J. Pedersen, H. Schutze. Method combination for document
filtering. ACM SIGIR Conference, 1996.

[61] R. Iyer, D. Lewis, R. Schapire, Y. Singer, A. Singhal. Boosting for
document routing. CIKM Conference, 2000.

[62] M. James. Classification Algorithms, Wiley Interscience, 1985.

[63] D. Jensen, J. Neville, B. Gallagher. Why collective inference im-
proves relational classification. ACM KDD Conference, 2004.

[64] T. Joachims. A Probabilistic Analysis of the Rocchio Algorithm
with TFIDF for Text Categorization. ICML Conference, 1997.

[65] T. Joachims. Text categorization with support vector machines:
learning with many relevant features. ECML Conference, 1998.

[66] T. Joachims. Transductive inference for text classification using sup-
port vector machines. ICML Conference, 1999.

[67] T. Joachims. A Statistical Learning Model of Text Classification for
Support Vector Machines. ACM SIGIR Conference, 2001.

[68] D. Johnson, F. Oles, T. Zhang, T. Goetz. A Decision Tree-based
Symbolic Rule Induction System for Text Categorization, IBM Sys-
tems Journal, 41(3), pp. 428–437, 2002.

218 MINING TEXT DATA

[69] I. T. Jolliffee. Principal Component Analysis. Springer, 2002.

[70] T. Kalt, W. B. Croft. A new probabilistic model of text classification
and retrieval. Technical Report IR-78, University of Massachusetts
Center for Intelligent Information Retrieval, 1996. http://ciir.
cs.umass.edu/publications/index.shtml

[71] G. Karypis, E.-H. Han. Fast Supervised Dimensionality Reduction
with Applications to Document Categorization and Retrieval, ACM
CIKM Conference, 2000.

[72] T. Kawatani. Topic difference factor extraction between two docu-
ment sets and its application to text categorization. ACM SIGIR
Conference, 2002.

[73] Y.-H. Kim, S.-Y. Hahn, B.-T. Zhang. Text filtering by boosting
naive Bayes classifiers. ACM SIGIR Conference, 2000.

[74] D. Koller, M. Sahami. Hierarchically classifying documents with
very few words, ICML Conference, 2007.

[75] S. Lam, D. Lee. Feature reduction for neural network based text
categorization. DASFAA Conference, 1999.

[76] W. Lam, C. Y. Ho. Using a generalized instance set for automatic
text categorization. ACM SIGIR Conference, 1998.

[77] W. Lam, K.-Y. Lai. A meta-learning approach for text categoriza-
tion. ACM SIGIR Conference, 2001.

[78] K. Lang. Newsweeder: Learning to filter netnews. ICML Confer-
ence, 1995.

[79] L. S. Larkey, W. B. Croft. Combining Classifiers in text categoriza-
tion. ACM SIGIR Conference, 1996.

[80] D. Lewis, J. Catlett. Heterogeneous uncertainty sampling for super-
vised learning. ICML Conference, 1994.

[81] D. Lewis, M. Ringuette. A comparison of two learning algorithms
for text categorization. SDAIR, 1994.

[82] D. Lewis. Naive (Bayes) at forty: The independence assumption in
information retrieval. ECML Conference, 1998.

[83] D. Lewis. An Evaluation of Phrasal and Clustered Representations
for the Text Categorization Task, ACM SIGIR Conference, 1992.

[84] D. Lewis, W. Gale. A sequential algorithm for training text classi-
fiers, SIGIR Conference, 1994.

[85] D. Lewis, K. Knowles. Threading electronic mail: A preliminary
study. Information Processing and Management, 33(2), pp. 209–
217, 1997.

A Survey of Text Classification Algorithms 219

[86] H. Li, K. Yamanishi. Document classification using a finite mix-
ture model. Annual Meeting of the Association for Computational
Linguistics, 1997.

[87] Y. Li, A. Jain. Classification of text documents. The Computer
Journal, 41(8), pp. 537–546, 1998.

[88] B. Liu, W. Hsu, Y. Ma. Integrating Classification and Association
Rule Mining. ACM KDD Conference, 1998.

[89] B. Liu, L. Zhang. A Survey of Opinion Mining and Sentiment Anal-
ysis. Book Chapter in Mining Text Data, Ed. C. Aggarwal, C. Zhai,
Springer, 2011.

[90] N. Littlestone. Learning quickly when irrelevant attributes abound:
A new linear-threshold algorithm. Machine Learning, 2: pp. 285–
318, 1988.

[91] P. Long, R. Servedio. Random Classification Noise defeats all Con-
vex Potential Boosters. ICML Conference, 2008.

[92] S. A. Macskassy, F. Provost. Classification in Networked Data: A
Toolkit and a Univariate Case Study, Journal of Machine Learning
Research, Vol. 8, pp. 935–983, 2007.

[93] A. McCallum. Bow: A toolkit for statistical language modeling,
text retrieval, classification and clustering. http://www.cs.cmu.
edu/~mccallum/bow, 1996.

[94] A. McCallum, K. Nigam. A Comparison of Event Models for Naive
Bayes Text Classification. AAAI Workshop on Learning for Text
Categorization, 1998.

[95] A. McCallum, R. Rosenfeld, T. Mitchell, A. Ng. Improving text
classification by shrinkage in a hierarchy of classes. ICML Confer-
ence, 1998.

[96] McCallum, Andrew Kachites. ”MALLET: A Machine Learning for
Language Toolkit.” http://mallet.cs.umass.edu. 2002.

[97] T. M. Mitchell. Machine Learning. WCB/McGraw-Hill, 1997.

[98] T. M. Mitchell. The role of unlabeled data in supervised learning.
Proceedings of the Sixth International Colloquium on Cognitive Sci-
ence, 1999.

[99] D. Mladenic, J. Brank, M. Grobelnik, N. Milic-Frayling. Feature se-
lection using linear classifier weights: interaction with classification
models. ACM SIGIR Conference, 2004.

[100] K. Myers, M. Kearns, S. Singh, M. Walker. A boosting approach
to topic spotting on subdialogues. ICML Conference, 2000.

220 MINING TEXT DATA

[101] H. T. Ng, W. Goh, K. Low. Feature selection, perceptron learn-
ing, and a usability case study for text categorization. ACM SIGIR
Conference, 1997.

[102] A. Y. Ng, M. I. Jordan. On discriminative vs. generative classifiers:
a comparison of logistic regression and naive Bayes. NIPS. pp. 841-
848, 2001.

[103] K. Nigam, A. McCallum, S. Thrun, T. Mitchell. Learning to clas-
sify text from labeled and unlabeled documents. AAAI Conference,
1998.

[104] H.-J. Oh, S.-H. Myaeng, M.-H. Lee. A practical hypertext cat-
egorization method using links and incrementally available class
information. ACM SIGIR Conference, 2000.

[105] X. Qi, B. Davison. Classifiers without borders: incorporating
fielded text from neighboring web pages. ACM SIGIR Conference,
2008.

[106] J. R. Quinlan, Induction of Decision Trees, Machine Learning,
1(1), pp 81–106, 1986.

[107] H. Raghavan, J. Allan. An interactive algorithm for asking and
incorporating feature feedback into support vector machines. ACM
SIGIR Conference, 2007.

[108] S. E. Robertson, K. Sparck-Jones. Relevance weighting of search
terms. Journal of the American Society for Information Science, 27:
pp. 129–146, 1976.

[109] J. Rocchio. Relevance feedback information retrieval. The Smart
Retrieval System- Experiments in Automatic Document Processing,
G. Salton, Ed. Prentice Hall, Englewood Cliffs, NJ, pp 313–323,
1971.

[110] M. Ruiz, P. Srinivasan. Hierarchical neural networks for text cat-
egorization. ACM SIGIR Conference, 1999.

[111] F. Sebastiani. Machine Learning in Automated Text Categoriza-
tion, ACM Computing Surveys, 34(1), 2002.

[112] M. Sahami. Learning limited dependence Bayesian classifiers,
ACM KDD Conference, 1996.

[113] M. Sahami, S. Dumais, D. Heckerman, E. Horvitz. A Bayesian
approach to filtering junk e-mail. AAAI Workshop on Learning for
Text Categorization. Tech. Rep. WS-98-05, AAAI Press. http://
robotics.stanford.edu/users/sahami/papers.html

[114] T. Salles, L. Rocha, G. Pappa, G. Mourao, W. Meira Jr., M.
Goncalves. Temporally-aware algorithms for document classifica-
tion. ACM SIGIR Conference, 2010.

A Survey of Text Classification Algorithms 221

[115] G. Salton. An Introduction to Modern Information Retrieval, Mc
Graw Hill, 1983.

[116] R. Schapire, Y. Singer. BOOSTEXTER: A Boosting-based System
for Text Categorization, Machine Learning, 39(2/3), pp. 135–168,
2000.

[117] H. Schutze, D. Hull, J. Pedersen. A comparison of classifiers and
document representations for the routing problem. ACM SIGIR
Conference, 1995.

[118] R. Shapire, Y. Singer, A. Singhal. Boosting and Rocchio applied
to text filtering. ACM SIGIR Conference, 1998.

[119] J. Shavlik, T. Eliassi-Rad. Intelligent agents for web-based tasks:
An advice-taking approach. AAAI-98 Workshop on Learning for
Text Categorization. Tech. Rep. WS-98-05, AAAI Press, 1998.
http://www.cs.wisc.edu/~shavlik/mlrg/publications.html

[120] V. Sindhwani, S. S. Keerthi. Large scale semi-supervised linear
SVMs. ACM SIGIR Conference, 2006.

[121] N. Slonim, N. Tishby. The power of word clusters for text clas-
sification. European Colloquium on Information Retrieval Research
(ECIR), 2001.

[122] N. Slonim, N. Friedman, N. Tishby. Unsupervised document clas-
sification using sequential information maximization. ACM SIGIR
Conference, 2002.

[123] J.-T. Sun, Z. Chen, H.-J. Zeng, Y. Lu, C.-Y. Shi, W.-Y. Ma. Su-
pervised Latent Semantic Indexing for Document Categorization.
ICDM Conference, 2004.

[124] V. Vapnik. Estimations of dependencies based on statistical data,
Springer, 1982.

[125] V. Vapnik. The Nature of Statistical Learning Theory, Springer,
New York, 1995.

[126] A. Weigand, E. Weiner, J. Pedersen. Exploiting hierarchy in text
catagorization. Information Retrieval, 1(3), pp. 193–216, 1999.

[127] S, M. Weiss, C. Apte, F. Damerau, D. Johnson, F. Oles, T. Goetz,
T. Hampp. Maximizing text-mining performance. IEEE Intelligent
Systems, 14(4), pp. 63–69, 1999.

[128] S. M. Weiss, N. Indurkhya. Optimized Rule Induction, IEEE Exp.,
8(6), pp. 61–69, 1993.

[129] E. Wiener, J. O. Pedersen, A. S. Weigend. A Neural Network Ap-
proach to Topic Spotting. SDAIR, pp. 317–332, 1995.

222 MINING TEXT DATA

[130] G.-R. Xue, D. Xing, Q. Yang, Y. Yu. Deep classification in large-
scale text hierarchies. ACM SIGIR Conference, 2008.

[131] J. Yan, N. Liu, B. Zhang, S. Yan, Z. Chen, Q. Cheng, W. Fan,
W.-Y. Ma. OCFS: optimal orthogonal centroid feature selection for
text categorization. ACM SIGIR Conference, 2005.

[132] Y. Yang, L. Liu. A re-examination of text categorization methods,
ACM SIGIR Conference, 1999.

[133] Y. Yang, J. O. Pederson. A comparative study on feature selection
in text categorization, ACM SIGIR Conference, 1995.

[134] Y. Yang, C.G. Chute. An example-based mapping method for
text categorization and retrieval. ACM Transactions on Informa-
tion Systems, 12(3), 1994.

[135] Y. Yang. Noise Reduction in a Statistical Approach to Text Cat-
egorization, ACM SIGIR Conference, 1995.

[136] Y. Yang. A Study on Thresholding Strategies for Text Categoriza-
tion. ACM SIGIR Conference, 2001.

[137] Y. Yang, T. Ault, T. Pierce. Combining multiple learning strate-
gies for effective cross-validation. ICML Conference, 2000.

[138] J. Zhang, Y. Yang. Robustness of regularized linear classification
methods in text categorization. ACM SIGIR Conference, 2003.

[139] T. Zhang, A. Popescul, B. Dom. Linear prediction models with
graph regularization for web-page categorization, ACM KDD Con-
ference, 2006.

[140] S. Zhu, K. Yu, Y. Chi, Y. Gong. Combining content and link for
classification using matrix factorization. ACM SIGIR Conference,
2007.

