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Abstract. In this survey we review the many faces of the S-lemma, a result about the cor-
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This review is divided into two parts. The first part gives a general overview of the
S-lemma. It starts from the basics, provides three different proofs of the fundamental
result, discusses possible extensions and presents some counterexamples. Some illus-
trative applications from control theory and error estimation are also discussed. This
part is written in a way that enables the majority of the SIAM community—including
those who are not experts on this topic—to understand the concepts and proofs.

The second part, starting with §5, shows how the basic theory is related to various
fields of mathematics: functional analysis, rank-constrained optimization and gener-
alized convexities. This part goes beyond the proofs and demonstrates how the same
result was discovered several times throughout the 60-year history of the S-procedure.
New duality results and further directions are also presented.

PART I

1. Introduction. In this section we expose the basic question of the S-lemma
and provide some historical background.

1.1. Motivation. The fundamental question of the theory of the S-lemma is the
following:

When is a quadratic (in)equality a consequence of other quadratic (in)equalities?

If we ask the same question for linear or general convex (in)equalities then the
Farkas Lemma ([11], Theorem 1.3.1.) and the Farkas Theorem (Theorem 2.1 in this
review, or [72], §6.10) give the answer, respectively. These results essentially state
that a concave inequality is a (logical) consequence of some convex inequalities if
and only if it is a nonnegative linear combination of those convex inequalities and an
identically true inequality. This is important, since it is relatively easy to check if an
inequality is a linear combination of some other inequalities.
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However, this notion is not guaranteed to work in a general setting, as it is
demonstrated by the following example, taken from [11]. Consider the inequalities

u2 ≥ 1(1.1a)
v2 ≥ 1(1.1b)
u ≥ 0(1.1c)
v ≥ 0(1.1d)

then the inequality

uv ≥ 1(1.1e)

is clearly a consequence of those four inequalities. However, taking those four and
the trivially true inequalities (such as 0 > −1, u2 ± 2uv + v2 ≥ 0, etc.) we can not
combine them in a linear way to obtain this consequence. Thus only a fraction of
the logical consequences can be reached using linear combinations. In this survey we
discuss when we can apply this approach to quadratic systems. As it is shown by the
above simple example, it does not work in general, but there are some special cases
when we can answer our question using various methods.

Quadratic inequalities are formed naturally in many areas of theoretical and ap-
plied mathematics. Consider the following examples.
Quadratic intersections: The following problem arises in computer graphics, see

[48] for a standard reference. Let us take two quadratic surfaces represented
by the equations xT Aix + bT

i x + ci = 0, i = 1, 2. How can we decide whether
the two surfaces intersect without actually computing the intersections? Can
we compute the intersection efficiently? How can we do the same for the solid
bodies bounded by the surfaces?

Noise estimation: Level sets for the density function of measurements in Rn with
a Gaussian noise are ellipsoids. Given two such measurements each with a
fixed noise level, we need to find a bound on the noise of their sum. In other
words, we are looking for the smallest ellipsoid that contains the sum of the
two ellipsoids.

Trust Region Problem: A broad range of functions can be efficiently approximated
locally with quadratic functions. The Trust Region Problem is a quadratic
optimization problem with a single quadratic constraint, i.e.,

min xT Ax + bT x + c(1.2a)
‖x− x̂‖2 ≤ α,(1.2b)

where α, c ∈ R, b, x, x̂ ∈ Rn, A ∈ Rn×n. This problem is easily solvable,
methods based on these approximations are widely applied in nonlinear op-
timization, for more details, see [18].

Quadratically Constrained Quadratic Minimization: Finally, we can replace
the norm constraint (1.2b) with a set of general quadratic constraints:

min xT Ax + bT x + c(1.3a)

xT Aix + biT x + ci ≤ 0, i = 1, . . . ,m.(1.3b)

Besides the solvability of this problem it is often necessary to decide whether
the problem is feasible (i.e., whether system (1.3b) is solvable). If the problem
is not feasible then one might require a certificate that proves infeasibility.
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Since this last problem includes integer programming we can not hope for very general
results.

The S-procedure is a frequently used technique originally arising from the stability
analysis of nonlinear systems. Despite being used in practice quite frequently, its
theoretical background is not widely understood. On the other hand, the concept
of the S-procedure is well-known in the optimization community, although not under
this name.

In short terms, the S-procedure is a relaxation method; it tries to solve a system
of quadratic inequalities via a Linear Matrix Inequality (LMI) relaxation. Yakubovich
[78] was the first to give sufficient conditions on when this relaxation is exact, i.e.,
when it is possible to obtain a solution for the original system using the solution of the
LMI; this result is the S-lemma. The advantage we gain is the computational cost:
while solving a general quadratic system can take an exponential amount of work,
LMIs can be solved more efficiently.

1.2. Historical background. The earliest result of this kind is due to Finsler
[26], which was later generalized by Hestenes and McShane [35]. In 1937 Finsler
proved that if A and B are two symmetric matrices and xT Bx = 0 (x 6= 0) implies
xT Ax > 0 then there exists an y ∈ R such that A + yB is positive definite.

On the practical side, this idea was first used probably by Lure’e and Post-
nikov [52] in the 1940s, but at that time there was no well-founded theory behind
the method. The theoretical background was developed some 30 years later by
Yakubovich: in the early 70’s he proved a theorem known as the S-lemma [78, 80] us-
ing an old theoretical result of Dines [22] on the convexity of homogeneous quadratic
mappings. The simplicity of the method allowed rapid advances in control theory.
Later, Megretsky and Treil [54] extended the results to infinite dimensional spaces
giving rise to more general applications. Articles written since then mainly discuss
some new applications, not new extensions to the theory.

Yakubovich himself presented some applications [79], which were followed by
many others [15], including contemporary ones [29, 50], spanning over a broad range of
engineering, financial mathematics and abstract dynamical systems. We will discuss
various applications in §4.

Although the result emerged mainly from practice, Yakubovich himself was aware
of the theoretical implications [27] of the S-lemma. The theoretical line was then
continued by others (see e.g., [15], or recently, [20, 21, 51, 73] but apart from a few
exceptions such as [11, 15, 50] or [43] the results did not reach the control community.
Moreover, to our best knowledge no thorough study presenting all these approaches
has been written so far. The collection of lecture notes by Ben-Tal and Nemirovski [11]
contains some of the ideas explained here, and several aspects of this theory have been
presented in the context of the LMI relaxation of systems of quadratic inequalities.

The term S-method was coined by Aizerman and Gantmacher in their book [1],
but later it changed to S-procedure. The S-method tries to decide the stability of a
system of linear differential equations by constructing a Lyapunov matrix. During the
process an auxiliary matrix S (for stability) is introduced. This construction leads to a
system of quadratic equations (the Lure’e resolving equations, [52]). If that quadratic
system can be solved then a suitable Lyapunov function can be constructed. The
term S-lemma refers to results stating that such a system can be solved under some
conditions; the first such result is due to Yakubovich [78]. In this survey our main
interest is the S-lemma, but we will present an example from control theory in §4.
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1.3. About this survey. In this paper we show how the S-lemma relates to
well known concepts in optimization, relaxation methods and functional analysis.
This survey is structured as follows. In §2 we give three independent proofs for the
S-lemma, illustrating how the original result is connected to more general theories. In
§3 we show some examples and counterexamples, and present other variants of the S-
lemma. Applications from control theory and computational geometry are discussed
in §4.

In the second part we go deeper and investigate three major topics. First, in §5
we discuss a classical topic, the convexity of the numerical range of a linear operator.
Following that, in §6 we present a seemingly different field, rank-constrained optimiza-
tion. In §6.5 we merge the results of these two fields and show the equivalence of the
theories. Finally, in §7 we put the problem in a more general context and show that
the S-lemma is a special case of a duality theorem due to Illés and Kassay [40, 41, 42].

Some miscellaneous topics are then discussed in §8. These topics (trust region
problems, algebraic geometric connections and complexity issues) can not be presented
in full detail due to lack of space. Instead, we briefly summarize their connection to
the S-lemma and indicate directions for further research.

Possible future directions and some open questions are discussed in §9.
We made every effort to make the major sections (§5-7) self-contained, i.e., any

one of them can be skipped depending on the reader’s area of interest. Each of them
starts with a motivation part where we describe how the S-lemma is related to the
selected area, then we summarize the major theoretical results of the field, and finally,
we apply the theory to the problem and conclude the results.

1.4. Notations. Matrices are denoted by capital letters (A,B, . . .), the jth ele-
ment of the ith row is Aij . Vectors are denoted by lowercase Roman letters (u, v, . . .),
the ith component of a vector is of the form ui, while ui is the ith vector in a list.
Vectors are considered to be column vectors, implying that uT v is the scalar or dot
product while uvT is the so-called outer product of two vectors. Sometimes we will
break this convention for typographic reasons, e.g., we will simply use (1, 4) to denote
a column vector, and accordingly, (1, 4)T (2, 3) will denote the scalar product of two
such vectors. We try to avoid any ambiguities and use the notations in a clear and
concise way. Borrowing the usual Matlab notation we will use u2:n to denote the
vector (u2, . . . , un)T and A:,1 to denote the full first column of A.

Matrices in this review are usually symmetric and positive (semi)definite. Let
Sn be the space of n × n real symmetric matrices and PSn ⊆ Sn the convex cone
of positive semidefinite matrices. In the following, A � 0 will denote that A is
symmetric and positive definite, while A � 0 will denote that A is symmetric and
positive semidefinite. The notations A � B and A � B are interpreted as A−B � 0
and A−B � 0, respectively. Considering the n×n matrices as vectors in Rn×n we can
use the scalar product for vectors, i.e., the sum of the products of the corresponding
elements. Denoting this scalar product of two matrices A and B with A •B we have
the following properties, see, e.g., [39]:

1. A •B = Tr(AB) = Tr(BA).
2. If B = bbT is a rank-1 matrix then A •B = bT Ab.
3. If A and B are positive semidefinite matrices then A •B ≥ 0.

We use the standard symbols Rn and Cn to denote the n-dimensional linear space
of real and complex vectors, respectively. In addition, we use Rn

+ to denote the set
of n-dimensional vectors with nonnegative coordinates, i.e., the nonnegative orthant.
The symbol Rn

− is interpreted accordingly. To avoid confusion with indices, we will
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use i to denote the imaginary unit, i.e., i2 = −1.

2. Proofs for the basic S-lemma. In this section we present three proofs for
the basic S-lemma. We start with the original proof of Yakubovich, then we present
a modern proof based on LMIs, and we conclude with an elementary, analytic proof.
The key concepts of these proofs will be further investigated and generalized in the
remaining sections.

2.1. The two faces of the S-lemma. Now we present the central result of the
theory starting from the very basics and showing the main directions of the rest of
the survey. The theorems we are going to discuss can be viewed in two ways. As it is
illustrated by the example in §4, the original application of the S-lemma is to decide
whether a quadratic (in)equality is satisfied over a domain. As these domains are
usually defined by quadratic inequalities, the question we are investigating is when a
quadratic inequality is a consequence of other quadratic inequalities. This idea can
be formalized as follows:

gj(x) ≤ 0, j = 1, . . . ,m
?⇒ f(x) ≥ 0,(2.1)

where x ∈ Rn and f, gj : Rn → R, j = 1, . . . ,m are quadratic functions.
The alternative approach views the question as a feasibility problem: is there any

point in the domain where the inequality in question does not hold? This problem is
of the same form as the Farkas Theorem, a fundamental theorem of alternatives in
convex analysis, see e.g., [68], Theorem 21.1., [72], §6.10, or [19]:

Theorem 2.1 (Farkas Theorem). Let f, g1, . . . , gm : Rn → R be convex functions,
C ⊆ Rn a convex set and let us assume that the Slater condition holds for g1, . . . , gm,
i.e., there exists an x̄ ∈ rel int C such that gj(x̄) < 0, j = 1, . . . ,m. The following two
statements are equivalent:

(i) The system

f(x) < 0(2.2a)
gj(x) ≤ 0, j = 1, . . . ,m(2.2b)

x ∈ C(2.2c)

is not solvable.
(ii) There are y1, . . . , ym ≥ 0 such that

f(x) +
m∑

i=1

yjgj(x) ≥ 0,(2.3)

for all x ∈ C.
The proof is based on a separation argument using the fact that the set{

(u, v1, . . . , vm) ∈ Rm+1 : ∃x ∈ Rn, f(x) < u, gi(x) ≤ vi, i = 1, . . . ,m
}

(2.4)

is convex and that system (2.2) is not solvable if and only of the origin is not in this
convex set. The convexity of this set is trivial if all the functions are convex, but in
other cases it typically fails to hold.

When writing this review we had to decide which form to use. Since in our opinion
the latter one is easier to write and more popular in the optimization community we
will present all the results in the form of the Farkas Theorem.
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The theorem we present here was first proved by Yakubovich [78, 80] in 1971.
Theorem 2.2 (S-lemma, Yakubovich, 1971). Let f, g : Rn → R be quadratic

functions and suppose that there is an x̄ ∈ Rn such that g(x̄) < 0. Then the following
two statements are equivalent.

(i) There is no x ∈ Rn such that

f(x) < 0(2.5a)
g(x) ≤ 0.(2.5b)

(ii) There is a non-negative number y ≥ 0 such that

f(x) + yg(x) ≥ 0, ∀x ∈ Rn.(2.6)

2.2. The traditional approach. Yakubovich used the following convexity re-
sult to prove the S-lemma:

Proposition 2.3 (Dines, 1941, [22]). If f, g : Rn → R are homogeneous
quadratic functions then the set M = {(f(x), g(x)) : x ∈ Rn} ⊂ R2 is convex.

Proof. We will verify the definition of convexity directly. Let us take two points,
u = (uf , ug) and v = (vf , vg). If these two points and the origin are collinear then
obviously the line segment between u and v belongs to M, since the functions are
homogeneous. From now on we will assume that these points are not collinear with
the origin. Since they belong to M there are points xu, xv ∈ Rn such that

uf = f(xu), ug = g(xu)(2.7a)
vf = f(xv), vg = g(xv).(2.7b)

We will further assume without loss of generality that

vfug − ufvg = d2 > 0.(2.8)

Let λ ∈ (0, 1) be a constant. We try to show that there exists an xλ ∈ Rn such that

(f (xλ) , g(xλ)) = (1− λ)u + λv.(2.9)

Let us look for xλ in the form1

xλ = ρ(xu cos θ + xv sin θ),(2.10)

where ρ and θ are real variables. Substituting these to the defining equation of xλ we
get:

ρ2f(xu cos θ + xv sin θ) = (1− λ)uf + λvf(2.11a)
ρ2g(xu cos θ + xv sin θ) = (1− λ)ug + λvg.(2.11b)

Eliminating ρ2 from these equations and expressing λ as a function of θ we get

λ(θ) =
ugf(xu cos θ + xv sin θ)− ufg(xu cos θ + xv sin θ)

(ug − vg)f(xu cos θ + xv sin θ)− (uf − vf )g(xu cos θ + xv sin θ)
.(2.12)

1This is simply a clever parameterization of the plane spanned by xu and xv . If we used the form
xλ = pxu + qxv , where p, q ∈ R, then we could reduce the problem to a 2 × 2 convexity problem,
which can be solved by an elementary but tedious analysis. This is the idea of the proof of the
S-lemma in [11].
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Here the denominator of λ(θ) is a quadratic function of cos θ and sin θ, let us denote it
by T (cos θ, sin θ) = α cos2 θ + β sin2 θ + 2γ cos θ sin θ. Computing T (0), T (±π/2), and
using (2.7) we get that α = β = d2 > 0, thus T (cos θ, sin θ) = d2 + γ sin(2θ). If γ ≥ 0
then T (cos θ, sin θ) > 0 for θ ∈ [0, π/2], and similarly, if γ ≤ 0 then T (cos θ, sin θ) > 0
for θ ∈ [−π/2, 0]. We assume without loss of generality that it is the former, then
λ(θ) is defined on the whole interval [0, π

2 ] and it is continuous as well. Since λ(0) = 0
and λ(π

2 ) = 1, we can find a value θλ ∈ [0, π
2 ] such that λ(θλ) = λ. Using this θλ we

get ρ from (2.11) and the desired vector xλ from (2.10). This completes the proof.
Yakubovich used this result to prove Theorem 2.2.
Proof. (Yakubovich, 1971, [78]) It is obvious that (ii) implies (i). On the

other hand let us assume (i) and try to prove (ii). First let f and g be homo-
geneous functions, then by Proposition 2.3 the 2D image of Rn under the map-
ping (f, g) is convex, and by (i) this image does not intersect the convex cone C =
{(u1, u2) : u1 < 0, u2 ≤ 0} ⊂ R2, thus they can be separated by a line. This means
that there are real numbers y1 and y2 such that

y1u1 + y2u2 ≤ 0, ∀(u1, u2) ∈ C(2.13a)
y1f(x) + y2g(x) ≥ 0, ∀x ∈ Rn.(2.13b)

Taking (−1, 0) ∈ C we have y1 ≥ 0 and setting (−ε,−1) ∈ C where ε is arbitrarily
small gives y2 ≥ 0. The case y1 = 0 can be ruled out by substituting x̄ in the second
equation, so we have y1 > 0. Letting y = y2/y1 ≥ 0 then satisfies (ii).

Now let f and g be general, not necessarily homogeneous quadratic functions
satisfying (i). First let us notice that we can assume x̄ = 0, if this is not the case then
let ḡ(x) = g(x + x̄) be our new function. Let the functions be defined as

f(x) = xT Afx + bT
f x + cf ,(2.14a)

g(x) = xT Agx + bT
g x + cg,(2.14b)

then the Slater condition is equivalent to g(0) = cg < 0. Let us introduce the homo-
geneous version of our functions

f̃ : Rn+1 → R, f̃(x, τ) = xT Afx + τbT
f x + τ2cf(2.15a)

g̃ : Rn+1 → R, g̃(x, τ) = xT Agx + τbT
g x + τ2cg.(2.15b)

Now we prove that the new functions satisfy (i), i.e., there is no (x, τ) ∈ Rn+1 such
that

f̃(x, τ) < 0(2.16a)
g̃(x, τ) ≤ 0.(2.16b)

Let us assume on the contrary that there is an (x, τ) ∈ Rn+1 with these properties.
If τ 6= 0 then

f(x/τ) = f̃(x, τ)/τ2 < 0,(2.17a)
g(x/τ) = g̃(x, τ)/τ2 ≤ 0,(2.17b)

which contradicts to (i). If τ = 0 then xT Afx < 0 and xT Agx ≤ 0, therefore

(λx)T Af (λx)︸ ︷︷ ︸
<0

+λbT
f x + cf < 0, if |λ| is large enough, and(2.18a)

(λx)T Ag(λx)︸ ︷︷ ︸
≤0

+λbT
g x + cg︸︷︷︸

<0

< 0, ifλ has the proper sign,(2.18b)
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contradicting to (i). This implies that the new system (2.16) is not solvable. Further,
taking (0, 1) gives

g̃(0, 1) = g(0) < 0,(2.19)

therefore the Slater condition is satisfied so we can apply the already proved homo-
geneous version of the theorem. We get that there exists a y ≥ 0 such that

f̃(x, τ) + yg̃(x, τ) ≥ 0, ∀(x, τ) ∈ Rn+1,(2.20)

and with τ = 1 we get (ii).
Problems similar to Proposition 2.3 were first investigated by Hausdorff [34] and

Toeplitz [74] in the late 1910’s in a more general context: the joint numerical range of
Hermitian operators. The importance of this simple fact becomes more obvious if we
recall that the S-lemma is actually a non-convex theorem of alternatives, an extended
version of the Farkas Theorem.

2.3. A modern approach. This proof is similar to the one found in [11], but
extends it for the nonhomogeneous case.

The following lemma from [73] plays a crucial role in this theory:
Lemma 2.4. Let G, X ∈ Rn×n be symmetric matrices X being positive semi-

definite and rank r. Then G•X ≤ 0 (G•X = 0) if and only if there are p1, . . . , pr ∈ Rn

such that

X =
r∑

i=1

pipiT and G • pipiT = piT Gpi ≤ 0 (piT Gpi = 0), ∀i = 1, . . . , r.(2.21)

Proof. We only prove the first version of the lemma. The proof is based on [73]
and is constructive. Consider the following procedure:
Input: X and G ∈ Rn×n such that X � 0 and G •X ≤ 0, rank(X) = r.
Step 1: Compute the rank-1 decomposition of X, i.e.,

X =
r∑

i=1

pipiT .(2.22)

Step 2: If (p1T
Gp1)(piT Gpi) ≥ 0 for all i = 2, . . . , r then return y = p1. Otherwise

we have a j such that (p1T
Gp1)(pjT

Gpj) < 0.
Step 3: Since p1T

Gp1 and pjT
Gpj have opposite sign we must have an α ∈ R such

that

(p1 + αpj)
T
G(p1 + αpj) = 0.(2.23)

In this case we return

y =
pi + αpj

√
1 + α2

.(2.24)

Output: y ∈ Rn such that 0 ≥ yT Gy ≥ G •X, X − yyT is positive semidefinite and
rank(X − yyT ) = r − 1.
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If the procedure stops in Step 2 then piT Gpi has the same sign for all i = 1, . . . , r.
Since the sum of these terms is negative we have yT Gy = p1T

Gp1 ≤ 0 and X−yyT =∑r
i=2 pipiT implying that the remaining matrix is positive semidefinite and has rank

r − 1.
If the procedure does not stop in Step 2 then the quadratic equation for α must

have two distinct roots, and by definition 0 = yT Gy ≥ G • X. Finally, we can see
that

X − yyT = uuT +
∑

i∈{2,3,...,r}\j

pipiT ,(2.25a)

where

u =
pj − αp1

√
1 + α2

.(2.25b)

This decomposition ensures that X−yyT has rank r−1 and the procedure is correct.
Applying the procedure r times we get the statement of the lemma.

Remark 2.5. The lemma can also be proved using the rank-1 approach presented
in the proof of Theorem 6.1.

Now we can finish the proof of Theorem 2.2.
Proof. (Theorem 2.2, S-lemma) It is obvious that if either of the two systems has

a solution then the other one can not have one, so what we have to prove is that at
least one system has a solution. Let the functions be given as

f(x) = xT Afx + bT
f x + cf ,(2.26a)

g(x) = xT Agx + bT
g x + cg,(2.26b)

and let us consider the following notation:

Hf =
[

cf
1
2bT

f
1
2bf Af

]
, Hg =

[
cg

1
2bT

g
1
2bg Ag

]
.(2.27)

Using this notation the first system can be rewritten as:

Hf •
[

1 xT

x xxT

]
< 0, Hg •

[
1 xT

x xxT

]
≤ 0, x ∈ Rn.(2.28)

Here the rank-1 matrices [
1 xT

x xxT

]
(2.29)

are positive semidefinite and symmetric. This can inspire us to look at the following
relaxation of (2.28):

Hf • Z < 0, Hg • Z ≤ 0, Z � 0.(2.30)

The key idea of our proof is to show that this relaxation is exact in the sense that
problem (2.28) is solvable if and only if the relaxed problem (2.30) is solvable. More
specifically, we will prove the following lemma.

Lemma 2.6. Using the notations introduced in (2.27)-(2.30), if the relaxed system
(2.30) has a solution then it has a rank-1 solution of the form Z = zzT , where the first
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coordinate of z is 1. This gives a solution for (2.28). Moreover, (2.30) has a solution
that strictly satisfies all the inequalities including the semidefinite constraint.

Proof. Let Z be a solution of (2.30). Then, since Z is positive semidefinite it can
be written as

Z =
r∑

j=1

qjqjT
,(2.31)

where qj ∈ Rn+1 and r = rank(Z). Applying Lemma 2.4 we see that it is possible to
choose these vectors such that

Hg • qjqjT
= qjT

Hgq
j ≤ 0, j = 1, . . . , r.(2.32)

Now, from the strict inequality of (2.30) we can conclude that there is a vector
q = qj for some 1 ≤ j ≤ r such that

Hf • qqT < 0,(2.33)

otherwise the sum of these terms could not be negative. It means that Z = qqT is
a rank-1 solution of (2.30). Observe that this result was obtained without using the
Slater condition.

If the first coordinate of q is nonzero then x = q2:n+1/q1 gives a solution for (2.28).
If this is not the case then let us introduce

q̃ = q + α

[
1
x̄

]
,(2.34)

where x̄ is the point satisfying the Slater condition. Notice that

Hf • q̃q̃T = Hf • qqT︸ ︷︷ ︸
<0

+2αHf •
[

1
x̄

]
qT + α2Hf •

[
1 x̄T

x̄ x̄x̄T

]
< 0(2.35a)

if |α| is small and

Hg • q̃q̃T = Hg • qqT︸ ︷︷ ︸
≤0

+2αHg •
[

1
x̄

]
qT + α2 Hg •

[
1 x̄T

x̄ x̄x̄T

]
︸ ︷︷ ︸

=g(x̄)<0

< 0(2.35b)

if the sign of α is chosen to make the middle term negative. Further, if α 6= −q1

then q̃1 6= 0. It is obvious that these conditions can be satisfied simultaneously, i.e.,
we have q̃q̃T that solves (2.30) and x = q̃2:n+1/q̃1 gives a solution for (2.28). Finally,
letting

Z̃ = q̃q̃T + βI,(2.36)

where β ∈ R and I ∈ R(n+1)×(n+1) is the identity matrix, provides Hf • Z̃ and
Hg • Z̃ < 0 if |β| is small enough and Z̃ � 0. In other words Z̃ satisfies the strict
version of all the inequalities. This completes the proof of the lemma.

Now we can easily finish the proof of Theorem 2.2. It follows directly from the
Farkas Theorem (see Theorem 2.1) that system (2.30) is solvable if and only if the
dual system

Hf + yHg � 0(2.37a)
y ≥ 0.(2.37b)
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is not solvable. Now, by Lemma 2.6, the solvability of the original quadratic system
(2.28) is equivalent to the solvability of its LMI relaxation (2.30), which—by duality—
is equivalent to the non-solvability of the dual system (2.37). This means that there
is a y ≥ 0 such that f(x) + yg(x) ≥ 0 for all x ∈ Rn. This completes the proof of the
S-lemma.

Quadratic systems can always be relaxed using linear matrix inequalities, so the
key question is when this relaxation is exact. This topic is further discussed in §6.

2.4. An elementary proof. This proof is based on Lemma 2.3 in [82], and it
is the most elementary one of the proofs presented in this section. We only prove the
homogeneous version, the nonhomogeneous case can be handled similarly. We will
use the following lemma:

Lemma 2.7 (Yuan, [82], 1990). Let A,B ∈ Rn×n be two symmetric matrices and
let F ,G ⊆ Rn be closed sets such that F ∪ G = Rn. If

xT Ax ≥ 0, ∀x ∈ F(2.38a)
xT Bx ≥ 0, ∀x ∈ G(2.38b)

then there is a t ∈ [0, 1] such that tA + (1− t)B is positive semidefinite.
Proof. The lemma is trivially true if either of the two sets is empty, so we can

assume that both are non-empty. Further, we can assume that both sets are symmetric
about the origin, i.e., F = −F and G = −G. Let λ(t) be the smallest eigenvalue of
tA + (1 − t)B. If λ(t) ≥ 0 for some t ∈ [0, 1] then the lemma is true. Let us assume
now that λ(t) < 0 for all t ∈ [0, 1]. We define the following set:

S(t) = {x : (tA + (1− t)B)x = λ(t)x, ‖x‖ = 1} .(2.39)

Since λ(t) is an eigenvalue, S(t) is not empty and it is closed by continuity, so

S(t) ⊇
{

x : x = lim
k→∞

xk, xk ∈ S(tk), t = lim
k→∞

tk

}
.(2.40)

If x ∈ S(0), then xT Bx = λ(0) < 0, thus x /∈ G, so x ∈ F . This shows that
S(0) ⊆ F , thus S(0) ∩ F = S(0) 6= ∅. Let tmax be the largest number in [0, 1]
such that S(tmax) ∩ F 6= ∅, this number exists due to (2.40). If tmax = 1 then by
the assumptions on G, we have S(1) ∩ G = S(1) 6= ∅. If tmax < 1 then for every
t ∈ (tmax, 1] we have

S(t) ∩ G = (S(t) ∩ G) ∪ (S(t) ∩ F)︸ ︷︷ ︸
=∅

= S(t) 6= ∅,(2.41)

where we used the assumption that F ∪ G = Rn. Again, using (2.40) we get that

S(tmax) ∩ G 6= ∅.(2.42)

Since S(t) is the intersection of a subspace (the eigenspace of λ(t)) and the unit
ball, it is a unit ball in some dimension, therefore S(t) is either connected, or it is the
union of two points, symmetric about the origin.

If S(tmax) is a connected ball, then any path connecting a point in S(tmax) ∩ F
with a point in S(tmax) ∩ G contains a point in S(tmax) ∩ F ∩ G, since both F and
G are closed. This shows that S(tmax) ∩ F ∩ G 6= ∅, thus there exists an x ∈ F ∩ G
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such that xT (tA + (1− t)B) x = λ(t) < 0, but then either xT Ax < 0 or xT Bx < 0,
contradicting to (2.38).

If on the other hand S(tmax) consists of two points then since F = −F and
G = −G, we have S(tmax) ⊆ F and S(tmax) ⊆ G, thus we reach the same conclusion.
This completes the proof of Lemma 2.7.

Now the S-lemma (Theorem 2.2) can be proved easily. Let A and B be symmetric
matrices and assume that the system

xT Ax < 0(2.43a)
xT Bx ≤ 0(2.43b)

is not solvable, but the Slater condition is satisfied, i.e., ∃x̄ ∈ Rn : x̄T Bx̄ < 0.
Defining the closed sets F =

{
x : xT Bx ≤ 0

}
and G =

{
x : xT Bx ≥ 0

}
one has

F ∪ G = Rn. By the assumption of nonsolvability we have that xT Ax ≥ 0 : ∀x ∈ F
and xT Bx ≥ 0 : ∀x ∈ G, thus all the conditions of Lemma 2.7 are satisfied and we can
conclude that there is a t ∈ [0, 1] such that tA+(1− t)B is positive semidefinite. Now
t can not be 0, otherwise B would be positive semidefinite and the Slater condition
could not be satisfied. Dividing by t we get that A + 1−t

t B is positive semidefinite.
Remark 2.8. In the proof of Lemma 2.7 we used little about the quadratic nature

of the functions, this gives an incentive to try to extend this lemma for more general
functions.

3. Special results and counterexamples. In this section we present some
related results and counterexamples.

3.1. Other variants. For the sake of completeness we enumerate other useful
forms of the basic S-lemma. One can get these results by modifying the original proof
slightly. For references see [43, 51].

Proposition 3.1 (S-lemma with equality). Let f, g : Rn → R be quadratic
functions where g is assumed to be strictly concave (or strictly convex) and let us
assume a stronger form of the Slater condition, namely g takes both positive and
negative values. Then the following two statements are equivalent:

(i) The system

f(x) < 0(3.1a)
g(x) = 0(3.1b)

is not solvable.
(ii) There exists a multiplier y ∈ R such that

f(x) + yg(x) ≥ 0, ∀x ∈ Rn.(3.2)

In the presence of two non-strict inequalities we have the following result.
Proposition 3.2 (S-lemma with non-strict inequalities). Let f, g : Rn → R be

homogeneous quadratic functions. The following two statements are equivalent.
(i) The system

f(x) ≤ 0(3.3a)
g(x) ≤ 0(3.3b)

is not solvable.
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(ii) There exist nonnegative multipliers y1, y2 ≥ 0 such that

y1f(x) + y2g(x) > 0, ∀x ∈ Rn \ {0} .(3.4)

If we assume the Slater condition for one of the functions then we can make the
corresponding multiplier positive.

3.2. General results. In this section we present some known results on how
the solvability of the system

f(x) < 0(3.5a)
gi(x) ≤ 0, i = 1, . . . ,m(3.5b)

x ∈ Rn(3.5c)

and the existence of a dual vector y = (y1, . . . , ym) ≥ 0 such that

f(x) +
m∑

i=1

yigi(x) ≥ 0 ∀x ∈ Rn(3.6)

are related to each other. We will assume that

f(x) = xT Ax + bT x + c(3.7a)

gi(x) = xT Bix + piT x + qi, i = 1, . . . ,m(3.7b)

where A and Bi are symmetric but not necessarily positive semidefinite matrices.
Unfortunately, the S-lemma is not true in this general setting. It fails to hold even
if we restrict ourselves to m = 2 and assume the Slater condition. This does not
prevent us from studying the idea of the S-procedure even when the procedure is
theoretically not exact. It is trivial that the two systems in the S-lemma can not
be solved simultaneously, so if we are lucky enough to find a solution for the second
system then we can be sure that the first system is not solvable. However, the non-
solvability of the second system does not always guarantee the solvability of the first
one.

First let us present what can be found in the literature about this general setting.
Our main sources are [11] and [73]. We will outline the proofs as necessary.

Let us start with a general result that contains the S-lemma as a special case.
Theorem 3.3. Consider the systems (3.5)-(3.6) and let us assume that the

functions f and gi, i = 1, . . . ,m are all homogeneous and m ≤ n. If system (3.5)
is not solvable then there exist a nonnegative vector y = (y1, . . . , ym) ≥ 0 and an
n−m + 1 dimensional subspace V n−m+1 ⊆ Rn such that

f(x) +
m∑

i=1

yigi(x) ≥ 0 ∀x ∈ V n−m+1.(3.8)

In other words, the matrix

A +
m∑

i=1

yiBi(3.9)

has at least n −m + 1 nonnegative eigenvalues (counted with multiplicities) and the
above subspace is spanned by the corresponding eigenvectors.
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Remark 3.4. If m = 1 this gives the usual S-lemma.
The proof of this theorem is based on differential geometric arguments, see §4.10

in [11]. Despite the relative strength of the theorem, it is not straightforward to
apply it in practice. One such way is to exploit the possible structure of the linear
combination and rule out a certain number of negative eigenvalues.

Besides this general result we have only very special ones.
Proposition 3.5. If A and Bi, i = 1, . . . ,m are all
• diagonal matrices, i.e., f(x) and gi(x) are all weighted sums of squares, or
• linear combinations of two fixed matrices, i.e., rank(A,B1, . . . , Bm) ≤ 2,

then the system

f(x) < 0(3.10a)
gi(x) ≤ 0, i = 1, . . . ,m(3.10b)

x ∈ Rn(3.10c)

is not solvable if and only if there exists a nonnegative vector y = (y1, . . . , ym) ≥ 0
such that

f(x) +
m∑

i=1

yigi(x) ≥ 0 ∀ x ∈ Rn.(3.10d)

In other words, the matrix

A +
m∑

i=1

yiBi(3.10e)

is positive semidefinite.
The first part of this proposition can be proved easily using the substitution

zi = x2
i and applying the Farkas Lemma. The second part is a new result, we will

prove it in §5.4, see Theorem 5.24.
If we want to incorporate more quadratic constraints, we need extra conditions.
Proposition 3.6 (m = 2, n ≥ 2). Let f, g1 and g2 be homogeneous quadratic

functions and assume that there is an x̄ ∈ Rn such that g1(x̄), g2(x̄) < 0 (Slater
condition). If either

• m = 2, n ≥ 3 and there is a positive definite linear combination of A,B1 and
B2, or

• m = n = 2 and there is a positive definite linear combination of B1 and B2,
then the following two statements are equivalent:

(i) The system

f(x) < 0(3.11a)
gi(x) ≤ 0, i = 1, 2(3.11b)

x ∈ Rn(3.11c)

is not solvable.
(ii) There are nonnegative numbers y1 and y2 such that

f(x) + y1g1(x) + y2g2(x) ≥ 0 ∀x ∈ Rn.(3.12)
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Remark 3.7. The condition n ≥ 3 in the first part is necessary, see the coun-
terexample for n = 2 in §3.3.2.

Remark 3.8. An equivalent condition on when some matrices have a positive
definite linear combination is given in [23]. If n ≥ 3 then the property that two
symmetric matrices have a positive definite linear combination is equivalent to the
nonexistence of a common root of the quadratic forms, see [26]. Further, in this case
the matrices are simultaneously diagonalizable by a real congruence, see [5, 61, 76].
In the general case, symmetric matrices A1, . . . , Am have a positive definite linear
combination if and only if Ai • S = 0, i = 1, . . . ,m implies that S is indefinite. This
result is a trivial corollary of the duality theory of convex optimization, but was only
rediscovered around the middle of the 20th century, see [23].

One additional step is to include linear constraints. First, some equalities:
Proposition 3.9. Let f, g : Rn → R be quadratic functions, H ∈ Rm×n and

r ∈ Rm. Assume that there exists an x̄ ∈ Rn such that Hx̄ = r and g(x̄) < 0. The
following two statements are equivalent:

(i) The system

f(x) < 0(3.13a)
g(x) ≤ 0(3.13b)
Hx = r(3.13c)

x ∈ Rn(3.13d)

is not solvable.
(ii) There is a nonnegative number y such that

f(x) + yg(x) ≥ 0 ∀x ∈ Rn, Hx = r.(3.13e)

With some convexity assumption we can include a linear inequality:
Proposition 3.10. Let f, g : Rn → R be quadratic functions, h ∈ Rn and

α ∈ R. Assume that g(x) is convex and there exists an x̄ ∈ Rn such that hT x̄ < α
and g(x̄) < 0. The following two statements are equivalent:

(i) The system

f(x) < 0(3.14a)
g(x) ≤ 0(3.14b)
hT x ≤ α(3.14c)

x ∈ Rn(3.14d)

is not solvable.
(ii) There is a nonnegative multiplier y ≥ 0 and a vector (u0, u) ∈ Rn+1 such

that

f(x) + yg(x) + (uT x− u0)(hT x− α) ≥ 0 ∀x ∈ Rn,(3.15a)
uT x ≥ 0 ∀x ∈ Rn : xT Agx ≤ 0, bT

g x ≤ 0(3.15b)

uT x− u0 ≥ 0 ∀x ∈ Rn : g(x) ≤ 0, cg + bT
g x ≤ 0,(3.15c)

where g(x) = xT Agx + bT
g x + cg.

For a proof see [73]. We can see that including even one linear inequality is
difficult, and the dual problem (3.15) is not any easier than the primal problem (3.14).



16 I. Pólik, T. Terlaky

3.3. Counterexamples. In this section we present some counterexamples.

3.3.1. More inequalities. The generalization to the case m ≥ 3 is practically
hopeless as it is illustrated by the following example taken from [11]. Consider the
matrices

A =

 1 1.1 1.1
1.1 1 1.1
1.1 1.1 1

 , B1 =

 −2.1 0 0
0 1 0
0 0 1

 ,(3.16a)

B2 =

 1 0 0
0 −2.1 0
0 0 1

 , B3 =

 1 0 0
0 1 0
0 0 −2.1

 .(3.16b)

Lemma 3.11. There is an x̄ such that x̄T Bix̄ < 0, i = 1, 2, 3 (the Slater condition
holds). Further, the system

xT Ax < 0(3.17a)
xT Bix ≤ 0, i = 1, 2, 3(3.17b)

is not solvable in R3.
Proof. The Slater condition is satisfied with x̄ = (1, 1, 1). Let us now look for a

solution in the form x = (x1, x2, x3). If x3 = 0 then by the last three inequalities we
can conclude that x1 = x2 = 0, which does not satisfy the first inequality. Since all
the functions are homogeneous, and since x and −x are essentially the same solution
we can assume that x3 = 1, thus we can reduce the dimension of the problem. Now
all four of the inequalities define some quadratic areas in R2. Instead of a formal and

Fig. 3.1. The quadratic regions defined by system (3.16) with x3 = 1.

tedious proof we simply plot these areas in Fig. 3.1. The grey area represents the
set of points (x1, x2) where x = (x1, x2, 1) satisfies xT Ax < 0, while the four black
corners are the feasible set for the remaining three inequalities. Intuitively, the last
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three inequalities are satisfied for values close to ±1. However, it is easy to see that
such values can not satisfy the first inequality.

Lemma 3.12. There are no nonnegative multipliers y1, y2, y3 for which A+y1B1+
y2B2 + y3B3 � 0.

Proof. Consider the matrix

X =

 2 −1 −1
−1 2 −1
−1 −1 2

 ,(3.18)

which is positive semidefinite with eigenvalues 0 and 3. Moreover,

A •X = −0.6 < 0(3.19a)
Bi •X = −0.2 ≤ 0.(3.19b)

Now for any nonnegative linear combination of the matrices, we have

(A + y1B1 + y2B2 + y3B3) •X = −0.6− 0.2(y1 + y2 + y3) < 0,(3.20)

therefore A + y1B1 + y2B2 + y3B3 can never be positive semidefinite, since the scalar
product of positive semidefinite matrices is nonnegative.

These two lemmas show that neither of the alternatives is true in the general
theorem.

3.3.2. The n = 2 case. Discussing the m = 2 case (Proposition 3.6) we noted
that the result fails to hold if n = 2. Here is a counterexample taken from [11] to
demonstrate this.

Let us consider the following three matrices:

A =
(

λµ 0.5(µ− λ)
0.5(µ− λ) −1

)
(3.21a)

B =
(

−µν −0.5(µ− ν)
−0.5(µ− ν) 1

)
(3.21b)

C =
(
−λ2 0
0 1

)
.(3.21c)

We will verify the following claims:
Proposition 3.13. Let λ = 1.1, µ = 0.818 and ν = 1.344.

(i) There is a positive definite linear combination of A,B and C.
(ii) There is a vector x̄ such that x̄T Bx̄ < 0 and x̄T Cx̄ < 0.
(iii) The quadratic system

xT Ax < 0(3.22a)
xT Bx ≤ 0(3.22b)
xT Cx ≤ 0(3.22c)

is not solvable.
(iv) There is no y1, y2 ≥ 0 such that

A + y1B + y2C � 0.(3.23)

Proof.
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(i) The linear combination

−1.15A− 0.005B − C =
(

0.18072696 0.160835
0.160835 0.1450

)
(3.24)

is positive definite as it is seen by the diagonal elements and the determinant.
(ii) Let x̄ = (1, 0)T then x̄T Bx̄ < 0 and x̄T Cx̄ < 0.
(iii) Let us exploit the special structure of the matrices. If we are looking for a

solution x = (x1, x2) ∈ R2 then we get

xT Ax = λµx2
1 − x2

2 + (µ− λ)x1x2 = (λx1 + x2)(µx1 − x2)(3.25a)
xT Bx = −µνx2

1 + x2
2 − (µ− ν)x1x2 = (νx1 + x2)(−µx1 + x2)(3.25b)

xT Cx = −λ2x2
1 + x2

2 = (−λx1 + x2)(λx1 + x2).(3.25c)

Now, in order to satisfy (3.22) we need to solve one of the following two systems
corresponding to which terms are negative and positive:

λx1 + x2 > 0(3.26a)
µx1 − x2 < 0(3.26b)
νx1 + x2 ≤ 0(3.26c)

−λx1 + x2 ≤ 0(3.26d)

or

λx1 + x2 < 0(3.27a)
µx1 − x2 > 0(3.27b)
νx1 + x2 ≥ 0(3.27c)

−λx1 + x2 ≥ 0.(3.27d)

It is easy to check that with the values specified in the statement both of these systems
are inconsistent, therefore (3.22) is not solvable.

(iv) The proof of this part is similar to the proof of Lemma 3.12. The matrix

X =
(

1 0
0 1

)
(3.28)

satisfies

A •X < 0(3.29a)
B •X ≤ 0(3.29b)
C •X ≤ 0,(3.29c)

thus no nonnegative linear combination A + y1B + y2C of A,B and C is positive
semidefinite.
This completes the proof of the lemma.

Let us examine briefly why the S-lemma fails to hold for this example. We have
already shown in Proposition 3.6 that if n = m = 2 then in order for the result to hold
we need to assume that a certain linear combination of B and C is positive definite.
However, taking the positive definite matrix

X =

(
1 λ2−µν

µ−ν
λ2−µν
µ−ν λ2

)
(3.30)
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yields

B •X = 0(3.31a)
C •X = 0,(3.31b)

therefore no linear combination of B and C can be positive definite.

4. Practical applications.

4.1. Stability analysis. The first example is taken from [43].
Let us consider the following dynamical system

ẋ = Ax + Bw, x(0) = x0(4.1a)
v = Cx(4.1b)

with a so-called sector constraint

σ(v, w) = (βv − w)T (w − αv) ≥ 0,(4.1c)

where α < β are real numbers. We would like to use the basic tool of Lyapunov
functions [15]: for the quadratic stability of the system it is necessary and sufficient
to have a symmetric matrix P such that V (x) = xT Px is a Lyapunov function, i.e.,

V̇ (x) = 2xT P (Ax + Bw) < 0, ∀(x,w) 6= 0 s.t. σ(Cx,w) ≥ 0.(4.2)

Introducing the quadratic forms

σ0(x, w) =
[

x
w

]T [
AT P + PA PB

BT P 0

] [
x
w

]
(4.3a)

σ1(x, w) = 2σ(Cx,w) =
[

x
w

]T [ −2βαCT C (β + α)CT

(β + α) −2

] [
x
w

]
(4.3b)

the Lyapunov condition can be written as

σ0(x,w) < 0, ∀(x,w) 6= 0 s.t. σ1(x, w) ≥ 0,(4.4)

or in other words, we have to decide the solvability of the quadratic system

σ0(x, w) ≥ 0(4.5a)
σ1(x, w) ≥ 0.(4.5b)

Using α < β we can see that the strict version of the second inequality can be
satisfied. Based on a suitable form of the S-lemma (Proposition 3.2) we get that the
non-solvability of this system is equivalent to the existence of y ≥ 0 such that

σ0(x,w) + yσ1(x,w) < 0 ∀(x,w) 6= (0, 0).(4.6)

Now y = 0 would imply that σ0 is negative definite and would contradict to the non-
solvability of (4.5). Thus we can divide with y and use P to denote P/y. Finally, we
can state the criterion using the LMI formulation. We get the following theorem:

Theorem 4.1 (Circle criterion, [15]). A necessary and sufficient condition for
the quadratic stability of the system

ẋ = Ax + Bw, x(0) = x0(4.7a)
v = Cx(4.7b)

σ(v, w) = (βv − w)T (w − αv) ≥ 0,(4.7c)
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where α < β, is the existence of a symmetric matrix P such that[
AT P + PA− 2βαCT C PB + (β + α)CT

BT P + (β + α)C −2

]
≺ 0.(4.7d)

4.2. Sum of two ellipsoids. This example is taken from [63].
Let Ei = E(ai, Ai) ⊆ Rn, n ≥ 2 be an ellipsoid with center ai and shape Ai, i.e.,

E(ai, Ai) =
{
x ∈ Rn : (x− ai)T Ai(x− ai) ≤ 1

}
.(4.8)

The sum of two such ellipsoids is the usual Minkowski sum:

Q = E1 + E2 =
{
x1 + x2 : x1 ∈ E1, x2 ∈ E2

}
.(4.9)

We are looking for a general description of all the ellipsoids that contain this sum.
This is an important question in error estimation. Errors on measurements are usually
modeled by Gaussian distributions. If we are looking for the error of the sum of two
measurements then we need to solve this problem.

First notice that since

Q = a1 + a2 + E(0, A1) + E(0, A2)(4.10)

we can assume that all the ellipsoids are centered at the origin. Our target object is
an ellipsoid E(0, A0) such that

E(0, A0) ⊃ E(0, A1) + E(0, A2).(4.11)

This condition can be stated equivalently using the notation x = (x1, x2) ∈ R2n.
The ellipsoid E0 contains the sum E1 + E2 if and only if the following system is not
solvable:

xT

(
−A0 −A0

−A0 −A0

)
x < 1(4.12a)

xT

(
A1 0
0 0

)
x ≤ 1(4.12b)

xT

(
0 0
0 A2

)
x ≤ 1.(4.12c)

Since the matrix (
A1 0
0 A2

)
(4.13)

is positive definite and n ≥ 2, we can apply a slightly modified version of Proposition
3.6 to obtain the following characterization:

Theorem 4.2. An ellipsoid E(0, A0) contains the Minkowski sum of the ellipsoids
E(0, A1) and E(0, A2) if and only if there exist nonnegative numbers y1 and y2 such
that y1 + y2 ≤ 1 and the matrix(

−A0 + y1A1 −A0

−A0 −A0 + y2A2

)
(4.14)
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is positive semidefinite.
This condition can be validated in polynomial time. Further, we can use this

result to build an algorithm to minimize the maximum eigenvalue of A0. A similar
argument can be repeated for the intersection of two ellipsoids, see [63].

Several other applications can be found in the literature, such as distance ge-
ometry [9], portfolio management [3, 4, 29], statistics [38], signal processing [50], or
control and stability problems [11, 15, 53, 56], just to mention a few.

PART II

The results and examples presented in the first part show how diverse areas
are contributing to the theory of the S-lemma. Now we give a summary of these
connections. In each section we first present how the S-lemma is related to the specific
theory then we summarize the relevant results of the field and finally we discuss the
consequences of the results and draw the conclusions.

5. Convexity of the joint numerical range. In this section we investigate
the theory behind the first proof for the S-lemma, see §2.2.

5.1. Motivation. Recall that the key step in Yakubovich’s proof was to use
Dines’s result about the convexity of the set{

(xT Ax, xT Bx) : x ∈ Rn
}
⊆ R2.(5.1)

The separation idea we used can be extended to more inequalities. Let us assume
that the system

xT Ax < 0(5.2a)
xT Bix ≤ 0, i = 1, . . . ,m(5.2b)

is not solvable and assume that the Slater condition is satisfied, i.e., there exists an
x̄ ∈ Rn such that x̄T Bix̄ < 0 for all i = 1, . . . ,m. If the set

HR(A,B1, . . . , Bm) =
{
(xT Ax, xT B1x, . . . , xT Bmx) : x ∈ Rn

}
⊆ Rm+1(5.3)

is convex then an equivalent characterization of the non-solvability of (5.2) is that

HR(A,B1, . . . , Bm) ∩ C(5.4)

is empty, where

C = {(u0, u) : u0 < 0, u ≤ 0} ⊂ Rm+1(5.5)

is a convex cone. A well known basic fact in convex analysis (see [68, 72]) is that
disjoint convex sets can be separated by a hyperplane, i.e., there exist (y0, y) ∈ Rm+1\
(0, 0) such that

y0u0 +
m∑

i=1

yiui ≥ 0, ∀(u0, u) ∈ HR(5.6a)

y0u0 +
m∑

i=1

yiui ≤ 0, ∀(u0, u) ∈ C.(5.6b)
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Since (−1, 0) ∈ C we get y0 ≥ 0, and using (−ε,−ei) ∈ C where ei ∈ Rm is the ith

unit vector we get y ≥ 0.
Using the Slater condition we have a (ū0, ū) ∈ HR where ū < 0. If y = 0 then,

since all the coefficients can not be zero, we have y0 > 0. On the other hand, if y 6= 0
then using the Slater-point we have

y0ū0 +
m∑

i=1

yiūi︸ ︷︷ ︸
<0

≥ 0(5.7)

implying that y0 > 0. After dividing by y0 we get the desired coefficients. We have
thus proved that the convexity of HR(A,B1, . . . , Bm) implies the validity of the S-
lemma.

5.2. Theoretical results. First we present results over the field of real numbers,
then we generalize the concept to complex numbers.

5.2.1. Results over real numbers. The key question is the following: How
can we guarantee the convexity of HR(A,B1, . . . , Bm)?

Most of the results (see [7, 32, 49]) on the convexity of the numerical range
investigate the question over the complex field. However, we need convexity results for
HR(A,B1, . . . , Bm). The first such result has already been mentioned. It is credited
to Dines [22] and dates back to 1941.

Theorem 5.1 (Dines, [22], 1941). If f, g : Rn → R are homogeneous quadratic
functions then the set M = {(f(x), g(x)) : x ∈ Rn} ⊂ R2 is convex.

An analogous result for three quadratic forms was proved by Polyak [63] in 1998,
using a theorem by Brickman [17].

Theorem 5.2 (Polyak, [63], 1998). If n ≥ 3 and f, g, h : Rn → R are homoge-
neous quadratic functions such that there exists a positive definite linear combination
of them, then the set M = {(f(x), g(x), h(x)) : x ∈ Rn} ⊂ R3 is convex.

Another interesting source is Ramana’s article [67] from 1995. He characterizes
the quadratic transformations F : Rn → Rm for which the set F (Rn) is convex. He
calls such maps Image Convex (ICON) and establishes the following theorem:

Theorem 5.3 (Ramana, [67], 1995). Let F : Rn → Rm be a constant-free
(F (0) = 0) quadratic map. Then F is ICON if and only if F (Rn) = FQ(Rn)+F (Rn)
where FQ(x) = F (x)+F (−x)

2 is the quadratic part of F , and the sum is the Minkowski-
sum.

If F is homogeneous, as it is so in our case, then the equivalent condition reduces
to F (Rn) = F (Rn) + F (Rn), which is trivial.2 Further, Ramana proves that the
identification of ICON maps is NP-hard.

Similarly, Ramana investigates those quadratic maps, under which the image of
every linear subspace is convex. He calls these maps Linear Image Convex (LICON).
Obviously, all LICON maps are ICON maps, thus equivalent conditions for the LICON
property provide sufficient conditions for the ICON property. He establishes the
following equivalent condition:

Theorem 5.4 (Ramana, 1995, [67]). Let F : Rn → Rm be a constant-free
(F (0) = 0) quadratic map, then F is LICON if and only if at least one of the following
conditions holds:

(i) F is of the form (uT x + a)Ax, or

2Using the terms of §7 this means that F (Rn) is König-linear.
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(ii) χ(F ) ≤ 1, or
(iii) F is homogeneous and

rank {F (x), F (y), F (x + y)} ≤ 2, ∀x, y ∈ Rn,(5.8)

where χ(F ) is the polynomial rank3 of F .
Remark 5.5. This theorem can be exploited to check the LICON property in

polynomial time. This shows that the recognition of LICON maps is much simpler
than that of the ICON maps.

A similar problem is the convexity of the image of the unit sphere. Since we are
dealing with homogeneous quadratic functions, the image of the whole space is the
cone spanned by the image of the unit sphere, thus if the image of the unit sphere is
convex, then so is the image of the whole space. The corresponding theorem for the
real case was proved by Brickman in 1961:

Theorem 5.6 (Brickman, [17], 1961). Let f, g : Rn → R be homogeneous
quadratic functions. If n ≥ 3 then the set

Wf,g = {(f(x), g(x)) : x ∈ Rn, ‖x‖ = 1} ⊂ R2(5.11)

is convex.
Remark 5.7. If n = 2 then this set is not necessarily convex. Let us take

x = (x1, x2) and define f(x) = x2
1 − x2

2 and g(x) = 2x1x2. These functions satisfy
f(x)2 + g(x)2 = 1, thus the image is the unit circle line, which is not convex.

Polyak used this result to prove his earlier mentioned theorem (see Theorem 5.2).
The original proof of this theorem uses advanced differential geometric arguments.
The following elementary proof is by H. Pépin from [60].4 It only uses the character-
ization of quadratic surfaces in R3.

Proof. The proof is based on the following two simple lemmas.
Lemma 5.8. Let P : R2 → R2 be an affine map, f, g : Rn → R homogeneous

quadratic functions, then there are homogeneous quadratic functions f̃ , g̃ : Rn → R
such that P (Wf,g) = Wf̃ ,g̃.

Proof. Let P be of the form P (u, v) = (a1u + b1v + c1, a2u + b2v + c2), then
f̃(x) = a1f(x) + b1g(x) + c1 ‖x‖2 and g̃(x) = a2f(x) + b2g(x) + c2 ‖x‖2 satisfy the
requirements.

Lemma 5.9. Let V ⊆ Rn be a subspace with dim(V ) ≥ 3. If there are two points
x, y ∈ V such that f(x) = f(y) = 0 and g(x)g(y) < 0 then there is a third point z ∈ V
for which ‖z‖ = 1 and f(z) = g(z) = 0.

Proof. We can assume without loss of generality that dim(V ) = 3. Let us define
the following cone:

C = {x ∈ V : f(x) = 0} ,(5.12)

3Given a polynomial map of the form

F (x) =
∑
α∈A

xαvα,(5.9)

where {xα : α ∈ A} is the set of monomials appearing in F and vα ∈ Rm, the polynomial rank of F
is defined as

χ(F ) = rank {vα : α ∈ A} .(5.10)

The condition χ(F ) ≤ 1 requires that all the vector-coefficients of the terms x2
i , xixj and xi are

constant multiplies of each other.
4We thank Jean-Baptiste Hiriart-Urruty for this reference.
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then x, y ∈ C, and they must be linearly independent since g(x)g(y) < 0. As C is a
three dimensional homogeneous quadratic surface, and it is not a trivial cone of one
point or one direction, it can either be a second-order cone, a plane, a union of two
planes or the whole subspace V . In any case, the set C \ {0} is either connected or it
consists of two centrally symmetric connected components. Now taking −y instead
of y we can assume that x and y belong to the same connected component of C and
by the continuity of g(x) we have a point u in the component satisfying g(u) = 0.
Finally, z = u/ ‖u‖ satisfies all the requirements of the lemma.

Using these two lemmas we can finish the proof easily. Let V ⊆ Rn be a subspace
with dim(V ) ≥ 3, f, g : V → R homogeneous quadratic functions, and assume that
Wf,g is not only the origin. Let a and b be two distinct points in Wf,g and let c be a
point on the open line segment between a and b. Let x and y be the pre-images of a and
b, respectively. Let us choose an affine bijection P : R2 → R2 for which P (c) = (0, 0),
P (a) = (0, 1); then there is a β < 0 such that P (b) = (0, β). Applying Lemma 5.8 we
get functions f̃ and g̃ such that P (Wf,g) = Wf̃ ,g̃. Now we have f̃(x) = 0, g̃(x) = 1,
f̃(y) = 0 and g̃(y) = β < 0. Applying Lemma 5.9 we get a point z ∈ V such that
‖z‖ = 1 and f̃(z) = g̃(z) = 0. This means that (0, 0) ∈ Wf̃ ,g̃ = P (Wf,g) and therefore
c = P−1(0, 0) ∈ Wf,g. This completes the proof of Theorem 5.6.

More recently, Polyak proved a local version of these theorems:
Theorem 5.10 (Polyak, [64], 2001). Let x ∈ Rn and f(x) = (f1(x), . . . , fm(x)),

where

fi(x) =
1
2
xT Aix + aiT x, i = 1, . . . ,m(5.13)

are quadratic functions. Let A be an n×m matrix with columns ai and let us define

L =

√√√√ m∑
i=1

‖Ai‖2(5.14a)

ν = σmin(A) =
√

λmin(AT A),(5.14b)

where ‖Ai‖ is the operator norm of Ai, and σmin(A) denotes the smallest singular
value of A. If ε < ν/(2L) then the image {f(x) : x ∈ Rn, ‖x‖ ≤ ε} is a convex set in
Rm.

The statement remains true if we take a small ellipsoid instead of the ball. In
that case the norm constraint becomes xT Hx < ε, where H is some positive definite
matrix. Notice that the theorem says nothing if all the functions are homogeneous,
since in that case A = 0.

Polyak proved his result for much more general nonlinear functions in Hilbert
spaces, but the general idea is the same: if f is “close” to its linear approximation
then it will preserve convexity (as its linear approximation would also do so).

Finally, let us mention a negative result. Under some structural assumptions it
is impossible that the image of the real unit surface is convex. Let A = (A1, . . . , Am)
be an m-tuple of n× n real symmetric matrices, and let 1 ≤ k ≤ n. The set

W R
k (A) =

{
(Tr(XT A1X), . . . ,Tr(XT AmX)) : X ∈ Rn×k, XT X = Ik

}
(5.15)

is called the real kth joint numerical range of A (see [49]). This object is closely
connected to the quadratic system presented in §6.4.
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Theorem 5.11 (Li, [49], 2000). Assume that the matrices A1, . . . , Am are linearly
independent. If m > k(n− k) + 1 then W R

k (A) is not convex. Further, if the identity
matrix is not a linear combination of A1, . . . , Am and m > k(n − k) then W R

k (A) is
not convex.

It is interesting to contrast this theorem with Brickman’s result (Theorem 5.6).
Brickman proved that if n ≥ 3 then W1(A) is convex for m = 2. Further gener-
alizations are blocked by Li’s negative result: to prove a similar convexity theorem
for m = 3 it is necessary (but not sufficient!) to assume n ≥ 4, or the existence of
a positive definite linear combination of the matrices and n ≥ 3. It is surprising,
though, that the convexity of the joint numerical range is a structural property, i.e.,
for certain values of m and n the image is convex for all possible linearly independent
families of matrices, while for other values convexity is not possible at all.

If the image of the unit sphere is not convex then one might wonder how much
it is nonconvex. One way to tell this is through the description of the convex hull.
The Carathéodory Theorem [68] states that every point in the convex hull of an m-
dimensional set can be written as the convex combination of m + 1 points from the
set. In our case we have much stronger results:

Theorem 5.12 (Poon, [65], 1994). Let A = (A1, . . . , Am) be an m-tuple of n×n
real symmetric matrices, and let W R

1 (A) denote the joint numerical range defined
earlier, i.e., W R

1 (A) is the quadratic image of the n-dimensional real unit sphere. Then
every point in the convex hull of W R

1 (A) can be expressed as the convex combination
of at most kR(m,n) points from W R

1 (A), where

kR(m,n) = min
{

n,

⌊√
8m + 1− 1

2

⌋
+ δn(n+1)

2 ,m

}
,(5.16)

and δa,b is the Kronecker symbol, i.e., δa,b = 1 or 0 depending on whether a = b or
a 6= b, respectively.

5.2.2. Results over complex numbers. Similar questions were first inves-
tigated by Hausdorff [34] and Toeplitz [74] who proved that if A,B1, . . . , Bm are
complex Hermitian matrices then the set

HC(A,B1, . . . , Bm) = {(z∗Az, z∗B1z, . . . , z∗Bmz) : z ∈ Cn, ‖z‖ = 1} ⊆ Rm+1,(5.17)

where z∗ is the complex conjugate-transpose, is convex if m = 1. This object is called
the joint numerical range of the matrices. Later, Au-Yeung and Poon [6] proved that
if n ≥ 3 then the joint numerical range of three Hermitian matrices is also convex.

A general differential geometric characterization of the cases when the joint nu-
merical range is convex can be found in [32]. This is the strongest known theorem for
the general case.

Theorem 5.13 (Gutkin et al., [32], 2002). Let A1, . . . Am be n×n complex Her-
mitian matrices. If the multiplicity of the largest eigenvalue of

∑m
i=1 µiAi is the same

for all µ1, . . . µm, where
∑m

i=1 µ2
i = 1, and the union of the eigenspaces corresponding

to the largest eigenvalue is not the whole Cn then the set

{(z∗A1z, . . . , z∗Amz) : z ∈ Cn, z∗z = 1} ⊆ Rm(5.18)

is convex.
Remark 5.14. The second condition is redundant unless m = n + 1 and the

multiplicity of the largest eigenvalue is n/2. Moreover, if m ≥ 4 and the conditions
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of the theorem fail for some matrices but the image is still convex, then there is an
arbitrarily small perturbation of A1, . . . Am that destroys convexity. Thus, the above
condition is almost necessary. For more details and proofs see [32].

Now let us have the complex analogue of Theorem 5.11:
Theorem 5.15 (Li, [49], 2000). Let A = (A1, . . . , Am) be an m-tuple of n × n

complex Hermitian matrices, and let 1 ≤ k ≤ n. The set

W C
k (A) =

{
(Tr(X∗A1X), . . . ,Tr(X∗AmX)) : X ∈ Cn×k, X∗X = Ik

}
(5.19)

is the complex kth joint numerical range of A (see [49]). Assume that the matrices
A1, . . . , Am are linearly independent. If m > 2k(n−k)+1 then W C

k (A) is not convex.
Further, if the identity matrix is not a linear combination of A1, . . . , Am and m >
2k(n− k) then W C

k (A) is not convex.
Finally, we can state the complex counterpart of Theorem 5.12.
Theorem 5.16 (Poon, [65], 1994). Let A = (A1, . . . , Am) be an m-tuple of n×n

complex Hermitian matrices, and let W C
1 (A) denote the joint numerical range defined

earlier, i.e., W C
1 (A) is the quadratic image of the n-dimensional complex unit sphere.

Every point in the convex hull of W C
1 (A) can be expressed as the convex combination

of at most kC(m,n) points from W C
1 (A), where

kC(m,n) = min
{
n,
⌊√

m
⌋

+ δn2,m+1

}
.(5.20)

One might wonder why the complex case is more deeply developed than the real
one. The reason for this is twofold. Firstly, from a purely differential geometric point
of view the complex field has a much nicer structure, which allows for more advanced
proof techniques. Secondly, as we will argue later in §6.5, the problem is structurally
simpler over the complex field.

Recently, Faybusovich [25] put all these results in a unified context and provided
general proofs using Jordan algebras.

5.3. Implications. It is straightforward to apply these results to our case.
Whenever a collection of matrices satisfies the convexity property, we can characterize
the solvability of the corresponding quadratic system with a simple LMI. Moreover,
we can extend the results to more general cases.

5.3.1. Results over real numbers. Let us start with the results over real
numbers. As we have already seen in the first proof, Dines’s result (Theorem 5.1)
gives rise to the basic homogeneous S-lemma. The generalization for three inequalities
(Proposition 3.6) comes from Polyak’s convexity result (Theorem 5.2). The norm
constrained results will give us something new. Using Theorem 5.6 with a simple
separation idea we get the following theorem:

Theorem 5.17. Let n ≥ 3, A,B ∈ Rn×n real symmetric matrices. Assume
further that there exists a Slater point x̄ ∈ Rn such that ‖x̄‖ = 1 and x̄T Bx̄ < β. The
following two statements are equivalent:

(i) The system

xT Ax < α(5.21a)
xT Bx ≤ β(5.21b)
‖x‖ = 1(5.21c)

is not solvable.
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(ii) There is a nonnegative multiplier y such that

xT Ax− α + y(xT Bx− β) ≥ 0, ∀x ∈ Rn, ‖x‖ = 1,(5.22a)

or equivalently

A− αI + y(B − βI) � 0.(5.22b)

The latter condition is an LMI, thus it can be verified in essentially polynomial
time.5 This result, however, can not be extended to general nonhomogeneous func-
tions.

Polyak’s local convexity result (Theorem 5.10) can be used to prove the following
local duality result:

Theorem 5.18. Let x ∈ Rn and f(x) = (f1(x), . . . , fm(x)), where

fi(x) =
xT Aix

2
+ aiT x(5.23)

are quadratic functions. If the vectors ai, i = 1, . . . ,m are linearly independent then
there exists an ε̄ > 0 such that for all ε < ε̄ the following two statements are equiva-
lent:

(i) The system

fi(x) ≤ αi, i = 1, . . . ,m(5.24a)
‖x‖ ≤ ε(5.24b)

is not solvable.
(ii) There exists a vector of nonnegative multipliers y1, . . . , ym (not all of them

are zero) such that
m∑

i=1

yi(fi(x)− αi) ≥ 0, ∀x ∈ Rn, ‖x‖ ≤ ε.(5.25)

Proof. If the vectors ai, i = 1, . . . ,m are linearly independent then the smallest
singular value of A = (a1| . . . |am) is positive, therefore from Theorem 5.10 the set

{(f1(x), . . . , fm(x)) : x ∈ Rn, ‖x‖ < ε} ⊂ Rm(5.26)

is convex for any ε < ε̄ = ν/(2L), where ν and L are defined in Theorem 5.10. After
this we can apply the usual separation idea to finish the proof, see e.g., §2.2.

These kind of results usually require the convexity of the functions (see, [68, 72]).
Here, however, we do not need to impose convexity on the functions. It is important
to note, that unlike other results presented so far, Theorem 5.18 uses quantitative
information of the problem data.

Now we can put together the pieces. If the image is convex then we can use
the separation argument presented in §2.2 to get the dual statement. If the image is
nonconvex then we can use Theorem 5.12 to characterize how much the image is not
convex. This idea yields the following result.

Theorem 5.19. If the system

xT Aix ≤ αi, i = 1, . . . ,m(5.27a)
‖x‖ = 1(5.27b)

is not solvable then one of the following two statements is true:

5For a complete discussion on the complexity issues see [11], §6.6.
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(i) There are nonnegative multipliers y1, . . . , ym (not all of them are zero) such
that the matrix

m∑
i=1

yi(Ai − αiI)(5.28)

is positive semidefinite.
(ii) There exist at most kR(m,n) (see Theorem 5.12) vectors x1, . . . , xk ∈ Rn

such that

kR(m,n)∑
j=1

xT
j Aixj ≤ αi, ∀i = 1, . . . ,m.(5.29)

Remark 5.20. System (5.29) will be discussed later in §6.4 in connection with
rank constrained optimization.

Finally, let us see what we can derive from Ramana’s result about ICON maps
(Theorem 5.3). His characterization of ICON maps is different in nature from the
previous equivalent conditions. Ramana’s conditions are more dependent on the ac-
tual data in the matrices. However, the result about LICON maps serves two goals.
Firstly, it gives a polynomial time verifiable sufficient condition for the ICON prop-
erty. Secondly, if F : Rn → Rm is a constant-free LICON map then we can include a
set of linear constraints in the system. The following theorem is obtained:

Theorem 5.21. Let F : Rn → Rm be a constant-free (F (0) = 0) quadratic map
and M ∈ Rn×k any matrix. If F is a LICON map (see Theorem 5.4 for an equivalent
condition of this) then the following two statements are equivalent:

(i) The system

Fi(x) ≤ αi, i = 1, . . . ,m(5.30a)
Mx = 0(5.30b)

is not solvable.
(ii) There is a nonzero vector y = (y1, . . . , ym) ∈ Rm

+ \ {0} of nonnegative mul-
tipliers such that

yT (F (x)− α) ≥ 0, ∀x : Mx = 0.(5.31)

Remark 5.22. A special case of this result has also been presented in Proposition
3.9.

5.3.2. Results over the complex field. The theorems in §5.2.2 can be applied
in two ways. First we can easily prove the complex counterparts of all the theorems in
the previous subsection. This way we can characterize the solvability of the system:

z∗Aiz ≤ αi, i = 1, . . . ,m(5.32a)
z∗z = 1,(5.32b)

where Ai, i = 1, . . . ,m are n× n complex Hermitian matrices. However, as our main
topic is the solvability of real quadratic systems, the enumeration of all these results
is out of the scope of this paper. We just briefly mention the strongest duality result
here because we will refer to it later. It is an easy exercise to derive all the other
results.

Theorem 5.23. Let n ≥ 3, Ai ∈ Cn, i = 1, 2, 3. The following two statements
are equivalent:
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(i) The system

z∗Aiz = 0, i = 1, 2, 3(5.33a)
z 6= 0(5.33b)

is not solvable.
(ii) There are multipliers y1, y2, y3 such that

3∑
i=1

yiAi � 0.(5.34)

On the other hand the complex results have important consequences for real
systems, too. Let A be a real symmetric matrix. If z = x + iy ∈ Cn is a complex
vector, then

z∗Az = (x− iy)T A(x + iy) = xT Ax + yT Ay.(5.35)

What we can get this way is a real quadratic system

xT Aix + yT Aiy ≤ αi, i = 1, . . . ,m(5.36a)

‖x‖2 + ‖y‖2 = 1.(5.36b)

These equations are in strong relation with rank constrained optimization and will be
discussed in more detail in §6.5.

5.4. Further extensions. The particular strength of this approach is that it
can be applied to more general constraints. We can characterize the solvability of the
system

(xT A1x, . . . , xT Amx) ∈ C(5.37a)
x ∈ Rn(5.37b)

(‖x‖ = 1),(5.37c)

where C ⊂ Rm is a convex and possibly closed set. We can include the norm constraint,
if we want to use the results about the joint numerical range. If this system is not
solvable and the set of possible LHS vectors is convex then that set can be separated
from C by a hyperplane. The actual form of these duality results depends on the form
of C. In the results derived so far C was the cone of nonnegative vectors. In what
follows we present some examples when C is a polyhedron or a Lorentz cone. Further
generalizations to balls, cubes, cones, etc., are also possible.

Let C ⊂ Rm be a nonempty polyhedron defined by the inequalities Mu ≤ h,
where M ∈ Rl×m, u ∈ Rm and h ∈ Rl. Consider the following system:(

xT A1x, . . . , xT Amx
)

= u(5.38a)
Mu ≤ h.(5.38b)

We can prove the following theorem:
Theorem 5.24. Let A1, A2 ∈ Rn×n be real symmetric matrices, x ∈ Rn, M ∈

Rl×2, h ∈ Rl. Let us assume that the polyhedron
{
u ∈ R2 : Mu ≤ h

}
is not empty.

The following two statements are equivalent:
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(i) The quadratic system

Mi1x
T A1x + Mi2x

T A2x ≤ hi, i = 1, . . . , l(5.39a)
x ∈ Rn(5.39b)

is not solvable.
(ii) There exists a vector of nonnegative multipliers y = (y1, . . . , ym) such that

l∑
i=1

yi (Mi1A1 + Mi2A2) � 0(5.40a)

yT h < 0(5.40b)
y ≥ 0.(5.40c)

Proof. First let us assume that we have a vector y satisfying (5.40), then multi-
plying the inequalities in (5.39) by the corresponding multiplier and taking the sum
we get that for any solution of (5.39)

0 ≤ xT

(
l∑

i=1

yi (Mi1A1 + Mi2A2)

)
︸ ︷︷ ︸

�0

x ≤ yT h < 0,(5.41)

which is a contradiction.
Let us assume now that (5.39) is not solvable. In this case the image{

(xT A1x, xT A2x) : x ∈ Rn
}

(5.42)

and the polyhedron
{
u ∈ R2 : Mu ≤ h

}
are nonempty, disjoint, convex sets, therefore

they can be separated by a hyperplane, i.e., there exist multipliers z1, z2 such that

z1x
T A1x + z2x

T A2x ≥ 0, ∀x ∈ Rn(5.43a)
zT u < 0, ∀u : Mu ≤ h.(5.43b)

The first inequality states that a linear combination of the matrices is positive semidef-
inite, while the second one can be written in equivalent form using the well known
Farkas Lemma (see, e.g., [19, 68, 72]). After these substitutions we get the statement
of the theorem.

Remark 5.25. There is another way to look at this theorem. All the inequalities
in system (5.39) are of the form xT Bix ≤ hi where Bi = Mi1A1 + Mi2A2. In these
terms what we proved is that the S-lemma remains true for the multi-inequality case,
provided that all the matrices in the system are linear combinations of two matrices,
see Prop. 3.5. This explains and generalizes an observation of Sturm and Zhang in
§6 of [73].

For a second example let us use Theorem 5.2 and assume that C is the three
dimensional Lorentz cone, i.e., C =

{
(u, v, w) ∈ R3 : u2 ≥ v2 + w2, u ≥ 0

}
. This set is

a closed, convex cone. We can define the dual cone of C:

C∗ =
{
(p, q, r) ∈ R3 : pu + qv + rw ≥ 0,∀(u, v, w) ∈ C

}
.(5.44)

In what follows we will use the fact that the Lorentz cone is self dual, i.e., C = C∗,
see [11] for details. We obtain the following theorem:

Theorem 5.26. Let n ≥ 3, A,B, C ∈ Rn×n be symmetric matrices and assume
that they have a positive definite linear combination. The following two statements
are equivalent:
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(i) The system (
xT Ax

)2 ≥ (xT Bx
)2

+
(
xT Cx

)2
(5.45a)

xT Ax ≥ 0(5.45b)
x 6= 0(5.45c)

is not solvable.
(ii) There exist multipliers y1, y2, y3 such that

y1A + y2B + y3C ≺ 0(5.46a)
y2
1 ≥ y2

2 + y2
3(5.46b)

y1 ≥ 0.(5.46c)

Proof. First let us assume that (5.45) is solvable and the multipliers in system
(5.46) exist. Then for these solutions we have

y1x
T Ax + y2x

T Bx + y3x
T Cx < 0.(5.47)

On the other hand both (y1, y2, y3) and (xT Ax, xT Bx, xT Cx) are in a three dimen-
sional Lorentz cone, and since the Lorentz cone is self dual, we have

y1x
T Ax + y2x

T Bx + y3x
T Cx ≥ 0(5.48)

contradicting to (5.47).
Now assume that system (5.45) is not solvable. This means that{

(xT Ax, xT Bx, xT Cx) : x ∈ Rn
}
∩ C = {0}(5.49)

and since both sets are convex (the first one by Theorem 5.2, the other one by def-
inition), they can be separated by a hyperplane going through the origin, i.e., there
exist y1, y2, y3 such that

y1u + y2v + y3w ≥ 0, ∀u, v, w : u2 ≥ v2 + w2, u ≥ 0(5.50a)
y1x

T Ax + y2x
T Bx + y3x

T Cx < 0, ∀x 6= 0.(5.50b)

The first equation requires that (y1, y2, y3) be in the dual cone of the Lorentz cone, but
since the Lorentz cone is self dual this is equivalent to (y1, y2, y3) being in a Lorentz
cone. This shows that we have a solution for system (5.46).

Similar theorems can be proved using other special forms of set C. To our best
knowledge these results have not been stated explicitly yet.

6. Rank constrained LMI. Looking at the second proof (see §2.3) of the S-
lemma we can see that the crucial step is to show that the LMI relaxation of the system
of quadratic inequalities is exact. This idea leads to the concept of rank-constrained
optimization.

6.1. Motivation. Consider the homogeneous case

xT Ax < 0(6.1a)
xT Bix ≤ 0, i = 1, . . . ,m(6.1b)
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and assume that the Slater condition is satisfied, i.e., there exists an x̄ ∈ Rn such that
x̄T Bix̄ < 0 for all i = 1, . . . ,m. Using the standard notation introduced in §2.3, this
system is equivalent to the following LMI:

A • Z < 0(6.2a)
Bi • Z ≤ 0, i = 1, . . . ,m(6.2b)

Z � 0, rank(Z) = 1.(6.2c)

After relaxing the condition on the rank

A • Z < 0(6.3a)
Bi • Z ≤ 0, i = 1, . . . ,m(6.3b)

Z � 0(6.3c)

we have to establish the following:
1. Prove the equivalence of the solvability of (6.3) and (6.2).
2. Prove that the Slater condition holds for (6.3).

The latter one is simple, let us take Z = x̄x̄T + αI where x̄ is the Slater-point
of (6.1) and I is the identity matrix. If α > 0 is small enough then all the linear
constraints are satisfied while Z is positive definite. The former one is a more difficult
problem and there are only few general results in that area. This is the subject of the
next section.

After proving these two statements, we can apply the Farkas Theorem (see The-
orem 2.1) to derive the dual equivalent of system (6.3):

A +
m∑

i=1

yiBi � 0(6.4a)

y ≥ 0.(6.4b)

This is exactly the second part of the S-lemma. Putting the parts together we get
that if the solvability of (6.3) implies the existence of a rank-1 solution then the
S-procedure is exact. Let us examine when this can happen.

6.2. Theoretical results. Finding low rank solutions of linear matrix inequal-
ities is a relatively new research field. The earliest general result is due to Pataki
[57, 58], which was later discovered in other contexts, too.

Theorem 6.1 (Pataki, [57, 58], 1994). If A ⊆ Sn is an affine subspace such that
the intersection PSn ∩A is non-empty and dim(A) ≥

(
n+1

2

)
−
(
r+2
2

)
+ 1 then there is

a matrix X ∈ PSn ∩ A such that rank(X) ≤ r.
Proof. There are many possible ways to prove the theorem but the key observation

is that any extreme point6 of the intersection will have a sufficiently low rank. This
also helps one to find such a matrix. The theorem is intuitively plausible: in order to
have low rank matrices we have to intersect PSn with a high dimensional subspace A.

Let X ∈ PSn ∩ A be an extreme point of the intersection, then we can assume
without loss of generality that

X =
(

X11 0
0 0

)
,(6.5)

6An extreme point of a convex set is a point from the set that is not an interior point of any line
segment from the set. The intersection PSn ∩ A, as it does not contain a line, has extreme points.
For more details on these issues, see [68, 72].
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where X11 is positive definite. If rank(X) ≤ r then we have the requested low rank
matrix, so let us assume that rank(X) ≥ r + 1. As the dimension of (r + 1) × (r +
1) symmetric matrices is

(
r+2
2

)
and X11 is constrained by at most

(
r+2
2

)
− 1 linear

equalities we have a nonzero matrix Y such that

Y •A = 0 ∀A ∈ A(6.6a)

Y =
(

Y11 0
0 0

)
(6.6b)

Y11 6= 0.(6.6c)

Now X ± εY ∈ PSn ∩ A for small values of ε, thus X is not an extreme point of the
intersection, contradicting to our assumption. This proves that X is of sufficiently
low rank.

Remark 6.2. The bound is sharp in the sense that if r < n then one can find
a subspace A ⊆ Sn such that PSn ∩ A 6= ∅, dim(A) =

(
n+1

2

)
−
(
r+2
2

)
and for every

matrix X ∈ PSn ∩ A we have rank(X) > r.
If A is nontrivial then the conditions of the theorem are obviously satisfied for

r = n− 1, implying the following simple corollary:
Corollary 6.3. For any nontrivial (i.e., at least one dimensional) affine sub-

space A, the intersection PSn ∩ A (provided that it is not empty) contains a matrix
X such that rank(X) ≤ n− 1.

The result in Theorem 6.1 was generalized by Barvinok [9]:
Theorem 6.4 (Barvinok, [9], 2001). Let r > 0, n ≥ r + 2 and A ⊆ Sn be

an affine subspace such that the intersection PSn ∩ A is non-empty, bounded and
dim(A) =

(
n+1

2

)
−
(
r+2
2

)
. Then there is a matrix X ∈ PSn∩A such that rank(X) ≤ r.

Barvinok’s proof uses a differential geometric argument based on the structure of
the cone of positive semidefinite matrices. There is a crucial difference between the
two theorems. In the Pataki Theorem any extremal point of the intersection always
has a sufficiently low rank, while in the Barvinok Theorem we can only guarantee
that there is low rank extremal point. This has important algorithmic consequences:
while it is easy to find a suitable low rank matrix for the Pataki Theorem, there is no
known algorithm to find such a matrix for the Barvinok Theorem.

Barvinok was aware that this result is not new, but he is the first to state it and
to provide a direct proof. He relates his result to a theorem of Au-Yeung and Poon
[6] on the image of the sphere under a quadratic map. That result is discussed in §5.

Finally, both of the theorems in this section are extended for general symmetric
matrices in [25] using Jordan algebraic techniques.

6.3. Implications. Now let us see what we can obtain using the above theorems.
In view of the relaxation argument in §6.1, we are interested in rank-1 solutions, i.e.,
we use the theorems with r = 1.

Let us assume that system (6.3) is solvable, then we have a matrix Z such that

A • Z = w0 < 0(6.7a)
Bi • Z = wi ≤ 0, i = 1, . . . ,m(6.7b)

Z � 0.(6.7c)

Here each equality corresponds to a hyperplane. Let A be the intersection of these
hyperplanes, then

dim(A) ≥
(

n + 1
2

)
−m− 1.(6.8)



34 I. Pólik, T. Terlaky

In order to apply Theorem 6.1 with r = 1 we need to have

dim(A) ≥
(

n + 1
2

)
− 2,(6.9)

so we must have m ≤ 1, i.e., we can have at most one non-strict inequality. Then
Theorem 6.1 guarantees the existence of a rank-1 solution to (6.3), thus the Pataki
Theorem implies the basic S-lemma.

Notice that this way we proved slightly more than the existence of a rank-1
solution. Namely, we proved that the rank-1 matrix xxT can be chosen such that

A • xxT = w0 < 0(6.10a)
Bi • xxT = wi ≤ 0, i = 1, . . . ,m(6.10b)

xxT � 0,(6.10c)

where wi, i = 0, . . . ,m are the same numbers as in system (6.7).
Now let us try to apply the Barvinok Theorem. Using the same setup and a

similar argument as before, and setting r = 1, we have m = 2, so we can have two
non-strict inequalities. However, there is an extra condition to satisfy, namely the
solution set of

A • Z = w0(6.11a)
Bi • Z = wi, i = 1, 2(6.11b)

Z � 0(6.11c)

must be bounded and since n ≥ r + 2 we must have n ≥ 3.
Unfortunately the boundedness does not always hold, we need some extra condi-

tion to force it. It is well-known from convex analysis (see [68, 72]) that a convex set
is unbounded if and only if it has a nontrivial recession direction, or, in other words,
if it contains a half-line. Applying this to our case we get that the solution set of
system (6.11) is bounded if and only if the following system is not solvable:

A • Z = 0(6.12a)
Bi • Z = 0, i = 1, 2(6.12b)

Z � 0(6.12c)
Z 6= 0.(6.12d)

Let us note that this system is independent of w, therefore the boundedness of the
solution set of (6.11) does not depend on the actual choice of w0 and w. Either all of
them are bounded or all are unbounded (provided they are not empty).

Since this is an LMI it is easy to characterize its solvability. Namely, by the
duality theory of LMIs (see [11], Proposition 2.4.2.), system (6.12) is not solvable if
and only if there are real numbers λ0, λ1 and λ2 such that λ0A + λ1B1 + λ2B2 is
positive definite. This way we proved Proposition 3.6, i.e., the S-lemma with three
inequalities.

6.4. Higher rank solutions. So far we have applied our theorems to the r = 1
case. However, the higher rank results also have some consequences for quadratic
systems. Consider the following system:

r∑
j=1

xjT
Axj < 0(6.13a)
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r∑
j=1

xjT
Bix

j ≤ 0, i = 1, . . . ,m,(6.13b)

where xj ∈ Rn, j = 1, . . . , r. Introducing

X =
r∑

j=1

xjT
xj(6.14)

and using the • notation this system can be written as:

A •X < 0(6.15a)
Bi •X ≤ 0, i = 1, . . . ,m(6.15b)

X � 0(6.15c)
rank(X) ≤ r,(6.15d)

since a positive semidefinite matrix X can always be decomposed as the sum of
rank(X) positive semidefinite rank-1 matrices. Now relaxing the rank constraint we
get an LMI identical to (6.3):

A •X < 0(6.16a)
Bi •X ≤ 0, i = 1, . . . ,m(6.16b)

X � 0.(6.16c)

Applying Theorems 6.1 and 6.4, and using a similar argument we obtain the following
theorem:

Theorem 6.5. Let A,B1, . . . , Bm ∈ Rn×n be symmetric matrices such that there
are vectors x̄1, . . . , x̄r ∈ Rn for which the Slater condition is satisfied, i.e.,

r∑
j=1

x̄jT

Bix̄
j < 0, i = 1, . . . ,m.(6.17)

If
1. m ≤

(
r+2
2

)
− 2, or

2. m =
(
r+2
2

)
− 1, n ≥ r + 2 and there is a positive definite linear combination

of A,B1, . . . , Bm,
then the following two statements are equivalent:

(i) The quadratic system
r∑

j=1

xjT
Axj < 0(6.18a)

r∑
j=1

xjT
Bix

j ≤ 0, i = 1, . . . ,m(6.18b)

is not solvable.
(ii) The LMI

A +
m∑

i=1

yiBi � 0(6.19a)

y1, . . . , ym ≥ 0(6.19b)

is solvable.
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Now let z = x1 + ix2 ∈ Cn be a complex vector, then for any real symmetric
matrix A we have z∗Az = x1T

Ax1 + x2T
Ax2, therefore the above theorems can be

used to decide the solvability of the following complex quadratic system, where A and
Bi, (i = 1, . . . ,m) are real symmetric matrices:

z∗Az < 0(6.20a)
z∗Biz ≤ 0, i = 1, . . . ,m.(6.20b)

The value of m can be at most 3 without any further assumptions, or 4, if there is a
positive definite linear combination of the matrices.

6.5. Rank constraints and convexity. We have seen that one can have more
inequalities in the S-lemma in the complex case than in the real case. The reason for
this is obvious from the previous section. Real solutions come from rank-1 solutions of
system (6.3), while for complex solutions it is enough to have a rank-2 solution. This
observation sheds some light on the convexity issues discussed in the previous section,
particularly, it answers the question why the joint numerical range over the complex
field possesses a much nicer structure and has a more straightforward characterization.

There is an interesting connection between the rank constraints and the convexity
of the joint numerical range.

Recall Dines’ result (Proposition 2.3):
{
(xT Ax, xT Bx) : x ∈ Rn

}
is convex. Let

us take two points in the image, (u1, u2) and (v1, v2), and let 0 < λ < 1. Now we have
to find a point x ∈ Rn such that xT Ax = λu1 +(1−λ)v1 and xT Bx = λu2 +(1−λ)v2.
Using the notations of this section we are looking for a rank-1 solution of the following
system:

A •X = λu1 + (1− λ)v1(6.21a)
B •X = λu2 + (1− λ)v2.(6.21b)

Using Theorem 6.1 we can see that this system always has a rank-1 solution, X = xxT ,
thus we proved the convexity of the set

{
(xT Ax, xT Bx) : x ∈ Rn

}
. The same argu-

ment can be applied to the m = 2, n ≥ 3 case, then the Barvinok Theorem (Theorem
6.4) will yield Polyak’s convexity result (Theorem 5.2). The connection works in both
ways, from the convexity of the joint numerical range we can deduce rank-constraints
for real or complex LMIs.7 This is particularly useful in the complex case, since the
theory of the complex numerical ranges has been investigated thoroughly, while there
are no results for low-rank solutions of complex LMIs. On the other hand, there are
very few results about the convexity of the image of the real space under higher rank
quadratic maps.

Finally, we can contrast the Pataki Theorem for low rank matrices (Theorem 6.1)
and Poon’s Theorem on the number of terms in the convex combinations (Theorem
5.12). Although they are stated in different contexts they have some applications in
common. Consider the system

Ai •X = bi, i = 1, . . . ,m(6.22a)
X � 0,(6.22b)

where Ai, X ∈ Rn×n and assume that the system is solvable. Using Theorem 6.1 we
get that there is a solution X such that

rank(X) ≤
⌊√

8m + 1− 1
2

⌋
= R1(m,n),(6.23)

7The authors wish to thank Gábor Pataki for the idea of the above argument.
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and of course rank(X) ≤ n also holds.
Now we try to get a similar bound from Theorem 5.12. Let X be a solution for

system (6.22) and let us consider its rank-1 decomposition:

X =
r∑

j=1

λjxjxjT
,(6.24)

where
∥∥xj
∥∥ = 1, and since X is positive semidefinite, we have λj ≥ 0 for j = 1, . . . ,m.

Let us define the following scaled quantities:

λ =
r∑

j=1

λj(6.25a)

x̄j =
xj

λ
(6.25b)

X̄ =
X

λ
=

r∑
j=1

λj

λ
xjxjT

,(6.25c)

where the last line shows that X̄ is a convex combination of the rank-1 matrices
xjxjT . Now let A denote the m-tuple (A1, . . . , Am) and let us use the notations of
Theorem 5.12. By the definition of the image set we have(

A1 • x̄j x̄jT

, . . . , Am • x̄j x̄jT
)
∈ W R

1 (A), ∀j = 1, . . . , r,(6.26)

and using the decomposition result on X̄ we get that(
A1 • X̄, . . . , Am • X̄

)
∈ conv

(
W R

1 (A)
)
, ∀j = 1, . . . , r.(6.27)

We can use Theorem 5.12 to deduce that there is a matrix X̃ such that

Ai • X̃ = Ai • X̄, ∀j = 1, . . . ,m(6.28a)

X̃ � 0(6.28b)

rank
(
X̃
)
≤ min

{
n,

⌊√
8m + 1− 1

2

⌋
+ δn(n+1)

2 ,m

}
= R2(m,n),(6.28c)

and the matrix λX̃ solves system (6.22). Finally, if m = n(n+1)
2 then R2(m,n) = n.

This shows that the two bounds are identical.

7. Generalized convexities. “Hidden convexity” (see [12]) seems to play an
important role in the S-lemma. Although we made no convexity assumptions, the
image of the quadratic map in §2.2 turned out to be convex. In this section we shed
some more light on this interesting phenomenon.

7.1. Motivation. The fact that the S-lemma can be viewed as a non-convex
generalization of the Farkas Theorem inspires us to look for a more general sense
of convexity, which includes both the classical convex and the quadratic case. The
convexity results in §5 show that even though the functions are not convex they
describe a convex object, thus the problems admit some hidden convexity.
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7.2. Theoretical results. There are many different convexity notions in the
literature. Let us assume that X is a nonempty set, Y is a topological vector space
over the real numbers with dual space Y ∗, i.e., Y ∗ contains all the linear functions
that map from Y to R. If K is a cone in Y then let K∗ denote its dual cone,

K∗ = {y∗ ∈ Y ∗ : y∗(y) ≥ 0,∀y ∈ K} .(7.1)

Let us assume that K is a convex, closed, pointed8 cone with nonempty interior. The
partial orderings �K and �K over Y are defined as follows:

y1 �K y2 ⇔ y1 − y2 ∈ K(7.2a)
y1 �K y2 ⇔ y1 − y2 ∈ int(K).(7.2b)

Let us note that the functions in this section are not necessarily quadratic. Using
these notations we can define the following convexity notions:

Definition 7.1. A function f : X → Y is called
Ky Fan convex, if for every x1, x2 ∈ X and λ ∈ [0, 1] there exists an x3 ∈ X such

that

f(x3) �K (1− λ)f(x1) + λf(x2).(7.3)

König convex, if for every x1, x2 ∈ X there exists an x3 ∈ X such that

f(x3) �K
1
2
f(x1) +

1
2
f(x2).(7.4)

K-convexlike, if there exists a λ ∈ (0, 1) such that for every x1, x2 ∈ X there exists
an x3 ∈ X such that

f(x3) �K (1− λ)f(x1) + λf(x2).(7.5)

Further, in order to deal with both equalities and inequalities we can introduce
the mixed versions of the above definitions.

Definition 7.2. Let Y and Z be locally convex9 topological vector spaces and let
X be any set. The function pair (f, g) : X → Y × Z is called
Ky Fan convex-linear, if for each x1, x2 ∈ X and λ ∈ [0, 1] there exists an x3 ∈ X

such that

f(x3) �K (1− λ)f(x1) + λf(x2)(7.6a)
g(x3) = (1− λ)g(x1) + λg(x2),(7.6b)

König convex-linear, if for each x1, x2 ∈ X there exists x3 ∈ X such that

2f(x3) �K f(x1) + f(x2)(7.7a)
2g(x3) = g(x1) + g(x2).(7.7b)

The generality of these definitions is obvious if we notice that X can be any set,
without any topology. Notice, e.g., that any continuous function mapping a compact
set into R is König convex, since it has a minimum.

8A cone K is pointed if it does not contain a line.
9A topological vector space is locally convex if every point has a neighborhood basis consisting

of open convex sets. Every normed space is locally convex.
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Special cases of these definitions were first introduced by Ky Fan [24] and König
[47]. Obviously, all Ky Fan convex functions are König convex, and all König convex
functions are K-convexlike. However, there seems to be a large gap between the two
extremities in these definitions. This gap is not that large, as it is shown in the next
proposition (see [16]).

Proposition 7.3. If f is K-convexlike then the set of λ’s satisfying the definition
of Ky Fan convexity is dense in [0, 1].

Corollary 7.4. If f is continuous (or at least lower semicontinuous) then the
convexity notions in Definition 7.1 coincide.

Illés and his colleagues proved several versions of the Farkas Theorem for these
convexities [40, 41, 42].

Theorem 7.5 (Illés, Joó and Kassay, 1992, [40]). Let f : X → Y be König
convex, where Y is a locally convex space. If there is no x ∈ X such that f(x) ≺K 0
then there exists a y∗ ∈ Y ∗ \ {0} such that

y∗(f(x)) ≥ 0, ∀x ∈ X.(7.8)

For the following theorem let Y1 and Y2 be two topological vector spaces over the
reals, K1 ⊆ Y1 and K2 ⊆ Y2 are convex cones with vertices OY1 and OY2 such that
intK1 6= ∅. Let f : X → Y1 and g : X → Y2 be two functions and define Y = Y1×Y2,
K = K1 ×K2 and F = (f, g) : X → Y .

Theorem 7.6 (Illés and Kassay, 1999, [42]). Suppose F = (f, g) : X → Y is
K-convexlike and the set F (X) + K has nonempty interior. The following assertions
hold:

(i) If there is no x ∈ X such that

f(x) ≺K 0(7.9a)
g(x) �K 0(7.9b)

then there exist y∗1 ∈ K∗
1 and y∗2 ∈ K∗

2 (not both are the origin) such that

y∗1(f(x)) + y∗2(g(x)) ≥ 0, ∀x ∈ X.(7.10)

(ii) If there exists an y∗1 ∈ K∗
1 \ {OY ∗

1
} and y∗2 ∈ K∗

2 such that (7.10) holds then
system (7.9) is not solvable.

The following theorem deals with systems containing equality constraints.
Theorem 7.7 (Illés and Kassay, 1994, [41]). Let Y and Z be locally convex

topological vector spaces and let X be any set. Let (f, g) : X → Y × Z be Ky Fan
convex-linear with K and define

M = {(f(x) + v, g(x)) : x ∈ X, v ∈ K} ⊂ Y × Z.(7.11)

If intM 6= ∅ and there is no x ∈ X such that

f(x) ≺K 0
g(x) = 0

then there exists y∗ ∈ K∗ and z∗ ∈ Z∗ (not both are the origin) such that

y∗(f(x)) + z∗(g(x)) ≥ 0, ∀x ∈ X.(7.12)
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Fig. 7.1. Separating a convex cone from a nonconvex set (left). The Minkowski sum of the set
and the negative cone is separable from the origin (right).

The proof of the above theorems relies on the following simple observation (see
Fig. 7.1). In order to separate a convex cone from a set, the set does not have to be
convex. It is enough to be convex on the side “facing the cone.” More precisely, if K
is a convex cone disjoint from set C, and C + (−K) is convex then K and C can be
separated by a hyperplane. Another view of this idea is that K ∩ C = ∅ if and only if
0 /∈ C + (−K). Separating this latter set from the origin is equivalent to separating
K and C.

For a summary on different convexity concepts see [2, 16] and the references
therein.

7.3. Implications. It is straightforward to apply these theorems to our prob-
lems, we only need to verify the convexity assumptions. Notice however, that if we
restrict ourselves to homogeneous quadratic functions then the above three notions
coincide. Thus, e.g., in order to apply the results we need to prove that a pair of
quadratic functions is König convex, i.e., for any x1, x2 ∈ Rn there exists an x3 ∈ Rn

such that

xT
3 Ax3 ≤

1
2
xT

1 Ax1 +
1
2
xT

2 Ax2(7.13a)

xT
3 Bx3 ≤

1
2
xT

1 Bx1 +
1
2
xT

2 Bx2.(7.13b)

In fact, in Proposition 2.3 we proved that these two equations can be satisfied with
equality, therefore a pair of quadratic functions is both König convex and König
concave, also called König linear. This result seems to be new in the context of
generalized convexities.

The three theorems presented in the previous section yield the following results:
Theorem 7.8. Let f, g : Rn → R be homogeneous quadratic functions. The

following two statements are equivalent:
(i) The system

f(x) < 0(7.14a)
g(x) < 0(7.14b)

is not solvable.
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(ii) There exist nonnegative multipliers y1 and y2 (not both of them are zero)
such that

y1f(x) + y2g(x) ≥ 0, ∀x ∈ Rn.(7.15)

This result is a variant of the S-lemma with two strict inequalities. Notice that
the second statement immediately implies the first one, without any assumption on
the functions.

Theorem 7.9. Suppose f, g : Rn → R are homogeneous quadratic functions. The
following assertions hold:

(i) If there is no x ∈ Rn such that

f(x) < 0(7.16a)
g(x) ≤ 0,(7.16b)

then there exist nonnegative multipliers y1 and y2 (not both are the origin) such that

y1f(x) + y2g(x) ≥ 0, ∀x ∈ Rn.(7.17)

(ii) If there exists a y1 > 0 and y2 ≥ 0 such that (7.17) holds then there is no
solution for (7.16).

The gap in this theorem comes from that fact that we did not assume the Slater
condition. If we further assume that there exists an x̄ ∈ Rn with g(x̄) < 0 then the
nonsolvability of (7.16) automatically implies the existence of multipliers in (ii).

Finally, let us see what we can get if we allow equality constraints.
Theorem 7.10. Let f : Rn → R and g : Rn → Y be homogeneous quadratic

functions, where Y is one of {0}, R, R+ or R−. If there is no x ∈ Rn such that

f(x) < 0(7.18a)
g(x) = 0(7.18b)

then there exist y1 ≥ 0 and y2 ∈ Y ∗ (not both are the origin) such that

y1f(x) + y2g(x) ≥ 0, ∀x ∈ Rn.(7.19)

In fact, depending on the set Y , we obtained four theorems.
If Y = {0} (i.e., g(x) ≡ 0) then the solvability of (7.18) is equivalent to the

solvability of f(x) < 0.
If Y = R, i.e., g(x) takes both positive and negative values, then Y ∗ = {0}, thus

y2 = 0 and consequently y1 > 0. This means that f(x) ≥ 0 for all x ∈ Rn. This
result (at least for the special homogeneous case) is stronger than the one found in
[73], because we showed that the multiplier of g(x) is actually 0. In other words, if
g(x) takes both positive and negative values then system (7.18) is not solvable if and
only if f(x) < 0 is not solvable, i.e., f(x) is positive semidefinite.

If Y = R+ (or Y = R−) then Y ∗ = R+ (Y ∗ = R−) and g(x) = 0 is equivalent to
g(x) ≤ 0 (g(x) ≥ 0), therefore the problem is reduced to Theorem 7.9.

8. Miscellaneous topics. In the last section before the summary we discuss
some miscellaneous topics. These are all related to the S-lemma or, more generally,
to systems of quadratic equations. Our goal with this section is not to give a full-
detailed review of all these topics, rather to show the connections and raise some
further questions.
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8.1. Trust region problems. Trust region algorithms [18] are among the most
successful methods to solve unconstrained nonlinear optimization problems. At each
iteration of the algorithm we minimize a quadratic approximation of the objective
function over a ball, called the trust region. Thus, given the current iterate x̂, the
trust region subproblem is

minxT Hx + bT x(8.1a)
‖x− x̂‖2 ≤ α.(8.1b)

In a slightly more general setting we can replace the (8.1b) ball-constraint with an
ellipsoidal constraint:

minxT Hx + bT x(8.2a)
(x− x̂)T A(x− x̂) ≤ α,(8.2b)

where A is a symmetric positive semidefinite matrix, or, more generally, we can allow
any matrix A. This way we get indefinite trust region subproblems [36, 37, 59, 71, 82].
These problems still can be solved in polynomial time, and that is what makes them
suitable for building an algorithm. The reason behind the polynomial solvability is
basically the S-lemma: a solution x̃ is optimal, if and only if the following system is
not solvable:

xT Hx + bT x < x̃T Hx̃ + bT x̃(8.3a)
(x− x̂)T A(x− x̂) ≤ α.(8.3b)

Using the S-lemma (Theorem 2.2) we can conclude that the optimality of x̃ is further
equivalent to the solvability of the following system:

xT Hx + bT x− x̃T Hx̃− bT x̃ + y
(
(x− x̂)T A(x− x̂)− α

)
≥ 0, ∀x ∈ Rn(8.4a)

y ≥ 0,(8.4b)

that can be homogenized and written as an LMI. Thus, using a simple bisection
scheme we can solve the indefinite trust region subproblem to any given precision in
polynomial time.

Moreover, we can build more complex trust regions, i.e., minimize a quadratic
function over the intersection of two ellipsoids, or use one ellipsoidal and one general
(possibly indefinite) constraint. Exact details and properties of these algorithms are
to be developed.

8.2. SDP relaxation of QCQP. A broad range of optimization problems can
be written as quadratically constrained quadratic programs. Recently, quite a number
of articles considered the solvability of these problems. The research has two main
branches. On one hand one might consider the cases when the SDP relaxation of
general quadratic problems is exact [28, 44, 81], or, if the relaxation is not exact,
then we can ask for bounds on the quality of the approximation [20, 55, 62, 75, 77].
Further, Kojima and Tunçel [45] propose a successive SDP relaxation scheme to solve
these problems.

The exact relaxation results of this area are quite different in nature from the
results discussed so far. The sufficient conditions for the validity of the S-lemma are
usually structural conditions, i.e., they do not involve explicit data in the matrices.
On the other hand, the sufficient conditions in the SDP relaxation theory are more
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dependent on the problem data. The reason for this might be purely practical: as
we presented so far, structural conditions allow only for a relatively small number of
equations and inequalities.

The amount of results makes it impossible to include any of them here, the reader
is thus referred to the references mentioned in the first paragraph.

8.3. Algebraic geometry. So far little was said about the algebraic nature of
the problem, the discussion was more geometric and analytic. In this section we
briefly review the algebraic connections.

The S-lemma is a surprising result from the point of view of algebraic geome-
try. Recall Hilbert’s classical theorem, which can be found in any advanced algebra
textbook, see, e.g., [10, 14, 30]:

Theorem 8.1 (Nullstellensatz). Let p1, . . . , pm : Cn → C be complex polynomi-
als. The following two statements are equivalent:

(i) The system

pi(z) = 0, i = 1, . . . ,m(8.5a)
z ∈ Cn(8.5b)

is not solvable.
(ii) There exist complex polynomials y1(z), . . . , ym(z) such that

m∑
i=1

yi(z)pi(z) ≡ −1.(8.6)

This theorem holds only for the complex case. For real polynomials we have the
following theorem:

Theorem 8.2 (Real Nullstellensatz). Let p1, . . . , pm : Rn → R be real polynomi-
als. The following two statements are equivalent:

(i) The system

pi(x) = 0, i = 1, . . . ,m(8.7a)
x ∈ Rn(8.7b)

is not solvable.
(ii) There exist real polynomials y1(x), . . . , ym(x) and s1(x), . . . , sk(x) such that

k∑
j=1

s2
j (x) +

m∑
i=1

yi(x)pi(x) ≡ −1.(8.8)

If we know an a priori bound on the degree of the multipliers y1(x), . . . , ym(x)
(and the degree and number of s1(x), . . . , sk(x) in the real case) then we can find
them easily by equating the coefficients and solving a large linear system. Since
any combinatorial optimization problem can be written as a system of polynomial
equations, such bounds must be exponential in the number of variables. The best
available degree bounds are summarized in the following theorem (for simplicity we
are dealing with the complex case only).

Theorem 8.3 (Effective Nullstellensatz). Let p1, . . . , pm : Cn → C be complex
polynomials with maxi deg pi = d. If there exist complex polynomials y1(z), . . . , ym(z)
such that

m∑
i=1

yi(z)pi(z) ≡ −1,(8.9)
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then these polynomials can be chosen to satisfy

max
i

deg yi ≤
{

dn if d ≥ 3 (see [46])
2min{m,n} if d = 2 (see [70]).(8.10)

These bounds are essentially sharp, better estimates use some additional information
about the polynomials, such as the geometric degree [69], the sparsity [70] or the
height [33], just to mention a few. It would be interesting to specialize those bounds
for quadratic systems and also to derive similar results for the real case. More details
can also be found in [13].

In the simple case of two complex quadratic polynomials Theorem 8.3 gives a
rather weak corollary (compared with Theorem 5.23). In this regard it is surprising
that under the conditions of the S-lemma, the multiplier polynomials can be chosen to
be constants. This also suggests further directions for the research on degree bounds
in the Nullstellensatz.

8.4. Computational complexity. Let fi : Rn → R, i = 1, . . . ,m be quadratic
functions. Using more advanced techniques (see [8, 31]) one can decide the solvability
of a system

fi(x) = 0, i = 1, . . . ,m(8.11a)
‖x‖2 = 1(8.11b)

x ∈ Rn,(8.11c)

and a solution can also be obtained. These problems include most combinatorial op-
timization problems thus in general we can not hope for a polynomial time algorithm.
However, there are some special cases. If m = 1 then solving system (8.11) is equiva-
lent to determining the definiteness of f1(x), which can be done in polynomial time.
Further, the S-lemma gives rise to a polynomial time algorithm if m = 2.

In [31] Grigoriev and Pasechnik propose an algorithm to solve system (8.11). The
algorithm is polynomial in n and exponential in m. Whence, if m is fixed, or at least
bounded, then (8.11) can be solved in polynomial time.

9. Summary. We have seen through several different approaches and examples
that Yakubovich’s S-lemma is only the tip of the iceberg. The theories that lead
to this result are much more general and the S-lemma has a wealth of applications
in various areas of applied mathematics. We demonstrated that the generalization
for more inequalities is not practical, as the conditions we need to assume are more
and more complex. In fact, the minimal conditions under which the S-lemma holds
with more inequalities can be obtained easily from the characterization theorems for
convex images in §5. This answers a question posed as open in [21]. The results
and counterexamples collected in this paper suggest that the basic theory is well
established but some more general topics deserve investigation.

9.1. Future research. To finish this survey we present some problems and
projects that are worth some further research.
SOCO relaxations: Remaining in the quadratic world, second order conic (SOCO)

relaxations offer an alternative way to treat quadratic systems. This proce-
dure is similar to semidefinite relaxation, which was discussed in §2.3 and
§6. Currently, there are not many results on when a SOCO relaxation of a
quadratic system is exact.
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Real numerical range: A characterization theorem for the convexity of the joint
numerical range over the real numbers (similar to Theorem 5.13) could be
developed.

Polynomial systems: The question arises whether it is possible to extend the con-
cept of the S-lemma to polynomial or even more general functions. Since any
polynomial system can be written equivalently as a quadratic system with
more equations and variables, this case essentially reduces to the quadratic
case, but finding these results and providing suitable applications remains a
challenging task.

Convex images: The convexity of the image of a set under some transformation
is crucial to this theory. However, there are hardly any results about the
convexity of the image of sets under a nonlinear transformation, Polyak’s
local convexity result (Theorem 5.10) is one of them. In [67] Ramana poses
the same question for general maps, but then only deals with the quadratic
case. This is an open and mainly untouched research field. Generalized
convexities (see §7) offer another framework for this research.

Algebraic methods: Leaving the concept of the S-lemma and concentrating on
more general related results we find that polynomial and sum of squares
(SOS) optimization (see [66]) have recently drawn a lot of interest both in
the optimization and in the control community. This research pointed the
attention of optimizers towards algebraic geometric results, e.g., the Null-
stellensatz (see §8.3). In our opinion, since polynomials are well-studied in
advanced algebra, more research should be carried out in this direction. On
the other hand, the example of the S-lemma shows that under some conditions
stronger degree bounds are possible in the effective Nullstellensatz.

Applications: As of today, there are no practical applications of the S-lemma with
more than two inequalities. This might be due to the fact that nonconvex
quadratic systems are usually believed to be difficult and people often use
alternative formulations instead. After all, the fact that the S-lemma allows
for polynomial time solvability (see §8.4) of certain quadratic systems should
be promoted. Similarly, one can look for applications of Theorem 5.18 or
Theorem 5.26.
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[45] M. Kojima and L. Tunçel, On the finite convergence of successive SDP relaxation methods,
European Journal of Operations Research, 143 (2002), pp. 325–341.

[46] J. Kollár, Sharp effective Nullstellensatz, Journal of the AMS, 1 (1988), pp. 963–975.
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[60] H. Pépin, Revue de la filière Mathématiques (RMS), 3 (2004), pp. 171–172. Answer to a
problem posed by J.-B. Hiriart-Urruty. In French.
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