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ABSTRACT Dealing with vast amounts of textual data requires the use of efficient systems. Automatic

summarization systems are capable of addressing this issue. Therefore, it becomes highly essential to work on

the design of existing automatic summarization systems and innovate them to make them capable of meeting

the demands of continuously increasing data, based on user needs. This study tends to survey the scientific

literature to obtain information and knowledge about the recent research in automatic text summarization

specifically abstractive summarization based on neural networks. A review of various neural networks based

abstractive summarization models have been presented. The proposed conceptual framework includes five

key elements identified as encoder-decoder architecture, mechanisms, training strategies and optimization

algorithms, dataset, and evaluation metric. A description of these elements is also included in this article. The

purpose of this research is to provide an overall understanding and familiarity with the elements of recent

neural networks based abstractive text summarization models with an up-to-date review as well as to render

an awareness of the challenges and issues with these systems. Analysis has been performed qualitatively

with the help of a concept matrix indicating common trends in the design of recent neural abstractive

summarization systems. Models employing a transformer-based encoder-decoder architecture are found to

be the new state-of-the-art. Based on the knowledge acquired from the survey, this article suggests the use of

pre-trained language models in complement with neural network architecture for abstractive summarization

task.

INDEX TERMS Abstractive text summarization, encoder, decoder, training, optimization, evaluation,

attention, transformer.

I. INTRODUCTION

In the present technological era, there is a significant increase

in textual data in digital form and it is continuously multiply-

ing. Automatic summarization systems provide convenience

to deal with lengthy text data effectively in a time-efficient

way. These systems attempt to produce summaries that are

comprehensive, concise, fluent, and at the same time capable

of retaining all salient information contained in a topic. Some

of the applications of text summarization include search

engine snippets generated as a result of searching a docu-

ment as well as news websites that generate condensed news

in the form of headlines to facilitate browsing [1]. Other

applications include lawsuit abstraction as well as biomedi-

cal and clinical text summarization [2]. Several approaches

The associate editor coordinating the review of this manuscript and
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have been taken to summarize text documents in the sci-

entific literature. Automatic summarization systems can be

modeled in two ways, either using an extractive approach

or an abstractive approach. When modeled using extractive

techniques, the main sections of the text are extracted based

on some scoring criteria and then concatenated to produce

the summary. Abstractive techniques are a bit more complex

and challenging to work with because the text is paraphrased

to generate a summary having words different from the orig-

inal text. All summarization methods and models, whether

extractive or abstractive, share the common purpose of gener-

ating summaries that are fluent, non-redundant, and coherent.

Both approaches can be employed to generate summaries

across either a single source document or multiple source

documents. In the case of one source document, the sum-

marization system produces a short outline of the document.

When a summary is generated across multiple documents,
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readers can familiarize themselves with information through

several documents related to the same topic in relatively less

time.

The research in Automatic Text Summarization is enriched

with many surveys that have been conducted and published

in the past years. The survey conducted by [3] and [4] are

quite extensive while those conducted by [1] and [5]–[7]

are centered towards extractive and abstractive summariza-

tion. This research study tends to survey the scientific

literature to obtain information and knowledge about the

recent research in automatic text summarization specifically

abstractive summarization based on neural networks to have

an understanding and familiarity with the design of state-

of-the-art models in this realm. The novelty of this work

as compared to previous surveys is that in addition to a

review of various models, it provides its audience with

the complete picture of neural networks based abstractive

summarization systems. Secondly, it presents material on

the very recently released models BERT [8], GPT [9],

BART [10]. Finally, it includes an analysis section that

is unique to it as compared with other surveys. Some of

the papers with models proposed for machine translation

are included as a part of this survey because later on

these models were utilized by abstractive summarization

systems.

Section II of this article is an attempt to provide readers

with a comprehensive background on research in automatic

summarization systems followed by classical abstractive

summarization approaches and then the deep learning-based

concepts which are applied in the recent design of abstrac-

tive models. Section III of this article highlights some of

the recent and advanced models in the area of abstractive

text summarization. Section IV presents the Methodology

of the undertaken research study as well as the research

framework based on which selected papers from the relevant

scientific literature are reviewed. Section IV also contains a

brief description of the elements of the research framework.

Section V is the analysis and results section followed by

Section VI which concludes this article and also provides

some suggestions for future work.

II. BACKGROUND

Some of the very early approaches to automatic text sum-

marization were the use of statistical models with an ability

to select and copy the most important words from the text

but these models were not capable of generating new text or

paraphrasing text because these models were not capable of

understanding the context or the meaning of these words [11].

Thework of Luhn [12] for summarization of scientific articles

whichwas published in the IBM journal in 1958,makes use of

statistical information gained from the frequency and distri-

bution of words in a text to calculate the relative significance.

The method was first applied to words and then to sentences.

The sentences with the highest significance were extracted

to create an automatic summary. Some researchers applied

the cue method, title method, and location method to deter-

mine the weight of the sentence [1]. Prior research on auto-

matic summarization systems highlighted certain challenges

such as the need for intelligent systems that can analyze a

language and understand its semantics at a deeper level as

well as generate purposeful sentences/descriptions from input

data like human language [3]. Most of the earlier research

focussed on extractive summarization and then the trends

gradually shifted towards abstractive methods. In abstrac-

tive summarization, the text is usually interpreted through

Natural Language Processing (NLP) techniques which help

generate new text containing the most critical information

from the original text. Three pipelined tasks are at the core

of abstractive summarization approaches [5]: information

extraction, content selection, and surface realization. Infor-

mation extraction gets useful information from text using

noun phrases or verb phrases. It can also extract important

information by employing query-based extraction. Content

selection works by selecting a subset of important phrases

from the extracted text to include in the resulting summary.

The surface realization task combines selected words or

phrases in an ordered sequence by using grammatical rules

and lexicons (vocabulary along with its related knowledge on

linguistic significance and usage). Abstractive text summa-

rizationmethods can be broadly classified into three domains:

a structure-based approach, semantic-based approach, and

deep learning-based approach [13]. The methods which are

based on the structure approach work by encoding data

from text documents based on some logical arrangements,

for example, templates or other structures like trees, ontol-

ogy, lead and body, rules (classes and lists), and graphs.

Semantic-based methods work on identifying noun and verb

phrases by applying linguistic/semantic illustration of a text

document as an input to the natural language generation

system. These systems include multimodal semantic-based

techniques, information item-based methods, semantic text

representation, and semantic graph methods [13], [14].

Recently, there are several advancements in text summariza-

tion using the concepts and methods of deep learning where

sequence to sequence models are known to be the foundation

of most of the recent studies [6].

A. ARTIFICIAL NEURAL NETWORKS

These networks contain neurons. A neuron is a computational

unit. Several layers of neurons make up a neural network as

illustrated in Fig. 1. The first layer is the input layer and the

final one is the output layer. In between, there are hidden lay-

ers. The data moves sequentially through the layers. Learning

takes place in the hidden layers.

The nodes in each layer are connected to all the nodes in

the next layer. The parameters that are associated with each of

these connections are called weights. In Fig. 2, node j receives

incoming signals from every node i in the preceding layer.

Each input xi is associated with a weight wji. The incoming

signal to node j is the weighted sum of all incoming signals.

The signal then goes through the activation function to pro-

duce the output signal hj. The network can be mathematically
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FIGURE 1. Feedforward and recurrent neural network.

FIGURE 2. A node of the neural network.

expressed as,

sj =
∑n

i=0
wjixi (1)

hj = tanh sj (2)

hj = 1 −
2

e2sj + 1
(3)

B. CONVOLUTIONAL NEURAL NETWORK

The architecture of CNN is different from an ordinary neural

network. The neurons in one layer do not have a connection

to all neurons in the following layer but only to a specific

part. However, there are fully connected layers near the end of

the network. This type of network employs convolution units

(where convolution operation is performed) in some (one or

more) layers of the network, some pooling operations, and

some of the neuron layers that are fully connected. A CNN

has two parts, the feature extraction part (where convolutions

and pooling operations are performed) and the classification

part (fully connected layers near the output). Unlike simple

neural networks, the layers are organized in the dimensions of

weight, height, and depth. The output is a vector of probabil-

ity scores. Thework of [62] utilized CNNbased deep learning

approach for the task of abstractive text summarization. This

approach was different from others as it searched important

semantic phrases instead of sentences from the text and used

these phrases to generate a summary.

C. LANGUAGE MODELS

Language models are the foundation of many NLP tasks

and applications that generate text as an output includ-

ing text summarization, optical character recognition, part

of speech tagging, parsing, handwritten text recogni-

tion (HTR), automatic language translation known as

FIGURE 3. Neural network language model.

FIGURE 4. CBOW and skip-gram models.

machine translation (MT), autocorrect for spelling, and gen-

eration of image caption [15]. In [16], the language model is

defined as a mathematical function that places a probability

measure over a list of strings from the lexicon of a particular

language. These are systems that can analyze language text

through an algorithm and learn to predict the words of a

sentence by determining the probability of a sequence of

words. In statistical language models for a sequence S having

N-words, the probabilities are assigned as,

P (S) = P(w1w2w3 · · ·wN ) (4)

P (S) = P (w1)P (w2 |w1) · · ·P (wN |w1w2 · · ·wN−1) (5)

To reduce the parameters from the above equation, an approx-

imate method was required. The n-gram model estimates the

next word from the previous n-1 words.

P (wN |w1w2 · · ·wN−1) ≈ P (wN |wN−n · · ·wN−1) (6)

On the other hand, to deal with the limitations of Statis-

tical Language Models, Neural Network Language Mod-

els (NNLM) were introduced. With NNLM, it was possible

to overcome the limitations of conventional language models

and gain performance improvement [17]. These models can

automatically learn features and representation and proved

more effective in language modeling tasks. The first neural

network language model was proposed by [18], as illustrated

in Fig. 3.
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The model in Fig. 3 can be expressed as,

y = b+Wx + U tanh d + H (x) (7)

where x is the feature vector formed by the concatena-

tion of input word features, x =
(

C (wt−1) ,C (Wt−2),

· · · ,C(wt−n+1)
)

and y is the probability of the output word.

W, U, and H are weight matrices while b and d are the

corresponding biases of the hidden and output layers.

Two models Continuous Bag-of-Words (CBOW) and Con-

tinuous skip-gram as shown in Fig. 4, were proposed by [19],

for learning distributed word representations. The CBOW

model learns by predicting a word from the context words

(history and future), for example, a word w(t) is predicted

from a shared projection of the input words w(t−1), w(t−2),

w(t+1) and w(t+2). The skip-gram model learns representa-

tion by predicting a range of nearby words from a given word,

for example, with w(t) as input to a log-linear classifier it is

possible to predict w(t−1), w(t−2), w(t+1) and w(t+2).

Pre-trained language models utilize strategies for learning

the parameters of neural network architectures and language

representations that are universal as well as they can be

fine-tuned on a variety of downstream tasks. Reference [63]

classified these models as first and second-generation

pre-trained language models. The first-generation pre-trained

models are word embeddings (representation of words as

vectors) and include word2vec, GloVe, etc., while the

second-generation or more advanced models, also known as

pre-trained contextual encoders (encoder output vector with

context) include BERT [8], GPT [9], and ULMFiT (Universal

Language Modeling fine Tuning), etc.

D. SEQUENCE TO SEQUENCE MODELS

These are the models where both input and output are

sequences. Examples of sequence-to-sequence modeling

problems include machine translation, image captioning,

video captioning, speech recognition, language modeling,

question answering system, text entailment, and text summa-

rization. These models are encoder-decoder models. Each of

the encoders and the decoder is an independent neural net-

work. Both of these networks are combined to form a single

large neural network. The encoder takes an input sequence

and creates its representation. The decoder’s function is to

accept and decode the representation to generate another

sequence as output.

III. RECENT MODELS IN ABSTRACTIVE TEXT

SUMMARIZATION

This section describes some recently proposed models in the

field of abstractive text summarization. It starts by mention-

ing the work of Facebook AI researchers [20] in which a

model for sentence summarization is proposed. The model

involves a neural network with attention. The researchers

used a generation algorithm in conjunction with the model

which helped the system to produce accurate summaries.

Later, in another work [21], they updated their model with

the conditional RNN [37] architecture. For conditioning, they

introduced a convolutional attention-based encoder to help

the decoder focus on pertinent input words at each step of

summary formation. The new system outer-performed the

previousworkwith theGigaword corpus as well as performed

very well on DUC 2004. The challenges highlighted in [20]

are scaling the abstractive summarization system to generate

paragraph-level summaries, efficient alignment, and consis-

tency in the output generation.

In another study on abstractive summarization in Chinese

language text, the researchers [22] first created a dataset

called LCSTS (Large-scale Chinese Short Text Summariza-

tion) by using a microblogging website. This dataset forms a

large corpus of Chinese brief texts with short outlines. This

corpus was then utilized to introduce a summary generation

model using RNNs. One of the suggestions for future work

provided by the researchers is the use of hierarchical RNNs

for summary generation and research towards rare word

problems.

IBM’s model [23] for abstractive text summarization

is based on the neural encoder-decoder and incorporates

attention. Word/morpheme/phrase embeddings are used as

input. LSTM [40] and bidirectional RNNs [61] are used.

Their work starts with the same framework as in [22] but

incorporates other novel models that address critical prob-

lems in abstractive summarization. The basic model is the

encoder-decoder model with attention and a large vocabulary

trick. To address the challenge of capturing key concepts in

a topic, a feature-rich encoder is used. To deal with OOV

words, a switching generator/pointer mechanism is modeled.

For long documents, in addition to capturing keywords, key

sentences also need to be captured. This is achieved by using

hierarchical attention.

Another work [24] is unique from the previous research

because, in addition to using the attention mechanism to

focus, the distraction mechanism introduced in it enabled

traversing different parts of the document to grasp the overall

meaning and create a better summary. The researchers used

bidirectional gated recurrent units’ architecture to perform

encoding decoding tasks. The proposed work showed better

performance than the work mentioned in [22] which the

authors used for comparison.

The COPYNET model is proposed in [25] which incorpo-

rated the copying mechanism in the neural encoder-decoder

model for sequence learning tasks. Replication is needed

for those parts of the input sequence which do not need to

be paraphrased like proper nouns and numerical data. The

copying mechanism identifies a part of the input sequence

and inserts it at the right position in the output sequence.

As reported by [26], already existing abstractive summa-

rization systems have two problems, they produce factual

details inaccurately and these systems sometimes produce

a repetitive output. In this work, an abstractive summariza-

tion architecture that augments a hybrid pointer-generator

and coverage with the traditional attention based seq2seq

model is presented. The hybrid pointer-generator can copy

words from the input text by pointing resulting in the correct
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reproduction of information while maintaining the ability

to generate new words using the generator. This produces

accurate information but it is still repetitive. Repetition is

eliminated by employing a coverage mechanism that keeps a

record of information that is already summarized. The model

is evaluated on CNN/Daily Mail dataset [23] using ROUGE

scores.

Google researchers [27] proposed a novel network archi-

tecture which they called the transformer. It was based

entirely on attention mechanisms. Experiments on machine

translation tasks indicated that it took significantly less time

to train and the results were better as compared to other archi-

tectures. The transformer is the first sequence transduction

model that can determine the input and output representations

independent of using sequence recurrence or convolution.

Motivated by the bottom-up attention approach, the

researchers at Harvard [28] applied it to neural abstractive

summarization. Here, the content selector predetermines the

phrases which should be part of the summary, and then it

constrains the neural model by this content to produce an

abstractive summary. This model shows higher performance

and improvement of ROUGE scores on CNN/Daily mail [23]

and NYT corpus as compared to [25] and [26].

Another hybrid architecture with an extractor module

and an abstractor network abridged by policy-based rein-

forcement learning to address the issue of slow speed

and inaccurate encoding of long documents is proposed

by [29]. The model has achieved performance improvement

on CNN/Daily mail corpus [23] using both ROUGE [48]

and METEOR [50] scores. The extractor module is based

on a convolutional model with a bidirectional LSTM-RNN

at its output. Next, another LSTM-RNN is employed to train

the pointer network. The abstractor module consists of a

standard encoder-aligner-decoder framework with an added

copy mechanism to deal with OOV words.

In [30], the researchers were keen to learn if knowl-

edge from a pre-trained language model is helpful for the

abstractive text summarization? So, they applied certain

conditions to the encoder, decoder, and generator of the

transformer-based neural model on the BERT (Bidirectional

Encoder Representations from Transformer) [8] language

model. They noted a big improvement with the encoder

and decoder but not with the conditioning of the generator.

The authors also introduced two-dimensional convolutional

self-attention to the initial layers of the encoder. Then the

models were compared with the most recent and advanced

models on CNN/Daily Mail [23] datasets. The models were

also trained on the German SwissText dataset to adapt the

model to the German language also in addition to English.

The BERT [8] based model showed better results than the

self-attention convolutional model. Finally, to resolve the

problem of long document summarization, TF-IDF (Term

Frequency-Inverse Document Frequency) based extractive

approach is applied and uses the BERT’s next sentence pre-

diction capability to increase the accuracy and reliability of

the produced summaries. This approach made the system

more efficient and consistent.

Reference [31] incorporates a contrastive attention mech-

anism into the model for the task of abstractive sentence

summarization. The contrastive attention is different from

traditional attention in the sense that it enhances the attention

ability of the model by introducing double attention. One is

the conventional attention that attends to the relevant parts of

the text whereas the other is opponent attention that attends

to the less relevant parts of a sentence. Both attentions are

trained in an opposite manner using the softmax and the

softmin functionality. The resulting attention performs better

on the relevant parts of the input as compared to the ordinary

attention and advances the best performance.

Most of the research in abstractive summarization targets

to achieve a high ROUGE [48] score. The work of [2]

addresses the factual inconsistencies of abstractive summa-

rization systems and proposes a new evaluation metric to

measure the factual correctness of abstractive summarization.

The factual score computation task has three modules: fact

extractor, fact encoder, and fact scorer. Facts are extracted

from the generated summary and reference summary by

using open information extraction (OpenIE) methods and

then transformed into embeddings using the fact encoder. The

fact scorer performs operations on each pair of generated

summaries, reference summaries, and their embedding to

compute the factual score. It has been concluded that the

factual score has a high correlation with the BERT score and

the ROUGE [48] score. The correlation is stronger in the case

of BERT as compared to ROUGE.

The researchers [32] at Google recently proposed

another abstractive summarization approach called PEGA-

SUS (Pre-training with ExtractedGap-sentences Abstractive

Summarization Sequence to sequence models) which

outer-performed previous models with even better results.

The work is based on a standard transformer-based [27]

encoder-decoder architecture. The authors first proposed

a pre-training goal for multiple abstractive summarization

tasks. They called this self-supervised objective GSG (Gap

Sentences Generation). They identified principle sentence

selection as their strategy. For pre-training, C4 (Colossal and

Cleaned version of Common Crawl) and HugeNews datasets

were used. For the downstream summarization task, they used

XSum,Gigaword [20], arXiv, CNN/DailyMail [23], PubMed,

Newsroom [47], Bigpatent, WikiHow, Reddit TIFU, Multi-

News, AESLC, and BillSum. The task is evaluated using

ROUGE scores.

Reference [11] applied deep neural network architecture

for abstractive summarization to the Amharic language which

is one of the African languages. As there was no already

existing dataset available for the task, so first the researchers

created an African language dataset from scratch. They used

Google Colab as the training framework and results are

evaluated using ROUGE [48] and BLEU [49] scores. Deep

learning building blocks used in the system are sequence to
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sequence models using LSTM with attention, pointer gener-

ator network, and scheduled sampling approach.

The researchers at Microsoft’s speech and dialogue

research group [33] proposed an abstractive text sum-

marization system for automatically generated meeting

transcripts. According to them, meeting summarization is

different from document summarization. Since many par-

ticipants are engaged in a meeting, the nature of meeting

transcripts is quite diverse due to varying semantic styles,

viewpoints, and the roles of participants. The meeting sum-

marization framework proposed is based on deep learning

approaches and is named as Hierarchical Meeting summa-

rization Network (HMNet). HMNet model makes use of

the encoder-decoder transformer architecture [27] to produce

abstractive summaries of the meeting transcripts. The model

was evaluated on AMI and ICSI meeting corpus using three

variations of the ROUGE [48] metric (Rouge-1, Rouge-2,

Rouge-SU4).

An abstractive summarization model LPAS (Length-

controllable Prototype-guided Abstractive Summarization)

is proposed in [34] which can control the length of out-

put summary. Before this research, it was common to use

word embeddings to control the length of the summary. The

idea of this research makes combined use of extractive and

abstractive techniques. It accommodates a word-level extrac-

tive module in the seq2seq model. The design of the model

has a prototype extractor, a joint encoder, and a summary

decoder. The important words are extracted using the proto-

type extractor, important words, as well as the source text,

are fed to the joint encoder and the abstractive summary is

generated using the decoder. The authors used BERT [8] with

the prototype extractor while the joint encoder-decoder used

the transformer architecture [27]. The model was evaluated

with CNN/DailyMail [23] and Newsroom [47] datasets using

ROUGE [48] scores.

The work of [35] is worth mentioning as it proposes a

multilingual abstractive summarization model called Multi-

Summ which is capable of dealing with numerous languages

like English, Chinese, French, Spanish, German, Bosnian,

and Croatian. The researchers implemented the training pro-

cess in two stages, multilingual training (language model,

auto-encoder model, translation and back translation model)

and joint summary generation training. A new summarization

dataset for the Bosnian and Croatian languages is also con-

structed. The model is implemented using transformer archi-

tecture [27]. BPE (Byte Pair Embedding) is used to process

text in all languages. The datasets used are the Europarl-

v5 dataset for English, German, Spanish and French, the

News-Commentary-v13 dataset for Chinese and SETIMES

dataset for Bosnian and Croatian.

The researchers [7] surveyed multiple aspects, methods,

and components of neural Abstractive text summarization in

detail and implemented the NATS (Neural Abstractive Text

Summarization) toolkit. NATS is equipped with LSTM/GRU

encoder-decoder [40], [42], and a pointer generator network.

It is further enriched with mechanisms like intra-temporal

FIGURE 5. Research methodology.

attention, intra-decoder attention, coverage, weight sharing,

beam search, and unknown words replacement technique.

The model is evaluated on popular standard CNN/Daily

Mail [23], Bytecup, and Newsroom [47] datasets using the

ROUGE [48] metric.

An abstractive summarization system proposed by [36]

uses Amazon fine food reviews dataset. Initially, data

pre-processing is applied to the dataset which processes

and transforms raw data to make it suitable for deep learn-

ing model/algorithm. This process consists of splitting text,

adding contractions, removing stop words, and lemmatizing

followed by vocabulary size counting, adding words embed-

ding, and special tokens like UNK, EOS. The seq2seq model

is built with a bidirectional [61] LSTM [40] encoder and

a standard LSTM decoder. The limitation of the study as

mentioned by the authors is that the accurate summary can

be generated for short input text only. When lengthy text is

entered as an input, the model becomes inconsistent.

IV. RESEARCH METHODOLOGY

This section describes themethodology bywhich the research

is conducted. The research methodology is designed to

meet the research objective of reviewing scientific literature

regarding surveys, methods, and techniques of abstractive

text summarization based on neural networks, to summarize

some of the recent existing work in this area. As obvious

from Fig. 5, the research process started with identifying

the relevant databases for the collection of recent papers

related to neural networks based abstractive text summa-

rization. Some of the papers were collected using Google

Scholar (scholar.google.com), a part of papers using Sci-

ence Direct (www.sciencedirect.com), and still others using
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FIGURE 6. Recurrent neural network.

the DBLP (https://dblp.org/) database. Multiple search key-

words were entered to retrieve the articles, e.g., ‘‘Abstrac-

tive Text Summarization + Neural Networks’’, Abstractive

Text Summarization + Survey’’ and ‘‘Automatic Text Sum-

marization + Survey’’. We defined inclusion and exclusion

criteria for the retrieved articles as presented in Fig. 5. The

final selection contains papers with keywords in the title

or abstract which present novel work on abstractive sum-

marization. We included papers that have been published

either in conference proceedings or in journals. We empha-

size selecting the recent papers (2014-2020) in the domain

of neural networks based abstractive text summarization. But

we have to include some papers published before the year

2014 because those papers provide the foundation of the

recent research. Afterward, the selected papers were reviewed

based on the proposed conceptual framework of the research

topics as presented in Fig. 7. The papers were analyzed using

the concept matrix. Finally, the results of the analysis are

presented in the form of text, graphs, figures, and tables.

The research framework presented in Fig. 7 is created with

the identification of the key elements and processes involved

in the design of neural networks based abstractive summa-

rization models. The main elements identified are Encoder-

Decoder Architecture, Mechanisms, Training and Optimiza-

tion, Dataset, and Evaluation metric. These elements have

a further classification and sub-classification. The following

paragraphs give a short introduction to these elements.

A. ENCODER DECODER ARCHITECTURE

The selection of encoder-decoder architecture provides

us with certain choices of designing our encoder and

decoder with standard RNN/LSTM/GRU, bidirectional

RNN/LSTM/GRU, Transformer, BERT/GPT-2 architecture,

or the very recent BART model.

1) RECURRENT NEURAL NETWORK (RNN)

RNN [37] has an architecture that is different from an ordi-

nary/feedforward neural network. There are feedback loops

that allow information to persist in these networks as indi-

cated in Fig. 6. They introduce the concept of memory in

neural networks. Due to their feedback nature, these networks

can learn information based on the context.

In Fig. 6, the input of RNN is xt and the previous

hidden state ht−1. Now, there is current input as well as

information from the hidden state. Both combine as a vector

and passes through tanh activation and produce the output ht
that becomes the memory of the network (new hidden state).

Mathematically, RNN functionality can be expressed as,

ht = tanh (ωhht−1 + ωxxt ) (8)

Here, ht is the current state, ht−1 is the previous hidden state

and, ωh is its weight. xt is the current input, ωx is the weight

and, tanh is the activation function that determines the output

of the neural network.

The architecture of RNN suits very well with tasks relat-

ing to sequential data. A novel network consisting of two

RNNs as encoder and decoder was first proposed by [38] for

statistical machine translation task. This model was further

improved and extended by introducing a mechanism that

automatically searches for parts of source text which shows

relevance in predicting a target word (attention mechanism)

for neural machine translation [39]. Although abstractive

summarization is a unique function as compared to machine

translation, yet they are closely related because both are

sequence to sequence learning tasks. Many deep learning

techniques are inspired by the success of neural machine

translation and these are currently applied to generate abstrac-

tive summaries.

2) LONG SHORT-TERM MEMORY

LSTM introduced by [40], is a very special variant of

RNN [37] because it can tackle the problem of long-term

dependencies. For example, if the next word in a sequence is

to be predicted and the correctly predicted word depends on

information mentioned a few sentences before (past informa-

tion), RNN is not capable of retaining information at length.

This is where (long-term gaps/dependencies) LSTMs come

into practice. LSTM can learn information for longer periods.

Researchers [41] suggest that LSTM based approach can

be successfully practiced on many sequence learning tasks

with enough training data. Fig. 8 shows the architecture of

an LSTM cell. There is a forget gate, an input gate, and an

output gate in LSTMwhichwork using the sigmoid activation

function. The forget gate decides which information to keep

or which information to forget. The input gate updates the

state of the cell and the output gate decides what would be

the next hidden state. The working of an LSTM cell is given

by (9) to (14) as follows:

ft = σ
(

ωf · [ht−1, xt ] + bf
)

(9)

it = σ (ωi · [ht−1, xt ] + bi) (10)

C ′
t = tanh (ωC · [ht−1, xt ] + bC ) (11)

Ct = ft ∗ Ct−1 + it ∗ C ′
t (12)

ot = σ (ωo [ht−1, xt ] + bo) (13)

ht = ot ∗ tanh (Ct ) (14)

In (9) to (14) and Fig. 8, xt is the input, C
′
t is the candidate

(holds possible values to add to the cell state), Ct is the new

cell state, ft is the output of forget gate, it is the output of the
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FIGURE 7. Abstractive text summarization research framework position.

FIGURE 8. The architecture of an LSTM cell.

input gate, Ct−1 is the previous state of the cell, ht−1 is the

previous hidden state, ht is the new hidden state while ω and

b represent the corresponding weights and biases.

Vanishing Gradient is a very common problem in

multi-layered neural networks. The more layers a neural

network has, the more the capacity of the network which

implies that it allows for better learning of large training

datasets and is capable of mapping more complex functions

from input to output. The problem arises when the gradient is

backpropagated through the network, it gradually decreases

in value.When it reaches near the initial layers, the gradient is

considerably diminished. As a result, the weights and biases

of the initial layers are not updated properly. Because the

initial layers are very important in identifying the elements of

input data, so the vanishing gradient leads to the imprecision

of the whole network.

3) GATED RECURRENT UNIT (GRU)

GRU [42] is a variant of LSTM [40] because there is a com-

monality in the design of both. It addresses the problem of

vanishing gradient in recurrent neural networks. The design

of GRU has an update gate and a reset gate. The update gate

deals with information that goes into the memory and helps

the model to determine which of the past information needs

to be passed on and the reset gate deals with information that

flows out of the memory and helps the model to determine

the past information which the network needs to forget. These

are two vectors that decide about the information which is to

be passed to the output. Fig. 9 presents the architecture and

functionality of GRU. It can be expressed as follows:

zt = σ (ωz · [ht−1, xt ]) (15)

rt = σ (ωr · [ht−1, xt ]) (16)

h′
t = tanh (ω · [rt ∗ ht−1, xt ]) (17)

ht = (1 − zt) ∗ ht−1 + zt ∗ h′
t (18)

In (15) to (18), xt is the input, zt is the update gate vector, rt
is the reset gate vector, h′

t is the tanh activation vector and ht
is the output. The ω, ωr , and ωz are the corresponding weight

vectors.

4) BI-DIRECTIONAL RNN/LSTM/GRU

Bidirectional neural networks [61] consider two sequences

for predicting the output, one in the forward direction and the

other in the reverse direction. It implies that with bidirectional
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FIGURE 9. The architecture of gated recurrent unit (GRU).

FIGURE 10. Bidirectional LSTM network.

networks we can make predictions of the current state by

using information from previous time steps as well as later

time steps. So, the network can capture a richer context and is

capable of solving problemsmore effectively. Fig. 10 presents

a bidirectional LSTM network. There are two LSTM layers:

a forward layer and a backward layer. The input goes to the

forward layer as well as to the backward layer. The output is

a concatenation of the output of the forward and backward

layers respectively.

5) TRANSFORMER

Transformers [27] are a breakthrough for sequence learning

tasks introduced by Google in 2017. Transformers are based

entirely on attention mechanisms thus eliminating the need

for recurrent as well as convolution units. Its architecture has

an encoder and a decoder that are stacked multiple times. The

encoder and decoder blocks are made up of attention units

and feed-forward units. The encoder part is a stack of six

encoder units and the decoder part is a stack of six identical

decoder units. Each encoder unit has a multi-head attention

unit as well as a feedforward unit. Each decoder unit has

an additional masked multi-head attention unit in addition

to the feedforward unit and the multi-head attention unit.

Fig. 11 presents transformer architecture. The functioning

of the transformer starts with the word embeddings of the

input sequence. The word embeddings are propagated to the

first encoder which is then transformed and passed on to the

following encoder. This process continues and the output of

FIGURE 11. transformer architecture.

FIGURE 12. Attention mechanism in the transformer.

the last encoder unit is transferred to the decoder unit (all

decoders in the stack).

The attention mechanism in the transformer as shown

in Fig. 12, is very interesting. The architecture is dependent

on it for its functionality. First, three vectors called the key,

query, and value are computed from the input embedding.

There is a dot product operation between key and query

vectors to calculate the attention weight. The attention score

is scaled by 1
/√

dk and passed on to the softmax function

which is then multiplied with the value vector. This output

is then passed to the feedforward layer. The self-attention in

the transformer is not computed once but multiple times in

parallel so it is also known as multi-head attention.

6) BIDIRECTIONAL ENCODER REPRESENTATIONS FROM

TRANSFORMER-GENERATIVE PRE-TRAINED TRANSFORMER

(BERT-GPT)

BERT [8] introduced by Google in 2019 lets a pre-trained

language model to be applied to a range of NLP tasks, while

GPT [9] introduced by Open AI in 2018 also pre-trains a

language model on a large body of text which can then be

fine-tuned on a range of specific tasks. The key difference

between the two is that BERT can perform bidirectional

training whereas training is unidirectional in the case of
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GPT. In terms of architecture, both are transformer-based.

BERT is a multilayer transformer encoder while GPT is a

multilayer transformer decoder. GPT-2 has an autoregressive

nature, meaning that each token has a context of the previous

words while BERT is not autoregressive and it employs all

surrounding context at a time. Byte Pair Encodings (BPE) are

used as word vectors for the first layer of GPT-2.

BERT has two modules pretraining and fine-tuning. BERT

is trained with two tasks known as Masked Language

Model (MLM) for bidirectional prediction and Next Sen-

tence Prediction (NSP) for sentence-level understanding. For

BERT, input embedding is the sum of token embeddings,

segment embeddings, and position embeddings. In the MLM

task, 15% of the words in the input sequence are replaced

with a mask token and then the model predicts the masked

word based on the context provided by other words in the

sequence. A classification layer is added which receives the

output of the encoder. Next, the output vectors are multiplied

by the embedding matrix. Finally, each of the vocabulary

words probability is computed using SoftMax. In the NSP

task, a pair of sentences is given as input to the model, and

the model functions to predict if the second sentence comes

later in the original document. A [CLS] token is added at the

start of the first sentence and a [SEP] token is put at the end

of each sequence. A sentence identifying embedding is added

to each token. A positional embedding is also added to every

token to indicate its position in the sequence. By adding a

layer to the core model BERT can be fine-tuned for many

natural language tasks.

7) BIDIRECTIONAL AND AUTOREGRESSIVE TRANSFORMERS

(BART)

BART very recently introduced by [10], has two major

components, a bidirectional encoder, and an autoregressive

decoder. Both components have transformer-based architec-

ture and are implemented as a sequence-to-sequence model.

While pre-training, a noising function introduces noise in the

text and the system learns to reform the actual text from

the distorted text. It is quite effective when fine-tuned for

text generation and achieves leading results for many appli-

cations including abstractive dialogue, question answering,

and text summarization [10]. The base model of BART uses

6 layers in each of the encoder and the decoder while the

large model has 12 layers. While pretraining BART, several

techniques are applied like token masking in which random

tokens are replaced with [MASK]. In token deletion selected

tokens are deleted and other tokens are inserted in their place.

In text-infilling, some text areas are replaced by a [MASK]

token. In sentence permutation, the sentences in the document

are mingled up randomly. In document rotation, a random

token is chosen to be the start of the document. The part

of the document before the random token is inserted at the

end. Fine-tuning BART allows the representations produced

by it to be utilized by other applications such as sequence

classification, token classification, sequence generation, and

machine translation. The researchers further compared the

pre-training objectives with those of other models like the

GPT language model, Permuted Language model, masked

language model, multitask masked language model, and

masked sequence to sequence. The conclusions indicated

token masking as very important, left-to-right pre-training

improves Natural Language Generation (NLG) tasks and,

bidirectionality is of key importance for question answering

systems.

B. MECHANISMS

Mechanisms are functionalities added to the basic neural

encoder-decoder architecture to address certain issues of

abstractive summarization systems and to improve the gen-

erated summaries.

1) ATTENTION

The idea of the attention mechanism is to direct more focus

and attention on certain chunks of input data as compared to

others. It was introduced in [39] for neural machine trans-

lation. Later on, it was applied in many other tasks includ-

ing abstractive summarization. When attention is applied

the intermediate states of the encoder are utilized to cre-

ate context vectors. When the system generates the output

sequence, it searches for context vectors where the most

relevant information is available. If attention is between input

and output elements it is called general attention and if it is

between the input elements then it is known as self-attention.

Fig. 13 presents the attention model introduced by [39]. The

model consists of a bidirectional RNN encoder and the RNN

decoder.

As observed in Fig. 13, the encoder generates the hidden

states h1 to ht. The context vector is computed as:

eij = a(si−1, hj) (19)

In (19), a is the alignment model.

αij =
exp(eij)

∑Tx
k=1 exp(eik )

(20)

The softMax function is used to normalize the alignment

scores. The context vector is a weighted sum of αij and hj.

ci =
Tx
∑

j=1

αijhj (21)

2) COPYING

When certain parts of the input sequence have to be

replicated into the output sequence, the copying mechanism

purposed in [25] can be used. This model is based on a

bidirectional encoder that encodes the input sequence and

a decoder that predicts the output sequence. A probabilistic

model is used to predict the output sequence from the copy

mode or the generate mode. Considering a set of vocabu-

lary, V = {v1, v2, . . . , vn}, and an input sequence, X =
{x1, x2, . . . ., xTs}. Theremight be words in the input sequence

X, that are not in V. Here, the copy mode can copy words
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FIGURE 13. Attention mechanism proposed by [39].

from X that are not in V. If M is the representation of the

input sequence from the encoder, st is the decoder state at

time t and, ct is the context, the probability of output word yt
is given by combined probabilities as

p (yt | st , yt−1, ct ,M) = p (yt , g | st , yt−1, ct ,M)

+p (yt , c | st , yt−1, ct ,M) (22)

where c and g are the copy and generate modes respectively.

3) COVERAGE

It was introduced to address the repetition problem in the

output sequence and help eliminate or reduce it [26]. In this

model, there is the tracking of the vocabulary that has already

been covered. This is achieved by using attention distribution

to keep the system aware of the covered sequence and the

network is penalized in case of attending to the same sequence

over again. Mathematically, at timestep t, the coverage vector

ct is represented as

ct =
t−1
∑

t ′=0

αt
′

(23)

The loss term that penalizes overlap between ct and the

new attention distribution αt is expressed as

losst =
∑

i

min(αti , c
t
i ) (24)

4) POINTER-GENERATOR

Thismechanism attempts to propose amethod for eliminating

the problem of out of vocabulary (OOV) words and factual

details. It is capable of replicating words/facts via pointer

while still maintaining the capacity to generate new words

via a generator [26]. Together with computing an attention

distribution α and a vocabulary distribution pvocab, the model

also calculates a generation probability denoted by pgen. The

generation probability represents the probability of predicting

the final word either from the vocabulary or copying it from

the input. Mathematically, the final probability of generating

output word is expressed as,

pfinal (w) = pgenpvocab (w) + (1 − pgen)
∑

i:wi=w
αi (25)

5) DISTRACTION

The distraction mechanism proposed by [24] is to distract

in a way to traverse between different parts of a document

to grasp the overall meaning for summarizing a document

instead of focusing only on a specific part repeatedly. In this

model, the researchers implemented distraction from a dual

perspective, the first distraction task is performed in the train-

ing process and then in the decoding process. During training,

the distraction was implemented on the content vector by

training the model not to pay too much attention to the

same part repeatedly. The already viewed vector was stored

as a history content vector and merged with the currently

computed vector.

Formally,

ct = tanh



Wcc
′
t − Uc

t−1
∑

j=1

cj



 (26)

c′t =
Tx
∑

i=1

αt,ihi (27)

Where, cj is the history content vector, c
′
t is the input content

vector, αt,i is the attention weight at time t and hi is the

hidden state. Also, the distraction was put directly on the

attention weight vectors. For this purpose, the previous atten-

tion weights were stored in a history attention weight vector

and then cumulated with the currently computed attention

weights.

a′
t,i = υTa tanh



Was
′
t + Uahi − ba

t−1
∑

j=1

αj,i



 (28)

And,

αt,i =
exp(α′

t,i)

∑Tx
j=1 exp

(

α′
t,j

) (29)

Where, υa, Wa, Ua and, ba are the weight matrices.

C. TRAINING AND OPTIMIZATION

Training is a process by which a model learns. The sequence-

to-sequence models need to be trained to anticipate the fol-

lowing word in a sequence given the previous output and the

context.

1) WORD LEVEL TRAINING

In word-level training, the language generation models can

effectively improve the prediction of only one word in

advance [43].
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In Cross-Entropy Training (XENT), the model is trained

using the cross-entropy loss. Considering [w1, w2, w3, . . .wT]

as the target sequence, the purpose of XENT training is to

minimize the loss as [43],

L = −
T

∑

t=1

logp(wt |w1, . . . .,wt−1) (30)

After training, the model generates the sequence as,

w
g
t+1 = argmax

w
pθ (w|wgt , ht+1) (31)

where, w
g
t is the word generated by the model at time step

t and w
g
t+1 is the next word that the model will generate.

Now there is a problem associated with this approach, that,

during training, the model is exposed to the ground truth

words while during testing, the model takes into account its

predictions. The result is that the generated sequencemight be

quite different from the one that should be generated. This is

called search error and the process that can be used to reduce

the effect of search error is known as beam search. In beam

search, instead of predicting only one word, the strategy is

to predict k next word candidates for each step. The strategy

is quite effective with the downside that computation time

increases with the number of beams.

Data as Demonstrator (DAD) proposed by [44] addresses

the issue of exposure bias in XENT by combining ground

truth data with model predictions. At each prediction point,

the algorithm takes input either previous word from themodel

prediction or the ground truth data, based on a certain proba-

bility.

End-to-End Backprop (E2E) uses XENT in the initial steps

and then uses a sparse vector with the largest probabilities of

the distribution predicted at the previous time step. The idea

is to take top scoring k previous words as input and then pass

it through a k-max layer. This layer only keeps the k largest

values, zeros out all the others, and renormalizes them to sum

to 1. The model performs in a computationally efficient way

to beam search [43].

2) SEQUENCE LEVEL TRAINING

In sequence-level training, the algorithm directly optimizes

for final evaluation.

REINFORCE is an algorithm for sequence level training

proposed by Williams in 1992. While using REINFORCE,

the neural network is considered as an agent, the input words

and the context vector are assumed as the external environ-

ment so that the neural network interacts with the external

environment. Now, the parameters of the agent define a pol-

icy, that when executed causes the agent to choose an action.

When the action is taken, the agent updates the internal state

and on reaching the end of the sequence, the agent reaches

a reward. Since we are discussing in the context of sequence

generation, the action refers to predicting the next word in the

sequence that results in an update of the states of the neural

network. On reaching the end of the sequence, the reward

function can be chosen as ROUGE, BLEU, or any other met-

ric that is used to test the output. During training, the target

is to find the agent parameters that result in a maximized

reward [7], [43].

MIXER algorithm proposed by [43] is a combination of

XENT and REINFORCE and uses incremental learning.

MIXERworks by changing the initial policy of REINFORCE

suitably. It starts from an optimal policy and then slowly

moves away from the optimal policy to use its predictions.

The model is first trained with XENT loss for n epochs using

ground truth data. This lets the model concentrate on the

better part of the search space. Next, the model continues

to train using XENT loss for the first few time steps and

then using the REINFORCE for the remaining time steps.

Then the length of time steps with XENT training is slowly

reduced until only REINFORCE is used to train the entire

sequence. The result of the whole process results in the effec-

tive use of model predictions during the training and testing

time.

3) STOCHASTIC GRADIENT DESCENT (SGD)

SGD is a form of gradient descent which is one of the most

common ways to do optimization of neural networks. Gradi-

ent descent minimizes an objective function J (θ ), by moving

in the opposite direction of the gradient of the objective

function 1θJ (θ), and updating the parameters. The learning

rate η is the size of the steps taken to reach the minimum

value of the function. In SGD, replaces the actual gradient

is replaced by a stochastic approximation computed from

randomly selected data points instead of using all the data

points in each iteration. For SGD, the parameter update is

given as,

θ = θ − η.1θJ (θ; x(i); y(i)) (32)

Adagrad (Adaptive gradient optimizer), Adadelta (Adaptive

delta), and Adam (Adaptive Moment Estimation) are algo-

rithms for gradient-based optimization [45]. In Adagrad opti-

mizer, each parameter θ has a different learning rate at each

time step t, which improves optimization. Mathematically,

θt+1 = θt −
η

√
Gt + ε

· gt (33)

where Gt represents the sum of the squares of the past gra-

dients and gt is the gradient of the objective function at time

t. Adagrad is extended to Adadelta which is more robust and

it does not accumulate all past gradients instead it limits the

window size to some fixed width. With Adadelta,

θt+1 = θt + 1θt (34)

1θ = −
RMS[1θ ]t−1

RMS[gt ]
· gt (35)

where RMS is the root mean squared error measure of the

gradient. Adam is a widely used optimizer and is efficient

with low memory requirements [46]. It works by updating

the exponentially weighted averages of the first (gradient mt )
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and second moment (squared gradient νt ) estimates.

mt = β1mt−1 + (1 − β1) gt (36)

vt = β2vt−1 + (1 − β2) g
2
t (37)

where β1 and β2 are the hyperparameters that are to be

tuned. The bias-corrected first-moment estimate (m′
t ) and

second-moment estimate (v′t ) are,

m′
t =

mt

1 − β t1
(38)

v′t =
vt

1 − β t2
(39)

The parameter update occurs as,

θt+1 = θt −
ηm′

t√
v′t + ε

(40)

D. DATASETS

Datasets are useful for training and assessment of models. For

abstractive text summarization, several datasets are available

in the English language. A few of these datasets are men-

tioned in the research framework like the CNN/Daily Mail

dataset which incorporates documents from news stories and

editorials of CNN and Daily Mail. The dataset was intro-

duced for abstractive summarization by [23] with the corpus

containing 286,817 training pairs, 13,368 validation pairs,

and 11,487 test pairs. Newsroom which is a summarization

dataset of news publications was presented by [47]. It has

1.3 million articles and summaries written by authors from

newsrooms of 38 news publications. The data timeline for

the Newsroom dataset is between 1998 and 2017. Gigaword

produced by LDC (Linguistic Data Consortium) is a compre-

hensive collection ofNewswire documentation in English and

was first employed for the task of abstractive summarization

by [20] and it has approx. 9.5 million news articles. For this

dataset, a source-summary pair was created from each article

by using the first sentence of the article as the source and its

headline as the summary [5]. The DUC (Document Under-

standing Conference) dataset for training and evaluating text

summarization systems is available in two parts known as the

2003 corpus consisting of 624 document- summary pairs and

the 2004 corpus consisting of 500 pairs [23].

E. EVALUATION METRIC

When the task of summarization is automated, it requires a

system or method for its assessment and evaluation. Man-

ual assessment is one way to evaluate automatically gener-

ated summaries. However, certain metrics also exist for this

purpose. ROUGE (Recall Oriented Understudy for Gisting

Evaluation) proposed by [48] is based on recall and most

commonly employed in the evaluation of automatically gen-

erated summaries. BLEU (Bilingual Evaluation Understudy)

proposed by [49] is based on precision and recall. BLEU

scores are also used for the evaluation of automatic sum-

marization systems [6]. METEOR (Metric for Evaluation

of Translation with Explicit Ordering) proposed in [50] is

FIGURE 14. Bibliographic statistics of esearch publications in the survey.

TABLE 1. Statistics of encoder-decoder architecture element from the
concept matrix.

basically for the interpretation of machine translation output

but, it can be applied to summarization as well. METEOR

is based on modified precision and recall. All the mentioned

evaluationmetrics provide an approximation of howmuch the

automatically generated summary matches with the reference

summary.

V. ANALYSIS, RESULTS & DISCUSSION

The contents of this section reveal the analysis and results of

the survey as well as discuss important points. First of all,

statistics of reference publications across the year of publica-

tion is presented in Fig. 14. There is a total of 63 papers that

are distributed across the years 2014 (and before) to 2020.

Almost 50% of the papers considered are the recent papers of

the years 2018, 2019 and, 2020.

Webster and Watson [51] identified two approaches to

literature reviews in their article. The first one is concept-

centric, another one is author-centric. We have applied

both approaches to this study. The approach adopted in

section III is author-centric while the approach presented

in Fig. 15 is concept-centric. A concept matrix is created

in line with the research framework. Concepts/elements are

entered across columns while references are presented across

rows. 26 papers are included in the concept matrix.

A. ENCODER DECODER ARCHITECTURE

Table 1 summarizes the statistics of the encoder-decoder

architecture element from the concept matrix shown

in Fig. 15.

It can be observed from Table 1 that out of a

total of 26 papers, 6 papers use an encoder-decoder

architecture that employs standard unidirectional RNN/

LSTM/GRU as either encoder, decoder, or both. 9 papers
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FIGURE 15. Concept matrix of the selected papers.

used an encoder based on bidirectional RNN/LSTM/GRU

while none of their decoder parts is bidirectional instead it is

based on standard RNN/LSTM/GRU. We have encountered

only one paper [52] which is based on a bidirectional encoder

as well as a bidirectional-decoder. 6 recent papers have

transformer-based encoder and decoder design while 2 recent

studies are based on BERT-GPT architecture and another one

based on BERT encoder and standard transformer decoder.

Further investigation of recent research papers of 2019 and

2020 indicates the use of transformer-based architecture

for modeling abstractive summarization systems. The rea-

son being, the transformer is quite efficient during train-

ing because there are no recurrent neural network layers

so no need to be trained with backpropagation through

time. The experimental results of [53] indicate that the

transformer performs better as compared to other sequence-

to-sequence models on abstractive summarization tasks.

Recently, pre-trained language models are successfully being

employed in abstractive summarization systems to achieve

better results. BART [10] and MASS (Masked Sequence to

Sequence) [54] pre-training methods have achieved notable

success for seq2seq language generation. During this survey,

we have observed a lack of abstractive summarization models

using BART and MASS architectures.

B. MECHANISMS

Table 2 summarizes the statistics of mechanisms employed

by various researchers. It can be noted that all papers except

a few incorporated some form of attention mechanism. Apart

TABLE 2. Statistics of mechanisms from the concept matrix.

from attention, 5 papers included the copying functional-

ity while another 6 included the pointer-generator model.

4 papers used the concept of coverage in their work while

one paper introduced the distraction component.

In addition to conventional attention, we have observed

various techniques of attention implemented by different

researchers which are listed in Table 3.

Here, we can conclude that the concept of attention is very

important for abstractive summarization systems and consid-

erable focus needs to be directed towards it while designing

the models.

C. TRAINING AND OPTIMIZATION

For the training and optimization element of the research

framework, it can be observed from Fig. 15 that the common

training and optimization trend is by using cross-entropy

loss and stochastic gradient descent. Reference [59] proposed

training methods that are based on reinforcement learning.

Reference [60] further extended the reinforcement learning

concept for training with distributional semantic rewards and

reported an overall improvement of the generated abstractive

summary.
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TABLE 3. Types of attention implemented by various models.

TABLE 4. Languages across the survey.

D. DATASET AND EVALUATION METRIC

For the dataset and evaluation metric for abstractive summa-

rization, it is obvious from Fig. 15 that many works in the

survey utilize CNN/Daily mail dataset and ROUGE metric

for summary evaluation. ROUGE works by comparing the

n-gram similarity between the reference and the generated

summary. Some researchers emphasize the need for a metric

that can evaluate automatic summaries from grammatical

aspects also.

Further examining the dataset element, we observe from

this survey that some large datasets are available for the

English language, some datasets for Chinese, German, and

French also. But for other languages that are considered

low resource languages, corpora are either not available or

are composed of a very limited number of documents. Our

discussion makes a connection with Table 4, which indicates

languages across the survey for which abstractive summariza-

tion systems have been modeled.

It can be seen in Table 4 that most of the research, mod-

els English language summarization systems, some studies

model Chinese language summarization systems while others

took initiative on first creating datasets and then modeling

systems for Amharic, Spanish, Indonesian, Bosnian, and

Croatian languages.

E. MODEL COMPARISON BASED ON ROUGE SCORE

Table 5 provides a ROUGE score for six selected ref-

erences to compare various models, by relating to their

TABLE 5. Comparison of various models by rouge score.

TABLE 6. Issues and challenges for abstractive summarization.

encoder-decoder architecture. Here, the highest ROUGE

score of 44.79 points is achieved by [34], with the

transformer-based encoder-decoder model. Reference [28]

obtains a second-highest score of 41.22 ROUGE points by

employing a bidirectional LSTM as encoder while a standard

LSTM as the decoder.

From Table 5, we can compare [31] and [34] because both

employed transformer-based architecture but the ROUGE

score of [31] is considerably less than that of [34]. To under-

stand the difference between ROUGE scores of [31] and [34],

we compare other elements of the models from Fig. 15. First

of all, we observe a major difference in the encoder column,

as [31] employs a transformer encoder while in the case

of [34], there exists a dual transformer encoder (BERT +
standard transformer). Secondly, [31] implemented an atten-

tionmechanismwhile in the case of [34], the attention, as well

as copying mechanism, is also utilized by the model. Also,

both used ADAM optimizer. This comparison implies that

the use of BERT and added functionality by introducing

various mechanisms in addition to attention results in the

improvement of the overall ROUGE score.

References [26] and [28] also provide an interesting com-

parison as both models utilize the same architecture, the same

datasets, the same mechanisms but yield a variation in

ROUGE scores. The only difference that can be observed

from Fig. 15, is in the application of gradient clipping by [26].

However, looking deep into the paper [28], we find out that
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a different kind of attention known as bottom-up attention

is incorporated in the model that probably resulted in an

increased ROUGE score.

F. ISSUES AND CHALLENGES WITH ABSTRACTIVE

SUMMARIZATION SYSTEMS

Despite several improvements in abstractive text summa-

rization with neural networks over the recent years, these

systems still pose some issues and challenges for the research

community. To become familiar with current issues and pro-

viding solutions addressing these issues will result in more

efficient and reliable summarization systems. The contents

of Table 6 present some of the issues and challenges in

neural networks-based abstractive text summarization which

are highlighted and addressed across the reviewed literature.

VI. CONCLUSION

This article presents an up-to-date review of abstractive

text summarization by surveying related scientific litera-

ture. A research framework is created in line with the key

design elements like encoder-decoder architecture, mecha-

nisms, training and optimization methods, datasets, and eval-

uation metric for the abstractive summarization models and

is analyzed with the help of the concept matrix highlighting

the common design trends of the recent abstractive sum-

marization systems. Besides, the review provides an insight

into various types of attention mechanisms, languages for

which abstractive systems have been modeled, and issues

and challenges associated with these systems, some of which

have been addressed by researchers while others still need

attention. Moreover, we have also highlighted some gaps like

the use of pre-trained models like BART [10] andMASS [54]

for abstractive summarization systems. The constraint of this

study is the number of included papers. In future work,

it can be updated by including more research on the topic.

Also, a novel abstractive summarization system can be imple-

mented utilizing the design elements identified in this study.

As this study identifies various types of attention, so another

idea for future work might be to conduct standalone experi-

mental research on attentionmechanisms for seq2seqmodels.
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