
A Survey of Three Dialogue Models

MARK GREEN

University of Alberta

A dialogue model is an abstract model that is used to describe the structure of the dialogue between

a user and an interactive computer system. Dialogue models form the basis of the notations that are

used in user interface management systems (UIMS). In this paper three classes of dialogue models

are investigated. These classes are transition networks, grammars, and events. Formal definitions of

all three models are presented, along with algorithms for converting the notations into an executable

form. It is shown that the event model has the greatest descriptive power. Efficient algorithms for

converting from the transition diagram and grammar models to the event model are presented. The

implications of these results for the design and implementation of UIMSs are also discussed.

Categories and Subject Descriptors: D.2.2 [Software Engineering]: Tools and Techniques-user

interfaces; F.l.l [Computation by Abstract Devices]: Models of Computation-automata;

1.3.6 [Computer Graphics]: Methodology and Techniques-kznguuges

General Terms: Algorithms, Design, Human Factors, Theory

Additional Key Words and Phrases: Dialogue models, human-computer interaction, user interface

management

1. INTRODUCTION

Every user interface management system employs some model of user interfaces.
This user interface model forms the basis of the notations used by the user
interface management system (UIMS) for describing user interfaces and strongly
influences its implementation. Both of these issues are worthy of further inves-
tigation. The notion of user interface models is developed in Green [18].

A number of techniques have been developed for describing user interfaces.
These techniques can be divided into two broad classes, depending upon whether
they are used in the design of user interfaces or in their implementation. Design
notations can be very informal, since their main purpose is to record the thoughts
of the designer. On the other hand, the notations used in the implementation of
user interfaces must be formal, since they will be used to directly produce the
implementation of the user interface. In this paper we are only concerned with

This work was partially supported by the Natural Sciences and Engineering Research Council of

Canada.

Author’s Address: Department of Computing Science, University of Alberta, Edmonton, Alberta,

Canada T6G 2Hl.

Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific

permission.
0 1987 ACM 0730-0301/86/0700-0244 $00.75

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986, Pages 244-275.

A Survey of Three Dialogue Models 245

the notations used in the implementation of user interfaces (this does not mean
that design notations should not be considered by UIMS researchers).

The notations employed in a UIMS define the range of user interfaces that
can be produced by that UIMS. In order to have a general UIMS (this may not
always be an important goal), the design notations must be capable of describing
the widest possible range of user interfaces. The range of a design notation can
be measured in two ways. The first measure of range is the descriptive power of
the notation. The descriptive power of a notation is the set of user interfaces
that can be described by the notation. The larger this set is, the more powerful
the notation. Determining the descriptive power of a design notation can be
converted into a problem in formal language theory, and in most cases a definitive
answer can be found. The second way of measuring the range of a design notation
is by its usable power. The usable power of a design notation is the set of user
interfaces that can easily be described by the design notation. The usable power
of a design notation will always be a proper subset of its descriptive power. The
design notation often exerts a subtle bias on the user interface designer. Most
designers tend to favor user interfaces that are easy to describe over those that
are hard to describe. Thus, if the best user interface for a particular application
is very hard to describe in a given notation, there is a good chance that the user
interface designer will not consider it. Unlike descriptive power, there is no
objective way of measuring the usable power of a user interface. For this reason,
descriptive power is used in this paper, with the possibility that some of the
results could be misleading.

The implementation of a UIMS is often strongly influenced by the user
interface model employed. The structure of the UIMS and of the services it
provides often follows the structure of the user interface model. For example, if
the user interface model is divided into a number of components, the UIMS will
often supply design and implementation tools for each of these components. If
each of the model components has a distinct function with well-defined interfaces,
it is easy to construct a set of functionally equivalent tools for each component.
This gives the designers some freedom in the choice of the tools that they use. If
the designer is presented with a well-defined user interface model that seems
logical, then he or she should have less trouble learning how to use the tools
provided by the UIMS. This suggests that the design of a UIMS should start
with the design of the underlying user interface model.

One of the best known user interface models is the Seeheim model [34]. This
model is used as the basis for this paper for the following two reasons. First, the
Seeheim model is fairly general and thus adequately describes a number of
existing UIMSs. Second, it is one of the few user interface models with an explicit
description that is independent of a particular UIMS. This facilitates the study
of the model itself, without being influenced by its implementation in a particular
UIMS.

The Seeheim model divides a user interface into three components, as shown
in Figure 1. The presentation component deals with the physical representation
of the user interface. This includes input and output devices, screen layout,
interaction techniques, and display techniques. The presentation component is
the only part of the user interface that deals directly with devices. The other
components of the user interface cannot directly communicate with the input

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

246 l Mark Green

USER
Presentation

Component

Dialogue Application

c > c
Interface

Control
c >

Model

Fig. 1. The Seeheim model of user interfaces.

and output devices. The presentation component can be viewed as the lexical
level of the user interface. The dialogue control component deals with the dialogue
between the user and the computer system. This component is responsible for
the structure of the commands and dialogue used by the user. It can be viewed
as the syntactic level of the user interface. The application interface model
defines the interface between the user interface and the rest of the program.
This component handles the invocation of the application procedures. The
three components can be logically viewed as three separate processes. The
components communicate by passing tokens, which are similar to the tokens
used in compilers [3]. A token consists of a name and a collection of data values.
The name of the token identifies the type of the token. A token flowing from the
user to the application program is called an input token, and a token flowing
from the application program to the user is called an output token.

In the Seeheim model the application can change the state of the user interface
by sending an output token to it. The user interface can view the application as
another input device and react to it in the same way as it would to a human user.
This use of output tokens provides a controlled mechanism for transferring state
information from the application to the user interface. The user interface does
not need to call routines in the application in order to determine its current state.

The main emphasis of most UIMSs has been on the dialogue control compo-
nent. As a result, we know much more about this component than about the
other components. The main emphasis of this paper is on the dialogue control
component of user interfaces and the models that have been proposed for this
component, which are called dialogue models. The three main dialogue models
(transition networks, context-free grammars, and events) are defined in the next
section. With the existence of three models we now have the problem of choosing
the best model to use in a UIMS. What should be the basis of this choice?
Previously, we noted that the notations employed in a UIMS must be as general
as possible. So one criterion is the descriptive power of the model. If we can show
that one model is more powerful than the other two, that model becomes the top
candidate. If efficient procedures for converting descriptions in the other models
to the more powerful one can be produced, the UIMS implementor only needs to
implement the more powerful model, plus the conversion procedures. As a result,
a UIMS can be constructed, based on the most powerful model, that will be
capable of handling descriptions produced in all three models. In this paper we

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

A Survey of Three Dialogue Models 247

present formal definitions of all three dialogue models and some of their impor-
tant properties. The major result of this work is that the event model is the most
powerful, and that transition network and context-free grammar notations can
be efficiently converted to the event notation.

2. DIALOGUE MODELS

The three types of dialogue models that are of interest to this work are transition
networks, context-free grammars, and events. Informal descriptions of these
three models are presented in this section, and formal definitions are presented
in the next section.

2.1 Transition Networks

The transition network model is based on transition diagrams. A transition
diagram consists of a set of states (represented by circles) and a set of arcs
(represented by arrows leading from one state to another). The states represent
the states in the dialogue between the user and the computer system. In the
simplest form of transition networks, each arc is labeled by an action (an input
token) that the user can perform. The arcs in the diagram determine how the
dialogue moves from one state to another. The dialogue will move from state A
to state B if there ‘is an arc between these two states labeled by the action the
user performed. A path through a transition diagram is a sequence of arcs that
lead from the start state of the diagram to one of its final states. A sequence of
user actions is accepted if they label the arcs on a path through the diagram.

A simple example of a dialogue described by a transition diagram is shown in
Figure 2. The example used to illustrate all three dialogue models is entering a
rubber band line. The presentation component produces the “button” token when
the user presses the button on the locator and the “move” token each time the
user moves the locator.

This simple form of transition network describes the sequences of actions that
the user can perform but says nothing about the responses generated by the
computer. One way of describing the computer’s side of the dialogue is to attach
actions to the states in the diagram. When a state is reached, its action is
executed. Thus, user actions are attached to arcs, and program actions are
attached to states. By augmenting the previous example with program actions
we have the diagram shown in Figure 3.

Program actions can also be attached to the arcs. In this case the program
action is executed when the arc is traversed. Some UIMSs allow program actions
to be attached to both arcs and states. In some cases attaching actions to arcs
can result in smaller transition diagrams, which could be easier to understand.
By allowing actions on arcs, the transition diagram for the example user interface
can be reduced to three states (this is shown in Figure 4). In the following
discussion we assume that the program actions are attached to the states. This
simplifies the presentation of the algorithms. The algorithms presented in the
following sections can easily be extended to cover the cases in which the actions
are attached to the arcs (the algorithms were tested on transition diagrams with
actions attached to the arcs).

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

248 l Mark Green

move

button

Fig. 2. A simple transition diagram.

2: record first point

3: draw line to current position

4: record second point

Fig. 3. Example transition diagram with program actions.

actionl: record first point

action2: draw line to current position

action3: record second point

Fig. 4. Example transition diagram with actions on arcs.

There are two problems with this type of transition network. It can only
describe a limited range of dialogues, and the descriptions tend to get quite large.
The second problem can be solved by partitioning the network. One way of doing
this is to divide the transition network into a number of diagrams. This results
in a main diagram, plus a number of subdiagrams. A subdiagram is a complete
transition diagram that can be invoked from another diagram. These subdiagrams
can be viewed as procedures or subprograms. Any arc in a diagram can now be
replaced by a call to one of the subdiagrams. An arc labeled by a subdiagram
name will be traversed, when the user enters a sequence of actions that causes
the subdiagram to be traversed, from its start state to one of its final states. An
extended definition of arc traversal that covers subdiagrams can now be produced.
An arc between two states will be traversed if its label is a user action and the
user has performed that action, or if the arc’s label is a subdiagram name and
the user performs actions that cause the subdiagram to be traversed.

Subdiagrams make it possible to divide the description of the dialogue into a
number of logical units. For example, there can be a subdiagram for each of the
commands in a user interface. There can also be subdiagrams for common
sequences of user actions (such as entering operand values). The use of subdi-
agrams does not increase the descriptive power of transition diagrams, since each
call to a subdiagram can be replaced by the states and arcs in the subdiagram. If

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

A Survey of Three Dialogue Models 249

we allow subdiagrams to call themselves recursively, then the descriptive power
is increased. A transition network notation that allows recursive calls is called a
recursive transition network (RTN).

An extension of the rubber band example can be used to illustrate the difference
between transition diagrams and recursive transition diagrams. In this example
a sequence of rubber band lines is used to enter a polyline. At any point in the
interaction the user can press the backspace key to remove the last point entered.
The backspace key cannot be used to remove the first point in the polyline. The
set of recursive transition diagrams for this example is shown in Figure 5. This
dialogue cannot be described by transition diagrams, since with transition dia-
grams there is no way of telling when the user has backspaced to the last point
of the polyline.

Augmented transition networks (ATN) are an extension of recursive transition
networks [41]. An augmented transition network consists of a set of transition
diagrams, a set of registers, and a set of functions. The registers can hold arbitrary
values and are only visible within the dialogue control component (the application
cannot read or write these registers). The functions can perform any computation
on the register values, and they can assign new values to the registers. The
functions cannot access data values in the application. Functions are attached to
the arcs in the diagrams and are executed when the arc is traversed. If the value
of the function attached to an arc is true, the arc can be traversed, otherwise, the
arc cannot be traversed.

It is possible to construct context-sensitive dialogues with augmented transi-
tion networks (this is not the case for other types of transition networks). For
example, in a database query application, the register values can indicate whether
particular databases are open and the types of access privileges (read, write,
control, etc.) that the user has. The register values can then be used to determine
the commands that can be applied to each of the databases. Error messages can
also be customized to take into account the access privileges of the user.

Augmented transition networks are more powerful than other types of tran-
sition. networks. It has been suggested that they could be used as the basis
for the dialogue control component of a UIMS (e.g., see Kamran [24], Kieras
and Polson [27], or Sibert [36]). Jacob [23] has used a notation similar to
augmented transition networks for specifying and prototyping user interfaces.
The interactive pushdown automata suggested by Olsen [31] also resemble
augmented transition networks.

Augmented transition networks can easily handle the extended rubber band
line example without the use of subdiagrams. A register can record the number
of points that have been entered, and a function can check whether the register
is greater than 1 when a backspace is entered. A further extension of this example
is the addition of a cancel feature. Whenever the user presses the cancel button,
the dialogue terminates with an empty polyline. This addition to the example
cannot be handled by recursive transition networks owing to the nesting of the
subdiagram calls. An augmented transition network for the cancel example is
shown in Figure 6.

One of the major problems with the transition network model is handling
unexpected user actions. When the diagram is at a particular state and the user
action does not correspond to any of the arc labels, the dialogue cannot proceed.

ACM Transactions on Graphics, Vol. 5, No. 3, July 19%.

250 l Mark Green

main:

button/action1 command

command:

buttolon4

actionl: record first point

action2 draw line to current position

action3: record next point

action4: erase last point

Fig. 5. Transition diagram for polyline example.

backspace/action4

fn3

actionl: record first point

action2: draw line to current position
action3: record next point

action4: erase last point
action5: erase polyline
action6: return polyline

fnl : count:=1 ; returmtrue);
fn2: count:=count+l ; return(true);
fn3: if count = 1 then

return(false);
else

count := count-l ;
return(true);

Fig. 6. Polyline dialogue with cancel.

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

A Survey of Three Dialogue Models 251

There are a number of solutions to this problem. The easiest solution is to ignore
the user action. This is not very satisfactory, since the user is not informed that
the program is ignoring his or her actions and has no idea of how to get to the
next state. Another solution is to use a wild card label. This arc label will match
any user action that does not match any of the other user actions. A wild card
arc leads to a state where error recovery is attempted. Another approach to
handling unexpected user actions are Olsen’s pervasive states and transitions
[31]. In this approach a transition diagram can have associated with it another
transition diagram, which is used when the current input token does not match
any of the arcs leaving the current state.

One of the main advantages of the transition network model is its natural
graphical representation. Transition diagrams can easily be displayed and edited
on graphics terminals. This advantage has (surprisingly) not been incorporated
into a number of existing transition network based UIMSs.

The use of transition networks in user interfaces has a very long history. The
first systems that could be called UIMSs were based on transition networks. The
first use of transition networks in user interface design and implementation is
the work of Newman [29, 301 and Parnas [33]. Since then, transition networks
have been the basis for a large number of UIMSs (e.g., Kamran and Feldman
[25] and Schulert et ‘al. [35]).

The first use of recursive transition networks in user interfaces appears to be
the work of Denert [lo]. The SYNICS system is another early example of the
use of recursive transition networks [9, 11, 201. Experience with the use of both
transition networks and recursive transition networks is presented in Kamran
[24] and Sibert et al. [36].

2.2 Context-Free Grammars

The context-free grammar model is based on describing the dialogue between the
user and the computer system by a context-free grammar. The basic motivation
for this model is the view that human-computer interaction is a dialogue, as in
human-human communication. In the case of natural languages a grammar is
used to describe the language used by the participants in the dialogue. The
natural extension of this idea is to use a grammar to describe the dialogue
between the user and the computer. There is a major difference between human-
computer interaction and human-human interaction. In the former case two
distinct languages are involved, whereas in the latter only one language is used.
That is, in human-computer interaction the user employs one language to enter
commands to the program, whereas the computer uses another to communicate
the results of these commands. The existence of two distinct languages causes
numerous problems when grammars are used to describe user interfaces.

In practice, a grammar is used to describe the language employed by the user
to communicate with the computer; the other direction is described by some
.other means. The terminals in the grammar are the input tokens generated by
the presentation component. These tokens represent the user’s actions. The
terminals are combined by the productions in the grammar to form higher level
structures called nonterminals. The collection of productions in the grammar

ACM Transactions on Graphics, Vol. 5, No. 3, July 1966.

252 l Mark Green

define the language employed by the user in his or her interactions with the
computer. An example of this type of description is shown in Figure 7. This
example is the same as the one used for transition networks.

The grammar in Figure 7 describes the actions performed by the user in order
to enter a rubber band line, but it does not cover the responses generated by the
computer. In the case of transition diagrams, program actions are attached to
the states in the diagram to indicate the program’s responses. A similar approach
can be used with context-free grammars; program actions can be attached to
each of the productions in the grammar. These program actions are performed
when the production is used in the parse of the user’s input. One of the major
problems with this approach is that the time when the production is used in a
parse depends upon the parsing algorithm used. In the case of a bottom-up parse,
a production is used when all the symbols on its right side have been recognized.
In the case of a top-down parse, the production is used when the first terminal
that could be generated by the right side is encountered. This issue is explored
further in Section 3.2. By assuming that a top-down parse is used, the example
in Figure 7 can be augmented by program actions to obtain the grammar shown
in Figure 8. The grammar has been modified in order to produce the program
actions at the appropriate place in the dialogue. This modification introduces
three new nonterminals that do not contribute to the language but serve as place
holders for the program actions. Most of the grammar-based UIMSs provide
some notational mechanism for invoking actions in the middle of productions
(see Olsen and Dempsey [32] for one possible mechanism). In these notations
the introduction of new nonterminals for program actions is not necessary.

It is fairly easy to construct a context-free grammar for the polyline example
presented in the previous section. The cancel extension to the polyline example
cannot be described by a context-free grammar.

A number of extensions to context-free grammars have been proposed and
implemented in some UIMSs [32, 391. Most of these extensions deal with error
recovery, undo processing, and control over the order of the parse. It should
be noted that existing UIMSs do not use the full power of context-free
grammars. The grammars used in these systems are restricted to the subset of
context-free grammars that can be handled by the parsing techniques that

they use (usually LL(l) or LALR(l)).
The first use of context-free grammars in the design and implementation of

user interfaces is hard to determine. In the mid-1970s a number of research
groups used commonly available parser generators, such as YACC [l], to produce
the user interfaces to graphics programs. In most cases these experiments were
a failure, owing to poor error recovery. The error recovery routines provided with
these parser generators were designed for use with programming languages. When
an error occurred, the recovery routine would ignore input tokens until a token
in a recovery set (e.g., “;“, “begin”, and “end”, in the case of programming
languages) was encountered. While recovery was in progress, the user would
receive no feedback and would often not know how to get back to an acceptable
state.

An early example of a grammar-based system designed for user interfaces is
one of the versions of the SYNICS system [12,20]. Another early example of the
use of context-free grammars is the work of Hanau and Lenorovitz [21].

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

A Survey of Three Dialogue Models 253

line -+ button endpoint

endpoint + move endpoint

I button

Fig. 7. Context-free grammar for rubber band line example.

line --f button dl endgoint

endgoint + move d2 endgoint
I button d3

Fig. 8. Rubber band line example with program actions. dl -+

{ record Erst point)

d2-1

{ draw line to current position)

d3 +
{ record second point)

The SYNGRAPH system developed by Olsen has a number of interesting
properties [32]. The grammar is used to produce a top-down parser for the
dialogue. The designer of the dialogue can specify the error recovery mechanism
used by the parser, allowing for more natural and graceful error recovery. The
grammar is also used to produce some of the information required by the
presentation component. This information includes the contents of menus and
when devices must be acquired and released.

Input-output took [39, 401 and dialogue cells [6, 381 take a different approach
to the specification of a grammar-based dialogue. In this approach each produc-
tion in the grammar is enclosed in an input-output tool or dialogue cell. The
information accompanying a production specifies the actions (prompting and
initialization of local variables) performed when the production becomes active
(able to take part in the parse), the action performed when the end of the
production is reached, the echo produced for the interaction, and the value
returned by the production. A top-down parser is constructed from the grammar.

2.3 Events

The event model is not so well established as the other two dialogue models. This
model is based on the concept of input events that is found in a number of
graphics packages. In these packages the input devices are viewed as sources of
events. Each input device generates one or more events when the user interacts
with it. An event has a name or number that identifies the nature of the
interaction, plus several data values that characterize the interaction. For ex-
ample, in the case of a tablet, a move event is generated each time the tablet
cursor is moved. The data associated with this event are the x and y coordinates
of the cursor. A separate event is also generated each time one of the cursor
buttons is pressed or released.

The events are placed on a queue when they are generated, and the application
program removes the events one at a time from the queue by calling one of the
routines in the graphics package. In some cases the application program can
specify the type of event it requires, giving the application program some control

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

254 l Mark Green

over the events that are generated. In these graphics packages there are a fixed
number of predefined events, and they can only be generated by input devices.

The event model is an extension of this basic idea. In the event model there is
an arbitrary number of event types. Some of the events are generated by input
devices, and other events are generated inside of the dialogue control component.
The programmer is free to define new event types that are more appropriate for
a particular application. In the event model there are no explicit queues of events.
When an event is generated, it is sent to one or more event hundkrs. An event
handler is a process (defined by a procedure or module) that is capable of
processing certain types of events. When an event handler receives one of the
events it can process, it executes a procedure (this procedure is similar to a
method in Smalltalk [X5]). This procedure can perform some computation,
generate new events, call application procedures, create new event handlers, or
destroy existing event handlers.

The behavior of an event handler is defined by a template. A template consists
of several sections that define the parameters to the event handler, its local
variables, the events it can process, and the procedures used to process these
events. When an event handler is created, its template must be specified, along
with values for its parameters. The result of the creation process is a unique
name that is used to reference the event handler. Several event handlers can be
created from the same template. Each of the event handlers created from a
template can have a different local state (parameter and variable values).

Once an event handler has been created, it is in the active state. It remains in
this state until it is destroyed, either by itself or by another event handler. Only
the active event handlers can respond to events. In the event model a user
interface is described by the set of templates that define the event handlers it
uses. At the start of execution an instance of one of these templates is created to
serve as the main event handler in the user interface. This event handler will
then create (possibly indirectly) all the other event handlers in the user interface.
Conceptually, all the event handlers in the user interface execute concurrently,
processing the events as they arrive. An event handler can only process one event
at a time; so it can be viewed as a monitor.

There are two possible sources of events in the dialogue control component.
The first source is the other two components of the user interface. The presen-
tation component and the application interface models both send tokens to the
dialogue control component. These tokens are converted into events, which are
then sent to the event handlers that process them. An event handler can declare
the tokens that it is interested in. When one of these tokens arrives, it is
converted into an event and processed by the event handler. More than one event
handler can process the same token. The second source of events is from within
the dialogue control component itself. An event handler can send an event to
one of the other event handlers in the dialogue control component. In this case
the name of the event handler that receives the event is explicitly specified in
the event send operation. This form of event is used for communications between
the event handlers.

An event handler for the rubber band line example is shown in Figure 9. A
notation similar to that presented in Green [19] is used in this example. The

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

A Survey of Three Dialogue Models 255

EVENT HANDLER line:

TOKEN
button Button;
move Move:

VAR

int state;
point first, last;

EVENT Button DO {
IF state == 0 THEN

first.= current position;
state = 1;

ELSE
last = current position;
&activate(self);

ENDIF;

1;

EVENT Move DO (
IF state == 1 THEN

draw line from tirst to current position;
ENDIF;

1;

INIT
state=o;

END EVENT HANDLER line;

Fig. 9. Event handler for the robber

band line example.

EVENT HANDLER polyline-cancel;

TOKEN
button Button;
move Move;
backspace Backspace;
cancel Cancel;
finish Finish;

VAR

point-count : integer;
point-list : list of point;
int state;

EVENT Button DO {
IFstate=oTHEN

point-list = current position;
state = I;
point-count = 1;

ELSE
add current position to point list;
point-count = point-count +-1;

ENDIF;

1;

EVENT Move DO {
IFstate= 1 THEN
draw line from last position to current position;

ENDIF;

1;

EVENT Finish DO {

return(point-list);
deactivate(self);

1;

EVENT Backspace DO {
IF point-count > 1 THEN
remove last point from point list;
point-count = point-count - 1;

ELSE
output “can’t delete tirst point”;

ENDIF;

1;

EVENT cancel DO {
retum(empty-list);
deactivate(self);

1;

INIT
state = 0;

END EVENT HANDLER polyline-cancel;

Fig. 10. Event handler for polyline with
cancel.

ACM Transactions on Graphics, Vol. 5, No. 3, July 1996.

256 - Mark Green

definition of the line event handler is divided into four sections. The first section
declares the tokens that the event handler can process. This section maps the
tokens “button” and “move” into the events Button and Move. The VAR section
consists of the declarations of the event handler’s local variables. The third
section of the declaration specifies the processing to be performed on the events
received by the event handler. The last section contains the statements to be
executed when an event handler is created. Note that in this example the program
responses are included with the processing of the user’s input.

An event handler can be constructed for the polyline example with the cancel
extension. This event handler is shown in Figure 10.

One of the main advantages of the event model is its ability to describe
multithreaded dialogues. In a multithreaded dialogue the user can be involved in
several separate or communicating dialogues at the same time. The user is free
to switch from one dialogue to another at any point in the interaction. This type
of dialogue occurs frequently in window-based systems. Since each of the event
handlers can be viewed as a separate process, it is quite easy to describe
multithreaded dialogues in the event model.

As an example of a multithreaded dialogue consider a text editor that allows
the user to edit several files simultaneously. Each of the files is displayed in a
separate window. It is possible to produce a collection of event-handler templates
that describe the interactions that occur in an editing window. When the user
edits a file, instances of these event handlers are created. Thus each editing
window has its own collection of event handlers. Editing within a single window
can be described in any of the three models, but the transition network and
grammar models have trouble with communications between the windows. For
example, consider a cut-and-paste feature, which could be part of the multifile
editor. The user can cut or copy some text from one file to another. This involves
communications between the dialogues running in two windows. In the event
model this can easily be handled by sending events from one window to another,
but it cannot be described in the other two models.

The event model was motivated by early work on Smalltalk [26]. One of the
first implementations of this model was the work of Green [16]. An elaboration
of this version of the event model was used in the University of Alberta UIMS
[191 and is formalized in Section 3.3 of this paper. Two other UIMSs that support
the event model are Sassafras [22] and ALGEA [14]. An early use of events and
event handlers in the construction of user interfaces is described in [13].

A similar model was developed by Anson. Anson [4] has used events to define
the semantics of graphical input devices. He has also used object-oriented
languages to extend this model to the description of dialogues [5]. Cardelli and
Pike [7] have produced a language called Squeak for processing the input from
mice and keyboards. This language is based on processes and messages between
processes. Their processes are similar to event handlers, and messages serve the
same purpose as events. Tanner et al. [37] have also described a multiple-process
and message-based system to support graphics and user interfaces. This system
is based on the Harmony operating system. There is a difference between the
messages used in these systems and events. In Squeak a message will not be sent
if there is not another process ready to receive it. In Harmony the sending

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

A Survey of Three Dialogue Models 257

process blocks until the receiving process receives the message and replies. An
event is sent regardless of whether the receiver is ready for it, and the event send
cannot block. It is not clear whether the difference between messages and events
is important.

3. FORMAL DEFINITIONS OF THE DIALOGUE MODELS

In this section formal definitions of the three dialogue models are presented. The
main reasons for producing these definitions is to provide both a formal frame-
work for comparing the three models and a means of deriving their properties.
The main emphasis in these definitions is on the mechanism used to describe
the actions performed by the user. In these definitions it is assumed that the

applications program cannot directly change the state of the user interface. In
order to change the state of the user interface the application must send an

output token to the user interface. The main implication of this assumption is
that the user interface cannot use application procedures to extend the power of
the user interface model. If this type of behavior is allowed, then the notion of a
separate user interface module breaks down.

3.1 Transition Network Model

The development of the formal definition of the transition network model starts
with simple transition networks (transition networks with only one diagram) and
is extended to include recursive transition networks.

In the case of simple transition networks their behavior can be described by a
modified finite-state machine. In this finite-state machine the states correspond
to the states in the transition diagram, and the arcs are converted into transitions
between these states. The input alphabet is the set of input tokens that can be
generated by the presentation component. On the basis of this representation a
simple transition network (STN) is a 7-tuple M = (Q, Z, P, 6, y, qo, f), where

(1) Q is a finite set of states corresponding to the states in the diagram;
(2) Z is a finite set of input symbols, which are the input tokens generated by

the presentation component;
(3) P is a finite set of actions, which are the actions labeling the states of the

transition diagram;
(4) 6 is a mapping from Q X Z to Q, called the state transition function;
(5) y is a mapping from Q to P, called the action function;
(6) q. E Q is the initial state of M;
(7) f C Q is the set of final states of M.

The behavior of a STN is slightly different from that of a finite-state machine.
The configuration of a STN is represented by the current state q of the machine.
When the STN receives an input symbol a, representing an action performed by
the user, it changes to the state given by the state transition function. In making
this state transition, the STN emits the name of the action labeling the new
state. That is, the value of 6(q, a) is the new state q’, and the action p emitted is
given by y(q’).

At the start of the dialogue the STN is in the initial state qo. As the user
generates input tokens, the STN will move from one state to another, following

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

258 - Mark Green

arcs labeled by the input tokens. The end of the dialogue occurs when the STN
enters one of the final states in the set f. The STN recognizes the strings of input
tokens that cause it to move from its initial state to one of its final states.

In the case of recursive transition networks a more powerful mechanism
is required. This mechanism is the deterministic push-down automaton
(DPDA) [2]. A modified version of the DPDA, called a transition network (TN),
is used in our definition of recursive transition networks. The main difference
between a STN and a TN is the use of subdiagrams in TNs. In a recursive
transition network, when an arc labeled by a subdiagram name is encountered,
control is transferred to the subdiagram. When the traversal of the subdiagram
is complete, control transfers back to the node at the end of the arc invoking the
subdiagram. Since subdiagrams can be invoked recursively, some mechanism
must be provided for storing the nodes at the end of the invoking arcs. This is
the main reason for using a DPDA as the basis of our definition.

A TN is a 9-tuple, M = (Q, Z, P, r, 6, y, qo, 20, f), where

(1) Q is a finite set of states corresponding to the states in the diagrams;
(2) Z is a finite set of input symbols, and there is one symbol in Z for each input

token generated by the presentation component;
(3) P is a finite set of actions, which are the actions that label the states in the

transition diagram;
(4) l? is a finite set of push-down list symbols, and in our case there is one

symbol in I’ for each state in Q and each symbol in Z;
(5) 6 is a mapping from Q x (Z U (t)) X P to Q X I’*, called the state transition

function;
(6) y is a mapping from Q to P, called the action function;
(7) q. E Q is the initial state of M;
(8) 2, E P is the initial symbol on the push-down list;
(9) f C Q is the set of final states of M.

The configuration of a TN is an ordered pair (q, z) in Q x I’*, where q is the
current state of the TN, and z is the contents of its push-down list. Whenever
the TN receives an input token from the presentation component, it moves to a
new configuration and emits the name of an action. The new configuration and
action are governed by the state transition function and the action function. If
the TN has the configuration (q, cu.??) and the input symbol a is received, then
the new state and symbol on the top of the stack are given by 6(q, a, a). The
action emitted is given by y(q’), where q’ is the new state.

At the start of the dialogue the configuration of the TN is (qo, 2,). As input
tokens are received, the TN moves from one configuration to another according
to the state transition function. The TN recognizes the strings of input tokens
that cause it to move from its initial configuration to one of the configurations
(a 201, where q E f.

3.2 Context-Free Grammar Model

The context-free grammar model is based on context-free grammars, with an
extension to cover the invocation of application actions. A context-free grammar

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

A Survey of Three Dialogue Models 259

model G is a 5-tuple G = (N, T, R, P, S), where

(1) N is a finite set of symbols called nonterminals;
(2) T is a finite set of symbols called terminals, and there is one symbol in T for

each of the input tokens produced by the presentation component;
(3) R is a finite set of symbols that correspond to the actions attached to the

productions;
(4) P is a finite set of productions of the form

wherenEN,aE(NUT)*,andrER;
(5) S E N is the start symbol for the grammar.

A production can be viewed as a rule stating that the nonterminal on the left
side can be replaced by the symbols on the right side. For example, if we have
the production

X + abc

and the string of symbols

then we can replace the nonterminal X by the string of symbols abc, giving the
following string:

aabcp.

This operation is called a derivation step and can be written in the following
way:

CYX/~ + aabcp.

A sequence of derivation steps such as

can be abbreviated as

The language, L(G), described by a grammar G, is defined in the following way:

L(G) = (x 1 S +* x, where S is the start symbol of GJ.

If G describes the dialogue control component of a user interface, then L(G)
contains all (and only) the legal sequences of user actions. A context-free
grammar G can be used to produce a parser, which recognizes the sequences of
user actions in L(G).

Parsing algorithms can be divided into two groups: bottom up and top down.
A top-down parsing algorithm begins with the start symbol of the grammar and
expands it using the productions in the grammar. As the derivation steps are
performed, the terminals on the right sides of the productions are matched
against the tokens generated by the presentation component. The parse will
continue as long as the terminals match the input tokens. More details on

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

260 l Mark Green

top-down parsing can be found in the standard textbooks on compilers, for
example [31.

When a production is expanded in a top-down parse, the action attached to
the production is emitted. A production is selected for expansion as soon as the
first terminal that is able to be generated by its right side can be successfully
matched against the current input token. Thus the action attached to a produc-
tion will be executed when the start of a command is recognized.

A bottom-up parse works in the opposite direction. A bottom-up parse accu-
mulates input tokens until they match the right side of a production. At this
point the tokens are replaced by the nonterminal on the left side of the production,
and the process continues. This replacement process continues until the start
symbol for the grammar is reached. More details on bottom-up parsing can be
found in [3].

As in the case of a top-down parse, the action attached to a production is
emitted when that production is used in the parse. In the case of a bottom-up
parse the production is not used until all the symbols on its right side have been
recognized. Thus the action will be executed when the command represented by

the production has been completely entered.
As can be seen from the above discussion, the point at which the action is used

depends upon the parsing technique used. This is one of the main problems with
using grammars as a notation for the dialogue control component. The description
of the dialogue will depend upon the parsing algorithm used. In general, it is not
easy to move a grammar-based description of the dialogue from one UIMS to
another.

In practice, the full range of context-free languages is not used because of the
inefficiency of their parsers. The largest set of languages that can efficiently be
parsed are the deterministic context-free languages [2]. These are the languages
that can be parsed by an LR(k) parser.

3.3 Event Model

The two major components of the event model are events and event handlers. In
practice, event handlers are embedded in general-purpose programming lan-
guages. This gives the event model a considerable amount of power, but tends to
hide its general properties. In order to characterize this dialogue model, an
abstract version of it is constructed. This abstract version is independent of any
particular programming language and has a relatively simple structure. This
abstract model is called an abstract event system.

In an abstract event system all events have the same structure. An event E is
a 3-tuple E = (i, m, d), where

(1) i E I, where I is a finite set of symbols that are used as names for the event
handlers in the event system;

(2) m E M, where M is a finite set of symbols that are used as event names;
(3) d E D, where D is a domain (possibly infinite) that is used for event values.

In this paper D is usually the integers.

In real event systems the event handlers are procedures written in a general-
purpose programming language. In our abstract event system a real programming

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

A Survey of Three Dialogue Models 261

language would needlessly complicate the model. Instead, a simple language
consisting of a finite set of registers and six simple statements is used. An event
handler has a finite number of registers, each capable of storing one value from
D or I. One register is assigned to each type of event handled by the event
handler. The user interface designer can use the other registers to hold temporary
results computed in the processing of an event, or to store a value used in the
processing of several events.

Each type of event is processed by a separate procedure, called an event-
handler procedure. The body of this procedure is a sequence of statements. Six
types of statements, which represent the primitives of the event model, can
appear in an event-handler procedure. The six statement types are as follows:

(1) ri := expression

This statement calculates a new value for one of the registers in the event
handler. The expression consists of registers, constants, and operators. The
expression cannot reference data values in other event handlers, or in the
application.

(2) ZtMri

This statement creates a new event that has the name M and data value ri.
This event is sent to the event handler I, which can be specified by either a
constant or a register value.

(3) rl = create(template, el, e2, . . . , e”)

This statement creates a new event handler on the basis of the event-handler
template passed as a parameter. The behavior of this new event handler is defined
by the template. The other parameters are the initial values for the registers of
the new event handler. If there are not enough values to initialize all the registers,
the unspecified registers are set to zero.

(4) destroy(ri)

This statement destroys the event handler identified by the value stored in ri.

(5) IF condition THEN statement ELSE statement

The IF statement allows for the selective execution of two sets of statements,
depending upon the value of a condition. The condition can consist of registers,
constants, operators, and logical connectives. IF statements can be nested.

(6) call proc(argl, arg2, . . . , arg,)

This statement is a call to one of the application procedures. The arguments
to the procedure are expressions consisting of registers, constants, and operators.
The application procedure cannot return a value to the event handler.

The above six types of statements are sufficient for our purposes. It is worth
noting what cannot be done with these statements. There is no way of producing
a loop within an event-handler procedure. There is also no way of producing a
procedure or macro that can be called from inside an event-handler procedure.
As a result, each event-handler procedure will terminate within a finite length of

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

262 l Mark Green

time. There is no way of constructing an infinite loop within an event-handler
procedure. This simplifies the implementation of the event model, since a

preemptive scheduler is not required.
An event handler EH is a 5-tuple EH = (m, r, Q, R, P), where

(1) m is the number of event types that are processed by this event handler;
(2) r is the number of registers in the event handler, with the restriction

that m I r;
(3) Q E E* is the event queue for the event handler. The events in Q have been

sent to EH, but have not been processed yet;
(4) R E (D U l)r is the set of register values for EH;
(5) P is a set of m event-handler procedures, with one procedure in this set for

each type of event that can be processed by the event handler.

The configuration of an event handler is the contents of its event queue and
the values of its registers. This configuration is written as (q, p), where q E E*
and p E (D U I)‘. An event system ES is a finite set of event handlers. The
number of event handlers in an event system can change dynamically as new
event handlers are created and old ones are destroyed.

The behavior of an event system is governed by the following rules. The first
rule is. that, when an input token is received from the presentation component,
it is converted into events that are added to the ends of the queues of the event
handlers that have declared an interest in that token. The information in the
event-handler templates is used to construct a table that maps input tokens into
the corresponding events and the event handlers that are to receive these events.

The second rule deals with how the individual event handlers move from one
configuration to another. The processing of an event is viewed as an atomic
operation. That is, the configuration of the event handler does not reflect the
execution of the individual statements in the event-handler procedures. If the
current configuration of the’event handler is (eq, p), the next configuration of
the event handler will be (q’, p ‘). In this new configuration p ’ is the register
values after the execution of the event-handler procedure for the event e, and q’
is of the form q’ = qr, where r E E*. In this expression r represents the events
that are sent by the event handler to itself. The execution of the event-handler
procedure could also add events to the end of the event queues belonging to other
event handlers in the system.

The third rule deals with the concurrent execution of the event handlers.
Several event handlers can be executing in parallel. As stated above, the process-
ing of an event is an atomic operation; an event handler can only process one
event at a time. Also the events sent to an individual event handler are processed
in the order in which they are sent. There are no constraints on the time ordering
of events sent to different event handlers. This allows the dialogue control
component to be distributed over several processors.

The standard way of implementing the event model is to use a preprocessor
that converts programs in the event language into programs in a standard
programming language. The event-handler procedures are written in the pro-
gramming language that is the target of the preprocessor. As a result, the
preprocessor only needs to translate the language components that are unique to
the event language.

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

A Survey of Three Dialogue Models 263

For some programming languages a run-time support library is required to
handle the parts of the event language that are not easily supported in the base
programming language. Examples of these features are scheduling the execution
of event-handler procedures, sending events, and multiple instances of the same
event handler. This approach to the implementation of event languages is
described further in [8] and [19].

4. DESCRIPTIVE POWER

In this section two approaches are taken to the descriptive power of the three
notations. The first approach is theoretical in nature, drawing on formal language
theory. The second approach is more practical, showing how two of the models
can be translated into the third.

A TN is essentially a deterministic push-down automaton (DPDA). The only
difference between a DPDA and a TN is the action function y. Since y has no
effect on the languages accepted by a TN, we can conclude that a TN has the
same descriptive power as a DPDA. As mentioned in Section 3.2, only a subset
of the context-free grammars are used in user interface managements systems.
This subset is called deterministic context-free grammars.

It can be shown that the set of languages generated by deterministic context-
free grammars and the set of languages recognized by DPDAs are the same
(see [2] or [28] for a discussion of this point). This implies that the descriptive
power of recursive transition network and context-free grammar models are the
same. This observation is not quite correct. Consider a transition diagram where
there are two paths leading from the start state. The first n input tokens on these
paths are the same, but they differ on the n + 1 input token. For this type of
diagram we can construct a DPDA that looks ahead n + 1 input tokens to
determine the correct path to follow. This is essentially what an LR(k) parser
does, by looking k symbols ahead in its input stream. Unfortunately, in the case
of user interfaces, this approach cannot be taken, since there could be actions

attached to the states (or arcs) before the (n + 1)st input token. These actions
cannot be used when the user enters the corresponding input token (since we do
not know which path we are on); therefore, the user is deprived of syntactic
feedback. In practice, a restriction is placed on transition diagrams, so that at
each state it is possible to determine the correct path given the current input
token. Under this restriction recursive transition networks are equivalent to
LL(1) grammars, which are a subset of the deterministic context-free grammars.

In practice an event model is embedded in a programming language. This gives
the event model the descriptive power of a Turing machine. Thus the event
model in this context has greater descriptive power than the other two models.
It can be argued that this is an unfair comparison; therefore the event model
defined in Section 3.3 will be used as the basis for our comparisons. In the next
two sections algorithms for converting transition networks and grammars into
event handlers are outlined. This shows that the event model has at least the
same power as the other two models. In order to show that the event model is
more powerful, a user interface that can be described in the event model, but not
in the other two models, must be produced. The cut-and-paste example discussed
in Section 2.3 can be used for this purpose.

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

264 l Mark Green

In this example the cut-and-paste facility is part of a multifile editor. Each file
has its own window and a set of event handlers that implement the basic editing
functions within that window. Since each window has its own set of event
handlers, the user can freely move from one window to another at any point in
the dialogue. The cut-and-paste facility allows the user to move (or copy) text
from one place to another within a window or between two windows. This facility
can be invoked at any point, regardless of the states of the dialogues in the
windows involved. In order to move a section of text, the user selects the text to
be transferred, the cut or copy command from a menu, the new position for the

text, and the paste command. The position at which the text is inserted can be
selected at any point before the paste command is selected.

An event handler for the cut-and-paste feature is shown in Figure 11. This
event handler processes five types of tokens. The cut, copy, and paste tokens are
generated when the user selects the corresponding command from a menu. The
select token is generated whenever the user selects a section of text within one
of the editing windows. This token identifies both the text selection and the
window where the selection occurred. The position token is generated each time
the user selects a position. This token includes the window and the position
(within that window) that the user selected.

Since the cut-and-paste facility can be invoked at any point in the editing
session and its execution can overlap other editing operations, this type of
dialogue cannot be described by transition networks or grammars. Other types
of dialogues that are hard or impossible to describe with transition networks and
grammars are described in [22].

The above theoretical result has two practical implications. First, if a UIMS
only supports one design notation, the event model would be the best choice if
range of coverage is one of the goals of the UIMS. Second, a UIMS based on the
event model is capable of supporting all three models, since for each user interface
described by recursive transition diagrams or a context-free grammar there is an
equivalent description in the event notation.

The second implication can be made stronger by presenting efficient algorithms
for converting recursive transition networks and context-free grammars into the
event notation. These algorithms form part of the proof that the descriptive
power of the event model is greater than the other two models. In the remainder
of this section these algorithms are developed.

4.1 Converting Recursive Transition Networks

The conversion of a set of recursive transition diagrams is based on constructing
an event-handler template for each diagram. An event handler is created from
this template each time the diagram must be traversed and is destroyed when
the traversal of the diagram is complete. Two parameters are passed to the event
handler when it is created, the instance that called it and the state at the end of
the arc in the calling diagram. When an event handler reaches a final state, it
sends a “continue” event to the calling instance. The value of this event is the
state in which the calling diagram is to continue processing.

The first step in the conversion algorithm is the calculation of the LEADING
relation for each of the subdiagrams in the transition network. For a

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

A Survey of Three Dialogue Models l 265

EVENT HANDLER cut-andgaste;

TOKEN
cut Cut;

COPY copy;
paste Paste;
select Select;
position Position;

VAR
selection : text;
owner : integer;
current-selection : text;
selection-owner : integer;
currentgosition : point;
position-owner : integer;

EVFNT Select DO (
selection = Select.selection;
owner = Select.owner;

1;

EVENT Position DO (
current-position = Positionposition;
position-owner = Positiouowner;

1;

EVENTCutDO{
owner <- “delete-selection”;
current-selection = selection;
selection-owner = owner;

1;

EVENT Copy DO {
current~selection = selection;
selection-owner = owner;

1;

EVENTPasteD {
position-owner <- “add-selection” currentgosition current-selection;

1;

END EVENT HANDLER cut-andgaste;

Fig. 11. Event handler for cut and paste.

subdiagram d, let L(d) stand for the set of strings in Z that are recognized by d.
That is, every string in L(d) labels a path from the initial state to one of the
final states of d. The relation LEADING is defined in the following way:

LEADING(d) = (a] a E Z and US E L(d)}.

The relation LEADING for a given subdiagram is the set of input symbols that
subdiagram is expecting when it is invoked. The procedure for calculating
LEADING is similar to the one used to calculate the FIRST relation for context-
free grammars (see [3]).

ACM Transactions on Graphics, Vol. 5, No. 3, July 1936.

266 l Mark Green

In the remaining steps the diagrams are considered one at a time, and an
event-handler template is constructed for each diagram. The diagram that is

being considered by the algorithm is called the current diagram.
In the second step of the algorithm a skeleton of the event-handler template

for the current diagram is constructed. This skeleton contains all of the template,
except for the event-handler procedures. In order to construct the skeleton, the
token set for the current diagram must be constructed. This set is constructed in
the following way. The token set is initialized to the empty set. Each of the arcs
in the diagram is examined, and if the arc is labeled by an input token, that
token is added to the token set. If the arc is labeled by a diagram name, all the
tokens in the LEADING set for that diagram are added to the token set. Each
token in the token set is used to produce a line in the TOKEN section
of the event-handler template. These are the tokens that the event handler is
interested in.

The transition diagrams for the polyline example (see Figure 5) are used to
illustrate the conversion algorithm. For these diagrams the token sets are

token-set(main) = (button, move, finish)
token-set(command) = {move, backspace, button, finish)

The structure of an event-handler skeleton is shown in Figure 12. The event-

handler template has the same name as the corresponding diagram. The two
parameters to the event handler are the name of the event handler that invoked
it and the number of the state at the end of the current arc in the invoking
diagram. The local variable active indicates whether the event handler is currently
processing input. If the value of this variable is 1, then input tokens are processed;
otherwise, they are ignored. The local variable state records the current state of
the diagram. This variable is initialized to the first state in the corresponding
transition diagram. The third local variable is a temporary variable used to store
the value returned by the create operator.

The third step of the algorithm is the construction of the event-handler
procedures for the events corresponding to the tokens in the token set. Each of
the event-handler procedures has the following basic structure:

EVENT eventiD (
IF active = 1 THEN

IF state = n, THEN

ELSE IF state = n2 THEN

ELSE IF state = n, THEN

ENDIF
ENDIF

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

A Survey of Three Dialogue Models 267

There is one IF statement in the body of the procedure for each arc that is
labeled by the corresponding token. In this case the procedure updates the state
variable to the state at the head of the arc and executes any actions that are
attached to that state. There is also an IF statement for each arc that is labeled
by a subdiagram name that has the corresponding token in its leading set. In this
case the procedure invokes the subdiagram and passes the event on to it. Applying
this process to the main diagram results in the event-handler procedures shown
in Figure 13.

The fourth and final step in the conversion algorithm is to construct the event-
handler procedure for the continue event. The continue event signals the end of
the traversal of a subdiagram that was invoked by the current diagram. The value
of this event is the state at the head of the arc that invoked the subdiagram. The
continue event handler has the following structure:

EVENT continue DO 1
active = 1;
state := continue;
IF state = state1 THEN

call procedure for stateI;
ELSE IF state = state2 THEN

call procedure for statez;

ELSE IF state = state, THEN
call procedure for state,;

ENDIF

There is one IF statement in this procedure for each state that appears at the
end of an arc labeled by a subdiagram. This IF statement calls the procedure
that labels the head state.

The continue event-handler procedure for the main diagram is shown in
Figure 14. After each of the diagrams has been considered, the conversion is
complete.

4.2 Conversion of Context-Free Grammars

One approach to converting context-free grammars into event handlers is to have
the event handlers simulate one of the standard parsing algorithms. The conver-
sion algorithm presented in this section is based on the standard LL(l) parsing
algorithm [3], which is a top-down parsing algorithm. The LL(l) parsing algo-
rithm was chosen for the following two reasons. First, this algorithm has been
used in at least one well-known UIMS [32]. Second, the LL(l) parsing algorithm
is fairly simple and intuitive, but at the same time covers a wide range of
grammars. The LR(l) parsing algorithms are more powerful but considerably
more complicated. A more complicated parsing algorithm serves no purpose in
this presentation.

The grammar shown in Figure 15 describes the same user interface as the set
of transition diagrams shown in Figure 5. This grammar is used to illustrate the
conversion of context-free grammars into event handlers.

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

268 l Mark Green

EVENT HANDLER diagram-name(caller : I; head : integer);

TOKEN
token1 event1
token2 event2

Fig. 12. Skeleton for event-handler

template.
token, evenh

VAR
int active = 1;
int state = tirst state;
int temp; -

END EVENT HANDLER diagram-name;

EVENT Button DO (
IF active = 1 THEN

IF state = 1 THEN

state = 2;
record first point;

ENDJF;
ENDIF;

1;

EVENT Move DO (
IF active = 1 THEN

IF state = 2 THEN
active = 0,
temp = activate(command,this-instance.2):
temp <- “Move” Move;

ENDIF;
ENDIF;

Fig. 13. Event-handler procedures for main dia-

gram.

EVENT Finish DO (
IFactive=lTHEN

IF state = 2 THEN
active = 0;
temp = activate(command,this_instance,2);
temp <- “Finish” Finish:

ENDIF;
ENDIF;

I:

EVENT continue DO {

Fig. 14. Continue event handler for the main diagram.
active = 1;
state = continue;

I:

The conversion algorithm is based on constructing an event-handler tem-

plate for each of the nonterminals in the grammar. An instance of this event
handler is created each time the corresponding nonterminal must be ex-
panded in the parse. In general, the production for a nonterminal will have

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

A Survey of Three Dialogue Models l 269

main

loop

+ button loop

+ command loop
I command

command --t finish
I move command
I button continue

Fig. 15. Grammar for example user interface.

continue + backspace
I command next

next + move
I backspace

the following form:

(1)

The symbols CQ , CQ, . . . , LY, represent nonempty strings of terminals and nonter-
minals, and the symbol t represents the empty string. This production states
that the nonterminal A can be replaced by the strings al, (Ye, . . . , or CY,, or by
the empty string. All the nonterminals will have a production of this form, except
that the E alternative may not be present.

The conversion algorithm consists of the following steps. First, the relations
FIRST and FOLLOW must be computed. These relations have the following
definitions:

FIRST(X)=(a~aET,X~*aR,RE(NUT)*)
FOLLOW(X) = {a 1 a E T, S +* aXu/3, (Y, /!3 E (N U T)*)

The FIRST(X) relation is the set of terminals that can appear at the start of a
string derived from the nonterminal X. Note the similarity between the FIRST
and the LEADING relation for recursive transition networks. The FOLLOW(X)
relation is the set of terminals that could follow X in some derivation in the
grammar.

The FIRST and FOLLOW relations for the example user interface are shown
in Figure 16. The algorithm presented in [3] was used to compute this relation.

The remaining steps of the conversion algorithm consider the nonterminals
one at a time and construct the event-handler template for it. The nonterminal
currently being considered by the algorithm is called the current nonterminal.

The second step consists of constructing a skeleton for the event-handler
template. In order to construct this skeleton the token set for the event handler
must be computed. This set contains all the tokens that the event handler is
interested in. Assuming that the production has the form shown in Eq. (l), the
token set can be computed in the following way. Each symbol in each alternative

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

270 l Mark Green

FIRST(main) = (button)

F’lRST(loop) = (finish, move, button)

FIRST(command) = (finish, move, button)

Fig. 16. FIRST relation for example
user interface.

FIRST(continue) = (backspace, finish, move, button)

FlRST(next) = (move, backspace)

FOLLOW(command) = (finish, move, button, backspace]

FOLLOW(continue) = (finish, move, button, backspace]

FOLLOW(next) = (finish, move, button, backspace)

is examined. If the symbol is a terminal, then it is added to the token set of the
production. If the symbol is a nonterminal, then all the symbols in its first set
are added to the token set. If the production has an t alternative, then all the
symbols in the FOLLOW set for the nonterminal on the left side of the production
are added to the token set.

The format for the skeleton of the event-handler template is essentially the
same as the one used for recursive transition networks (see Figure 12). The name
of the event-handler template is the same as the nonterminal it represents. The
two parameters to the event handler are the name of the event handler that
invoked it, and the current state of the invoking event handler.

The third step of the algorithm is to construct the event-handler procedures.
First, the symbols on the right sides of the production are numbered. The first
symbol in the first alternative is given the number 1, the second symbol is given
the number 2, etc. This process continues until all the symbols have been
numbered (the t alternative is not numbered). These numbers, called the states
of the production, are used to keep track of the current position within the parse.
Next, the event-handler procedures are constructed, one at a time. There is one
procedure for each of the tokens in the token set. The event-handler procedures
have essentially the same format as the ones used for recursive transition
networks.

The actions taken by the event-handler procedure depends upon the current
state of the production. If the symbol at the current state is a terminal, the state
advances to the next symbol in the production or returns to the calling production
if the end of the production has been reached. If the symbol is a nonterminal,
then the event handler corresponding to the nonterminal is invoked. Applying
this process to the command production results in the event-handler procedures
shown in Figure 17.

The fourth step in the conversion algorithm is constructing the continue event-
handler procedure. The continue event is received when an event handler invoked
by the current event handler has recognized its nonterminal. The processing of
this event depends upon whether the corresponding nonterminal is the last
symbol in the alternative. The value of the continue event is the state number of
the nonterminal that invoked the event handler. The basic form of the continue

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

A Survey of Three Dialogue Models * 271

event-handler procedure is

EVENT continue DO 1
state = continue + 1;
active = 1;
IF continue = n. THEN

call procedure for alternative a;
caller c “continue” current-state;
destroy(this-instance);

ENDIF

IF continue = n, THEN
call procedure for alternative z;
caller t “continue” current-state;
destroy(this-instance);

ENDIF

In the above procedure n, through n, are the state numbers of the nonterminals
that appear at the end of the alternatives.

After each of the nonterminals have been processed by these steps, the
conversion is complete.

4.3 Analysis of the Conversion Algorithms

Earlier in this section it was stated that there are efficient algorithms for
converting recursive transition networks and context-free grammars into event
handlers. There are two potential meanings for the word efficient in this context.
The first meaning is that the algorithms can efficiently convert from one form
of description to another. This aspect deals with the actual running time of the
algorithm. The second meaning is that the event handler produced by the
conversion algorithms is an efficient implementation of the dialogue. Both of
these meanings are important in a UIMS and are discussed further in
this section.

The efficiency of the conversion algorithms themselves can be approached in
the following way. The computations of LEADING, FIRST, and FOLLOW are
O(N’) in the worst case, where N is the number of transition diagrams or the
number of alternatives in the grammar. The worst case is rarely realized in
practice. The remaining steps of the algorithms are repeated M times, where M
is the number of transition diagrams or the number of productions in the
grammar. Each of these iterations involves a small number of traversals over the
data structure representing the transition diagram or production. Thus this part
of the algorithms is O(M). The efficiency of these algorithms is quadratic in the
worst case, and on average they will be close to linear.

The efficiency of the implementation must be measured against the techniques
normally used to implement recursive transition networks and context-free
grammars. A common approach to implementing both of these techniques is to
use a form of table look up. Given the current state of the dialogue and the
current input token, a table entry determines the next state of the dialogue and

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

272 - Mark Green

Fig. 17. Event-handler procedures for command
production.

EVENT Move DO (
IF active = 1 THEN
IF state = 0 THEN
active = 0;
temp = activate(command.this.jnstance,Z);
temp <- “Move” Move;

ENDIF,
LF state = 3 THEN
active = 0:
temp = activate(next,thisjnstance,3);
temp <- “Move” Move;

ENDIF;
ENDIF;

I;

EVENT Backspace DO (
IF active = 1 THEN
IF state = 0 THEN
caller <- “continue” current-state;
destroy(this.jnstance);

ENDIF;
IF state = 3 THEN
active = 0;
temp = activate(next,this_instance,3);
temp c- “Backspace” Backspace;

ENDIF;
ENDIF;

I;

EVENT Finish DO (
IF active = 1 THEN
IF state = 0 THEN
active = 0,
temp = activate(command,this_instance,2);
temp <- “Finish” Finish;

ENDIF;
ENDIF;

I:

EVENT Button DO (
IF active = 1 THEN
IF state = 0 THEN
active = 0,
temp = activate(command,thisjnstance,2);
temp <- “Button” Button;

ENDIF;
ENDIF:

1;

any actions that must be performed. This approach is quite fast, but tends to be
space inefficient since the tables are fairly sparse.

The conversion algorithms essentially compile the table into the event
handlers. In some dialogues this could result in a space saving. On receiving a
token, the active event handler performs the operations that would be indicated
by the table look up. The only operation that could be viewed as expensive is the
creation of a new event handler. In our implementation the most expensive part

ACM Transactions on Graphics, Vol. 5, No. 3, July 1996.

A Survey of Three Dialogue Models l 273

of the creation operation is allocating memory for the event handler’s local
variables. This does not adversely affect the efficiency of the implementation. In
practice, the user cannot tell the difference between a dialogue implemented by
event handlers, and one implemented by special-purpose transition network or
grammar software. Although the event-handler implementation cannot be as fast
as special-purpose implementation techniques, it is not significantly slower.

In view of the above comments, the use of the event model as the basis for the
dialogue control component of a UIMS will not significantly affect the execution
speed of the resulting user interface or the system used to generate it.

5. CONCLUSIONS

In this paper we have investigated the three main dialogue models, which are
transition networks, grammars, and events. Formal definitions of the dialogue
models have been presented, along with algorithms for converting dialogue
descriptions written in them into an executable form. It has been shown that the
event model is the dialogue model with the greatest descriptive power. Efficient
algorithms for converting recursive transition diagrams and context-free
grammars into event handlers have also been presented.

What can we conclude from the above results? One conclusion that could be
made is that a UIMS need not support recursive transition networks and context-
free grammars, since an equivalent set of event handlers could always be con-
structed. This conclusion is oversimplistic, since it ignores the usability of the
three notations. For example, some user interfaces are much easier to describe
with recursive transition networks than with event handlers. The same thing can
be said about context-free grammars. This suggests that a UIMS should support
all three dialogue models.

A more useful conclusion from the above results is that the event model should
form the basis for the internal representation used in the dialogue control
component. The implementor of a UIMS only needs to implement run-time
support for the event model; the other two models can be translated into this
form. This gives the user interface designer the ability to choose the type of
notation that best suits the application at hand (in some cases a combination of
notations may be preferred). Whatever notation is chosen will be translated into
the event-based internal form used by the UIMS. This approach has the dual
advantage of allowing the user interface designer the choice of design notations.
At the same time the UIMS implementor only needs to optimize the implemen-
tation of one design notation. An example of this type of UIMS is the University
of Alberta UIMS [19].

REFERENCES

1. AHO, A. V., AND JOHNSON, S. C. LR parsing. ACM Comput. Surv. 6,2 (June 1974), 99-124.
2. AHO, A. V., AND ULLMAN, J. D. The Theory of Parsing, Translation, and Compiling. Prentice-

Hall, Englewood Cliffs, N.J., 1972.

3. AHO, A. V., SETHI, R., AND ULLMAN, J. D. Compilers, Principles, Technigues, and Tools.

Addison-Wesley, Reading, Mass., 1986.
4. ANSON, E. The semantics of graphical input. In Siggraph ‘79 Proceedings, ACM Comput. Graph.

13,2 (Aug. 1979), 113-120.

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

274 l Mark Green

5. ANSON, E. The device model of interaction. In Siggraph ‘82 Proceedings, ACM Comput. Graph.
16,3 (July 1982), 107-114.

6. BORUFKA, H. G., KUHLMANN, H. W., AND TEN HAGEN, P. J. W. Dialogue Cells: A method for
defining interactions. IEEE Comput. Graph. Appl. 2,5 (1982), 25-33.

7. CARDELLI, L., AND PIKE, R. Squeak: A language for communicating with mice. In Siggraph ‘85
Proceedings, ACM Comput. Graph. 19,3 (July 1985), 199-204.

8. CHIA, M. S. An event based dialogue specification for automatic generation of user interfaces.
MSc. thesis, Dept. of Computing Science, University of Alberta, Edmonton, Alberta,
Canada, 1985.

9. COOMBS, M. J., AND ALTY, J. L., Eds. Computing Skills and the User Interface. Academic Press,
London, 1981.

10. DENERT, E. Specification and design of dialogue systems with state diagrams. In Proceedings
of the Znternatianal Computing Symposium (Liege, Belgium). North-Holland, Amsterdam, 1977,
pp. 417-424.

11. EDMONDS, E. A. Adaptive man-computer interfaces. In Computing Skills and the User Interface,
M. J. Coombs and J. L. Alty, Eds. Academic Press, London, 1981.

12. EDMONDS, E. A., AND GUEST, S. P. An interactive tutorial system for teaching programming.
In Proceedings of the ZERE Conference 36-Computer Systems and Technology (Brighton, England,
1977). Institute of Electrical and Radio Engineers, London, pp. 263-270.

13. ELSHOFF, E. L., BECKERMEYER, R., DILL, J., MARCOT~Y, M., AND MURRAY, J. Handling
asynchronous interrupts in a PL/l-like language. Softw. Pratt. Exper. 4 (1974), 117-124.

14. FLECCHIA, M. A., AND BERGERON, R. D. Specifying complex dialogues in ALGEA. In
Proceedings of CHZ and Graphics Interface ‘87 (Toronto, Canada, Apr. 5-9).

15. GOLD~RG, A., AND ROBSON, D. SmaUtalk-80: The Language and Its Implementation. Addison-
Wesley, Reading, Mass., 1983.

16. GREEN, M. A graphical input programming system. M.Sc. thesis, Dept. of Computer Science,
University of Toronto, Toronto, Canada, 1979.

17. GREEN, M. Report on dialogue specification tools. Comput. Graph. Forum 3 (1984), 305-313.
18. GREEN, M. Design notations and user interface management systems. In User Interface

Management Systems, G. E. Pfaff, Ed. Springer-Verlag, Berlin, 1985, pp. 89-107.
19. GREEN, M. The University of Alberta user interface management system. In Siggraph ‘65

Proceedings, ACM Comput. Graph. 19,3 (July 1985), 205-213.
20. GUEST, S. P. The use of software tools for dialogue design. Znt. J. Man-Mach. Stud. 26 (1982),

263-285.
21. HANAU, P. R., AND LENOROVITZ, D. R. Prototyping and simulation tools for user/computer

dialogue design. In Siggraph ‘80 Proceedings, ACM Comput. Graph. 14, 3 (July 1980), 271-278.
22. HILL, R. D. Supporting concurrency, communications and synchronization in human-computer

interaction-The Sassafras User Interface Management Systems. Special Issue on User Interface
Software. ACM Trans. Graph 5,3 (July 1986), 179-210.

23. JACOB, R. J. K. Executable specifications for a human-computer interface. In Proceedings of

the CHZ’83 Human Factors in Computing Systems (Boston, Mass., Dec. 12-15). ACM, New York,
1983, pp. 28-34.

24. KAMRAN, A. Issues pertaining to the design of a user interface management system. In User
Interface Management Systems, G. E. Pfaff, Ed. Springer-Verlag, Berlin, 1985, pp. 43-48.

25. KAMRAN, A., AND FELDMAN, M. B. Graphics programming independent of interaction
techniques and styles. ACM Comput. Graph. 17,l (1983), 58-66.

26. KAY, A., AND GOLDBERG, A. Personal dynamic media. Computer IO (Mar. 1977), 31-41.
27. KIERAS, D., AND POLSON, P. G. A generalized transition network representation for interactive

systems. In Proceedings of the CHZ’6.3 Human Factors in Computing Systems (Boston, Mass.,
Dec. 12-15). ACM, New York, 1983, pp. 103-106.

28. LOMET, D. B. A formalization of transition network systems. J. ACM 20, 2 (Apr. 1973),
235-257.

29. NEWMAN, W. M. A system for interactive graphical programming. In Proceedings of the Spring
Joint Computer Conference (Atlantic City, N.J., Apr. 30-May 2). Thompson, Washington, D.C.,
1968, pp. 47-54.

30. NEWMAN, W. M. A high-level programming system for a remote time-shared graphics terminal.
In Pertinent Concepts in Computer Graphics, M. Faiman and J. Nievergelt, Eds. University of
Illinois Press, Urbana, Ill., 1969.

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

A Survey of Three Dialogue Models 275

31. OLSEN, D. R. Pushdown automata for user interface management. ACM Trans. Graph.

3,3 (1984), 177-203.
32. OLSEN, D. R., AND DEMPSEY, E. P. SYNGRAPH: A graphic user interface generator. In

Siggraph ‘83 Proceedings, ACM Comput. Graph. 17,3 (July 1983), 43-50.
33. PARNAS, D. L. On the use of transition diagrams in the design of a user interface for an

interactive computer system. In Proceedings of the 24th National ACM Conference (San Francisco,
Calif., Aug. 26-28). ACM, New York, 1969, pp. 379-385.

34. PFAFF, G. E., Ed. User Interface Management Systems. Springer-Verlag, Berlin, 1985.
35. SCHULERT, A. J., ROGERS, G. T., AND HAMILTON, J. A. ADM-A dialogue manager. In

Proceedings of the CHZ’85 Human Factors in Computer Systems (San Francisco, Calif., Apr.
14-18). ACM, New York, 1985, pp. 177-183.

36. SIBERT, J., BELLIARDI, R., AND KAMRAN, A. Some thoughts on the interface between user
interface management systems and application software. In User Znterface Management Systems,

G. E. Pfaff, Ed. Springer-Verlag, Berlin, 1985, pp. 183-192.
37. TANNER, P., MACKAY, S. A., STEWART, D. A., AND WEIN, M. A multitasking switchboard

approach to user interface management. In Siggraph ‘86 Proceedings, ACM Comput. Graph. 20,

4 (1986), 241-248.
38. TEN HAGEN, P. J. W., AND DERKSEN, J. Parallel input and feedback in dialogue cells. In User

Interface Management Systems, G. E. Pfaff, Ed. Springer-Verlag, Berlin, 1985, pp. 109-124.
39. VAN DEN BOS, J. Definition and use of higher-level graphics input tools. In Siggraph ‘78

Proceedings, ACM Comput. Graph. 12,3 (Aug. 1978), 38-42.
40. VAN DEN Bos, J., PLASMEIJER, M. J., AND HARTEL, P. H. Input-output tools: A language

facility for interactive and real-time systems. IEEE Trans. Softzu. Eng. SE-g, 3 (1983), 247-259.
41. WOODS, W. A. Transition network grammars for natural language analysis. Commun. ACM 13,

10 (Oct. 1970), 591-606.

Received July 1986; revised December 1986; accepted December 1986

ACM Transactions on Graphics, Vol. 5, No. 3, July 1986.

