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Abstract—In recent years, a number of indirect data collection methodologies have led to the proliferation of uncertain data. Such

databases are much more complex because of the additional challenges of representing the probabilistic information. In this paper, we

provide a survey of uncertain data mining and management applications. We will explore the various models utilized for uncertain data

representation. In the field of uncertain data management, we will examine traditional database management methods such as join

processing, query processing, selectivity estimation, OLAP queries, and indexing. In the field of uncertain data mining, we will examine

traditional mining problems such as frequent pattern mining, outlier detection, classification, and clustering. We discuss different

methodologies to process and mine uncertain data in a variety of forms.

Index Terms—Mining methods and algorithms, database applications, database management, information technology and systems.
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1 INTRODUCTION

IN recent years, many advanced technologies have been
developed to store and record large quantities of data

continuously. In many cases, the data may contain errors or
may only be partially complete. For example, sensor
networks typically create large amounts of uncertain data
sets. In other cases, the data points may correspond to
objects which are only vaguely specified, and are therefore
considered uncertain in their representation. Similarly,
surveys and imputation techniques create data which is
uncertain in nature. This has created a need for uncertain
data management algorithms and applications [2].

In uncertain data management, data records are typically
represented by probability distributions rather than deter-
ministic values. Some examples in which uncertain data
management techniques are relevant are as follows:

. The uncertainty may be a result of the limitations of
the underlying equipment. For example, the output
of sensor networks is uncertain because of the noise
in sensor inputs or errors in wireless transmission.

. In many cases such as demographic data sets, only
partially aggregated data sets are available because of
privacy concerns. Thus, each aggregated record can
be represented by a probability distribution. In other
privacy-preserving data mining applications, the
data is perturbed in order to preserve the sensitivity
of attribute values. In some cases, probability density
functions of the records may be available. Some
recent techniques [8] construct privacy models, such
that the output of the transformation approach is
friendly to the use of uncertain data mining and
management techniques.

. In some cases, data attributes are constructed using
statistical methods such as forecasting or imputa-
tion. In such cases, the underlying uncertainty in
the derived data can be estimated accurately from
the underlying methodology. An example is that of
missing data [56].

. In many mobile applications, the trajectory of
the objects may be unknown. In fact, many
spatiotemporal applications are inherently uncer-
tain, since the future behavior of the data can be
predicted only approximately. The further into the
future that the trajectories are extrapolated, the
greater the uncertainty.

The field of uncertain data management poses a number
of unique challenges on several fronts. The two broad issues
are those of modeling the uncertain data, and then lever-
aging it to work with a variety of applications. A number of
issues and working models for uncertain data have been
discussed in [2] and [34]. The second issue is that of
adapting data management and mining applications to
work with the uncertain data. The main areas of research in
the field are as follows:

. Modeling of uncertain data. A key issue is the
process of modeling the uncertain data. Therefore,
the underlying complexities can be captured while
keeping the data useful for database management
applications.

. Uncertain data management. In this case, one
wishes to adapt traditional database management
techniques for uncertain data. Examples of such
techniques could be join processing, query proces-
sing, indexing, or database integration.

. Uncertain data mining. The results of data mining
applications are affected by the underlying uncer-
tainty in the data. Therefore, it is critical to design
data mining techniques that can take such uncer-
tainty into account during the computations.

In the next sections, we will discuss these different
aspects of uncertain data representation, management, and
mining. We will discuss the different issues with uncertain
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data representation, and their corresponding effect on
database applications. We will also survey a broad variety
of database management and mining applications.

This paper is organized as follows: In Section 2, we will
examine the issue of uncertain data representation and
modeling. In Section 3, we will examine a number of data
management algorithms for uncertain data. We specifically
examine the problems of query processing, indexing,
selectivity estimation, OLAP, and join processing. A number
of mining algorithms for uncertain data are discussed in
Section 4. We examine the clustering and classification
problem as well as a general approach to mining uncertain
data. Section 5 contains the conclusions and summary.

2 UNCERTAIN DATA REPRESENTATION AND

MODELING

The problem of modeling uncertain data has been studied
extensively in the literature [1], [46], [45], [49], [72]. A database
that provides incomplete information consists of a set of
possible instances of the database. It is important to distinguish
between incomplete databases and probabilistic data, since
the latter is a more specific definition which creates database
models with crisp probabilistic quantification.

2.1 Probabilistic Database Definitions

A probabilistic database is defined [45] as follows:

Definition 2.1. A probabilistic-information database is a finite
probability space whose outcomes are all possible database
instances consistent with a given schema. This can be
represented as the pair ðX ; pÞ, where X is a finite set of
possible database instances consistent with a given schema,
and pðIÞ is the probability associated with any instance I 2 X .
We note that since pð�Þ represents the probability vector over
all instances in X , we have

P
I2X pðIÞ ¼ 1.

We note that the above representation is a formalism of
the “possible worlds model” [1]. The direct specification of
such databases is unrealistic, since an exponential number
of instances would be needed to represent the table.
Therefore, the natural solution is to use a variety of
simplified models which can be easily used for data mining
and data management purposes. We will discuss more on
this issue slightly later.

Probabilistic ?-tables [41], [54] are a simple way of
representing probabilistic data. In this case, one models the
probability that a particular tuple is present in the database.
Thus, the probability of a particular instantiation of the
database can be defined as the product of the probabilities
of the corresponding set of tuples to be present in the
database with the product of the probabilities of the
complementary set of tuples to be absent from the database.

A closely related probabilistic representation is that of
probabilistic or-set tables. While the probabilistic ?-table is
concerned with the presence or absence of a particular
tuple, the p-or-set table is concerned with modeling the
probabilistic behavior of each attribute for a tuple that is
known to be present in the database. In this case, each
attribute is represented as an “or” over various possibilities
along with corresponding probability values. An instantia-
tion of the database is constructed by picking each outcome

for an attribute independently. The ProbView model
presented in [54] is a kind of or-set table. The only
significant difference is that the ProbView model uses
confidence values instead of probabilities. Other interesting
representations of probabilistic databases may be found in
[45]. A number of interesting properties of such databases
are also discussed in [41], [54], and [80].

2.2 Simplifying Assumptions in Practical
Applications

The above definitions are fairly general formalisms for
probabilistic data. In many practical applications, one may
often work with simplifying assumptions on the underlying
database. One such simplifying assumption is that the
presence and absence of different tuples is probabilistically
independent. In such a formalism, all possible probability
distributions on possible worlds are not captured with the
use of independent tuples. This is referred to as incomplete-
ness. Furthermore, one needs to be careful in the application
of such a formalism, since it may result in inconsistency. For
example, in an uncertain spatiotemporal database with
tuples representing object locations at different times, the
locations of the objects need to be consistent. In any
particular instantiation of the database, it is important that
the same object not be in multiple localities at the same
time. Therefore, if the database is represented in terms of
positional tuples, one needs to check for consistency of
tuples within a given temporal locality. Such restrictions are
often represented by rules that enforce the relationships
between the behavior of the different tuples.

Most data mining or query processing applications
work with further simplifications. For example, attribute-
uncertainty models represent attributes by a discrete or
continuous probability distribution, depending upon the
data domain. Some applications [9] on continuous data may
even work with statistical parameters such as the underlying
variance of the corresponding attribute value. Thus, from an
application point of view, the uncertainty may be represented
in different ways, and it may not always conform to a
database-centric view. Furthermore, uncertain databases are
often designed with specific application goals in mind. Our
discussions above can be summarized in terms of the major
classes of uncertainty that most applications work with.
Broadly, most applications work on two kinds of uncertainty:
1) Existential uncertainty: In this case, a tuple may or may not
exist in the database, and the presence and absence of one
tuple may affect the probability of the presence or absence of
another tuple in the database. In some cases, the tuple
independence assumption is used, according to which the
probabilities of presence of the different tuples are indepen-
dent of one another. Furthermore, there may be constraints
that correspond to mutual exclusivity of certain tuples in the
database. 2) Attribute level uncertainty: In this case, a
number of tuples and their modeling have already been
determined. The uncertainties of the individual attributes are
modeled by a probability density function, or other statistical
parameters such as the variance.

2.3 Recent Projects

A number of recent projects have designed uncertain
databases around specific application requirements. For
example, the Conquer project [3], [42] introduced query
rewriting algorithms to extract clean and consistent answers

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 21, NO. 5, MAY 2009



from unclean data under possible worlds semantics. Methods
are also proposed to derive probabilities of uncertain items.
One of the key aspects of the Conquer project is that it permits
real time and dynamic data cleaning in such a way that clean
and consistent answers may be obtained for queries. Another
example of such a database is the Orion project [25], [28] which
presents query processing and indexing techniques in order
to manage uncertainty over continuous intervals. Such
application-specific databases are designed for their corre-
sponding domain, and are not very effective in extracting
information from “possible worlds” semantics.

A recent and interesting line of models for uncertain data
is derived from the Trio project [16], [62], [34] at Stanford
University. This work introduces the concept of Uncertainty-
Lineage Database (ULDB), which is a database with both
uncertainty and lineage. We note that the introduction of
lineage as a first-class concept within the database is a novel
concept which is useful in a variety of applications such as
query processing. The basic idea in lineage is that the model
keeps track of the sources from which the data was acquired
and also keeps track of its influence in the database. Thus,
database with lineage can link the query results (or the
results from any potential application) to the source from
which they were derived. The probabilistic influence of the
data source on the final result is an important factor which
should be accounted for in data management applications.
Thus, data (or results) which are found to be unreliable are
discarded.

Finally, a recent effort is the MayBMS project [4], [5], [6] at
Cornell University. One advantage of this system is that it
fits seamlessly into modern database systems. For example,
this approach has a powerful query language which was
built on top of PostgreSQL. Another unique feature of the
system is that it uses the concept of U-relations in order to
maximize space-efficiency. Space-efficiency is a critical
feature in uncertain database systems, since the uncertainty
results in considerable expansion of the underlying database
representation. Details of the most recent approach may be
found in [6].

2.4 Extensions to Semistructured and XML Data

Recently, uncertain data models have also been extended to
semistructured and XML data. Some of the earliest work on
probabilistic semistructured data may be found in [66]. XML
data poses numerous unique challenges. Since XML is
structured, the probabilities need to be assigned to the
structural components such as nodes and links. Furthermore,
element probabilities could occur at multiple levels and
nested probabilities within a subtree must be considered.
Furthermore, incomplete data should be handled gracefully
since one may not insist on having complete probability
distributions. In order to handle the issue that there can be
nesting of XML elements, probabilities are associated with
the attribute values of elements in an indirect way. The
approach is to modify the schema in XML so as to make any
attribute into a subelement. Thus, these new elements can be
handled by the probabilistic system. Another unique issue in
the case of XML data is that the probabilities in an ancestor-
descendent chain are related probabilistically.

In the most general case, this can lead to issues of
computational intractability. The approach in [66] is to
model some classes of dependence (e.g., mutual exclusion)
which are useful and efficient to model. The work in [66]

also designs techniques for a restricted class of queries on
the data. Another interesting approach to probabilistic XML
data construction has been discussed in [50]. In this
technique, probabilistic XML trees are constructed in order
to model the structural behavior of the data. The un-
certainty in a probabilistic tree is modeled by introducing
two kinds of nodes: 1) probability nodes, which enumerate
all possibilities, and 2) possibility nodes, which have an
associated probability. The uncertainty in the different
kinds of nodes is modeled with the use of the kind function,
which assigns node kinds. Furthermore, a prob function is
used, which assigns probabilities to nodes. The query
evaluation technique enumerates all possible worlds in a
recursive manner. The query is then applied to each such
enumerated world. Other related work on XML data
representation and modeling may be found in [79].

3 UNCERTAIN DATA MANAGEMENT APPLICATIONS

In this section, we will discuss the design of a number of
data management applications with uncertain data. These
include applications such as query processing, Online
Analytical Processing, selectivity estimation, indexing, and
join processing. We will provide an overview of the
application models and algorithms in this section.

3.1 Query Processing of Uncertain Data

In traditional database management, queries are typically
represented as SQL expressions which are then executed on
the database according to a query plan. As we will see, the
incorporation of probabilistic information has considerable
effects on the correctness and computability of the query plan.

3.1.1 Intensional and Extensional Semantics

A given query over an uncertain database may require
computation or aggregation over a large number of
possibilities. In some cases, the query may be nested, which
greatly increases the complexity of the computation. There
are two broad semantic approaches used:

. Intensional semantics. This typically models the
uncertain database in terms of an event model
(which defines the possible worlds), and use tree-
like structures of inferences on these event combina-
tions. This tree-like structure enumerates all the
possibilities over which the query may be evaluated
and subsequently aggregated. The tree-like enumera-
tion results in an exponential complexity in evalua-
tion time, but always yields correct results.

. Extensional semantics. Extensional semantics at-
tempts to design a plan which can approximate
these queries without having to enumerate the entire
tree of inferences. This approach treats uncertainty
as a generalized truth value attached to formulas,
and attempts to evaluate (or approximate) the
uncertainty of a given formula based on that of its
subformulas.

For the intensional case, the key is to develop a probabil-
istic relational algebra with intensional semantics which
always yields correct results. It has been shown in [32] that
certain queries have #P-complete data complexity under
intensional semantics. Note that the extensional semantics
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approach is mostly useful for simple expressions. When the
relations are more complicated or nested, there may be
dependencies in the underlying query results, which cannot
be evaluated easily. Since intensional semantics uses a
comprehensive enumeration-based approach, it always
yields correct results, whereas extensional semantics pro-
vides an efficient heuristic, which is useful only when it
works approximately or correctly. In order to understand this
point, consider a possible worlds model of a database drawn
from k possible tuples s1; s2; . . . ; sk, each of which have
probability of presence in the database equal to 0.2. The aim is
to compute the probability that both s1 and s2 are present in
the database. An intensional plan would therefore require us
to explicitly create the event variables eðs1Þ, eðs2Þ for s1 and s2

and compute the probability P ðeðs1Þ \ eðs2ÞÞ. Note that each
of the variables eðs1Þ and eðs2Þ will depend upon how the
underlying database is modeled in terms of events, and will
evaluate into a tree-like structure of inferences over possible
worlds of events. An accurate and efficient extensional plan
may not be possible in this case. On the other hand, if the
correlations among different tuples are extremely weak or
absent, then an efficient extensional plan would simply
compute this probability as P ðs1Þ � P ðs2Þ ¼ 0:04.

Clearly, a general method is required to reduce the
query evaluation complexity in relational databases. One of
the earliest techniques for adding probabilistic information
into query evaluation was discussed in [41]. This model is a
generalization of the standard relational model. In this
model, probabilistic relations are treated as generalizations
of deterministic relations. Thus, even though deterministic
models allow binary tuple weights, probabilistic relations
allow tuple weights which can vary between 0 and 1. The
basic operators of relational algebra are modified in order
to take the weights into account during query processing.
Thus, while applying an operator of the relational algebra,
the weights of the result tuples are computed as a function
of the tuple weights in the argument relation. A more
recent technique proposed in [32] designs a technique in
which a correct extensional plan is available. We note that
since the problem is #P-complete, a correct extensional plan
is not always available. However, many queries, which
occur in practice, do admit a correct extensional plan.
According to [32], 8 out of 10 TPC/H queries1 fall into this
category. For queries which do not admit a correct
extensional plan, two techniques are proposed to construct
results which yield approximately correct answers. A fast
heuristic is designed which can avoid large errors, and a
sampling-based Monte-Carlo algorithm is designed which
is more expensive, but can guarantee arbitrarily small
errors. In addition, the technique in [32] also extends the
solution to the case of uncertain predicates on deterministic
data. A different imprecision model is discussed in [33] in
which only the data statistics and explicit probabilities at
the data sources are used. It is shown in [33] that such
imprecisions can be modeled by a certain kind of
probabilistic database with complex tuples correlations.
The method in [32] is then used in order to rewrite the
queries for effective query resolution. We note that the
work in [32] assumes tuple independence which is often
not the case for a probabilistic database. In the event that

“possible worlds” semantics are used, the algorithms for
query processing become much more difficult, since one
needs to maintain consistency over the query answers. This
problem is also related to that of determining consistent
query answers in inconsistent databases [12].

3.1.2 Queries with Correlations

While the work in [32] assumes tuple independence, this may
not always be the case in many practical applications. For
example, data from sensors [35] may be highly correlated
both in terms of space and time. Furthermore, even if it is
assumed that the tuples are independent, many intermediate
results of queries may contain complex correlations. For
examples, even the simple join-operator is not closed under
tuple independence. In [73], a technique has been proposed
on querying correlated tuples with the use of statistical
modeling techniques. The method in [73] constructs a
uniform framework which expresses uncertainties and
dependencies through the use of joint probability distribu-
tions. The query evaluation problem on probabilistic data-
bases is cast as an inference problem in probabilistic graphical
models [40]. Probabilistic graphical models form a powerful
class of approaches which can compactly represent and
reason about complex dependency patterns involving large
numbers of correlated random variables. The main idea in the
use of this approach is the use of factored representations for
modeling the correlations. A variety of algorithms may then
be used on the probabilistic graphical model, and the exact
choice of algorithm depends upon the requirements for
accuracy and speed.

3.1.3 Top-k Query

A related query is the top-k query in which the aim is to
find the top-k answers for a particular query. The top-k
ranking is based on some scoring function in deterministic
applications. However, in uncertain applications, such a
clean definition does not exist, since the process of reporting
a tuple in a top-k answer does not depend only on its score
but also on its membership probability. A further challenge
is to use possible worlds semantics which can allow
complex correlations among tuples in the database. In
order to deal with the issue of possible worlds semantics,
the technique in [74] uses generation rules which are logical
formulas that determine valid worlds. The interplay of the
possible worlds semantics with top-k queries requires the
careful redefinition of the semantics for the query itself. For
example, consider the case of a radar-controlled traffic
system [74], in which the radar readings may be in error
because of multiple sources of uncertainty such as inter-
ference from high-voltage lines and human identification
mistakes. Some examples of deterministic top-k queries are
as follows:

. Determine the top-k speeding cars in the last hour.

. Determine a ranking over the models of the top-k
speeding cars.

While these queries are clear in the deterministic case,
they need to be reformulated for the case of uncertain and
imprecise data. For example, all responses to the queries
need to be defined in valid possible worlds in order to
avoid answers inconsistent with generation rules and other
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database constraints. Furthermore, in the second query, one
may wish to evaluate the top-k query in a most probable
world. The interaction between the “most probable” and the
“top-k” results in different possible interpretations of
uncertain top-k queries:

. The top-k tuples in the “most probable” world.

. The “most probable top-k” tuples that belong to
valid possible worlds.

. The set of “most probable top-ith” tuples across all
possible worlds, where i ¼ 1; . . . ; k.

We note that the interpretations of the queries above
involve both ranking and aggregations across possible
worlds. The work in [74] models uncertain top-k queries
as a state-space search problem, and introduces several
space navigation algorithms with optimality guarantees on
the number of accessed tuples in order to find the most
probable top-k answers. In order to model the state-space
probabilities, a Rule Engine is used, which is responsible for
computing the state-space probabilities. This Rule Engine
can be modeled in the form of a Bayesian Network [40]. The
work in [74] also creates a framework for integrating space
navigation algorithms and data access methods for lever-
aging existing DBMS technologies. One key result pre-
sented in [74] is that among all sequential access methods,
the retrieval of tuples in the order of their scores leads to the
least possible number of accessed tuples to answer
uncertain top-k queries.

3.1.4 The OLAP Model

One interesting data model for query processing is that of
the OLAP model. The queries which are most relevant to
the OLAP setting are aggregation queries, in which one
attempts to aggregate a particular function of the data on a
part of the data cube. The earliest work in the aggregation
setting was discussed in [23], [59], [70], and [71]. Much of
this work does not relate directly to OLAP queries in the
sense that while they provide aggregation functions, they
do not use the domain hierarchies which are inherent in the
OLAP environment. The earliest work in the OLAP setting
was discussed in [64], which considers the semantics of
aggregate queries in an uncertain environment. However,
this technique does not consider the implications of an
OLAP setting which uses domain hierarchies in order to
define the data.

In [20], a crisp set of criteria has been identified in order
to handle ambiguity. The criteria which are identified in
[20] are as follows:

. Consistency. This criterion discusses the concept of
consistency from the OLAP perspective. This ac-
counts for the relationship between similar queries
which are issued at related nodes in a domain
hierarchy in order to meet users’ intuitive expecta-
tions as they navigate up and down the hierarchy.
For example, for the case of a SUM query, the SUM
for a query region should be equal to the value
obtained by adding the results of SUM for the query
subregions that partition the region.

. Faithfulness. This captures the notion that more
precise data should lead to more accurate results.
For example, for a SUM query over nonnegative
measures, as the imprecision in the data increases

and grows outside the query region, it is expected
that the result of the SUM query should be
nonincreasing.

. Correlation-preservation. This requires that the
correlation properties of the data should not be
affected by the allocation of ambiguous data records.
For example, the computation of the SUM under a
tuple-specific constraint will be affected by the
correlations among different tuples.

In order to model the uncertainty, the work in [20]
relaxes the restriction that the dimension attributes must be
assigned leaf-level values from the domain hierarchy. For
example, we can denote that a repair took place in Texas
without specifying a city explicitly. This has implications
for how queries are answered: if a query aggregates repair
costs in Austin, should the example repair be included, and
how? The second extension is to introduce a new measure
attribute which represents uncertainty. This is in the form of
a probability distribution function over the base domain.
Two broad approaches are proposed in [20] in order to deal
with these different kinds of uncertainty:

. Query allocation. In this case, data which is assigned
to higher levels of the hierarchy needs to be allocated
to lower level leaf nodes by partial assignment. This
partial assignment is captured by the weights on the
assignment to nodes of different level. For response
consistency, it is reasonable to expect that this
assignment should be query independent.

. Aggregating uncertain measures. In this case, the
query needs to aggregate over different probability
density functions. The problem of aggregating pdfs is
closely related to a problem studied in the statistics
literature, which is that of opinion pooling [44]. The
opinion-pooling problem is to form a consensus opinion
from a given set of opinions �. The set of opinions as
well as the consensus opinion are presented as pdfs
over a discrete domain O.

The work in [20] also allows a possible worlds interpreta-
tion of a database D containing imprecise facts, as a prelude
to defining query semantics. If an imprecise fact r maps onto
a region R of cells, then each cell in R represents a possible
completion of r that eliminates the imprecision in r. More
details may be found in [20]. Since imprecise data can often
contain domain constraints in order to avoid inconsistency, a
key issue is the extension of this model to the constrained
case. In [21], the regularities in the constraint space are
captured with the use of a constraint hypergraph in order to
provide efficient answers to such queries.

3.2 Indexing Uncertain Data

The problem of indexing uncertain data arises frequently in
the context of several application domains such as moving
trajectories or sensor data. In such cases, the data is updated
only periodically in the index, and therefore the current
attribute values cannot be known exactly; they can only be
estimated. There are many different kinds of queries which
can be resolved with the use of index structures:

. Range queries. In range queries, the aim is to find all
the objects in a given range. Since the objects are
uncertain, their exact positions cannot be known,
and hence their membership in the range also cannot
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be known deterministically. Therefore, a probability
value is associated for each object to belong to a
range. All objects whose probability of membership
lies above a certain threshold are retained.

. Nearest neighbor queries. In nearest neighbor
queries, we attempt to determine the objects with
the least expected nearest neighbor distance to the
target. An alternative way of formulating the
probabilistic nearest neighbor query is in terms of
the nonzero probability that a given object is the
nearest neighbor to the target.

. Aggregate queries. In such queries, the aim is to
determine the aggregate statistics from queries such
as the sum or the max. Aggregate queries are
inherently more difficult than other kinds of queries
such as range or nearest neighbor queries because one
has to account for the interplay of different objects.

In [25], a broad classification of the queries has been
provided in the context of index structures. Queries can
often be classified depending upon the nature of the
answers. An entity-based query returns a set of objects that
satisfy the condition of the query. A value-based query
returns a single value, examples of which include the
querying of the value of a particular dimension, or
computing some statistical function of a set of objects
satisfying query constraints (e.g., average, max). Another
property which can be used to classify queries is whether or
not aggregation is involved. In [25], broad classes of query
processing techniques have been discussed for each of these
different kinds of queries.

3.2.1 Moving Object Environments

An important domain for indexing and querying imprecise
data is that of moving object environments [28]. In such
environments, it is infeasible for the database tracking the
movement of the objects to store the exact locations of the
objects at all times. The location of an object is known with
certainty only at the time of the update. Between two
updates, the uncertainty of the location increases till the
next update. The error in answers to queries can be
controlled by limiting the level of uncertainty.

Several specific models of uncertainty are possible for the
case of moving objects. One popular model for uncertainty
is that, at any point in time, the moving object is within a
certain distance d of its last reported position. If the object
moves further than this distance, it reports its new location,
and relocates its anchor point to the new reported position.
Other models for uncertainty may assume specific patterns
of movement such as that in a straight line. In such cases,
the objects are assumed to lie in an interval along a straight
line. In the case of [28], the uncertainty of a moving point is
characterized in a fairly general way.

Definition 3.1. An uncertainty region UiðtÞ of an object Oi at

time t is a closed region such that Oi can be found only in this

region.

Definition 3.2. The uncertainty density function fiðx; y; tÞ is the

probability density function of the object Oi at location ðx; yÞ
and time t. This uncertainty function has a value of 0 outside

UiðtÞ.

We note that this is a fairly general model of uncertainty
in that it does not assume any specific behavior of the object
inside UiðtÞ.

Aside from the standard range query, the work in [28]
also tackles the probabilistic nearest neighbor query. In the
probabilistic nearest neighbor query, the aim is to deter-
mine probabilistic candidates for the nearest neighbor of a
given target along with corresponding probability values.

The process of responding to a probabilistic range query
is fairly straightforward. In this case, the probability density
function is integrated over the entire range of the query. All
objects for which this probability value lies above a certain
threshold are reported.

The technique for processing a probabilistic nearest
neighbor query involves evaluating the probability of each
object being closest to the query point. One of the key
challenges of the nearest neighbor query is that unlike the
probabilistic range query, one cannot determine the prob-
ability for an object independent of the other points. The
solution basically comprises the steps of projection, pruning,
bounding, and evaluation. These steps are summarized as
follows:

. Projection. In this phase, the uncertainty region of
each moving object is computed based on the
uncertainty model used by the application. The
shapes of the uncertainty regions are determined by
the uncertainty model used, the last recorded
position of the object Oi, the time elapsed since the
last update, and the maximum speeds of the objects.

. Pruning phase. This allows us to explicitly prune
some of the objects without having to go through the
expensive process of computing nearest neighbor
probabilities. For example, if the shortest distance of
the target to one uncertain region is greater than the
corresponding longest distance of the target to
another region, then it is possible to prune the
former. Therefore, the key to the algorithm is to
find f , the minimum of the longest distances of the
uncertainty regions from the target q. Then, any
object for which the shortest distance to the target q
is larger than f is eliminated.

. Bounding phase. The pruning can be extended to
portions of uncertainty regions which cannot be
completely pruned. For each element, there is no
need to examine all portions of the uncertainty
region. It is necessary to only look at the regions that
are located no farther than f from the target point q.
This can be conceptually achieved by drawing a
bounding circle C of radius f centered at q. Any
portion of the uncertainty region outside C can be
ignored.

. Evaluation phase. In this phase, one calculates for
each object, the probability that it is indeed the
nearest neighbor to the targetO. The solution is based
on the fact that the probability of an object o being the
nearest neighbor with distance r to the target q is
given by the probability of o being at a distance r from
q times the probability that every other object is at a
distance r or larger from q. This value can then be
integrated over different values of r.
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3.2.2 Probabilistic Threshold Queries

A related work in [24] proposes the concept of probabilistic
threshold queries. In such queries, the aim is to determine all
objects whose behavior satisfies certain conditions with a
minimum probability. The formal definition is as follows:

Definition 3.3. Given a closed interval ½c; d�, where c, d 2 R and
c � d, a probabilistic threshold query returns a set of tuples Ti,
such that the probability pi that Ti:a is inside ½c; d�, is greater
than or equal to p, where 0 � p � 1. We note that
Ti:a represents the probability attribute of tuple Ti.

Thus, a probabilistic threshold query can be treated as a
range query, which operates on probabilistic uncertainty
information, and returns items whose probabilities of
satisfying the query exceed p.

A number of index structures have been proposed in [24]
in order to resolve this query. A naive way of evaluating the
query is to first find all the tuples whose uncertainty
intervals have some overlap with the corresponding range.
Once these tuples have been determined, the corresponding
probability of intersection can be determined in a straight-
forward way. In order to find all the tuples which intersect
over a given range, it is necessary to build an index
structure over different intervals, and apply a range search
over the index for the prespecified interval. This can
unfortunately be quite inefficient. The second problem is
that of the probability of each element in the data needs to
be evaluated. If many items overlap with the specified
interval, but only a few have probability of inclusion greater
than p, then this can be quite inefficient.

A different solution proposed in [24] is referred to as
Probability Threshold Indexing. This index structure is
essentially based on a modification of a 1D R-Tree, where
probability information is augmented to its internal nodes
in order to facilitate pruning. In a traditional R-Tree, a range
query is resolved by examining only those nodes of the
tree which intersect with the user-specified range. This
idea can be generalized by constructing tighter bounds
(called x-bounds) than the Minimum Bounding Rectangle
(MBR) of each node. Let Mj denote the MBR/uncertainty
interval represented by the jth node of an R-Tree, ordered
by preorder traversal. Then, the x-bound of Mj is defined as
follows:

Definition 3.4. An x-bound of an MBR/uncertainty interval Mj

is a pair of lines, namely left-x-bound (denoted by Mj:lbðxÞ)
and right-x-bound (denoted by Mj:rbðxÞ). Every uncertain
object contained in this MBR is guaranteed to have a
probability of at most x (where 0 � x � 1) of being left of
the left-x-bound and also guaranteed to have a probability of at
most x of being right of the right-x-bound.

We note that this kind of bound is a generalization of the
concept of the MBR. This is because the MBR of an internal
node can be viewed as a 0-bound. This is because it
guarantees that all intervals in the node are contained in it
with probability 1.

The purpose of storing the information of the x-bound of
a node is to avoid investigating the contents of a node. This
saves I/O costs during index exploration. The presence of
the x-bound allows us to decide whether an internal node
contains any qualifying MBRs without further probing into

the subtrees of this node. Let p be the threshold probability

for the query. The two necessary pruning conditions (both

conditions must hold) for node Mj to be pruned with the

use of the x-bound are as follows:

. Mj can be pruned if ½a; b� does not intersect left-
x-bound or right-x-bound of Mj, i.e., either
b < Mj:lbðxÞ or a > Mj:rbðxÞ.

. p � x.

In the event that the above conditions do not hold, the

internal contents of node Mj are examined and further

exploration of the tree is resumed. It has been shown in [24]

that the probability threshold query (PTQ) index is quite

efficient when the threshold p is fixed a priori across all

queries. When the threshold p varies, then the index

continues to be experimentally efficient on the average,

though the actual behavior mat vary quite a bit across

different queries.

3.2.3 Uncertain Categorical Data

A method for indexing uncertain categorical data has been

discussed in [76]. The definition used in [76] for the

categorical data domain is as follows:

Definition 3.5. Given a discrete categorical domain

D ¼ fd1; . . . ; dNg, an uncertain discrete attribute (UDA) u

is a probability distribution over D. It can be represented by

the probability vector u:P ¼ fp1; . . . ; pNg such that

Prðu ¼ diÞ ¼ u:pi.

The probability that two uncertain attribute values are

equal can be computed by calculating the corresponding

equality probability over all possible uncertain values.

Therefore, we have the following.

Observation 3.1. Given two UDAs u and v, the probability that

they are equal is given by Prðu ¼ vÞ ¼
PN

i¼1 u:pi � v:pi.

Analogous to the notion of equality of value is

distributional similarity. The distance function may be

defined in terms of the L1 function, the L2 function, or the

Kullback-Leibler distance function. The kinds of queries

resolved by the technique in [76] are as follows:

. Probabilistic equality query (PEQ). Given a UDA q,
and a relation R with a UDA a, the query returns all
tuples t from R along with probability values, such
that the probability value Prðq ¼ t:aÞ � 0.

. Probabilistic equality threshold query (PETQ).
Given a UDA q, a relation R with UDA a, and a
threshold � , � � 0. The answer to the query is all
tuples t from R such that Prðq ¼ t:aÞ � � .

. Distributional similarity threshold query (DSTQ).
Given a UDA q, a relation R with UDA a, a threshold
�d, and a divergence function F , DSTQ returns all
tuples t from R such that F ðq; t:aÞ � �d.

. Probabilistic equality threshold join (PETJ). Given
two uncertain relations R, S, both with UDAs a, b,
respectively; relation R fflRa¼Sb;� S consists of all
pairs of tuples r, s from R, S, respectively, such that
Prðr:a ¼ s:bÞ � � .
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In [76], two separate index structures are proposed in
order to resolve the queries on categorical uncertain data.
The first index is the probabilistic inverted index. In the
probabilistic inverted index, for each value in the categorical
domain, a list of the tuple-ids is stored, which have a nonzero
probability of taking on that particular value. Along with
each tuple-id, this probability value is also stored. The inner
lists containing the tuple-ids are often organized as a
dynamic structure such as the B-Tree in order to facilitate
insertions and deletions. As in any inverted index, the
insertion and deletion are extremely straightforward. One
only needs to determine the corresponding list(s), and insert
or delete the corresponding tuple-id.

The inverted index can be used in conjunction with
various pruning techniques in order to answer PETQs. The
first step is to determine all the tuples in the different inverted
lists which match the target parameters of the query. From
these candidate tuples, only those which qualify more than
the threshold are retained. A variety of other pruning
techniques can be used in order to improve the efficiency of
the different queries. The different techniques discussed in
[76] include row pruning, column pruning, and approaches
which examine the lists in a highest-probability first fashion.
The effectiveness of these different techniques for different
kinds of queries is discussed in [76].

3.2.4 Probabilistic Distribution R-Tree

Next, we will discuss the probabilistic distribution R-Tree
which is an alternative for indexing UDAs. The broad
approach is to index the vector of probability values of the possible
attribute values. Thus, if there are N possible probability
values then, data points are created in RN . One distinction
from traditional R-Trees is that the underlying queries have
very different semantics. The uncertain queries are hyper-
plane queries on the N-dimensional cube. The MBRs of this
R-Tree are thus defined in terms of the corresponding
probability values. This ensures that the essential pruning
properties of R-Trees are maintained. For example, for the
case of probabilistic threshold query, one can compute the
maximum probability of equality for any node in the subtree
by taking the maximum dot product of the target object
probabilities with the corresponding probability vector from
the MBR. When this value is less than the user-specified
threshold, the corresponding subtree can be pruned. The two
different index structures for categorical data have been
tested in [76]. The results suggest that neither of the two
techniques emerges as a clear winner, and either of the
techniques may perform better depending upon the nature of
the query and the underlying data.

3.2.5 Other Work

Most of the above techniques make certain assumptions
about the underlying probability distributions. An interest-
ing technique discussed in [77] examines the problem for the
case of arbitrary probability density functions. In this case, a
general assumption is made about the probability distribu-
tion functions, in the sense that they are not all assumed to be
even of the same type. For example, the uncertainty function
for one object could be uniform, whereas the uncertainty
function for another object could be Gaussian. This makes
the problem much more difficult from the point of view of
indexing, search, and pruning. In [77], an index structure
called the U-Tree has been proposed, which can handle such

kinds of queries. Other methods for indexing arbitrary
probability distributions have been discussed in [19] and
[57]. Finally, an interesting method called the Gauss-Tree
[18] has been proposed for the case of probabilistic feature
vectors. This tree has been shown to retain effectiveness for
probabilistic retrieval. A detailed discussion is beyond the
scope of this survey.

3.3 Join Processing on Uncertain Data

In the case of join processing, techniques have been
developed for probabilistic join queries and similarity joins.
In the case of probabilistic join queries, it is assumed that
each item is associated with a range of possible values and a
probability density function, which quantifies the behavior
of the data over that range. The range of values associated
with the uncertain variable a are denoted by a:U ¼ ½a:l; a:r�.
Thus, a:l is the lower bound of the range and a:r is the
upper bound of the range. By incorporating the notion of
uncertainty into data values, imprecise answers are gener-
ated. Each join-pair is associated with a probability to
indicate the likelihood that the two tuples are matched. A
second kind of join [53] is the similarity join. Similarity is
measured by the distance between the two feature vectors.
The join is performed based on this distance.

3.3.1 Probabilistic Join Queries

Since each tuple-pair is probabilistic in nature, the join may
contain a number of false positives which are typically
those pairs which are associated with probability values.
Each tuple-pair is associated with a probability that
indicates the likelihood of the join. In order to compute
these probability values, the notions of equality and
inequality need to be extended to support uncertain data.
We note that those join-pairs which have low probability
can be discarded. This variant of probabilistic join queries
are referred to as Probabilistic Threshold Join Queries. We note
that the use of thresholds reduces the number of false
positives, but it may also result in the introduction of false
negatives. Thus, there is a tradeoff between the number of
false positives and false negatives depending upon the
threshold which is chosen. The reformulation of the join
queries with thresholds is also helpful in improving the
performance requirements of the method.

A number of pruning techniques are developed in order
to improve the effectiveness of join processing. These
pruning techniques are as follows: 1) Item-level pruning:

In this case, two uncertain values are pruned without
evaluating the probability. 2) Page-level pruning: In this
case, two pages are pruned without probing into the data
stored in each page. 3) Index-level pruning: In this case, the
data which is stored in a subtree is pruned.

We note that a key operator in the case of joins is that of
equality, since a join is performed only when the corre-
sponding attribute values are equal. For the case of
continuous data with infinitesimal resolution, this is never
the case since any of the pair of attributes can take on an
infinite possible number of values. Therefore, a pair of
attributes are defined to be equal to one another within
acceptable resolution c, if one attribute value is within c of
another. Let a and b be the two join attributes. Let a:fðxÞ
and b:F ðxÞ represent the corresponding probability density
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and cumulative density functions, respectively. Corre-
spondingly, the probability can be calculated as follows:

P ða ¼c bÞ ¼
Zþ1

	1

a:fðxÞ � b:F ðxþ cÞ 	 b:F ðx	 cÞð Þdx: ð1Þ

For the case of the > and < operators, it is not necessary to
use the resolution, and it is possible compute the corre-
sponding probability of inequality P ða > bÞ and P ða < bÞ in
a straightforward way. In order to evaluate the join,
common block-nested-loop and indexed-loop can be used.
The advantage of these algorithms is that they have been
implemented in most database systems, and therefore only
a small amount of modification is required in order to
support the joins. The main difference is to use the
uncertainty information in order to compute the probability
of equality. For the use of probability density functions such
as the uniform or the Gaussian function, closed form
formulas may be obtained in order to determine the
probability of equality. Subsequently, those pairs with
probability less than the required threshold can be pruned.

We note that the computations of the probability of a join
can sometimes be expensive when the probabilistic com-
putations cannot be expressed in closed form. Therefore, it
is often useful to be able to develop quick pruning
conditions in order to exclude certain tuple pairs from the
join. Suppose a and b are uncertain valued variables and

a:U \ b:U 6¼ �. Let la;b;c; be maxfa:l	 c; b:l	 cg, and let ua;b;c
be minfa:rþ c; b:rþ cg. For equality and inequality, the
following pruning conditions hold true:

. P ða ¼c bÞ is at most minfa � F ðua;b;cÞ 	 a � F ðla;b;cÞ;
b � F ðua;b;cÞ 	 b � F ðla;b;cÞÞg.

. Correspondingly, it is easy to see that P ða 6¼c bÞ is
at least equal to the complement of the above
expression.

We note that the above expressions can be computed
easily as long as the cumulative density function of the
expression is available either in closed or numerical form. We
note that a tuple pair can be eliminated when the probability
of equality is less than the user-defined threshold.

We further note that in some cases, it may not be
necessary to report the explicit probabilities of the tuple
joins, as long as all tuples whose join probability is above
the user-defined threshold are reported. For such cases, it is
only necessary to determine whether the required prob-
ability lies above a given threshold. For such cases, we can
use another pruning condition.

For a pair of uncertain-valued variables a and b, it is
possible to compute a bound on the corresponding
probability that one is greater than the other. Specifically,
the bounds are as follows:

. If a:l � b:r < a:r, P ða > bÞ � 1	 a � F ðb:rÞ.

. If a:l � b:l � a:r, P ða > bÞ � 1	 a � F ðb:lÞ.
The detailed proof of these results is described in [27].

The above two inequalities can be used for those join tuples
which satisfy the preconditions described above. Depend-
ing upon the direction of the inequality, one can immedi-
ately include or exclude the corresponding join tuples from
the inequality.

We note that in many of these join processing algorithms,
the unit of retrieval is a page from an index structure. In
such cases, one can prune the entire node of the index tree
by constructing bounds on the join behavior of the nodes in
the tree. By using this approach, either page-level pruning
can be achieved, or index-level pruning can be achieved by
using an inner level node in the index tree. A concept called
the x-bound is proposed in [26], and is used to augment the
nodes of the underlying index structure. For more details,
we refer the reader to [26]. Another recent method for
spatial joins is discussed in [58].

3.3.2 Similarity Join

The most popular similarity join is the distance-range join. In
the distance-range join, we perform the join between two
records, if the distance between the two does not exceed a
user-defined parameter �. The natural generalization for the
case of uncertain data is to compute the expected distance
between two relations, and perform the join if this expected
distance is less than the parameter �. This may result in
considerable inaccuracies in the join computation process.
This is because the expected distances are often skewed by
the behavior of the tail end behavior of the probability
functions of different attributes. Thus, the expected dis-
tances may not reflect the true likelihood that a given pair of
records may join on a particular attribute. The result is that
different joins which have similar probability of lying within
the range of �may be treated inconsistently. Therefore, it has
been proposed in [53] to assign a probability value to each
object pair. This probability value reflects the likelihood that
the object pair belongs to the join result set. Only those join
pairs which have nonzero probability of belonging to the
join-result set are returned. In order to define this prob-
ability, one needs to quantify whether the distance between
a pair of joining attributes lies within a certain range. To do
so, the method in [53] computes the probability that the
distance between the pair does not exceed �. We note that in
the deterministic case, when the distances are known, this
distance function is the dirac-delta function. Thus, the
deterministic case is a special case of the uncertain similarity
join algorithm.

3.4 Data Integration with Uncertainty

An important application in the context of uncertain data is
that of data integration. A first approach to this problem has
been discussed in [37]. In order to do so, the work in [37]
introduces the concept of probabilistic schema mappings. These
are defined as a set of possible (ordinary) mappings between a
source schema and a target schema, where each possible
mapping has an associated probability. It is suggested that
there are two possible interpretations to probabilistic schema
mappings. The first (table-specific mapping) assumes that
there is a single correct mapping, but we do not know which it
is. This single correct mapping applies to all tuples. In the
second interpretation (tuple-specific mapping), the mapping
depends upon the tuple to which it is applied.

A number of algorithms are described in [37] for
answering queries in the presence of probabilistic schema
mappings. It has been shown that in the case of table-specific
mappings, the data complexity is PTIME, and in the case of
tuple-specific mappings, the complexity is #P-complete.
Therefore, the second case is much more difficult. Never-
theless, it has been shown in [37] that for large classes of real-
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world queries, it is possible to obtain all the answers in
PTIME. More details on the specific algorithms may be
found in [37].

3.5 Probabilistic Skylines on Uncertain Data

A problem which is quite relevant to the case of uncertain
data is that of probabilistic skyline computation. The work
in [65] provides a first approach to this problem. The
problem of skyline computation is used in multicriteria
decision-making applications. For example, consider the
case when statistics of different NBA players are computed,
such as the number of assists, rebounds, baskets, etc. It is
unlikely that a single player will achieve the best
performance in all respects. Therefore, the concepts of
dominance and skyline are defined [65] as follows:

Definition 3.6. For two d-dimensional points u ¼ ðu1; . . . ; udÞ
and v ¼ ðv1; . . . ; vdÞ, u is said to dominate v, if for each
i 2 f1; . . . ; dg, we have ui � vi, and for some i0 2 f1; . . . ; dg,
we have ui0 < vi0 .

The above definition assumes that smaller values are
more preferable, though it is easy enough to create a
definition in which larger values may be preferable for one
or more of the dimensions. The concept of dominance can
be used in order to formally define the concept of a skyline.

Definition 3.7. Given a set of points S, a point u is a skyline point
if there exists no other point v 2 S such that v dominates u. The
skyline on S is the set of all skyline points.

Clearly, all players that lie on the skyline may be
considered outstanding players. Most skyline analyses only
use certain data in the form of the mean performance of the
different players. In practice, the performance of a player on
different criteria may vary substantially from game to game.
For example, it is known that most players are far more
effective, when playing on their home court. Therefore, it is
possible to improve the quality of the analysis by using
uncertainty information.

The key challenge in skyline computation is to capture
the dominance relationship between uncertain objects.
Therefore, the concept of probabilistic skyline was proposed
in [65]. In this case, the probability of an object being in the
skyline is the probability that the object is not dominated by
any other objects.

Definition 3.8. Given a probability threshold p ð0 � p � 1Þ, the
p-skyline is the set of uncertain objects, such that each of them
has probability of at least p to be in the skyline.

Constructing a probabilistic skyline is much more
complicated, because in many applications, the probability
density function of uncertain data objects is not available
explicitly. Only a set of instances are collected in order to
approximate the probability density function. For example,
in the case of the NBA example, the instances correspond to
the game-by-game performance of a particular player,
whereas the uncertain object corresponds to the distribution
of a particular player’s performance. One possible solution
is to apply the skyline approach on the entire collected set of
instances. However, this can be inefficient in practice, when
the set of collected instances are very large compared to the
underlying objects on which the skylines are computed.

In [65], two algorithms are proposed. The first is a
bottom-up algorithm which computes the skyline probabil-
ities of some selected instances of objects, and uses those
instances to prune other instances and uncertain objects
effectively. The second is a top-down algorithm which
recursively partitions the instances of uncertain objects into
subsets, and prunes subsets and objects aggressively. Both
the top-down and bottom-up algorithms use the bounding-
pruning-refining iteration. In the case of the bottom-up
algorithm, the steps are as follows:

. Bounding. For an instance of an uncertain data object,
we compute an upper bound and lower bound of its
skyline probability. Then, we can convert this bound
to the skyline probability of an uncertain object.

. Pruning. If the lower bound of an uncertain object
U is larger than the threshold p, then it lies in the
p-skyline. If the upper bound is less than p, then U
is not in the p-skyline.

. Refining. For all objects which cannot be conclu-
sively determined to be either excluded or included
in the skyline, we need to get tighter bounds for the
next iteration of bounding, pruning, and refining.

An important observation here is that in this method, we
compute and refine the bounds of instances of uncertain
objects by selectively computing the skyline probabilities on
a small subset of instances. This technique is called bottom-
up, since the bound computation and refinement start from
instances in the bottom, and go up to skyline probabilities of
objects. We refer the reader to the details of how the
bounding and refinement are performed to [65].

4 MINING APPLICATIONS FOR UNCERTAIN DATA

Recently, a number of mining applications have been
devised for the case of uncertain data. Such applications
include clustering and classification. We note that the
presence of uncertainty can affect the results of data
mining applications significantly. For example, in the case
of a classification application, an attribute which has
lower uncertainty is more useful than an attribute which
has a higher level of uncertainty. Similarly, in a clustering
application, the attributes which have a higher level of
uncertainty need to be treated differently from those
which have a lower level of uncertainty.

4.1 Clustering Uncertain Data

The presence of uncertainty changes the nature of the
underlying clusters, since it affects the distance function
computations between different data points. A technique
has been proposed in [51] in order to find density-based
clusters from uncertain data. The key idea in this approach is
to compute uncertain distances effectively between objects
which are probabilistically specified. The fuzzy distance is
defined in terms of the distance distribution function. This
distance distribution function encodes the probability that
the distances between two uncertain objects lie within a
certain user-defined range. Let dðX;Y Þ be the random
variable representing the distance between X and Y . The
distance distribution function is formally defined as follows:

Definition 4.1. Let X and Y be two uncertain records, and let

pðX; Y Þ represent the distance density function between these
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objects. Then, the probability that the distance lies within the
range ða; bÞ is given by the following relationship:

P a � dðX;Y
� �

� bÞ ¼
Zb

a

pðX;Y ÞðzÞdz: ð2Þ

Based on this technique and the distance density function,
the method in [51] defines a reachability probability between
two data points. This defines the probability that one data
point is directly reachable from another with the use of a
path, such that each point on it has density greater than a
particular threshold. We note that this is a direct probabilistic
extension of the deterministic reachability concept which is
defined in the DBSCAN algorithm [38]. In the deterministic
version of the algorithm [38], data points are grouped into
clusters when they are reachable from one another by a path
which is such that every point on this path has a minimum
threshold data density. To this effect, the algorithm uses the
condition that the �-neighborhood of a data point should
contain at least MinPts data points. The algorithm starts off
at a given data point and checks if the � neighborhood
containsMinPts data points. If this is the case, the algorithm
repeats the process for each point in this cluster and keeps
adding points until no more points can be added. One can
plot the density profile of a data set by plotting the number of
data points in the �-neighborhood of various regions, and
plotting a smoothed version of the curve. This is similar to the
concept of probabilistic density estimation. Intuitively, this
approach corresponds to the continuous contours of inter-
section between the density thresholds in Figs. 1 and 2 with
the corresponding density profiles. The density threshold
depends upon the value ofMinPts. Note that the data points
in any contiguous region will have density greater than the
threshold. Note that the use of a higher density threshold
(Fig. 2) results in three clusters, whereas the use of a lower
density threshold results in two clusters. The fuzzy version of
the DBSCAN algorithm (referred to as FDBSCAN) works in a
similar way to the DBSCAN algorithm, except that the
density at a given point is uncertain because of the underling
uncertainty of the data points. This corresponds to the fact
that the number of data points within the �-neighborhood of
a given data point can be estimated only probabilistically,
and is essentially an uncertain variable. Correspondingly,
the reachability from one point to another is no longer
deterministic, since other data points may lie within the
�-neighborhood of a given point with a certain probability,

which may be less than 1. Therefore, the additional constraint
that the computed reachability probability must be greater
than 0.5 is added. Thus, this is a generalization of the
deterministic version of the algorithm in which the reach-
ability probability is always set to 1.

Another related technique discussed in [52] is that of
hierarchical density based clustering. An effective (deter-
ministic) density based hierarchical clustering algorithm is
OPTICS [13]. We note that the core idea in OPTICS is quite
similar to DBSCAN and is based on the concept of
reachability distance between data points. While the method
in DBSCAN defines a global density parameter which is used
as a threshold in order to define reachability, the work in
[52] points out that different regions in the data may have
different data density, as a result of which it may not be
possible to define the clusters effectively with a single
density parameter. Rather, many different values of the
density parameter define different (hierarchical) insights
about the underlying clusters. The goal is to define an
implicit output in terms of ordering data points, so that
when the DBSCAN is applied with this ordering, one can
obtain the hierarchical clustering at any level for different
values of the density parameter. The key is to ensure that
the clusters at different levels of the hierarchy are consistent
with one another. One observation is that clusters defined
over a lower value of � are completely contained in clusters
defined over a higher value of �, if the value of MinPts is
not varied. Therefore, the data points are ordered based
on the value of � required in order to obtain MinPts in the
�-neighborhood. If the data points with smaller values of �
are processed first, then it is assured that higher density
regions are always processed before lower density regions.
This ensures that if the DBSCAN algorithm is used for
different values of � with this ordering, then a consistent
result is obtained. Thus, the output of the OPTICS algorithm
is not the cluster membership, but it is the order in which
the data points are processed. We note that that since the
OPTICS algorithm shares so many characteristics with the
DBSCAN algorithm, it is fairly easy to extend the OPTICS
algorithm to the uncertain case using the same approach as
that was used for extending the DBSCAN algorithm. This is
referred to as the FOPTICS algorithm. Note that one of the
core-concepts needed to order to data points is to determine
the value of � which is needed in order to obtain MinPts in
the corresponding neighborhood. In the uncertain case, this
value is defined probabilistically, and the corresponding
expected values are used to order the data points.
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Fig. 1. Density-based profile with lower density threshold.
Fig. 2. Density-based profile with higher density threshold.



Finally, a technique in [63] uses an extension of the K-
means algorithm in order to cluster the data. This technique
is referred to as the UK-means algorithm. In UK-means, an
object is assigned to the cluster whose representative has the
smallest expected distance to the object. We note that
expected distance computation is an expensive task. There-
fore, the technique in [63] uses a number of pruning
operations in order to reduce the computational load. The
idea here is to use branch-and-bound techniques in order to
minimize the number of expected distance computations
between data points and cluster representatives. The broad
idea is that once an upper bound on the minimum distance of
a particular data point to some cluster representative has
been quantified, it is necessary to perform the computation
between this point and another cluster representative, if it
can be proved that the corresponding distance is greater than
this bound. This approach is used to design an efficient
algorithm for clustering uncertain location data.

The techniques in [51] and [63] were developed for the
case of static data. Recently, the problem of clustering
uncertain data has also been extended to the case of data
streams [10]. In order to do so, the microclustering concept
developed in [11] is extended to the uncertain case. In order
to incorporate uncertainty into the clustering process,
additional information about error statistics are incorporated
into microclusters. It has been shown in [10] that it is possible
to efficiently cluster uncertain data streams with the use of
such an approach. More recently, approximation algorithms
[31] have been proposed for clustering uncertain data.

4.2 Classification of Uncertain Data

A closely related problem is that of classification of
uncertain data in which the aim is to classify a test instance
into one particular label from a set of class labels. In [17], a
method was proposed for support vector machine classifi-
cation of uncertain data. This technique is based on a
discriminative modeling approach which relies on a total
least squares method. This is because the total least squares
method assumes a model in which we have additive noise.
However, instead of using Gaussian noise, the technique in
[17] uses a simple bounded uncertainty model. Such a
model has a natural and intuitive geometric interpretation.
Note that the support vector machine technique functions
by constructing boundaries between groups of data records.
Then, the margin created by the support vector machine can
be modified by using the uncertainty of the points which lie
on the boundary. For example, if points on one side of the
boundary have greater uncertainty, this influences the way
in which the margins are adjusted by the classifier. This is
because the uncertainty in the data may result in some
probability that the uncertain data point is on either side of
the SVM boundary. The key idea in [17] is to provide a
geometric algorithm which optimizes the probabilistic
separation between the two classes on both sides of the
boundary. Thus, the main difference from a standard SVM
approach is to use the probability that a given data point lies
on either side of the boundary while computing the degree
of separation between the two classes.

4.3 Frequent Pattern Mining

The problem of frequent pattern mining has also been
explored in the context of uncertain data. In this model, it is
assumed that each item has an existential uncertainty in

belonging to a transaction. This means that the probability
of an item belonging to a particular transaction is modeled
in this approach. In this case, an item set is defined to be
frequent, if its expected support is at least equal to a user-
specified threshold.

In order to solve this version of the frequent pattern
mining problem, the U-Apriori algorithm is proposed which
essentially mimics the Apriori algorithm, except that it
performs the counting by computing the expected support
of the different item sets. The expected support of a set of
items in a transaction is obtained by simply multiplying the
probabilities of the different items in the transaction. The
approach can be made further scalable by using the concept
of data trimming. In the data trimming approach, those items
with very low existential probability are pruned from the
data. The algorithm is then applied to the trimmed data. In
[29], it has been shown that this approach can accurately
mine the frequent patterns while maintaining efficiency.
Further pruning tricks for improving the efficiency of
frequent pattern mining algorithms may be found in [30].
Methods for finding frequent items in very large uncertain
data sets or data streams may be found in [78].

4.4 Outlier Detection with Uncertain Data

The problem of outlier detection has also been extended to the
case of uncertain data. In the case of the outlier detection
problem, differing levels of uncertainty across different
dimensions may affect the determination of the outliers in
the underlying data. For example, consider the case in Fig. 3,
in which the contours of uncertainty for two data points X
and Y are illustrated in the form of elliptical shapes. The data
point X seems to be further away from the overall data
distribution as compared to the data point Y . However, the
contours of uncertainty are such that the data point X has a
greater probability of being drawn from the overall data
distribution. Correspondingly, it is possible to define the
concept of an outlier in terms of the probability that a given
data point is drawn from a dense region of the overall data
distribution.

In order to quantify the probability that a given uncertain
data point is drawn from a dense region, we define the
concept of �-probability. The �-probability of a data point Xi

is defined as the probability that the uncertain data point lies
in a region with (overall data) density at least �. Since the data
point is uncertain, the �-probability may be computed by
integrating the density of the data point along the contour of
the intersection of the overall density function with threshold
�. However, this can be computationally challenging from a
numerical point of view. Therefore, the �-probability may be
estimated with the use of sampling. The idea is to draw
multiple samples from the data and compute the fraction of
the samples over which the density threshold is specified.
This can be used to define the concept of a ð�; �Þ-outlier.
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Definition 4.2. An uncertain data point Xi is defined to be a
ð�; �Þ-outlier, if the �-probability of Xi in some subspace is less
than �.

In order to determine the ð�; �Þ-outliers, the algorithm of
[7] explores subspaces in the data in a bottom-up fashion and
determines all those data points for which the condition of
Definition 4.2 is satisfied. A variety of techniques for speeding
up the algorithm using microclustering is also discussed in
[7]. It has been shown in [7] that the approach is much more
effective than deterministic algorithms for outlier detection.

4.5 General Approaches to Mining Uncertain Data

The techniques discussed in [17], [51], [52], and [63] are
useful for working with a specific application such as
clustering or classification. A different approach is to design
an intermediate representation which can be used with a
variety of data mining applications. A method of this nature
has been proposed in [9]. In this case, a relaxed assumption
is used that only the errors (in terms of standard deviation)
of the records are known rather than the entire probability
density function. This is a more realistic assumption of many
scenarios, since it may often be possible to measure the
standard deviation of an uncertain record, whereas the
probability density function may be obtained only by more
extensive theoretical modeling. In any case, if the pdf is
available, one can still apply the method by using the
derived standard deviation of the density function. It is
assumed that the mean value of the ith record is denoted by
Xi and the standard deviation by  ið�Þ.

In [9], the broad idea is to design an intermediate
representation of the data which can then be leveraged in
order to effectively perform the mining process. This
intermediate representation is in the form of an adjusted
density estimate. We refer to the density estimate as
“adjusted,” since the uncertainty is taken into account
while creating the estimate. The density estimation
fðxÞ based on N data points and is defined as follows:

fðxÞ ¼ ð1=NÞ �
XN
i¼1

1=
ffiffiffiffiffiffi
2�
p

� hþ  ðXiÞ
� �� �

� e
	ðx	XiÞ2

2� h2þ ðXiÞ2ð Þð Þ: ð3Þ

The above result assumes a Gaussian-kernel for each
data point. This density estimate incorporates the error
information, and can be utilized for a variety of data mining
tasks as follows:

. Many density-based clustering algorithms [38] can
be used in conjunction with this method. These
clustering algorithms simply use a lower threshold
on fðxÞ in order to isolate the dense (clustered)
regions of the data. The technique can be used in
order to isolate arbitrarily shaped clusters.

. A related approach [7] uses upper thresholds on the
density estimate fðxÞ in order to isolate the sparse
regions in the data. This can be used for outlier
detection, by reporting those data points which lie in
such sparse regions.

. In [9], it has been shown how to use this technique
for classification. For a given test-instance, one
determines the class-specific density at that point,
and reports the class with the highest density. The
density estimate can also be computed over different
subspaces in order to further improve the accuracy.

In general, since density estimation encodes the summary
behavior of the data, it is expected that such an approach can
be used for any data mining problem which uses the
aggregate data behavior in different spatial localities.

5 SUMMARY

The field of uncertain data management has seen a revival
in recent years because of new ways of collecting data
which have resulted in the need for uncertain representa-
tions. This paper surveys the broad areas of work in this
rapidly expanding field. We presented the important data
mining and management techniques in this field along with
the key representational issues in uncertain data manage-
ment. While the field will continue to expand over time, it is
hoped that this survey will provide an understanding of the
foundational issues and a good starting point to practi-
tioners and researchers in focussing on the important and
emerging issues in this field.
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