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Abstract

We present a survey on inequalities in fractional calculus that have
proven to be very useful in analyzing differential equations. We men-
tion in particular, a “Leibniz inequality” for fractional derivatives of Riesz,
Riemann-Liouville or Caputo type and its generalization to the d-dimensio-
nal case that become a key tool in differential equations; they have been
used to obtain upper bounds on solutions leading to global solvability, to
obtain Lyapunov stability results, and to obtain blowing-up solutions via
diverging in a finite time lower bounds. We will also mention the weakly sin-
gular Gronwall inequality of Henry and its variants, principally by Medved,
that plays an important role in differential equations of any kind. We will
also recall some “traditional” inequalities involving fractional derivatives or
fractional powers of the Laplacian.
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1. Introduction

Inequalities of any kind (pointwise, integral, etc) are the lifeblood of
ordinary or partial differential equations, and of integral equations. With-
out them, the advance of differential and integral equations would not be
at its present stage. However, inequalities are scattered in the literature;
they are too important to be gathered in one review paper and be available
to the very large community of researchers in differential equations.
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So, in this paper, we present some inequalities in fractional calculus
that are used in differential or integral equations/systems.

In differential equations or systems, when one want to use Lyapunov
functionals or Moser’s scheme to obtain a priori estimations, Leibniz’ rule
of differentiation is needed; as is well known, in fractional calculus, such
rule has a not a very tractable form.

Quite recently, the inequality obtained by Cordoba and Cordoba [15]
for the one-dimensional fractional Laplacian and its twin inequality for the
Riemann-Liouville or Caputo fractional derivative due to Diaz, Pierantozzi
and Vazquez [16], Alikhanov [1], and the general inequality of Ahmad,
Alsaedi, and Kirane [4], Zacher [47] turned out be useful in many situations.

Many other inequalities that have shown to de useful, especially with
relation to fractional order operators and equations, are presented. We want
to point out that some inequalities have already appeared in books like [42]
(see the luxury 17. Bibliographical Remarks and Additional Information
to Chapter 3, [43]; we recall them here in order, for researchers, to have
one working document under hand.

Among the recently published articles on topics of inequalities in frac-
tional calculus, we can mention also [21, 22], [29], [8], references therein,
etc.

2. Eilertsen equality and its consequences

For a function u in the Schwartz space or in C∞0 (Rn),

(−Δ) s
2u(x) = CsP.V.

∫
Rn

u(x)− u(y)
|x− y|n+s

, (2.1)

where Cs is a normalizing constant.

Eilertsen in [18] proved the following interesting result that has impor-
tant consequences.

Theorem 2.1. If u, v ∈ C∞0 (Rn) and 0 < s < 1, then

u(−Δ)sv + v(−Δ)su− (−Δ)s(uv) = As

∫
Rn

(u(x)− u(y))(v(x)− v(y))
|x− y|n+2s dy,

(2.2)
where As > 0 and As/s(1 − s) has finite, positive limits as s → 0 and
s → 1.

If we take u = v in (2.2), multiply by Γs(x) = Cs|x|2s−n and integrate,
the identity

2

∫
Rn

((−Δ)su)uΓs dx = u(0)2 +As

∫
Rn

∫
Rn

|u(x)− u(y)|2
|x− y|n+2s Γs(x) dxdy,

(2.3)
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is valid for 0 < s < 1. Hence,∫
Rn

((−Δ)su)uΓs(x) dx ≥ 0. (2.4)

An other consequence is the following inequality obtained by Cordoba and
Cordoba in [15].

3. “Cordoba-Cordoba” type inequalities

As a first consequence of the Eilertsen equality, we present the inequal-
ity obtained by Cordoba and Cordoba in [15].

Set Λ = (−Δ) 12 .

Theorem 3.1. Let 0 ≤ α ≤ 2, x ∈ R
n or x ∈ T

n (the torus) (n =
1, 2, 3 . . .) and θ ∈ C2

0 (R
n) or θ ∈ C2(Tn). Then the following inequality

holds

2θΛαθ(x) ≥ Λαθ2(x). (3.1)

Cordoba-Cordoba’s inequality follows from Eilertsen’s identity (2.3) by
setting u = v = θ.

This inequality enabled Cordoba and Cordoba to obtain the L∞-decay
estimate for the viscosity solutions of the quasi-geostrophic equation.

This inequality has been generalized by Ju [25] as follows.

Theorem 3.2. Let 0 ≤ α ≤ 2, x ∈ R
n or x ∈ T

n (the torus) (n =
1, 2, 3 . . .) and θ ∈ C2

0 (R
n) or θ ∈ C2(Tn). Then the following inequality

holds

pθp−1Λαθ(x) ≥ Λαθp(x). (3.2)

Wu [46] proved the following version.

Theorem 3.3. Let 0 ≤ α ≤ 2. Let p1 = k1/l1 ≥ 0 and p2 = k2/l2 ≥ 1
be rational numbers with l1 and l2 being odd, and with k1l2 + k2l1 being
even. Then, for any x ∈ R

n and any function θ ∈ C2(Rn) that decays
sufficiently fast at infinity, Then the following inequality holds

(p1 + p2)θ
p1(x)Λαθp2(x) ≥ p2Λ

αθp1+p2(x). (3.3)

Ju’s and Wu’s inequalities have also been used for the quasi-geostrophic
equation.

A further generalization has been achieved by Constantin [13].
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Theorem 3.4. Let θ ∈ C2
0 (R

n) or θ ∈ C2(Tn) and Φ be a convex
function of one variable. Then

Φ′(θ)Λαθ(x) ≥ ΛαΦ(θ)(x). (3.4)

Ju, Caffarelli and Vasseur [12], and Constantin [13] used the “convexity”
inequality for the quasi-geostrophic equation too.

Ye and Xu [45] derived an other variant; it reads:

2∇u(x) · (−Δ)α2∇u(x) ≥ (−Δ)α2 (|∇u(x)|2 + |∇u(x)|
2+ αp

p+2

c‖u‖
αp
p+2

Lp

. (3.5)

They used this inequality for the 2-D Boussinesq equations.

Recently, Alsaedi, Ahmad and Kirane [5] derived the “convexity” in-
equality in the Heisenberg group thanks to a result of Ferrari and Franchi
[20] concerning an integral representation of the fractional powers of the
Laplacian.

Theorem 3.5. Let F ∈ C2(R) be a convex function, 0 ≤ α ≤ 2.
Assume that ϕ ∈ C2

0 (R
2N+1). Then

F ′(ϕ)(−ΔH)
α
2 ϕ ≥ (−ΔH)

α
2 F (ϕ) (3.6)

holds point-wise. In particular, if F (0) = 0 and ϕ ∈ C∞0 (R2N+1), then∫
R2N+1

F ′(ϕ)(−ΔH)
α
2 ϕdη ≥ 0. (3.7)

Here (−ΔH)
α
2 is the fractional Laplacian on the Heisenberg group H.

In [5], the convexity inequality is used to prove nonexistence results via
the nonlinear capacity method [37] for hyperbolic, parabolic, and hyperbolic
equations with linear damping.

Constantin and Vlad [14] derived the following inequality.

Theorem 3.6. Let f ∈ S(Rn). For a k ∈ {1, ..., n}, let g(x) = ∂kf(x).
Assume that x ∈ R

n is such that g(x) = max
x∈Rn

g(x) > 0. Then

Λαg(x) ≥ g(x)1+α

C‖f‖α∞
, (3.8)

where ‖f‖∞ is the norm of L∞(Rn), for α ∈ (0, 2), and some universal
positive constant cC = C(n, α) which may be computed explicitly.

After the appearance of the “Cordoba-Cordoba inequality”, Diaz, Pier-
anttozi and Vazquez [16] proved a similar inequality for the Riemann-
Liouville fractional time derivative.
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Theorem 3.7. Let 0 < α < 1 and u ∈ C([0, T ]; R), u′ ∈ L1(0, T ; R)
and u be monotone. Then

2u(t)Dα
0,tu(t) ≥ Dα

0,tu
2(t), t ∈ (0, T ]. (3.9)

They conjectured that the inequality (3.9) still holds true without the
monotonicity condition imposed on u.

They used inequality (3.9) to obtain finite time extinction for some
nonlinear fractional in time equations.

In the same paper, they provided a more general version of Theorem
3.7.

Theorem 3.8. Given the Hilbert space H with inner product ( , )H,
let 0 < α < 1 and u ∈ L∞(0, T ; H) such that Dα

0,tu ∈ L1(0, T ; H). Assume

that ‖u(.)‖H is non-increasing (i.e. ‖u(t2)‖H ≤ ‖u(t1)‖H for a.e. t1, t2 ∈
(0, T ) such that t1 ≤ t2). Then there exists k(α) > 0 such that for almost
every t ∈ (0, T ), we have

(u(t), Dα
0,tu(t)) ≥ k(α)Dα

0,t‖u(t)‖. (3.10)

In [47], Zacher derived the following inequality.

Theorem 3.9. Let α ∈ (0, 1), T > 0 and H be a Hilbert space with
inner product ( , )H. Suppose that v ∈ L2(0, T ; H) and there exists x ∈ H
such that v − x ∈ 0H

α
2 ([0, T ]; H) :=

{
gα ∗ w : w ∈ L2(0, T ; H)}. Then

2(u(t),
d

dt
(g1−α ∗ v)(t))H ≥ d

dt
(g1−α ∗ |v|2H + g1−α(t)|v|2H), (3.11)

for a.a. t ∈ (0, T ), where gβ(t) = tβ−1

Γ(β) , t > 0, β > 0.

Zacher used inequality (3.11) to obtain some decay estimate for a non-
linear homogeneous time fractional evolution equation.

Alsaedi, Ahmad, and Kirane [4] looking for stability estimates for vari-
ous diffusion equations with time-fractional derivatives, derived the follow-
ing results.

Theorem 3.10. Let one of the following conditions be satisfied:

• u ∈ C([0, T ]), v ∈ Cβ([0, T ]), α < β ≤ 1;
• v ∈ C([0, T ]), u ∈ Cβ([0, T ]), α < β ≤ 1;
• u ∈ Cβ([0, T ]), v ∈ Cδ([0, T ]), α < β + δ, 0 < β < 1, 0 < δ < 1.
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Then we have:

Dα
0+(uv)(t) = u(t)Dα

0+v(t) + v(t)Dα
0+u(t)

− α

Γ(1− α)
∫ t

0

(u(s)− u(t))(v(s)− v(t))
(t− s)α+1 ds− u(t)v(t)

Γ(1− α)tα ,
(3.12)

pointwise.

The immediate consequences are:

1. If u and v have the same sign and are both increasing or both decreasing,
then

Dα
0+(uv)(t) ≤ u(t)Dα

0+v(t) + v(t)Dα
0+u(t). (3.13)

By setting u = v in inequality (3.13) and taking only u ∈ Cβ([0, T ]), α <
2β, β ≤ 1 we obtain the inequality conjectured by J. I. Diaz, T. Pierantozi
and L. Vázquez [16]

2u(t)Dα
0+u(t) ≥ Dα

0+u
2(t). (3.14)

In the case β < 1, our requirement on u is weaker than the one of [16]
as u is not differentiable. However, in the case β < 1, by Rademacher’s
theorem, u is almost everywhere differentiable [19].

2. By induction, one can show that, for any integer p ≥ 2,

pu(p−1)(t)Dα
0+u(t) ≥ Dα

0+u
p(t), (3.15)

for p even, or p odd whenever u ≥ 0.

Remark 3.1. For the Caputo derivative, inequality (3.13) reads
cDα

0+(uv)(t) ≤ u(t)cDα
0+v(t) + v(t)cDα

0+u(t)

+
t−α

Γ(1− α) (u(t)v(0) + v(t)u(0)− u(0)v(0)) .

Alikhanov [1], looking for some stability estimates in L2 for diffusion equa-
tions with time-fractional derivative, derived the following equality.

Theorem 3.11. Let 0 < α < 1 and u absolutely continuous on [0, T ].
Then

2u(t)Dα
0,tu(t) = Dα

0,tu
2(t) +

α

Γ(1− α)
∫ t

0

(∫ s

0

u′(η)
(t− η)α dη

)2 ds

(t− s)1−α ,
(3.16)

holds true. As a consequence, one obtains

2u(t)Dα
0,tu(t) ≥ Dα

0,tu
2(t).
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The vectorial case:

In [17], the vectorial version of the “Leibniz’ inequality” is presented.

Theorem 3.12. Let X : [t0, +∞) → R
N be a vectorial differentiable

function. Then, for any time instant t ≥ t0,

cDα
t0|t(X

TX)(t) ≤ xT (t)cDα
t0|tX(t), α ∈ (0, 1). (3.17)

This inequality is used in [17] to prove Lyapunov uniform stability for
fractional order systems.

4. Fermat’s Fractional inequality

In his valuable book [39], Nakhushev derived an analogue of the Fermat
theorem and an extremum principle for the Riemann-Liouville operator of
order 0 < α < 1.

Theorem 4.1. (Analogue of Fermat’s theorem [39], p. 56)
Let the function u(t) ∈ L1([A, B]) attain at x ∈ (A, B) its extremum and
let there exists δ > 0 such that u(t) in the one-sided neighborhood ωδ of
the point x satisfies Hölder’s condition with exponent h > α. Then for any
α ∈ [0, 1] and a ∈ (A, B), a �= x, we have

(Dα
a,xu)(t) ≥

u(x)|x− a|−α
Γ(1− α) (4.1)

in case of a maximum value and

(Dα
a,xu)(t) ≤

u(x)|x− a|−α

Γ(1− α) (4.2)

in case of a minimum value.

Here ωδ = [x− δ, x] when x ≥ a and ωδ = [x, x+ δ] when x ≤ a, δ > 0.

Corollary 4.1. If x is a point of extremum of the function u(t)
defined in some ε−neighborhood Sx

ε = [x − ε, x + ε] of x, then either
Dα

a,xu(t), 0 < α < 1, does not exist, or it satisfies one of the inequalities
(4.1), (4.2), where a is any point of Sx

ε . In particular,

Dα
a,xu(t) ≥ 0, ∀α ∈ (0, 1), (4.3)

if x is a point of local positive maximum.

Nakhushev [39] also derived the following result that may be useful for
various fractional differential equations.
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Theorem 4.2. Let:
1) the function u(t) ∈ L1([A, B]) and it attains a maximum value at a
point x ∈ (A, B) where it is differentiable;
2) there exists δ > 0 such that u′(t) on the segment ωδ satisfies the Hölder
condition with exponent h > α− 1.

Then for each number α ∈ (1, 2) and any a ∈ [A, B], a �= x the following
inequality holds true:

Dα
axu(t) ≤

u(x)|x− a|−α
Γ(1− α) . (4.4)

If u′(t) ∈ Liph([A, B]) (the space of functions satisfying Hölder’s condition
with exponent h ∈ (0, 1]) and h > α− 1, then in a neighborhood Sx

ε of the
point x there exists a point a distinct from x such that for all α ∈ (1, 2)
the following equality holds true:

Dα
axu(t) =

u(x)|x− a|−α
Γ(1− α) . (4.5)

Similar results also appeared in the papers of Al-Refai and Luchko [2],
[3].

5. Hardy-Landau-Littlewood type inequalities

R.J. Hughes in two papers [27] and [26] derived a Hardy-Landau-Little-
wood inequality [24] for the Riemann-Liouville fractional integral Iαf(x)
=
∫ x
0 (x−t)α−1f(t) dt, then a Hardy-Landau-Littlewood inequality for frac-

tional derivatives in weighted Lp spaces.

Theorem 5.1. Let 1 < p < ∞, and let Iα,α > 0 ( for real
part), with domain D(Iα) = {f ∈ Lp(0, ∞) : Iαf ∈ Lp(0, ∞)}. If f ∈
D(Iγ), γ > 0, then f ∈ D(Iα) whenever 0 < α <  γ and that, if γ is
real and 0 < α < β < γ < L, then

‖Iβf‖ ≤ K(p, L)‖ Iαf‖(γ−β)/(γ−α) ‖Iγf‖(β−α)/(γ−α), (5.1)

where ‖ .‖ is the usual Lp norm.

An inequality similar to (5.1) for the Weyl fractional inetgral was first
derived by Hardy, Landau and Littlewood [24].

Based on Theorem 5.1, Hughes deduced the following theorem.

Theorem 5.2. Let Dβ denote the β-th Riemann-Liouville fractional
derivative acting in the weighted space Lp

ω(0, ∞), 0 < β < α, and let the
weight w satisfy the Muckenhoupt (Ap) condition [27]. Then the following
Hardy-Landau-Littlewood inequality is valid:
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‖Dβf‖ ≤ K(α, β, p, ω) ‖f‖1−β/α ‖Dαf‖β/α, (5.2)

where ‖f‖ =
(∫

R+
|f |pω dx

)1/p
.

These two theorems are useful in intermediary estimates, for example,
for equations with forcing terms containing fractional derivative of order
less than the leading derivative in the equation.

Geisberg [23] proved the following inequality for the Marchaud frac-
tional derivative

(Dα
+)(x) =

∫ ∞

0

f(x)− f(x− t)
t1+α

dt.

Theorem 5.3. Let 0 < α < 1. The Marchaud fractional derivative
Dα
+ enjoys the following inequality

‖Dα
+f‖C ≤ K ‖f‖1−α/rC ‖f (r)‖α/r∞ , (5.3)

with the usual norm in C(R) in the case 0 < α < r < 1 for functions
f ∈ C(R), which satisfies the Lipschitz condition of order γ = γ(x) > r,
‖f‖∞ = ess sup{|f(x)|, x ∈ R}.

Other inequalities have been proved by Arestov [7], Babenko and col.
[9], [10].

6. Opial inequalities for fractional derivatives

Anastassiou, Koliha and Pec̆arić in [6] proved a series of Opial inequal-
ities for fractional derivatives to solve fractional differential equations with
nonlinearities depending of some fractional derivatives of the unknown. We
cite here only three of them.

Theorem 6.1. Let 1/p + 1/q = 1 with p, q > 1, let γ ≥ 0, ν >
γ + 1 − 1/p, and let f ∈ L(0, x) have an integrable fractional derivative
Dνf ∈ L∞(0, x), and let Dν−jf(0) = 0 for j = 1, . . . , [ν] + 1. Then∫ x

0
|Dγf(s)Dνf(s)| ds ≤ Ω(x) (|Dνf(s)|q ds)2/q , (6.1)

where

Ω(x) =
x(rp+2)/p

21/qΓ(r + 1)((rp+ 1)(rp+ 2))1/p
, r = ν − γ − 1.
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Theorem 6.2. Let ν > γ ≤ 0, and let f ∈ L(0, x) have an inte-
grable fractional derivative Dνf ∈ L∞(0, x), and let Dν−jf(0) = 0 for
j = 1, . . . , [ν] + 1. Then∫ x

0
|Dγf(s)Dνf(s)| ds ≤ Ω1(x) ess sups∈[0,x]|Dνf(s)|2, (6.2)

where

Ω1(x) =
x(r+2)/p

Γ(r + 3)
, r = ν − γ − 1.

Theorem 6.3. Let 1/p + 1/q = 1 with p, q > 1, let γ ≥ 0, ν >
γ + 1 − 1/p, and let f ∈ L(0, x) have an integrable fractional derivative
Dνf ∈ L∞(0, x), and let Dν−jf(0) = 0 for j = 1, . . . , [ν] + 1. Then for any
m > 0, ∫ x

0
|Dγf(s)|m ds ≤ Ω2(x) (|Dνf(s)|q ds)m/q , (6.3)

where

Ω2(x) =
x(rm+1+m/p)

Γ(r + 1)m((rm+ 1 +m/p)(rp+ 1))m/p
, r = ν − γ − 1.

7. The moment inequality of Trebels and Westphal

This section concerns the moment inequality for operators.

Definition 7.1. Let A be a closed operator densely defined in the
complex Banach space X . The operator A is said to be of type (ω,M) if
there exist 0 < ω < π and M ≥ 1 such that ρ(A) ⊃ {λ : |arg(λ) > ω|} and
‖λ(A − λ)−1‖ ≤ M for λ < 0, and if there exists a number Mε such that
‖λ(A− λ)−1‖ ≤Mε holds in |arg(λ)| > ω + ε for all > 0.

Theorem 7.1. Let A be of type (ω,M) and suppose that 0 ∈ ρ(A).
For 0 ≤ α < β ≤ 1, there exists a constant Cα,β depending only on M,α,

and β, such that, for all u ∈ D(Aβ),

‖Aαu‖ ≤ Cα,β ‖Aβu‖α/β ‖u‖1−α/β . (7.1)

Remark 7.1. ([43], p. 39) A more general form of the moment in-
equality can be described as follows. For any α < β < γ and for any
u ∈ D(Aγ),

‖Aβu‖ ≤ Cα,β,γ ‖Aγu‖(β−α)/(γ−α) ‖Aαu‖(γ−β)/(γ−α). (7.2)

For more details, we refer to Krein [33], p. 115.
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8. Space-fractional inequalities

The following fractional Gagliardo-Nirenberg inequality is derived by
Park [41].

Theorem 8.1. Let m, q, θ ∈ R\{0} with q �= mθ > 0, 0 < s < n, 1 <
p < n/s and 1 < r/(qmθ). Then the inequality∫

Rn

|u(x)|q dx ≤ C0

(∫
Rn

|Λsu(x)|p dx
)mθ

p
(∫

Rn

|u(x)|r dx
) q−mθ

r

(8.1)

holds for

mθ

(
1

p
− s

n

)
+
q −mθ
r

= 1.

The sharp constant satisfies

C
1

mθ
0 ≤ 21−s

π
s
2

[
Γ(n2 + 1)

] s
n Γ(n−s2 )

Γ( s2)Γ(
n
2 )

1− 1
p +

s
n

sp

⎛
⎝[1− s

n

1− 1
p

]1− s
n

+

[
1− s

n
1
p − 1

p

]1− s
n

⎞
⎠ .

In particular, when m = q, we have a fractional version of Gagliardo-
Nirenberg inequality(∫

Rn

|u(x)|q dx
) 1

q

≤ C
1
q

0

(∫
Rn

|Λsu(x)|p dx
) θ

p
(∫

Rn

|u(x)|r dx
)1− θ

r

(8.2)

provided

θ

(
1

p
− s

n

)
+
1− θ
r

=
1

q
.

Corollary 8.1. (Fractional Sobolev inequality) For 0 < s < n, 1 <
p < n

s and q = np
n−ps , we have

‖u‖Lq ≤ C
1
q

0 ‖Λsu‖Lp . (8.3)

The sharp constant for the inequality for p = 2n
n+s and q = 2n

n−s is[
π

n
2
−sΓ(nq )
2s

Γ(nq )

Γ(np )

{
Γ(n)

Γ(n2 )

} s
n

] 1
q

.

Mitrovic derived in [38] the following inequality.

Theorem 8.2. Let v ∈ C∞c (Rd), u ∈ L2 ∩ L1(Rd), α > 0, α not in
N, and k ∈ N such that α − k > 0 and α − k − 1 < 0. Assume that
Dα−m

xi
∈ L2∩L1(Rd) for every i ∈ {1, . . . , d} and m = 0, 1, . . . , k+1. Then

there exists a positive constant C such that for every M > 0,
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‖Dα
xi
(uv)‖22 ≤ C

(
‖

k∑
m=0

Dm
xi
vDα−m

xi
u‖22 + ‖Dα−k

xi
u‖22‖ξki v̂‖21

+Md+α−k−1‖u‖21‖Dk+1
xi

v‖22 +M2(d+α−k−1)‖u‖22‖ξk+1i v̂‖21
)
,

(8.4)

where ‖ . ‖p = ‖ . ‖Lp(Rd), v̂ is the Fourier transform of v.

9. Kato and Ponce type inequalities

In [28], Kato and Ponce obtained the following commutator estimate
that proved to be very useful in partial differential equations.

Theorem 9.1.

‖Js(fg)− f(Js(g))‖p ≤ C
[‖∇f‖∞‖Js−1g‖p + ‖Js(f)‖p‖g‖∞

]
(9.1)

for 1 < p < ∞ and s > 0, where Js := (I −Δ)s/2 is the Bessel potential,
∇ is the n-dimensional gradient, f, g are Schwartz functions, and C is a
constant depending on n, p and s, ‖.‖p is the norm of Lp(Rn), 1 ≤ p ≤ ∞.

Using the homogeneous symbol Ds := (−Δ)s/2, Kenig, Ponce and Vega
[30] obtained the following estimate.

Theorem 9.2.

‖Ds(fg)− fDsg − gDsf‖r ≤ C‖Dsf‖p‖Dsg‖q, (9.2)

where C = C(s, s1, s2, r, p, q), s = s1 + s2 for s, s1, s2 ∈ (0, 1), and 1 <
p, q, r <∞ such that 1/r = 1/p+ 1/q.

An other variant of the Kato and Ponce inequality known also as frac-
tional Leibniz rule is given by the following theorem.

Theorem 9.3.

‖Js(fg)‖r ≤ C [‖f‖p1‖Jsg‖q1 + ‖Js(f)‖p2‖g‖q2 ] (9.3)

where s > 0 and 1/r = 1/p1 + 1/q1 = 1/p2 + 1/q2 for 1 < r < ∞, 1 <
p1, p2, q1, q2 ≤ ∞ and C = C(s, n, r, p1, p2, q1, q2).

10. Fractional integral inequalities

The fractional Chebyshev type inequalities started with a paper by
Belarbi and Dahmani [11]; they derived the following inequality.
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Theorem 10.1. Let f and g be defined on [0, ∞) such that for all
τ ≥ 0, ρ ≥ 0, (f(τ)− f(ρ)) ((g(τ)− g(ρ)) ≥ 0 (in this case f and g are said
synchronous), then

Jα(fg)(t) ≥ Γ(α+ 1)

tα
Jα(f)(t)Jα(g)(t), (10.1)

where Jα(f)(t) = 1
Γ(α)

∫ t

0
(t− τ)α−1f(τ) dτ, α > 0, , t > 0.

Remark 10.1. The inequality (10.1) is reversed if the functions f and
g are asynchronous.

They also proved the following result.

Theorem 10.2. Let f and g be defined on [0, ∞) such that f is increas-
ing, g is differentiable with bounded derivative, m := mint≥0 g′(t), M :=
maxt≥0 g′(t), then

Jα(fg)(t) ≥ (Jα(1))−1 Jα(f)(t)Jα(g)(t)− mt

α+ 1
Jα(f)(t) +MJα(tf)(t).

(10.2)

Many variants then appeared. Here after, one concerning the Hadamard
fractional integral.

The Hadamard fractional integral of order α > 0 of a function f(t), for
all t > 1, is defined as

HJ
α(f)(t) =

1

Γ(α)

∫ t

1

(
ln

(
t

τ

))α−1
f(τ)

dτ

τ
.

Theorem 10.3. Let p be a positive function and let f and g be two
differentiable functions on [1, ∞). If f ′ ∈ Lr([1, ∞)), g′ ∈ Ls([1, ∞)), r >
1, r + s = rs, then for all t > 1 and α > 0, β > 0

|HJα(p(t))HJ
β(p(t)f(t)g(t))− HJ

α(p(t)f(t))HJ
β(p(t)g(t))

+HJ
β(p(t))HJ

α(p(t)f(t)g(t))− HJ
β(p(t)f(t))HJ

α(p(t)g(t))

≤ ‖f ′‖r‖g′‖st (HJα(p(t)))
(
HJ

β(p(t))
)
.

(10.3)

11. Singular integral inequalities

Medved [36] (see also [32]) obtained the following inequality that served
for nonlinear singular integral equalities and for parabolic equations.

Let u(t) satisfy the integral inequality
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u(t)r ≤ a(t) +

∫ t

0
(t− s)β−1F (s)ω(u(s)) ds. (11.1)

Theorem 11.1. Let a(t) ≥ 0 be a nondecreasing C1-function on [0, T ]
(0 < T <∞), let F (t) ≥ 0 be continuous on [0, T ], 0 < β < 1, r ≥ 1, and let
ω : R+ → R+ be a continuous, nondecreasing, positive function. Assume
that u(t) ≥ 0 is a continuous function on [0, T ] satisfying the inequality
(11.1). Then

Gqr(u(t)qr) ≤ Gqr(2q−1aq) +Kq

∫ t

0
e−qsF (s)q ds, (11.2)

or

u(t) ≤
{
G−1qr

[
Gqr(2q−1aq) +Kq

∫ t

0
e−qsF (s)q ds

]}1/qr
, (11.3)

for 0 ≤ t ≤ T1 ≤ T, where β = 1/(1 + z), z > 0, q = (1/β) + ε = 1 + z + ε,
p = (1 + z + ε)/(z + ε), ε > 0,

Gqr(v) =
∫ v

v0

dσ

ω(σ1/rq)q
,

2q−1a(0)q ≥ v0 > 0,G−1qr is the inverse of Gqr, a = a(t)

Kq =
2q−1epT

p1−αp
Γ(1− αp),

α = 1 − β = z/(1 + z),Γ is the Eurelian gamma function, and T1 > 0 is
such that

Gqr(2q−1aq) +Kq

∫ t

0
e−qsF (s)q ds ∈ Dom(G−1qr ), t ∈ [0, T1].

A modified version has been proved by Ma and Pecaric [35].

Theorem 11.2. Let u(t), a(t), b(t) and f(t) be nonnegative continuous
functions for t > 0. Let p and q be constants with p ≥ q ≥ 0. If u(t) satisfies

up(t) ≤ a(t) + b(t)

∫ t

0
(tα − sα)β−1sγ−1f(s)uq(s)ds, t > 0. (11.4)

Then for any K > 0 we have:
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(i) if α ∈ (0, 1], β ∈ (1/2, 1), γ ≥ 3/2− β,
u(t)≤

{
a(t)+Mβ

1 t
(α+1)(β−1)+γb(t)

[
A1−β1 (t)+K

q−p
p Mβ

1 [1−(1−V1(t))1−β ]−1

×
(∫ t

0
s

(α+1)(β−1)+γ
1−β f

1
1−β (s)b

1
1−β (s)A1(s)V1(s) ds

)1−β]} 1
p
,

(11.5)
where

M1 =
1

α
B

[
β + γ − 1

αβ
,
2β − 1

β

]
,

A(t) =
q

p
K

q−p
p a(t) +

p− q
p

K
q
p ,

A1(t) =

∫ t

0
f

1
1−β (s)A

1
1−β (s) ds,

V1(t) = exp

(
−K

p−q
p(1−β)M

β
1−β

1

∫ t

0
s

(α+1)(β−1)+γ
1−β f

1
1−β (s)b

1
1−β (s)ds

)
,

and

B[σ; η] =

∫ 1

0
sσ−1(1− s)η−1 ds.

(ii) if α ∈ (0, 1], β ∈ (0, 1/2], γ > (1− 2β2)/(1− β2), then

u(t) ≤
{
a(t) +M

1+3β
1+4β

2 t
[α(β−1)+γ](1+4β)−β

1+4β b(t)

[
A

β
1+4β

2 (t) +K
q−p
p M

1+3β
1+4β

2 ×

[1−(1−V2)
β

1+4β ]−1
(∫ t

0
s

[α(β−1)+γ](1+4β)−β
β f

1+4β
β (s)b

1+4β
β (s)A2V2 ds

) β
1+4β

]} 1
p

,

(11.6)
where

M2 =
1

α
B

[
γ(1 + 4β)− β
α(1 + 3β)

,
4β2

1 + 3β

]
,

A2(t) =

∫ t

0
f

1+4β
β (s)A

1+4β
β (s)ds

and

V2(t)=exp

(
−K

(q−p)(1+4β)
pβ M

1+3β
β

2

∫ t

0
s

[α(β−1)+γ](1+4β)−β
β f

1+4β
β (s)b

1+4β
β (s)ds

)
.

Thiramanus, Tariboon and Ntouyas [44] obtained the following result.

Theorem 11.3. Suppose that the following conditions are satisfied:
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(H1) The functions p and r ∈ C([t0, T ),R+).
(H2) The function φ ∈ C ([βt0, t0] ,R+) withmaxs∈[βt0,t0] φ(s) > 0, where

0 < β < 1.
(H3) The function u ∈ C ([βt0, T ) ,R+) with

u(t) ≤ r(t) +

∫ t

t0

(t− s)α−1p(s) max
ξ∈[βs,s]

u(ξ)ds, t ∈ [t0, T ), (11.7)

u(t) ≤ φ(t), t ∈ [βt0, t0] , where α > 0. (11.8)

Then the following assertions hold:

(R1) Suppose α >
1

2
, then

u(t) ≤ et
[
c1r

2(t) + h1(t) exp

(
K1

∫ t

t0

p2(s)ds

)] 1
2

, (11.9)

for t ∈ [t0, T ), where
c1 = max

{
2e−2t0 , e−2βt0

}
, (11.10)

K1 =
Γ(2α− 1)

4α−1
, (11.11)

and

h1(t) = c1 max
s∈[βt0,t0]

φ2(s) + c1K1

∫ t

t0

p2(s) max
ξ∈[βs,s]

m2
1(ξ)ds, (11.12)

for t ∈ [t0, T ), with
m1(t) =

{
r(t), t ∈ [t0, T ),
φ(t), t ∈ [βt0, t0] .

(11.13)

Moreover, if r ∈ C([t0, T ), (0,∞)) is a nondecreasing function, then

u(t) ≤
√
c1N1r(t) exp

(
t+

1

2
K1

∫ t

t0

p2(s)ds

)
, (11.14)

for t ∈ [t0, T ), where

N1 = max

{
1,
maxs∈[βt0,t0] φ

2(s)

r2(t0)

}
. (11.15)

(R2) Suppose 0 < α ≤ 1

2
, then

u(t) ≤ et
[
c2r

b(t) + h2(t) exp

(
2b−1Kb

2

∫ t

t0

pb(s)ds

)] 1
b

, (11.16)

for t ∈ [t0, T ), where
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a = α+ 1, (11.17)

b = 1 +
1

α
, (11.18)

c2 = max
{
2b−1e−bt0 , e−bβt0

}
, (11.19)

K2 =

(
Γ
(
α2
)

aα2

) 1
a

, (11.20)

and

h2(t) = c2 max
s∈[βt0,t0]

φb(s) + 2b−1c2Kb
2

∫ t

t0

pb(s) max
ξ∈[βs,s]

mb
1(ξ) ds, (11.21)

for t ∈ [t0, T ). Moreover, if r ∈ C([t0, T ), (0,∞)) is a nondecreasing
function, then

u(t) ≤ (c2N2)
1
b r(t) exp

(
t+

2b−1

b
Kb
2

∫ t

t0

pb(s)ds

)
, (11.22)

for t ∈ [t0, T ), where
N2 = max

{
1,
maxs∈[βt0,t0] φ

b(s)

rb(t0)

}
. (11.23)

Lin [34] obtained the following result.

Theorem 11.4. Suppose u(t) satisfies the inequality

u(t) ≤ a(t) +

n∑
i=1

bi(t)

∫ t

0
(t− s)βi−1u(s) ds, t ∈ [0, T ), (11.24)

where all functions are nonnegative and continuous. The constants βi > 0,
bi(i = 1, 2, ..., n) are bounded and monotonic increasing functions on [0, T ),
then

u(t) ≤ a(t)+
∞∑
k=1

⎛
⎝ n∑
1′,2′,...,k′=1

∏k
i=1[bi′(t)Γ(βi′)]

Γ(
∑k

i=1 βi′)

∫ t

0
(t− s)

∑k
i=1 βi′−1a(s) ds

⎞
⎠ .

(11.25)

Theorem 11.5. Suppose that u(t) satisfies the inequality

u(t) ≤ a(t) +
n∑

i=1

bi(t)

∫ t

1

(
ln
t

s

)βi−1 u(s)
s

ds, t ∈ [1, T ), (11.26)

where all functions are nonnegative and continuous. The constants βi > 0,
bi(i = 1, 2, ..., n) are bounded and monotonic increasing functions on [1, T ),
then
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u(t) ≤ a(t) +
∑∞

k=1

(∑n
1′,2′,...,k′=1

∏k
i=1[bi′ (t)Γ(βi′ )]
Γ(

∑k
i=1 βi′ )

×
∫ t

1

((
ln
t

s

)∑k
i=1 βi′−1

a(s)
) ds
s

)
.

(11.27)

Lin [34] applied his results in the resolution of multi-fractional deriva-
tives problems.
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fractional derivatives. Dynam. Systems Appl. 10 (2001), 395–406.

[7] V.V. Arestov, Inequalities for fractional derivatives on the half-line,
Approximation theory. Banach Center Publications 4 (1979), 19–34.

[8] A. Babakhani, H. Agahi, R. Mesiar, A(∗, ∗)-based Minkowskis inequal-
ity for Sugeno fractional integral of order α > 0. Fract. Calc. Appl.
Anal. 18, No 4 (2015), 862–874; DOI: 10.1515/fca-2015-0052;
https://www.degruyter.com/view/j/fca.2015.18.issue-4/

issue-files/fca.2015.18.issue-4.xml.
[9] V. F. Babenko and M. S. Churilova, On the Kolmogorov type inequali-

ties for fractional derivatives. East J. of Approximations 8, No 4 (2002),
537–446.



592 A. Alsaedi, B. Ahmad, M. Kirane

[10] V.F. Babenko, M.S. Churilova, N.V. Parfinovych and D.S. Sko-
rokhodov, Kolmogorov type inequalities for the Marchaud fractional
derivatives on the real line and the half-line. J. of Inequalities and Ap-
plications 2014 (2014), 504.

[11] S. Belarbi and Z. Dahmani, On some new fractional integral inequali-
ties. J. Inequal. Pure Appl. Math. 10, No 3 (2009), Art. ID 86, 5 pp.

[12] L.A. Caffarelli and A. Vasseur, Drift diffusion equations with frac-
tional diffusion and the quasi-geostrophic equation. Ann. of Math.
171 (2010), 1903–1930.

[13] P. Constantin, Euler equations. Navier-Stokes equations and turbu-
lence. Mathematical foundation of turbulent viscous flows. In: Lecture
Notes in Math. 1871, Springer, Berlin (2006), 117, 1–43.

[14] P. Constantin and V. Vicol, Nonlinear maximum principle for dissi-
pative linear nonlocal operators and applications. Geom. Funct. Anal.
22 (2012), 1289–1321.

[15] A. Cordoba and D. Cordoba, A maximum principle applied to quasi-
geostrophic equations. Commun. Math. Phys. 249 (2004), 511–528.

[16] J.I. Diaz, T. Pierantozzi and L. Vazquez, On the finite time extinction
phenomenon for some nonlinear fractional evolution equations. Sym-
posium on Applied Fractional Calculus, Badajoz (2007).

[17] M.A. Duarte-Mermoud, N. Aguila-Camacho and J.A. Gallegos, Lya-
punov functions for fractional order systems. Commun. Nonlinear Sci.
Numer. Simul. 19 (2014), 2951–2957.

[18] S. Eilertsen, On weighted positivity and the Wiener regularity of a
boundary point for the fractional Laplacian. Ark. Mat. 38 (2000), 53–
75.

[19] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of
Functions. Studies in Advanced Mathematics, CRC Press, Boca Raton,
Florida (1992).

[20] F. Ferrari and B. Franchi, Harnack inequality for fractional sub-
Laplacian in Carnot groups. Math. Z. 279 (2015), 435–458.

[21] R.A.C. Ferreira, Some discrete fractional Lyapunov-type inequalities.
Fract. Differ. Calc. 5, No 1 (2015), 87-92; DOI: 10.7153/fdc-05-08.

[22] R. Ferreira, Lyapunov-type inequality for an anti-periodic fractional
boundary value problem. Fract. Calc. Appl. Anal. 20, No 1 (2017), 284–
291; DOI: 10.1515/fca-2017-0015; https://www.degruyter.com/view/

j/fca.2017.20.issue-1/issue-files/fca.2017.20.issue-1.xml.
[23] S.P. Geisberg, An extension of the Hadamard inequality. Sb. Nauch.

Tr. LOMI 50 (1965), 42–54.



A SURVEY OF USEFUL INEQUALITIES . . . 593

[24] G.H. Hardy, E. Landau and J.E. Littlewood, Some inequalities satisfied
by the integrals or derivatives of real or analytic functions. Mathema-
tische Zeitschrift 39 (1935), 677–695.

[25] N. Ju, Existence and uniqueness of the solution to the dissipative 2D
quasi-geostrophic equations in the Sobolev space. Comm. Math. Phys.
251 (2004), 365–376.

[26] R.J. Hughes, Hardy-Landau-Littlewood inequalities for fractional
derivatives in weighted Lp spaces. J. London Math. Soc. 32-35 (1987),
489–498.

[27] R.J. Hughes, On fractional integrals and derivatives in Lp. Indiana
Univ. Math. J. 26 (1977), 325–328.

[28] T. Kato, G. Ponce, Cummutator estimatesand the Euler and Navier-
Stokes equations. Comm. Pure Appl. Math. 41 (1988), 891–907.

[29] T.D. Ke, N. Van Loi, V. Obukhovskii, Decay solutions for a
class of fractional differential variational inequalities. Fract. Calc.
Appl. Anal. 18, No 3 (2015), 531–553; DOI: 10.1515/fca-2015-0033;
https://www.degruyter.com/view/j/fca.2015.18.issue-3/

issue-files/fca.2015.18.issue-3.xml.
[30] C.E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering re-

sults for the generalized Korteweg-de Vries equation via the contraction
principle. Comm. Pure Appl. Math. 46 (1993), 527–620.

[31] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applica-
tions of Fractional Differential Equations. North-Holland Mathematics
Studies, 204, Elsevier Science B.V., Amsterdam (2006).

[32] M. Kirane and N. Tatar, Global existence and stability of some semi-
linear problems. Arch. Math. (Brno) 36 (2000), 33–44.

[33] S.G. Krein, Linear Differential Equations in Banach Space. AMS
Translations of Math. Monographs, Vol. 29, Providence, R.I. (1971).

[34] S.-Y. Lin, Generalized Gronwall inequalities and their applications to
fractional differential equations. J. Inequal. Appl. 2013 (2013), Art.
ID 549, 9 pp.

[35] Q.-H. Ma and J. Pecaric, Some new explicit bounds for weakly singu-
lar integral inequalities with applications to fractional differential and
integral equations. J. Math. Anal. Appl. 341 (2008), 894–905.

[36] M. Medved, A new approach to an analysis of Henry type integral
inequalities and their Bihari type versions. J. Math. Anal. Appl. 214
(1997), 349–366.

[37] E. Mitidieri and S.I. Pohozaev, A priori estimates and blow-up of solu-
tions to nonlinear partial differential equations and inequalities. Proc.
Steklov Inst. Math. 234 (2001), 1–362.



594 A. Alsaedi, B. Ahmad, M. Kirane

[38] D. Mitrovic, On a Leibnitz type formula for fractional derivatives.
Filomat 27, No 6 (2013), 1141–1146.

[39] A.M. Nakhushev, Fractional Calculus and its Applications. Fizmatlit,
Moskva (2003) (in Russian).

[40] S.K. Ntouyas, S.D. Purohit and J. Tariboon, Certain Chebyshev type
integral inequalities involving Hadamard’s fractional operators. Abstr.
Appl. Anal. 2014 (2014), Art. ID 249091, 7 pp.

[41] Y.J. Park, Fractional Gagliardo-Nirenberg inquality. J. Chungcheong
Mathematical Society 24 (2011), 583–586.

[42] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and
Derivatives, Theory and Applications. Gordon and Breach Science
Publ. (1993).

[43] H. Tanabe, Equations of Evolution. Monographs and Studies in Math-
ematics, No. 6, Pitman, London-San Francisco-Melbourne (1979).

[44] P. Thiramanus, J. Tariboon and S. K. Ntouyas, Henry-Gronwall inte-
gral inequalities with maxima and their applications to fractional dif-
ferential equations. Abstr. Appl. Anal. 2014 (2014), Art. ID 276316,
10 pp.

[45] Z. Ye and X. Xu, Global well-posedness of the 2-D Boussinesq equa-
tions with fractional Laplacian dissipation. J. Differential Equations
260 (2016), 67166744.

[46] J. Wu, Lower bound for an integral involving fractional Laplacians
and the generalized Navier-Stokes equations in Besov spaces. Commun.
Math. Phys. 263 (2006), 803–831.

[47] R. Zacher, Global strong solvability of a quasilinear subdiffusion prob-
lem. J. Evol. Equ. 12, No 4 (2012), 813–831.

1,2 NAAM Research Group, Department of Mathematics
Faculty of Science, King Abdulaziz University
P.O. Box 80203, Jeddah 21589, SAUDI ARABIA
e-mails: 1 aalsaedi@hotmail.com, 2 bashirahmad qau@yahoo.com
3 LaSIE, Pôle Sciences et Technologies, Université de La Rochelle
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