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Abstract Visual analytics for machine learning has

recently evolved as one of the most exciting areas in the

field of visualization. To better identify which research

topics are promising and to learn how to apply relevant

techniques in visual analytics, we systematically review

259 papers published in the last ten years together

with representative works before 2010. We build a

taxonomy, which includes three first-level categories:

techniques before model building, techniques during

modeling building, and techniques after model building.

Each category is further characterized by representative

analysis tasks, and each task is exemplified by a

set of recent influential works. We also discuss and

highlight research challenges and promising potential

future research opportunities useful for visual analytics

researchers.

Keywords visual analytics; machine learning; data

quality; feature selection; model under-

standing; content analysis

1 Introduction

The recent success of artificial intelligence applications

depends on the performance and capabilities of

machine learning models [1]. In the past ten years,

a variety of visual analytics methods have been

proposed to make machine learning more explainable,

trustworthy, and reliable. These research efforts fully

combine the advantages of interactive visualization
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and machine learning techniques to facilitate the

analysis and understanding of the major components

in the learning process, with an aim to improve

performance. For example, visual analytics research for

explaining the inner workings of deep convolutional

neural networks has increased the transparency of

deep learning models and has received ongoing and

increasing attention recently [1–4].

The rapid development of visual analytics

techniques for machine learning yields an emerging

need for a comprehensive review of this area to

support the understanding of how visualization

techniques are designed and applied to machine

learning pipelines. There have been several initial

efforts to summarize the advances in this field from

different viewpoints. For example, Liu et al. [5]

summarized visualization techniques for text analysis.

Lu et al. [6] surveyed visual analytics techniques for

predictive models. Recently, Liu et al. [1] presented

a paper on the analysis of machine learning models

from the visual analytics viewpoint. Sacha et al. [7]

analyzed a set of example systems and proposed

an ontology for visual analytics assisted machine

learning. However, existing surveys either focus on

a specific area of machine learning (e.g., text mining

[5], predictive models [6], model understanding [1])

or aim to sketch an ontology [7] based on a set of

example techniques only.

In this paper, we aim to provide a comprehensive

survey of visual analytics techniques for machine

learning, which focuses on every phase of the

machine learning pipeline. We focus on works in

the visualization community. Nevertheless, the AI

community has also made solid contributions to the

study of visually explaining feature detectors in deep

learning models. For example, Selvaraju et al. [8]

tried to identify the part of an image to which its

classification result is sensitive, by computing class
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activation maps. Readers can refer to the surveys of

Zhang and Zhu [9] and Hohman et al. [3] for more

details. We have collected 259 papers from related top-

tier venues in the past ten years through a systematical

procedure. Based on the machine learning pipeline,

we divide this literature as relevant to three stages:

before, during, and after model building. We analyze

the functions of visual analytics techniques in the three

stages and abstract typical tasks, including improving

data quality and feature quality before model building,

model understanding, diagnosis, and steering during

model building, and data understanding after model

building. Each task is illustrated by a set of carefully

selected examples. We highlight six prominent

research directions and open problems in the field of

visual analytics for machine learning. We hope that

this survey promotes discussion of machine learning

related visual analytics techniques and acts as a

starting point for practitioners and researchers wishing

to develop visual analytics tools for machine learning.

2 Survey landscape

2.1 Paper selection

In this paper, we focus on visual analytics techniques

that help to develop explainable, trustworthy,

and reliable machine learning applications. To

comprehensively survey visual analytics techniques

for machine learning, we performed an exhaustive

manual review of relevant top-tier venues in the past

ten years (2010–2020): these were InfoVis, VAST,

Vis (later SciVis), EuroVis, PacificVis, IEEE TVCG,

CGF, and CG&A. The manual review was conducted

by three Ph.D. candidates with more than two years

of research experience in visual analytics. We followed

the manual review process used in a text visualization

survey [5]. Specifically, we first considered the titles

of papers from these venues to identify candidate

papers. Next, we reviewed the abstracts of the

candidate papers to further determine whether they

concerned visual analytics techniques for machine

learning. If the title and abstract did not provide

clear information, the full text was gone through to

make a final decision. In addition to the exhaustive

manual review of the above venues, we also searched

for the representative related works that appeared

earlier or in other venues, such as the Profiler [10].

After this process, 259 papers were selected. Table 1

presents detailed statistics. Due to the increase in

machine learning techniques over the past ten years,

this field has been attracting ever more research

attention.

2.2 Taxonomy

In this section, we comprehensively analyze the

collected visual analytics works to systematically

understand the major research trends. These works

are categorized based on a typical machine learning

pipeline [11] used to solve real-world problems. As

shown in Fig. 1, such a pipeline contains three stages:

(1) data pre-processing before model building, (2)

machine learning model building, and (3) deployment

after the model is built. Accordingly, visual analytics

techniques for machine learning can be mapped into

these three stages: techniques before model building,

techniques during model building, and techniques

after model building.

2.2.1 Techniques before model building

The major goal of visual analytics techniques before

model building is to help model developers better

prepare the data for model building. The quality

of the data is mainly determined by the data itself

and the features used. Accordingly, there are two

research directions, visual analytics for data quality

improvement and feature engineering.

Data quality can be improved in various ways,

such as completing missing data attributes and

correcting wrong data labels. Previously, these tasks

were mainly conducted manually or by automatic

methods, such as learning-from-crowds algorithms

[12] which aim to estimate ground-truth labels from

noisy crowd-sourced labels. To reduce experts’ efforts

or further improve the results of automatic methods,

some works employ visual analytics techniques to

interactively improve the data quality. Table 1 shows

that in recent years, this topic has gained increasing

research attention.

Feature engineering is used to select the best

features to train the model. For example, in computer

vision, we could use HOG (Histogram of Oriented

Gradient) features instead of using raw image pixels.

In visual analytics, interactive feature selection

provides an interactive and iterative feature selection

process. In recent years, in the deep learning era,

feature selection and construction are mostly

conducted via neural networks. Echoing this trend,

there is reducing research attention in recent years

(2016–2020) in this direction (see Table 1).
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Table 1 Categories of visual analytics techniques for machine learning and representative works in each category (number of papers given in

brackets)

Technique category Papers Trend

Before model building
Improving data quality (31)

[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],

[25],[26], [27], [10], [28], [29], [30], [31], [32], [33], [34],

[35],[36], [37], [38], [39], [40], [41], [42], [43]

Improving feature quality (6) [44], [45], [46], [47], [48], [49]

During model building

Model understanding (30)
[50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61],

[62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73],

[74], [75], [76], [77], [78], [79]

Model diagnosis (19) [80], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90], [91],

[92], [93], [94], [95], [96], [97], [98]

Model steering (29)

[99], [100], [101], [102], [13], [103], [104], [105], [106], [107],

[108], [109], [110], [111], [112], [113], [114], [115], [116],

[117], [118], [119], [120], [121], [122], [123], [124], [125],

[126]

After model building

Understanding static data

analysis results (43)

[127], [128], [129], [130], [131], [132], [133], [134], [135],

[136], [137], [138], [139], [140], [141], [142], [143],

[144], [145], [146], [147], [148], [149], [150], [151], [152],

[153], [154], [155], [156], [157], [158], [159], [160], [161],

[162],[163], [164], [165], [166], [167], [168], [169]

Understanding dynamic data

analysis results (101)

[170], [171], [172], [173], [174], [175], [176], [177], [178],

[179], [180], [181], [182], [183], [184], [185], [186], [187],

[188], [189], [190], [191], [192], [193], [194], [195], [196],

[197], [198], [199], [200], [201], [202], [203], [204], [205],

[206], [207], [208], [209], [210], [211], [212], [213], [214],

[215], [216], [217], [218], [219], [220], [221], [222], [223],

[224], [225], [226], [227], [228], [229], [230], [231], [232],

[233], [234], [235], [236], [237], [238], [239], [240], [241],

[242], [243], [244], [245], [246], [247], [248], [249], [250],

[251], [252], [253], [254], [255], [256], [257], [258], [259],

[260], [261], [262], [263], [264], [265], [266], [267], [268],

[269], [270]

Fig. 1 An overview of visual analytics research for machine learning.

2.2.2 Techniques during model building

Model building is a central stage in building a

successful machine learning application. Developing

visual analytics methods to facilitate model building

is also a growing research direction in visualization

(see Table 1). In this survey, we categorize current
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methods by their analysis goal: model understanding,

diagnosis, or steering. Model understanding methods

aim to visually explain the working mechanisms of a

model, such as how changes in parameters influence

the model and why the model gives a certain output

for a specific input. Model diagnosis methods target

diagnosing errors in model training via interactive

exploration of the training process. Model steering

methods are mainly aimed at interactively improving

model performance. For example, to refine a topic

model, Utopian [13] enables users to interactively

merge or split topics, and automatically modify other

topics accordingly.

2.2.3 Techniques after model building

After a machine learning model has been built and

deployed, it is crucial to help users (e.g., domain

experts) understand the model output in an intuitive

way, to promote trust in the model output. To this

end, there are many visual analytics methods to

explore model output, for a variety of applications.

Unlike methods for model understanding during

model building, these methods usually target model

users rather than model developers. Thus, the

internal workings of a model are not illustrated,

but the focus is on the intuitive presentation and

exploration of model output. As these methods are

often data-driven or application-driven, in this survey,

we categorize these methods by the type of data being

analyzed, particularly as static data or temporal data.

3 Techniques before model building

Two major tasks required before building a model

are data processing and feature engineering. They

are critical, as practical experience indicates that low-

quality data and features degrade the performance

of machine learning models [271, 272]. Data quality

issues include missing values, outliers, and noise in

instances and their labels. Feature quality issues

include irrelevant features, redundancy between

features, etc. While manually addressing these

issues is time-consuming, automatic methods may

suffer from poor performance. Thus, various visual

analytics techniques have been developed to reduce

experts’ effort as well as to simultaneously improve

the performance of automatic methods of producing

high-quality data and features [303].

3.1 Improving data quality

Data includes instances and their labels [273]. From

this perspective, existing efforts for improving data

quality either concern instance-level improvement, or

label-level improvement.

3.1.1 Instance-level improvement

At the instance level, many visual analytics methods

focus on detecting and correcting anomalies in data,

such as missing values and duplication. For example,

Kandel et al. [10] proposed Profiler to aid the

discovery and assessment of anomalies in tabular data.

Anomaly detection methods are applied to detect data

anomalies, which are classified into different types

subsequently. Then, linked summary visualizations

are automatically recommended to facilitate the

discovery of potential causes and consequences of

these anomalies. VIVID [14] was developed to handle

missing values in longitudinal cohort study data.

Through multiple coordinated visualizations, experts

can identify the root causes of missing values (e.g., a

particular group who do not participate in follow-up

examinations), and replace missing data using an

appropriate imputation model. Anomaly removal is

often an iterative process which must be repeated.

Illustrating provenance in this iterative process allows

users to be aware of changes in data quality and

to build trust in the processed data. Thus, Bors

et al. [20] proposed DQProv Explorer to support

the analysis of data provenance, using a provenance

graph to support the navigation of data states and a

quality flow to present changes in data quality over

time. Recently, another type of data anomaly, out-of-

distribution (OoD) samples, has received extensive

attention [274, 275]. OoD samples are test samples

that are not well covered by training data, which is a

major source of model performance degradation. To

tackle this issue, Chen et al. [21] proposed OoDAnalyzer

to detect and analyze OoD samples. An ensemble OoD

detection method, combining both high- and low-level

features, was proposed to improve detection accuracy.

A grid visualization of the detection result (see Fig. 2) is

utilized to explore OoD samples in context and explain

the underlying reasons for their presence. In order

to generate grid layouts at interactive rates during

the exploration, a kNN-based grid layout algorithm

motivated by Hall’s theorem was developed.

When considering time-series data, several

challenges arise as time has distinct characteristics
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Fig. 2 OoDAnalyzer, an interactive method to detect out-of-distribution samples and explain them in context. Reproduced with permission

from Ref. [21], c© IEEE 2020.

that induce specific quality issues that require

analysis in a temporal context. To tackle this issue,

Arbesser et al. [15] proposed a visual analytics

system, Visplause, to visually assess time-series data

quality. Anomaly detection results, e.g., frequencies

of anomalies and their temporal distributions, are

shown in a tabular layout. In order to address

the scalability problem, data are aggregated in a

hierarchy based on meta-information, which enables

analysis of a group of anomalies (e.g., abnormal time

series of the same type) simultaneously. Besides

automatically detected anomalies, KYE [23] also

supports the identification of additional anomalies

overlooked by automatic methods. Time-series data

are presented in a heatmap view, where abnormal

patterns (e.g., regions with unusually high values)

indicate potential anomalies. Click stream data

are a widely studied kind of time-series data in

the field of visual analytics. To better analyze

and refine click stream data, Segmentifier [22] was

proposed to provide an iterative exploration process

for segmentation and analysis. Users can explore

segments in three coordinated views at different

granularities and refine them by filtering, partitioning,

and transformation. Every refinement step results

in new segments, which can be further analyzed and

refined.

To tackle uncertainties in data quality improve-

ment, Bernard et al. [17] developed a visual

analytics tool to exhibit the changes in the data

and uncertainties caused by different preprocessing

methods. This tool enables experts to become aware

of the effects of these methods and to choose suitable

ones, to reduce task-irrelevant parts while preserving

task-relevant parts of the data.

As data have the risk of exposing sensitive

information, several recent studies have focused on

preserving data privacy during the data quality

improvement process. For tabular data, Wang et

al. [41] developed a Privacy Exposure Risk Tree to

display privacy exposure risks in the data and a

Utility Preservation Degree Matrix to exhibit how

the utility changes as privacy-preserving operations

are applied. To preserve privacy in network datasets,

Wang et al. [40] presented a visual analytics system,

GraphProtector. To preserve important structures

of networks, node priorities are first specified

based on their importance. Important nodes are

assigned low priorities, reducing the possibility of

modifying these nodes. Based on node priorities

and utility metrics, users can apply and compare a

set of privacy-preserving operations and choose the

most suitable one according to their knowledge and

experience.
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3.1.2 Label-level improvement

According to whether the data have noisy labels,

existing works can be classified as either methods

for improving the quality of noisy labels, or allowing

interactive labeling.

Crowdsourcing provides a cost-effective way to

collect labels. However, annotations provided by

crowd workers are usually noisy [271, 276]. Many

methods have been proposed to remove noise in

labels. Willett et al. [42] developed a crowd-

assisted clustering method to remove redundant

explanations provided by crowd workers. Explanations

are clustered into groups, and the most representative

ones are preserved. Park et al. [35] proposed

C2A that visualizes crowdsourced annotations and

worker behavior to help doctors identify malignant

tumors in clinical videos. Using C2A, doctors can

discard most tumor-free video segments and focus

on the ones that most likely to contain tumors. To

analyze the accuracy of crowdsourcing workers, Park

et al. [34] developed CMed that visualizes clinical

image annotations by crowdsourcing, and workers’

behavior. By clustering workers according to their

annotation accuracy and analyzing their logged events,

experts are able to find good workers and observe the

effects of workers’ behavior patterns. LabelInspect

[31] was proposed to improve crowdsourced labels by

validating uncertain instance labels and unreliable

workers. Three coordinated visualizations, a con-

fusion (see Fig. 3(a)), an instance (see Fig. 3(b)), and

a worker visualization (see Fig. 3(c)), were developed

to facilitate the identification and validation of

uncertain instance labels and unreliable workers.

Based on expert validation, further instances and

workers are recommended for validation by an

iterative and progressive verification procedure.

Although the aforementioned methods can

effectively improve crowdsourced labels, crowd

information is not available in many real-world

datasets. For example, the ImageNet dataset [277]

only contains the labels cleaned by automatic noise

removal methods. To tackle these datasets, Xiang

et al. [43] developed DataDebugger to interactively

improve data quality by utilizing user-selected trusted

items. Hierarchical visualization combined with

an incremental projection method and an outlier

biased sampling method facilitates the exploration

and identification of trusted items. Based on these

identified trusted items, a data correction algorithm

propagates labels from trusted items to the whole

dataset. Paiva et al. [33] assumed that instances

misclassified by a trained classifier were likely to

Fig. 3 LabelInspect, an interactive method to verify uncertain instance labels and unreliable workers. Reproduced with permission from

Ref. [31], c© IEEE 2019.
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be mislabeled instances. Based on this assumption,

they employed a Neighbor Joining Tree enhanced by

multidimensional projections to help users explore

misclassified instances and correct mislabeled ones.

After correction, the classifier is refined using the

corrected labels, and a new round of correction starts.

Bäuerle et al. [16] developed three classifier-guided

measures to detect data errors. Data errors are then

presented in a matrix and a scatter plot, allowing

experts to reason about and resolve errors.

All the above methods start with a set of labeled

data with noise. However, many datasets do not

contain such a label set. To tackle this issue, many

visual analytics methods have been proposed for

interactive labeling. Reducing labeling effort is a major

goal of interactive labeling. To this end, Moehrmann

et al. [32] used an SOM-based visualization to place

similar images together, allowing users to label multiple

similar images of the same class in one go. This

strategy is also used by Khayat et al. [28] to identify

social spambot groups with similar anomalous behavior,

Kurzhals et al. [29] to label mobile eye-tracking

data, and Halter et al. [24] to annotate and analyze

primary color strategies used in films. Apart from

placing similar items together, other strategies, like

filtering, have also been applied to find items of interest

for labeling. Filtering and sorting are utilized in

MediaTable [36] to find similar video segments. A table

visualization is utilized to present video segments and

their attributes. Users can filter out irrelevant segments

and sort on attributes to order relevant segments,

allowing users to label several segments of the same

class simultaneously. Stein et al. [39] provided a rule-

based filtering engine to find patterns of interest in

soccer match videos. Experts can interactively specify

rules through a natural language GUI.

Recently, to enhance the effectiveness of interactive

labeling, various visual analytics methods have

combined visualization techniques with machine

learning techniques, such as active learning. The

concept of “intra-active labeling” was first introduced

by Höferlin et al. [26]; it enhances active learning

with human knowledge. Users are not only able to

query instances and label them via active learning,

but also to understand and steer machine learning

models interactively. This concept is also used in

text document retrieval [25], sequential data retrieval

[30], trajectory classification [27], identifying relevant

tweets [37], and argumentation mining [38]. For

example, to annotate text fragments in argumentation

mining tasks, Sperrle et al. [38] developed a language

model for fragment recommendation. A layered

visual abstraction is utilized to support five relevant

analysis tasks required by text fragment annotation.

In addition to developing systems for interactive

labeling, some empirical experiments were conducted

to demonstrate their effectiveness. For example,

Bernard et al. [18] conducted experiments to show the

superiority of user-centered visual interactive labeling

over model-centered active learning. A quantitative

analysis [19] was also performed to evaluate user

strategies for selecting samples in the labeling process.

Results show that in early phases, data-based (e.g.,

clusters and dense areas) user strategies work well.

However, in later phases, model-based (e.g., class

separation) user strategies perform better.

3.2 Improving feature quality

A typical method to improve feature quality is

selecting useful features that contribute most to the

prediction, i.e., feature selection [278]. A common

feature selection strategy is to select a subset of

features that minimizes the redundancy between

them and maximizes the relevance between them

and targets (e.g., classes of instances) [46]. Along

this line, several methods have been developed to

interactively analyze the redundancy and relevance

of features. For example, Seo and Shneiderman

[48] proposed a rank-by-feature framework, which

ranks features by relevance. They visualized ranking

results with tables and matrices. Ingram et al. [44]

proposed a visual analytics system, DimStiller, which

allows users to explore features and their relationships

and interactively remove irrelevant and redundant

features. May et al. [46] proposed SmartStripes

to select different feature subsets for different data

subsets. A matrix-based layout is utilized to

exhibit the relevance and redundancy of features.

Mühlbacher and Piringer [47] developed a partition-

based visualization for the analysis of the relevance

of features or feature pairs. The features or feature

pairs are partitioned into subdivisions, which allows

users to explore the relevance of features (or feature

pairs) at different levels of detail. Parallel coordinates

visualization was utilized by Tam et al. [49] to identify

features that could discriminate between different
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clusters. Krause et al. [45] ranked features across

different feature selection algorithms, cross-validation

folds, and classification models. Users are able to

interactively select the features and models that lead

to the best performance.

Besides selecting existing features, constructing

new features is also useful in model building. For

example, FeatureInsight [279] was proposed to

construct new features for text classification. By

visually examining classifier errors and summarizing

the root causes of these errors, users are able to

create new features that can correctly discriminate

misclassified documents. To improve the generalization

capability of new features, visual summaries are used

to analyze a set of errors instead of individual errors.

4 Techniques during model building

Machine learning models are usually regarded as black

boxes because of their lack of interpretability, which

hinders their practical use in risky scenarios such as

self-driving cars and financial investment. Current

visual analytics techniques in model building explore

how to reveal the underlying working mechanisms

of machine learning models and then help model

developers to build well-formed models. First

of all, model developers require a comprehensive

understanding of models in order to release them

from a time-consuming trial-and-error process. When

the training process fails or the model does not

provide satisfactory performance, model developers

need to diagnose the issues occurring in the training

process. Finally, there is a need to assist in model

steering as much time is spent in improving model

performance during the model building process.

Echoing these needs, researchers have developed

many visual analytics methods to enhance model

understanding, diagnosis, and steering [1, 2].

4.1 Model understanding

Works related to model understanding belong to two

classes: those understanding the effects of parameters,

and those understanding model behaviour.

4.1.1 Understanding the effects of parameters

One aspect of model understanding is to inspect

how the model outputs change with changes in

model parameters. For example, Ferreira et al. [54]

developed BirdVis to explore the relationships

between different parameter configurations and model

outputs; these were bird occurrence predictions in

their application. The tool also reveals how these

parameters are related to each other in the prediction

model. Zhang et al. [266] proposed a visual analytics

method to visualize how variables affect statistical

indicators in a logistic regression model.

4.1.2 Understanding model behaviours

Another aspect is how the model works to produce

the desired outputs. There are three main types

of methods used to explain model behaviours,

namely network-centric, instance-centric, and hybrid

methods. Network-centric methods aim to explore

the model structure and interpret how different parts

of the model (e.g., neurons or layers in convolutional

neural networks) cooperate with each other to

produce the final outputs. Earlier works employ

directed graph layouts to visualize the structure of

neural networks [280], but visual clutter becomes a

serious problem as the model structure becoming

increasingly complex. To tackle this problem,

Liu et al. [62] developed CNNVis to visualize

deep convolutional neural networks (see Fig. 4). It

leverages clustering techniques to group neurons with

similar roles as well as their connections in order to

address visual clutter caused by their huge quantity.

This tool helps experts understand the roles of the

neurons and their learned features, and moreover,

how low-level features are aggregated into high-level

ones through the network. Later, Wongsuphasawat

et al. [77] designed a graph visualization for

exploring the machine learning model architecture in

Tensorflow [281]. They conducted a series of graph

transformations to compute a legible interactive

graph layout from a given low-level dataflow graph

to display the high-level structure of the model.

Instance-centric methods aim to provide

instance-level analysis and exploration, as well

as understanding the relationships between instances.

Rauber et al. [69] visualized the representations

learned from each layer in the neural network

by projecting them onto 2D scatterplots. Users

can identify clusters and confusion areas in the

representation projections and, therefore, understand

the representation space learned by the network.

Furthermore, they can study how the representation

space evolves during training so as to understand the

network’s learning behaviour. Some visual analytics

techniques for understanding recurrent neural
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Fig. 4 CNNVis, a network-centric visual analytics technique to understand deep convolutional neural networks with millions of neurons and

connections. Reproduced with permission from Ref. [62], c© IEEE 2017.

networks (RNNs) also adopt such an instance-centric

design. LSTMVis [73] developed by Strobelt et al.

utilizes parallel coordinates to present the hidden

states, to support the analysis of changes in the hidden

states over texts. RNNVis [65] developed by Ming et

al. clusters the hidden state units (each hidden state

unit is a dimension of the hidden state vector in an

RNN) as memory chips and words as word clouds.

Their relationships are modeled as a bipartite graph,

which supports sentence-level explanations in RNNs.

Hybrid methods combine the above two methods

and leverage both of their strengths. In particular,

instance-level analysis can be enhanced with the

context of the network architecture. Such contexts

benefit the understanding of the network’s working

mechanism. For instance, Hohman et al. [56]

proposed Summit, to reveal important neurons and

critical neuron associations contributing to the model

prediction. It integrates an embedding view to

summarize the activations between classes and an

attribute graph view to reveal influential connections

between neurons. Kahng et al. [59] proposed ActiVis

for large-scale deep neural networks. It visualizes the

model structure with a computational graph and the

activation relationships between instances, subsets,

and classes using a projected view.

In recent years, there have been some efforts to

use a surrogate explainable model to explain model

behaviours. The major benefit of such methods

is that they do not require users to investigate

the model itself. Thus, they are more useful for

those with no or limited machine learning knowledge.

Treating the classifier as a black box, Ming et

al. [66] first extracted rule-based knowledge from

the input and output of the classifier. These rules are

then visualized using RuleMatrix, which supports

interactive exploration of the extracted rules by

practitioners, improving the interpretability of the

model. Wang et al. [75] developed DeepVID to

generate a visual interpretation for image classifiers.

Given an image of interest, a deep generative model

was first used to generate samples near it. These

generated samples were used to train a simpler and

more interpretable model, such as a linear regression

classifier, which helps explain how the original model

makes the decision.
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4.2 Model diagnosis

Visual analytical techniques for model diagnosis may

either analyze the training results, or analyze the

training dynamics.

4.2.1 Analyzing training results

Tools have been developed for diagnosing classifiers

based on their performance [81, 82, 86, 93]. For

example, Squares [93] used boxes to represent

samples and group them according to their prediction

classes. Using different textures to encode true/false

positives/negatives, this tool allows fast and accurate

estimation of performance metrics at multiple levels of

detail. Recently, the issue of model fairness has drawn

growing attention [80, 83, 97]. For example, Ahn et

al. [80] proposed a framework named FairSight and

implemented a visual analytics system to support the

analysis of fairness in ranking problems. They divided

the machine learning pipeline into three phases (data,

model, and outcome) and then measured the bias

both at individual and group levels using different

measures. Based on these measures, developers

can iteratively identify those features that cause

discrimination and remove them from the model.

Researchers are also interested in exploring potential

vulnerabilities in models that prevent them from

being reliably applied to real-world applications

[84, 91]. Cao et al. [84] proposed AEVis to analyze

how adversarial examples fool neural networks. The

system (see Fig. 5) takes both normal and adversarial

examples as input and extracts their datapaths for

model prediction. It then employs a river-based

metaphor to show the diverging and merging patterns

of the extracted datapaths, which reveal where the

adversarial samples mislead the model. Ma et al. [91]

designed a series of visual representations from

overview to detail to reveal how data poisoning will

make a model misclassify a specific sample. By

comparing the distributions of the poisoned and

normal training data, experts can deduce the reason

for the misclassification of the attacked sample.

4.3 Analyzing training dynamics

Recent efforts have also been concentrated on

analyzing the training dynamics. These techniques

are intended for debugging the training process of

machine learning models. For example, DGMTracker

[89] assists experts to discover reasons for the

failed training process of deep generative models. It

utilizes a blue-noise polyline sampling algorithm

to simultaneously keep the outliers and the major

distribution of the training dynamics in order to help

Fig. 5 AEVis, a visual analytics system for analyzing adversarial samples. It shows diverging and merging patterns in the extracted datapaths

with a river-based visualization, and critical feature maps with a layer-level visualization. Reproduced with permission from Ref. [84], c© IEEE 2020.
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experts detect the potential root cause of a failure.

It also employs a credit assignment algorithm to

disclose the interactions between neurons to facilitate

the diagnosis of failure propagation. Attention has also

been given to the diagnosis of the training process of

deep reinforcement learning. Wang et al. [96] proposed

DQNViz for the understanding and diagnosis of deep

Q-networks for a Breakout game. At the overview

level, DQNViz presents changes in the overall statistics

during the training process with line charts and

stacked area charts. Then at the detail level, it uses

segment clustering and a pattern mining algorithm

to help experts identify common as well as suspicious

patterns in the event-sequences of the agents in Q-

networks. As another example, He et al. [87] proposed

DynamicsExplorer to diagnose an LSTM trained to

control a ball-in-maze game. To support quick identi-

fication of where training failures arise, it visualizes

ball trajectories with a trajectory variability plot, as

well as their clusters using a parallel coordinates plot.

4.4 Model steering

There are two major strategies for model steering:

refining the model with human knowledge, and

selecting the best model from a model ensemble.

4.4.1 Model refinement with human knowledge

Several visual analytics techniques have been

developed to place users into the loop of the model

refinement process, through flexible interaction.

Users can directly refine the target model with

visual analytics techniques. A typical example is

ProtoSteer [116], a visual analytics system that

enables editing prototypes to refine a prototype

sequence network named ProSeNet [282]. ProtoSteer

uses four coordinated views to present the information

about the learned prototypes in ProSeNet. Users

can refine these prototypes by adding, deleting, and

revising specific prototypes. The model is then

retrained with these user-specific prototypes for

performance gain. In addition, van der Elzen and van

Wijk [122] proposed BaobabView to support experts

to construct decision trees iteratively using domain

knowledge. Experts can refine the decision tree with

direct operations, including growing, pruning, and

optimizing the internal nodes, and can evaluate the

refined one with various visual representations.

Besides direct model updates, users can also correct

flaws in the results or provide extra knowledge,

allowing the model to be updated implicitly to

produce improved results based on human feedback.

Several works have focused on incorporating user

knowledge into topic models to improve their results

[13, 105, 106, 109, 124, 125]. For instance, Yang et

al. [125] presented ReVision that allows users to

steer hierarchical clustering results by leveraging an

evolutionary Bayesian rose tree clustering algorithm

with constraints. As shown in Fig. 6, the constraints

and the clustering results are displayed with an

Fig. 6 ReVision, a visual analytics system integrating a constrained hierarchical clustering algorithm with an uncertainty-aware, tree-based

visualization to help users interactively refine hierarchical topic modeling results. Reproduced with permission from Ref. [125], c© IEEE 2020.
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uncertainty-aware tree-based visualization to guide

the steering of the clustering results. Users can refine

the constraint hierarchy by dragging. Documents are

then re-clustered based on the modified constraints.

Other human-in-the-loop models have also stimulated

the development of visual analytic systems to support

such kinds of model refinement. For instance,

Liu et al. [112] proposed MutualRanker using an

uncertainty-based mutual reinforcement graph model

to retrieve important blogs, users, and hashtags from

microblog data. It shows ranking results, uncertainty,

and its propagation with the help of a composite

visualization; users can examine the most uncertain

items in the graph and adjust their ranking scores.

The model is incrementally updated by propagating

adjustments throughout the graph.

4.4.2 Model selection from an ensemble

Another strategy for model steering is to select the best

model from a model ensemble, which is usually found

in clustering [102, 118, 121] and regression models [99,

103, 113, 119]. Clustrophile 2 [102] is a visual analytics

system for visual clustering analysis, which guides user

selection of appropriate input features and clustering

parameters through recommendations based on user-

selected results. BEAMES [103] was designed for

multimodel steering and selection in regression tasks.

It creates a collection of regression models by varying

algorithms and their corresponding hyperparameters,

with further optimization by interactive weighting of

data instances and interactive feature selection and

weighting. Users can inspect them and then select

an optimal model according to different aspects of

performance, such as their residual scores and mean

squared errors.

5 Techniques after model building

Existing visual analytics efforts after model building

aim to help users understand and gain insights

from model outputs, such as high-dimensional data

analysis results [5, 283]. As these methods are often

data-driven, we categorize the corresponding methods

according to the type of data analyzed. The temporal

property of data is critical in visual design. Thus, we

classify methods as those understanding static data

analysis results, and those understanding dynamic

data analysis results. A visual analytics system for

understanding static data analysis results usually

treats all model output as a large collection and

analyzes the static structure. For dynamic data, in

addition to understanding the analysis results at each

time point, the system focuses on illustrating the

evolution of data over time, which is learned by the

analysis model.

5.1 Understanding static data analysis results

We summarize the research on understanding static

data analysis according to the type of data. Most

research focuses on textual data analysis, while fewer

works study the understanding of other types of data

analysis.

5.1.1 Textual data analysis

The most widely studied topic is visual text analytics,

which tightly integrates interactive visualization

techniques with text mining techniques (e.g.,

document clustering, topic models, and word

embedding) to help users better understand a large

amount of textual data [5].

Some early works employed simple visualizations

to directly convey the results of classical text

mining techniques, such as text summarization,

categorization, and clustering. For example, Görg

et al. [143] developed a multi-view visualization

consisting of a list view, a cluster view, a word

cloud, a grid view, and a document view, to visually

illustrate analysis results of document summarization,

document clustering, sentiment analysis, entity

identification, and recommendation. By combining

interactive visualization with text mining techniques,

a smooth and informative exploration environment

is provided to users.

Most later research has focused on combining well-

designed interactive visualization with state-of-the-

art text mining techniques, such as topic models and

deep learning models, to provide deeper insights into

textual data. To provide an overview of the relevant

topics discussed in multiple sources, Liu et al. [159]

first utilized a correlated topic model to extract topic

graphs from multiple text sources. A graph matching

algorithm is then developed to match the topic graphs

from different sources, and a hierarchical clustering

method is employed to generate hierarchies of topic

graphs. Both the matched topic graph and hierarchies

are fed into a hybrid visualization which consists of

a radial icicle plot and a density-based node-link

diagram (see Fig. 7(a)), to support exploration and

analysis of common and distinctive topics discussed
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in multiple sources. Dou et al. [136] introduced

DemographicVis to analyze different demographic

groups on social media based on the content generated

by users. An advanced topic model, latent Dirichlet

allocation (LDA) [284], is employed to extract topic

features from the corpus. Relationships between the

demographic information and extracted features are

explored through a parallel sets visualization [285],

and different demographic groups are projected onto

the two-dimensional space based on the similarity

of their topics of interest (see Fig. 7(b)). Recently,

some deep learning models have also been adopted

because of their better performance. For example,

Berger et al. [128] proposed cite2vec to visualize

the latent themes in a document collection via

document usage (e.g., citations). It extended a

famous word2vec model, the skip-gram model [286],

to generate the embedding for both words and

documents by considering the citation information

and the textual content together. The words are

projected into a two-dimensional space using t-SNE

first, and the documents are projected onto the same

space, where both the document-word relationship

and document–document relationships are considered

simultaneously.

5.1.2 Other data analysis

In addition to textual data, other types of data have

also been studied. For example, Hong et al. [146]

analyzed flow fields through an LDA model by

defining pathlines as documents and features as

words, respectively. After modeling, the original

pathlines and extracted topics were projected into a

two-dimensional space using multidimensional scaling,

and several previews were generated to render the

pathlines for important topics. Recently, a visual

analytics tool, SMARTexplore [129], was developed

to help analysts find and understand interesting

patterns within and between dimensions, including

correlations, clusters, and outliers. To this end,

it tightly couples a table-based visualization with

pattern matching and subspace analysis.

5.2 Understanding dynamic data analysis

results

In addition to understanding the results of static

data analysis, it is also important to investigate

and analyze how latent themes in data change over

time. For example, a system can help politicians

to make timely decisions if it provides an overview

of major public opinions on social media and how

they change over time. Most existing works focus on

understanding the analysis results of a data corpus

where each data item is associated with a time

stamp. According to whether the system supports the

analysis of streaming data, we may further classify

existing works on visual dynamic data analysis as

Fig. 7 Examples of static text visualization. (a) TopicPanorama extracts topic graphs from multiple sources and reveals relationships between

them using graph layout. Reproduced with permission from Ref. [159], c© IEEE 2014. (b) DemographicVis measures similarity between different

users after analyzing their posting contents, and reveals their relationships using t-SNE projection. Reproduced with permission from Ref. [136],

c© IEEE 2015.



16 J. Yuan, C. Chen, W. Yang, et al.

offline and online. In offline analysis, all data are

available before analysis, while online analysis tackles

streaming data that is incoming during the analysis

process.

5.2.1 Offline analysis.

Offline analysis research can be classified according

to the analysis task: topic analysis, event analysis,

and trajectory analysis.

Understanding topic evolution in a large text

corpus over time is an important topic, attracting

much attention. Most existing works adopt a river

metaphor to convey changes in the text corpus over

time. ThemeRiver [204] is one of the pioneering

works, using the river metaphor to reveal changes in

the volumes of different themes. To better understand

the content change of a document corpus, TIARA

[220, 248] utilizes an LDA model [287] to extract

topics from the corpus and reveal their changes

over time. However, only observing volumes and

content change is not enough for complex analysis

tasks where users want to explore relationships

between different topics and their changes over time.

Therefore, later works have focused on understanding

relationships between topics (e.g., topic splitting and

merging) and their evolving patterns over time. For

example, Cui et al. [190] first extracted topic splitting

and merging patterns from a document collection

using an incremental hierarchical Dirichlet process

model [288]. Then a river metaphor with a set

of well-designed glyphs was developed to visually

illustrate the aforementioned topic relationships and

their dynamic changes over time. Xu et al. [259]

leveraged a topic competition model to extract

dynamic competition between topics and the effects

of opinion leaders on social media. Sun et al. [238]

extended the competition model to a “coopetition”

(cooperation and competition) model to help

understand the more complex interactions between

evolving topics. Wang et al. [246] proposed IdeaFlow,

a visual analytics system for learning the lead-

lag relationships across different social groups over

time. However, these works use a flat structure

to model topics, which hampers their usage in

the era of big data for handling large-scale text

corpora. Fortunately, there are already initial efforts

in coupling hierarchical topic models with interactive

visualization to favor the understanding of the main

content in a large text corpus. For example, Cui et

al. [191] extracted a sequence of topic trees using

an evolutionary Bayesian rose tree algorithm [289]

and then calculated the tree cut for each tree. These

tree cuts are used to approximate the topic trees and

display them in a river metaphor, which also reveals

dynamic relationships between the topics, including

topic birth, death, splitting, and merging.

Event analysis targets revealing common or

semantically important sequential patterns in ordered

sequences of events [149, 202, 222, 226]. To facilitate

visual exploration of large scale event sequences and

pattern discovery, several visual analytics methods

have been proposed. For example, Liu et al. [222]

developed a visual analytics method for click stream

data. Maximal sequential patterns are discovered and

Fig. 8 TextFlow employs a river-based metaphor to show topic birth, death, merging, and splitting. Reproduced with permission from

Ref. [190], c© IEEE 2011.
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pruned from the click stream data. The extracted

patterns and original data are well illustrated at four

granularities: patterns, segments, sequences, and

events. Guo et al. [202] developed EventThread,

which uses a tensor-based model to transform the

event sequence data into an n-dimensional tensor.

Latent patterns (threads) are extracted with a tensor

decomposition technique, segmented into stages, and

then clustered. These threads are represented as

segmented linear stripes, and a line map metaphor is

used to reveal the changes between different stages.

Later, EventThread was extended to overcome the

limitation of the fixed length of each stage [201].

The authors proposed an unsupervised stage analysis

algorithm to effectively identify the latent stages

in event sequences. Based on this algorithm, an

interactive visualization tool was developed to reveal

and analyze the evolution patterns across stages.

Other works focus on understanding movement data

(e.g., GPS records) analysis results. Andrienko et

al. [174] extracted movement events from trajectories

and then performed spatio-temporal clustering for

aggregation. These clusters are visualized using spatio-

temporal envelopes to help analysts find potential

traffic jams in the city. Chu et al. [189] adopted

an LDA model for mining latent movement patterns

in taxi trajectories. The movement of each taxi,

represented by the traversed street names, was

regarded as a document. Parallel coordinates were

used to visualize the distribution of streets over topics,

where each axis represents a topic, and each polyline

represents a street. The evolution of the topics

was visualized as topic routes that connect similar

topics between adjacent time windows. More recently,

Zhou et al. [269] treated origin-destination flows

as words and trajectories as paragraphs, respectively.

Therefore, a word2Vec model was used to generate the

vectorized representation for each origin-destination

flow. t-SNE was then employed to project the

embedding of the flows into two-dimensional space,

where analysts can check the distributions of the

origin-destination flows and select some for display

on the map. Besides directly analyzing the original

trajectory data, other papers try to augment the

trajectories with auxiliary information to reduce the

burden on visual exploration. Kruger et al. [212]

clustered destinations with DBScan and then used

Foursquare to provide detailed information about the

destinations (e.g., shops, university, residence). Based

on the enriched data, frequent patterns were extracted

and displayed in the visualization (see Fig. 9); icons

on the time axis help understand these patterns. Chen

et al. [186] mined trajectories from geo-tagged social

media and displayed keywords extracted from the

text content, helping users explore the semantics of

trajectories.

Fig. 9 Kruger et al. enrich trajectory data semantically. Frequent routes and destinations are visualized in the geographic view (top), while the

frequent temporal patterns are mined and displayed in the temporal view (bottom). Reproduced with permission from Ref. [212], c© IEEE 2015.
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5.2.2 Online analysis

Online analysis is especially necessary for streaming

data, such as text streams. As a pioneering work

for online analysis of text streams, Thom et al.

[240] proposed ScatterBlog to analyze geo-located

tweet streams. The system uses Twitter4J to get

streaming tweets and extracts location, time, user

ID, and tokenized terms in the tweets. To efficiently

analyze a tweet stream, an incremental clustering

algorithm was employed to cluster similar tweets.

Based on the clustering results, spatio-temporal

anomalies were detected and reported to users in

real-time. To reduce user effort for filtering and

monitoring in ScatterBlogs, Bosch et al. [177] proposed

ScatterBlogs2, which enhanced ScatterBlogs with

machine learning techniques. In particular, an SVM-

based classifier was built for filtering tweets of interest,

and an LDA model was employed to generate a topic

overview. To efficiently handle high-volume text

streams, Liu et al. [219] developed TopicStream to

help users analyze hierarchical topic evolution in high-

volume text streams. In TopicStream, an evolutionary

topic tree was built from text streams, and a tree cut

algorithm was developed to reduce visual clutter and

enable users to focus on topics of interest. Combining

a river metaphor and a visual sedimentation metaphor,

the tool effectively illustrates the overall hierarchical

topic evolution as well as how newly arriving textual

documents are gradually aggregated into the existing

topics over time. Triggered by TopicStream, Wu et

al. [252] developed StreamExplorer, which enables the

tracking and comparison of a social stream. In

particular, an entropy-based event detection method

was developed to detect events in the social media

stream. They are further visualized in a multi-level

visualization, including a glyph-based timeline, a map

visualization, and interactive lenses. In addition to

text streams, other types of streaming data are also

analyzed. For example, Lee et al. [213] employed a long

short-term memory model for road traffic congestion

forecasting and visualized the results with a Volume-

Speed Rivers visualization. Propagation of congestion

was also extracted and visualized, helping analysts

understand causality within the detected congestion.

6 Research opportunities

Although visual analytics research for machine

learning has achieved promising results in both

academia and real-world applications, there are still

several long-term research challenges. Here, we

discuss and highlight major challenges and potential

research opportunities in this area.

6.1 Opportunities before model building

6.1.1 Improving data quality for weakly supervised

learning

Weakly supervised learning builds models from

data with quality issues, including inaccurate labels,

incomplete labels, and inexact labels. Improving

data quality can boost the performance of weakly

supervised learning models [290]. Most existing

methods focus on inaccurate data (e.g., noisy

crowdsourced annotations and label errors) quality

issues, and interactive labeling related to incomplete

data (e.g., none or only a few data are labeled)

quality issues. However, fewer efforts are devoted

to the better exploitation of unlabeled data related

to incomplete data quality issues as well as inexact

data (e.g., coarse-grained labels that are not

exact as required) quality issues. This paves the

way for potential future research. Firstly, the

potential of visual analytics techniques to address

the incompleteness issue is not fully exploited. For

example, improving the quality of unlabeled data

is critical for semi-supervised learning [290, 291],

which is tightly combined with a small amount of

labeled data during training to infer the correct

mapping from the data set to the label set. One

typical example is graph-based semi-supervised

learning [291], which depends on the relationship

between labeled and unlabeled data. Automatically

constructed relationships (graphs) are sometimes

poor in quality, resulting in model performance

degradation. A major cause behind these poor-quality

graphs is that automatic graph construction methods

usually rely on global parameters (e.g., a global k

value in the kNN graph construction method), which

may be locally inappropriate. As a consequence, it

is necessary to utilize visualization to illustrate how

labels are propagated along graph edges, to facilitate

understanding of how local graph structures affect

model performance. Based on such understanding,

experts can adaptively modify the graph to gradually

create a higher-quality graph.

Secondly, although the inexact data quality issue
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is common in real-world applications [292], it has

received little attention from the field of visual

analytics. This issue refers to the situation where

labels are inexact, e.g., coarse-grained labels, such

as arise in computed tomography (CT) scans. The

labels of CT scans usually come from corresponding

diagnosis reports that describe whether patients have

certain medical problems (e.g., a tumor). For a

CT scan with tumors, we only know that one or

more slices in the scan contain tumors. However, we

do not know which slices contain tumors as well as

the exact tumor locations in these slices. Although

various machine learning methods [293, 294] have

been proposed to learn from such coarse-grained

labels, they may lead to poor performance [290]

due to the lack of exact information. Fine-grained

validation is still required to improve data quality.

To this end, one potential solution is to combine

interactive visualization with learning algorithms to

better illustrate the root cause of bad performance

by examining the overall data distribution and

the wrongly predictions, to develop an interactive

verification process for providing more finely-grained

labels while minimizing expert effort.

6.1.2 Explainable feature engineering

Most existing work for improving feature quality

focuses on tabular or textual data from traditional

analysis models. The features of these data are

naturally interpretable, which makes the feature

engineering process simple. However, features

extracted by deep neural networks perform better

than handcrafted ones [295, 296]. These deep features

are hard to interpret due to the black box nature of

deep neural networks, which brings several challenges

for feature engineering.

Firstly, the extracted features are obtained in a

data-driven process, which may poorly represent the

original images/videos when the datasets are biased.

For example, given a dataset with only dark dogs and

light cats, the extracted features may emphasize color

and ignore other discriminating concepts, like shapes

of faces and ears. Without a clear understanding of

these biased features, it is hard to correct them in

a suitable way. Thus, an interesting topic for future

work is to utilize interactive visualization to disclose

why the features are biased. The key challenge

here is how to measure the information preserved or

discarded by the extracted features and to visualize

it in a comprehensible manner.

Moreover, redundancy exists in extracted deep

features [297]. Removing redundant features can

lead to several benefits, such as reducing storage

requirements and improving generalization [278].

However, without a clear understanding of the exact

meaning of features, it is hard to judge whether a

feature is redundant. Thus, an interesting future

topic is to develop a visual analytics method to convey

feature redundancy in a comprehensible way, to allow

experts to explore it, and remove redundant features.

6.2 Opportunities during model building

6.2.1 Online training diagnosis

Existing visual analytics tools for model diagnosis

mostly work offline: the data for diagnosis is collected

after the training process is finished. They have

shown their capability for revealing the root causes

of failed training processes. However, as modern

machine learning models become more and more

complex, training processes can last for days or

even weeks. Offline diagnosis severely restricts the

ability of visual analytics to assist in training. Thus,

there is a significant need to develop visual analytics

tools for online diagnosis of the training process so

that model developers can identify anomalies and

promptly make corresponding adjustments to the

process. This can save much time in the trial-and-

error model building process. The key challenge for

online diagnosis is to detect anomalies in the training

process in a timely manner. While it remains a

difficult task to develop algorithms for automatically

and accurately detecting anomalies in real-time,

interactive visualization promises a way to locate

potential errors in the training process. Differing

from offline diagnosis, the data of the training process

will be continuously fed into the online analysis tool.

Thus, progressive visualization techniques are needed

to produce meaningful visualization results of partial

streaming data. These techniques can help experts

monitor online model training processes and identify

possible issues rapidly.

6.2.2 Interactive model refinement

Recent works have explored the utilization of

uncertainty to facilitate interactive model refinement

[106, 112, 124, 125]. There are many methods to

assign uncertainty scores to model outputs (e.g.,

based on confidence scores produced by classifiers),
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and visual hints can be used to guide users to examine

model outputs with high uncertainty. Models

uncertainty will be recomputed after user refinement,

and users can perform iteratively until they are

satisfied with the results. Furthermore, additional

information can also be leveraged to provide users

with more intelligent guidance to facilitate a fast and

accurate model refinement process. However, the

room for improving interactive model refinement is

still largely unexplored by researchers. One possible

direction is that since the refinement process usually

requires several iterations, guidance in later iterations

can be learned from users’ previous interactions.

For example, in a clustering application, users may

define some must-link or cannot-link constraints on

some instance pairs, and such constraints can be

used to instruct a model to split or merge some

clusters in the intermediate result. In addition, prior

knowledge can be used to predict where refinements

are needed. For example, model outputs may

conflict with certain public or domain knowledge,

especially for unsupervised models (e.g., nonlinear

matrix factorization and latent Dirichlet allocation for

topic modeling), which should be considered in the

refinement process. Therefore, such a knowledge-

based strategy focuses on revealing unreasonable

results produced by the models, allowing users to

refine the models by adding constraints to them.

6.3 Opportunities after model building

6.3.1 Understanding multi-modal data

Existing works on content analysis have achieved

great success in understanding single-modal data, such

as texts, images, and videos. However, real-world

applications often contain multi-modal data, which

combines several different content forms, such as text,

audio, and images. For example, a physician diagnoses

a patient after considering multiple kinds of data,

such as the medical record (text), laboratory reports

(tables), and CT scans (images). When analyzing

such multi-modal data, in-depth relationships between

different modals cannot be well captured by simply

combining knowledge learned from single-modal

models. It is more promising to employ multi-

modal machine learning techniques and leverage their

capability to disclose insights across different forms

of data. To this end, a more powerful visual analytics

system is crucial for understanding the output of

such multi-modal learning models. Many machine

learning models have been proposed to learn joint

representations of multi-modal data, including natural

language, visual signals, and vocal signals [298, 299].

Accordingly, an interesting future direction is how

to effectively visualize learned joint representations

of multi-modal data in an all-in-one manner, to

facilitate the understanding of the data and their

relationships. Various classic multi-modal tasks can be

employed to enhance natural interactions in the field

of visual analytics. For example, in the vision-and-

language scenario, the visual grounding task (identify

the corresponding image area given the description)

can be used to provide a natural interface to support

natural-language-based image retrieval in a visual

environment.

6.3.2 Analyzing concept drift

In real-world applications, it is often assumed that

the mapping from input data to output values (e.g.,

prediction label) is static. However, as data continues

to arrive, the mapping between the input data and

output values may change in unexpected ways [300].

In such a situation, a model trained on historical

data may no longer work properly on new data. This

usually causes noticeable performance degradation

when the application data does not match the training

data. Such a non-stationary learning problem over

time is known as concept drift. As more and

more machine learning applications directly consume

streaming data, it is important to detect and analyze

concept drift and minimize the resulting performance

degradation [301, 302]. In the field of machine

learning, three main research topics, have been

studied: drift detection, drift understanding, and

drift adaptation. Machine learning researchers have

proposed many automatic algorithms to detect and

adapt to concept drift. Although these algorithms

can improve the adaptability of learning models in an

uncertain environment, they only provide a numerical

value to measure the degree of drift at a given time.

This makes it hard to understand why and where drift

occurs. If the adaptation algorithms fail to improve

the model performance, the black-box behavior of

the adaptation models makes it difficult to diagnose

the root cause of performance degradation. As a

result, model developers need tools that intuitively

illustrate how data distributions have changed over
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time, which samples cause drift, and how the training

samples and models can be adjusted to overcoming

such drift. This requirement naturally leads to a

visual analytics paradigm where the expert interacts

and collaborates in concept drift detection and

adaptation algorithms by putting the human in the

loop. The major challenges here are how to (i) visually

represent the evolving patterns of streaming data over

time and effectively compare data distributions at

different points in time, and (ii) tightly integrate

such streaming data visualization with drift detection

and adaptation algorithms to form an interactive and

progressive analysis environment with the human in

the loop.

7 Conclusions

This paper has comprehensively reviewed recent

progress and developments in visual analytics

techniques for machine learning. These techniques

are classified into three groups by the corresponding

analysis stage: techniques before, during, and after

model building. Each category is detailed by typical

analysis tasks, and each task is illustrated by a set of

representative works. By comprehensively analyzing

existing visual analytics research for machine learning,

we also suggest six directions for future machine-

learning-related visual analytics research, including

improving data quality for weakly supervised learning

and explainable feature engineering before model

building, online training diagnosis and intelligent

model refinement during model building, and multi-

modal data understanding and concept drift analysis

after model building. We hope this survey has

provided an overview of visual analytics research

for machine learning, facilitating understanding of

state-of-the-art knowledge in this area, and shedding

light on future research.
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