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The growing popularity of wearable devices is leading to new ways to interact with the environment, with
other smart devices, and with other people. Wearables equipped with an array of sensors are able to cap-
ture the owner’s physiological and behavioural traits, and thus are well suited for biometric authentication
to control other devices or access digital services. However, wearable biometrics have substantial differ-
ences from traditional biometrics for computer systems, such as fingerprints, eye features, or voice. In this
paper we discuss these differences and analyse how researchers are approaching the wearable biometrics
field. We review and provide a categorization of wearable sensors useful for capturing biometric signals. We
analyse the computational cost of the different signal processing techniques, an important practical factor
in constrained devices such as wearables. Finally, we review and classify the most recent proposals in the
field of wearable biometrics in terms of the structure of the biometric system proposed, their experimental
setup, and their results. We also present a critique of experimental issues such as evaluation and feasibility
aspects, and offer some final thoughts on research directions that need attention in future work.
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1. INTRODUCTION

Wearable electronics was introduced to the public in 1977 in the form of a calcula-
tor watch. Before then, various head-mounted electronic devices and wrist wearables
had been developed and commercialized with limited success. In the last few years,
wearable devices have proliferated and found wide adoption, mainly through afford-
able fitness bands and general-purpose smartwatches such as Apple Watch and An-
droid Wear. These allow user-installable apps similar to smartphones, which provide
a broad range of new applications such as voice calls, contactless payments, opening
cars or house doors, measuring vital signs, or facilitating healthcare. According to some
estimates, wearable sales will rise to 100 million units by 2020 [Lee et al. 2014].

Equipped with an array of built-in sensors, wearables are very well suited for bio-
metric authentication and offer a number of advantages over traditional biometric
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0:2 Blasco et al.

systems. An important advantage arises from the fact that wearable systems, by their
nature, are always with the user, while traditional biometric systems are generally
placed at a fixed location. Wearable biometric systems can effectively perform continu-
ous authentication of the wearer. Another advantage is that the wearer is not required
to share his biometric traits, generally considered to be very sensitive information,
with a third party for storage, since all data can be stored inside the wearable device.

However, the adoption of wearables for biometrics also introduces new challenges.
First, wearable devices can be easily lost or stolen due to their portable nature. More
generally, owners can be subject to a new range of threats that do not usually affect
traditional biometric systems. Second, wearable devices tend to use cheaper sensors
and hardware than traditional biometric systems. Consequently, sensor readings have
more noise, and combined with natural variability in the subject’s state, accuracy is
more of an issue for biometric applications. Furthermore, the authentication system
will generally run in an insecure (and perhaps poorly managed) platform such as a
smartphone. Finally, wearability incurs some costs in terms of computational power
restrictions. Wearable devices have limited computational capabilities and must op-
timize the usage of their resources to maximize battery life while providing a quick
response to biometric challenges.

This paper is intended for readers with some basic background in traditional bio-
metrics systems who want to understand the specific issues that arise in the wearable
domain. For surveys on traditional biometric methods, we refer the reader to [Jain
et al. 1999; Maltoni et al. 2009; Szeliski 2010; Unar et al. 2014]. Our work is also
different from previous surveys that focus on smartphone-based biometrics [Hoseini-
Tabatabaei et al. 2013] (with different and usually fewer sensors) or medical devices
that are invasive or unsuitable for everyday activities [Agrafioti et al. 2011].

In this paper we provide a review of the current state of wearable biometrics focus-
ing on these specific differentiators. The structure of the rest of the paper is based
on the functional components of a biometric system. Section 2 describes these com-
ponents and details the differences between traditional and wearable biometrics. In
section 3, we describe and categorize wearable sensors that can be used for biometric
applications. Section 4 discusses different techniques available to process raw sensor
signals and produce useful data inputs for the pattern recognition algorithms that un-
derlie biometric systems. Section 5 describes and compares different signal similarity
and pattern matching techniques used in biometric systems, including multi-modal
systems. Our comparison, which includes a complexity analysis, is based on the most
popular quality metrics for biometric systems, such as accuracy (H), equal error rate
(EER) and false positive rate (FPR). Section 6 discusses additional issues specific to
wearable biometrics, including the biosignal quality and the lack of publicly available
datasets. This section systematically analyses how existing attack vectors for biometric
systems affect wearable biometrics. Finally, Section 7 presents our main conclusions
and discusses open problems and ideas for future work.

2. BIOMETRIC SYSTEMS

Biometric recognition can be viewed as a pattern recognition problem in which a user
who wants to be authenticated provides a set of physiological and/or behavioural char-
acteristics to match a previously registered signature (or reference). Biometrics takes
advantage of the fact that humans have natural diversity and certain traits are unique
for each individual.

Biometric systems, whether traditional or not, are usually composed of the three
main functional components shown in Figure 1: (i) a sensor or set of sensors that cap-
ture raw biometric signals (r); (ii) a signal processing unit that pre-processes and ex-
tracts feature vectors from the signals (P (r) → s); and (iii) a recognition system, which
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usually includes a signature (or template) database, and implements a pattern recog-
nition function B(s) [Bow 2002].
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Fig. 1. Phases involved in a biometric verification system.

The matching phase depends on the mode of operation, either verification or identifi-
cation. Biometric verification systems are configured by a sole user to verify its identity
at a later stage. In biometric identification, the system is presented with a biometric
signal (r) and must decide who is the owner of that signal from a pool of registered
users.

A biometric system should fulfill the following requirements [Yampolskiy and Govin-
daraja 2010; Jain et al. 2000]:

— Performance: The system should respond promptly to queries with satisfactory accu-
racy [Ashbourn 2014].

— Acceptance: The system must be accepted by its intended users to be practical. If a
sensor or device is not comfortable enough, it will not be used.

— Circumvention: The system should not be easy to circumvent. This implies that the
system should be protected against unauthorized access to any of its components.

2.1. Traditional Biometric Systems

Traditional biometric system are often somewhat large and stationary (i.e., deployed
at a fixed location). Typical applications involve the identification of users in order
to control access to resources such as a computer system, a room, border control, or
transportation. In these systems, the user needs to actively present himself to the
biometric system to be recognized. For instance, Windows 10 includes a feature named
Windows Hello [Belfiore 2015] that enables the user to authenticate using his face,
iris, or fingerprint.

The stationary nature of these systems offers a series of advantages: (i) the sensors
and other systems are less susceptible to deterioration and can be easily replaced; (ii)
the different components of the system can make use of more computationally expen-
sive processes, as they can make use of external sources of power; (iii) they can be
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generally monitored through other external means (e.g., CCTV), thus increasing the
effort required by an adversary; and (iv) they can be used for both identification and
verification.

2.2. Wearable Biometric Systems

Figure 2 shows a wearable biometric system in which its primary user is in control
of all the system components, including the signature database. A wearable biometric
system requires the owner to constantly wear the sensor that captures his biosignals.
The signal processing and recognition units can also be embedded in the same wear-
able device or can be located in a different smart device (e.g., a smartphone). The
resources unlocked when the user is successfully recognised by the wearable might in-
clude the rest of the services provided by the wearable or a cryptographic key that can
be used to prove the identity of the user to other systems [Rathgeb and Uhl 2011]. In
any case, the process triggered after authentication is out of the scope of this survey.

Wearable Biometric System

Sensor
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ent

Raw  

Sig
nal

(r)
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, 0

.23]

Signal Processing Unit

Recognition 

System

Resource

Access 
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Decision on wearable

Decision on other smart device

Signal Processing Unit

Recognition System

Resource

Access  
denied

[2.39, …, 0.23]

Wireless communication

Fig. 2. Wearable biometric system where the decision can be done in the same wearable or allocated to a
different smart device such as smart phone.

In this configuration, wearable sensors are capable of reading signals from the sub-
ject at any time. This enables the biometric system to continuously authenticate the
wearer.

Wearable biometric systems are generally used for identity verification processes. In
this case, the biometric traits of the subject never leave the control of the user; they
are stored in the wearable or a smart device in his possesion. This avoids other entities
accessing the biometric traits of the user provided that the devices are properly con-
figured and protected against external attackers. An example of a commercial product
implementing this philosophy is Nymi [Nymi 2015]. Nymi is a biometric verification
wristband that includes one electrode in direct contact with the wrist and a second
electrode that the user must touch with a finger from the opposite hand. When the
user identity is verified, it has access to previously stored security tokens that can be
used to authenticate against other devices, such as a car or a lock.
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Table I. Differences between traditional and wearable biometric systems.

Traditional Wearable
Environment Fixed location. Components can be

separate. Allows to implement addi-
tional security measures but doesn’t
protect against a resourceful attacker.

Always with wearer. It can be lost.
When this happens the adversary gen-
erally gains access to all the system
components.

Types of recognition On-request recognition On-request & continuous recognition
Biometric processes Verification & Identification Verification
Signals Mostly external to the body. Not suited

for some signals that need to be taken
with sensors in direct contact with the
body

Signals that can only be captured by
sensors that are in direct contact of
certain parts of the body.

Sensor Highly accurate and normally in noise-
free environments

Inexpensive and subject to noise

Signal Processing Unit Not constrained in computational ca-
pacity or power consumption. Can be
placed in a different location

Embedded in the wearable or another
smart device. Limited capacity and
power.

Matching Unit Not constrained in computational ca-
pacity or power consumption. Can be
placed in a different location

Embedded in the wearable or another
smart device. Limited capacity and
power.

Signature Database Not controlled by the subject. Always with the subject. Templates
are not shared with other parties.

2.3. Hybrid Biometric Systems

Some biometric systems may not fit in any of the two previously described categories.
Some scenarios can require the sensor to be worn by the user, but other system com-
ponents (for instance, the matching unit and the signature database) will not be in
control of the user. We refer to these as hybrid biometric systems. One example of such
hybrid systems arises in telecare services [Camara et al. 2015a]. Assume a patient
who wears sensors that monitor some health-related signal, such as his heart activ-
ity. The information (in this case, the ECG signal) is sent to an external server and
used for both analysis and biometric identification. The biometric system uses a sen-
sor that is constantly worn by the user, but the matching unit and signature database
are controlled by the healthcare provider.

Table I provides a summary of the main elements that differentiate traditional and
wearable biometric systems. Hybrid biometric systems, depending on its configuration,
can combine characteristics from both categories. The usage of one type of biometric
system or another will strongly depend on the scenario, its intended application, and
the biometric signal to be used. For example, biometric systems based on signals gener-
ated by the heart are easier to implement with wearable biometrics. In the same way,
face and gait recognition systems are generally easier to implement with traditional
biometric systems.

In some cases, both types of systems can be deployed for the same purpose. For
instance, if the scenario requires the biometric system to distinguish between different
users, a traditional biometric system could be used straight away. The same kind of
authentication could be implemented with a wearable biometric system that protects
specific user identifiers through biometric verification.

3. WEARABLE SENSORS FOR BIOMETRICS

Sensors measure the physical properties of the environment and translate them into
data that can be handled by a computer system. When used for biometrics, sensors
capture physiological and behavioral signals. Biometric signals captured by wearable
sensors should be: universal, collectable, distinguishable, biologically constant, and
difficult to imitate [Prabhakar et al. 2003; Jain et al. 2004; Yampolskiy and Govin-
daraja 2010]. Wearable sensors face a number of challenges to meet all of these re-
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quirements. They must be located where they do not obstruct the wearer’s daily ac-
tivities. This limits the different signals that can be captured. For instance, sensors to
obtain an electroencephalogram (EEG) have been left out of this study because they
can obtain brain signals non-invasively [Marcel and Millán 2007] but require the user
to wear a device that hinders the execution of everyday activities. Wearable sensors
are also restricted in their power consumption. This reduces its accuracy, which is also
affected by the noise they capture due to the unobtrusive monitoring performed by the
system.

3.1. A Taxonomy for Wearable Sensors

Taxonomies provide insight about how the characteristics of elements that are being
categorized are related. We offer a taxonomy that categorizes wearable sensors by five
different dimensions (see also Figure 3):

Wearable	

sensor

InternalExternal

Heart Skin Lungs

Wrist

Ear

Chest

Face

Ankle
Electrical Light

Temperature

Sound Location

Force

InstantaneousContinuous

Physical	

signal
ContinuityLocation Origin

Body	part

Fig. 3. Wearable sensor taxonomy for biometrics. Only wearable sensors are considered.

— Origin: If the signal captured by the sensors has been generated inside the body
(e.g., the heart rate), we consider that the sensor reads signals internal to the body.
Otherwise, the sensor gets the signal from external sources.

— Body part: Only for sensors with an internal source origin, this dimension specifies
the part of the body that generates the signal read by the sensor.

— Physical signal: The kind of physical signal the sensor reads can be light, electricity,
or force, among others. Some physical signals might be only available to sensors
that measure signals from inside the body (e.g., the electrical activity of the heart).
The same kind of physical signal can be used to measure different properties. For
instance, electrodes can be used to measure the electrical activity of the heart, the
brain waves, or the electrical activity of muscles in the body.

— Location: Describes where the sensor is placed in the body. Commonly used locations
include the wrist, chest, and ankle. This dimension is not exclusive, since a sensor
can placed in different parts of the body to measure the same physical signal from
the same organ (e.g., the electrocardiogram can be measured in the chest or in the
wrist among other locations).

— Continuity: Specifies if the sensor is able to continuously read the signal (e.g., an
electrocardiogram), or if it needs to take instantaneous measures (e.g., a fingerprint).
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Table II. Categorization of representative sensors in wearable devices based on our taxonomy.

Device Sensor Origin Body Part Signal Location Continuity

Apple Watch
PPG • Vascular Light

Wrist
△

2015
Accelerometer ⋄ - Force △

Microphone • ⋄ Respiratory Sound △
LG HRM Earphones PPG • Vascular Light

Ear
△

2014 Accelerometer ⋄ - Force △
Nymi Band ECG • Heart Electrical

Wrist
△

2015 Accelerometer ⋄ - Force △
CardioLeaf FIT ECG • Heart Electrical Chest △

Garmin Fenix 3 HR
PPG • Vascular Light

Wrist
△

2015
Accelerometer ⋄ - Force △

GPS ⋄ - Location △ �

Microsoft Band II

PPG • Vascular Light

Wrist

△

2016

Accelerometer ⋄ - Force △
GPS ⋄ - Location △ �

Ambient Light ⋄ - Light △
Skin temp. ⋄ - Temperature △
UV ligth ⋄ - UV radiation △

Galv. Skin response • Skin Electrical △
Microphone • ⋄ Respiratory Sound △
Barometer ⋄ - Force △

• Internal
⋄ External
� Instantaneous
△ Continuous

Depending on this dimension, the sensor can or cannot be used to build continuous
authentication systems [Traore 2011].

Our taxonomy does not attempt to provide a categorization of devices that can be
used for biometric recognition, since a single device may integrate multiple sensors to
perform the biometric recognition or other activities. Table II presents a categorization
of a variety of sensors found in commercial wearable devices based on our taxonomy.
Most of the analysed devices are worn on the wrist and include at least one internal
and external sensor. This is due to its optimal characteristics: it gives access to differ-
ent signals, it can be easily worn, and the subject can interact with it.

For each sensor, we describe each of its dimensions. In most of the cases, the sensors
embedded in the listed devices are not being used for biometric applications. However,
in Section 5 we discuss how these same sensors can be used for biometric purposes and,
therefore, we have decided to include them here in our examples. Due to its wearability,
most of the sensors are able to provide continuous measurements. This is a major
difference with respect to traditional biometric systems, where the user authenticates
once.

In the rest of this section we describe the most predominant wearable sensors cur-
rently available. Sensors have been categorized using the physical signal dimension of
our taxonomy.

3.2. Light Sensors

These sensors provide the amount of light sensed in the environment. Depending on
the sensor resolution, they can be used to measure just the intensity of light–as, for
example, in the case of photoplethysmographic (PPG) sensors–, or provide full images,
such as in the case of fingerprint readers or cameras.
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3.2.1. Photoplethysmographic Sensor. A PPG sensor measures blood volume changes
within the microvascular bed of the tissue [Tamura et al. 2014]. PPG sensors use a
light source to illuminate the tissue. Photodetectors within the sensor measure the
variations in the intensity of absorbed or reflected light when blood perfusion varies
[Allen 2007].

Raw PPG waveforms (Figure 5a) are used to continuously monitor biosignals such
as the arterial blood oxygen saturation (SpO2), heart rate (bpm) [Aoyagi and Miyasaka
2002], blood pressure, and stroke volume [Romano and Pistolesi 2002]. The unique
characteristics of each person vascular system can lead to unique features being
present in the PPG signal waveform, as found by [Lee and Kim 2015; Reşit Kavsaoğlu
et al. 2014].

PPG sensors have become very popular thanks to fitness trackers and smartwatches
such as Fitbit Charge HR [FitBit 2015], Apple Watch [Apple 2015], and some earphone
models that measure the heart rate from the ear [LG Electronics 2014]. PPG sensors
are also available in the form of open hardware platforms [World Famous Electronics
2012; Alves et al. 2013].

3.2.2. Fingerprint reader. Fingerprint readers capture the ridge pattern of a finger.
The fingerprint pattern is a physiological signal with a large body of research works

describing its usefulness as a biometric measure. This survey focuses on newer and less
consolidated biometric sensors. For a more detailed description of the different finger-
print scan and matching techniques the reader is referred to Maltoni et al. [2009].

Fingerprint readers are being increasingly deployed in most modern smartphones
to provide authentication features and enable mobile payments. However, at the time
of writing this survey fingerprint readers have not made it into any wearable devices.

3.2.3. Camera. Digital cameras are embedded in smartphones, smartglasses, and
many other commodity electronic devices. A digital camera pointing to a person can
capture physiological features such as the face or other body features [Kim and Hong
2008; Tao and Veldhuis 2006; Kittler et al. 2005; Bowyer et al. 2008; Introna and Nis-
senbaum 2010].

The main biometric domains of digital cameras are gait and face recognition. Arti-
ficial vision techniques can be used to detect gait and other behavioural information
[Sarkar et al. 2005]. Face recognition techniques have been widely studied in the past
and are commercially available in many smartphones and computer systems. A de-
tailed review of proposals focused on face recognition is given in [Jafri and Arabnia
2009]. Camera-based biometric systems require the camera to be placed distant from
the person to be recognized, which hinders its wearability.

3.3. Force Sensors

This kind of sensors measure the force that affects the measurement device, whether
it is originated by movement (3-axes accelerometer), the Coriolis force (gyroscope), the
Earth magnetic field (magnetometer), or air pressure (barometer).

3.3.1. Three Axes Accelerometer. An accelerometer measures the force that is affect-
ing the object it is attached to. Accelerometers are widely used in smartphones and
other electronic devices to detect device orientation and serve as input in motion-based
games. Commonly used accelerometers measure g-force (1 g is 9.81 m/s2) in the three
axis: x, y and z (Figure 4a).

Miniaturization has enabled the construction of inexpensive and tiny accelerome-
ters that can be embedded in almost any electronic device, including smartphones,
smartwatches, and a variety of fitness trackers that can be worn on the wrist, hips,
or ankles. Forces measured by an accelerometer when they are produced by muscu-
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lar induced movement of a body part are signals that depend on the user physiology
and behaviour. In most works, accelerometer data has been used to recognise subjects
based on their gait patterns [Lu 2014; Meharia and Agrawal 2015; Ho et al. 2012;
Nickel et al. 2012].

3.3.2. Magnetometer. A magnetometer measures the strength of the magnetic field in
the three (x, y, and z) axes. This data can be used to derive the strength and direc-
tion of the Earth’s magnetic field. Digital magnetometers are small and inexpensive,
and thereby suitable for embedding in almost any electronic device, including smart-
phones, smartwatches, and fitness trackers such as the Microsoft Band [Microsoft
2016].

Electrical activity of the human body does not generate perceptible changes in the
magnetic field. However, the measure offered by a magnetometer can be used to derive
the heading of the subject wearing it. In this way, the magnetometer can be used as a
behavioural biosignal measurement device.

3.3.3. Gyroscope. Gyroscopes measure attitude and rotation. Attitude is the orienta-
tion of the gyroscope relative to a point in space. By measuring changes in attitude,
gyroscopes can also measure its rotation rate. The orientation of a body provided by a
gyroscope can be represented in three different representations (shown in Figure 4b):

— Euler angles measure the rotation angle of the device against three different axis
that pass through the gyroscope.

— A rotation matrix describes the rotation of a body in the Euclidean space as a matrix.
— Quaternions are a numeric system described by Hamilton in 1843. A quaternion is

composed of four values: three of them represent the coordinates for the axis of rota-
tion and the last value represents the angle rotated through [Shoemake 1985].
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Fig. 4. Motion data generated in a smartphone while pulling it out of the pocket.

Gyroscopes are generally embedded in the same chip as accelerometers. Depend-
ing on its positioning, a gyroscope can measure the attitude of different body parts,
providing behavioural biometrics about the subject.
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3.4. Electrical Sensors

In humans, an electrical sensor measures the electrical activity of some parts of the
body (e.g., electrocardiogram for the heart) or how a current changes when it is applied
to the body (skin conductance).

3.4.1. Electrocardiogram sensor. An electrocardiogram (ECG) sensor consists of at least
two metal electrodes that must be in direct contact with the skin. ECG sensors mea-
sure the electric activity of the heart (Figure 5b) [Catalano 2002].
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Fig. 5. PPG and ECG signals extracted from Physiobank database [Goldberger et al. 2000; Saeed et al.
2011].

Medical ECG equipment generally uses three, five, or ten electrodes placed across
the chest, wrists, and ankles. This configuration is not suitable for wearable devices.
Fitness chest straps and ECG t-shirts [Clearbridge Vitalsigns 2016] use just two elec-
trodes positioned across the chest to measure ECG and capture the heart beat. In a
similar way, ECG sensors can be worn on the wrist [Mills and Homayoun 1994]. As
opposed to chest straps, wristband ECGs cannot be used to obtain a continuous signal
without interfering with daily activities. The unique features of each persons’ heart
are captured by the ECG signal, providing a physiological signal that has been used
in several biometric studies [Derawi 2015; Pasero et al. 2015; Sidek et al. 2014; Ca-
mara et al. 2015a]. However, it remains an open challenge to validate if these features
remain constant over long periods of time or change due to ageing.

3.4.2. Galvanic skin response sensor. A galvanic skin response (GSR or skin conduc-
tance) sensor measures the electrical conductance of the skin [Nourbakhsh et al. 2012].
GSR sensors can be placed in any part of the body but require direct contact with the
skin. A GSR sensor is composed of two electrodes placed about an inch apart. The
GSR sends a small, human imperceptible, amount of electrical current through one
electrode and measures the intensity of the current received on the other.

The skin conductance varies depending on the amount of moisture (induced by
sweat) in the skin. Sweating is controlled by the sympathetic part of the nervous sys-
tem, so it cannot be directly controlled by the subject. The skin conductance can be
used to determine body response against physical activity, stress or pain. The body
response against these stimulus differs from person to person [Kurniawan et al. 2013].
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3.5. Temperature Sensors

Skin temperature sensor works in a way similar to an infrared camera. A thermopile
captures infrared energy and transforms it into a digital signal that represents the
temperature. Skin temperature sensors are usually placed in a very short distance or
in direct contact with the skin.

The skin temperature value depends on the part of the body where the measurement
is made [Ramanathan 1964; Venable et al. 2013]. The miniaturization of technology
has allowed the development of small skin temperature sensors that can be embedded
in almost any electronic device, but they are generally deployed in high-end fitness
trackers such as the Microsoft Band.

3.6. Sound Sensors

A microphone translates sound waves that travel through air into an electrical signal.
Microphones are generally inexpensive and can be produced in very small sizes, so
they can be embedded in almost any electronic device.

Microphones can be produced with different sensitivities to capture different sounds.
For the purpose of biometrics, most commercial microphones are prepared to capture
human voice at a reasonable distance (60 db at 1 meter). A person’s voice is defined by
the physiological characteristics of his respiratory system [Atkinson 1978]. However,
voice can sometimes be mimicked so it is also considered a behavioural biometric signal
[Revett 2008]. Vocabulary, style, syntax, and other features of speech are also consid-
ered behavioural biometric attributes. In addition to standard microphones, medical
microphones such as digital stethoscopes can gather low power sounds emitted by the
heart when placed in the chest [Wang et al. 2009].

3.7. Location Sensors

The Global Positioning System (GPS) consists of 32 (originally 24) satellites and any
number of GPS receivers located on the Earth’s surface [Braasch and Van Dierendonck
1999]. A GPS receiver uses the signal from four different line-of-sight satellites to
triangulate the location of the device offering its coordinates (longitude and latitude).

GPS receivers provide only behavioural information about the subject’s location.
GPS receivers can be embedded in almost any electronic device, but are generally in-
cluded in high-end smartwatches [Garmin 2015] and fitness trackers. Prolonged usage
of the GPS antenna can rapidly drain small batteries [Bulusu et al. 2000].

4. SIGNAL PROCESSING UNIT

Measurements obtained by sensors are generally affected by noise and changes in
physical conditions. The signal processing unit receives a raw signal r, amplifies it (if
required), and extracts a feature vector s that can be used by the rest of the biometric
system.

4.1. Pre-Processing

Sensor configuration, differences in timing measurements, and the technical limita-
tions of sensors introduce noise and errors in the captured biosignals. Pre-processing
attempts to reduce noise and errors, normalizes the data, and prepares the raw signal
for the feature extraction process. The use of specific pre-processing techniques greatly
depends on the domain and scenario. The most common pre-processing techniques are
normalization, smoothing, interpolation, and segmentation. For a more detailed de-
scription of them, we refer the reader to [Wei 1994; Thévenaz et al. 2000; Ifeachor and
Jervis 2002].
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4.2. Feature Extraction and Selection

The goal of feature extraction is to reduce the noise, redundancy, and dimensionality
of a signal so that classification operates on only significant information. With fea-
ture extraction, a signal can be compared to others in the time, frequency, and other
domains defined by the extracted features. There are two main approaches for ex-
tracting features from raw data [Guyon 2006]. The domain-driven approach extracts
features from the data by using knowledge from the problem domain. The automatic-
driven approach uses statistics and other techniques to automatically extract features.
The number of extracted features generally determines the computational cost of the
matching process. Increasing the number of features may also introduce unnecessary
noise that reduces the accuracy of the matching algorithm [Kira and Rendell 1992].
Section 4.2.3 describes some of the mechanisms often used to evaluate and reduce the
dimensionality of features in biometric processes.

4.2.1. Domain-based features. Domain knowledge-based features are able to summarise
the relevant information in a raw signal into a reduced set of features. These features
can be based on fiducial points of the signal or other domain characteristics. Examples
of domain-based features are ECG [Biel et al. 2001] and PPG [Gu et al. 2003] fiducial
points, fingerprint patterns, and specific iris characteristics [Unar et al. 2014]. How-
ever, not all features derived from domain knowledge might be good for the biometric
classification problem, so in some cases a feature selection step is required.

4.2.2. Statistical features. Statistical features such as the mean, standard deviation,
maxima and minima can be extracted from almost all signals independently of its do-
main. Frequency of biosignals can also be used as a feature when transformed to the
frequency domain. Indeed, this approach has been used with ECG [Plataniotis et al.
2006], heart sound [Fatemian et al. 2010], and gait data [Rong et al. 2007], among
other signals.

4.2.3. Feature selection. Feature extraction and selection is not an exact science, even
when domain knowledge is available. Certain characteristics of the extracted features
can introduce noise or information that might be redundant or misleading. Feature
selection methods iterate through the subset of features of a signal to obtain the best
subset candidate according to an evaluation function [El Ouardighi et al. 2007]. Fea-
ture selection is performed during the design of the biometric system.

Principal component analysis (PCA). PCA is an unsupervised machine learning
method to reduce the dimensionality of a feature vector. It does not take into account
the class of samples, only the feature values. Given a classification problem with a
dataset composed of d-dimensional samples, PCA reduces the dimensionality of the
dataset by creating a projection of each dataset sample onto a k-dimensional space,
where k < d.

PCA uses the d-dimensional training samples to build a covariance matrix, which is
later used to extract the eigenvectors and values. The more dominant features of the
samples are contained in the eigenvectors with highest eigenvalues. Thus, to reduce
the dimensionality of the problem, a subset of k of these eigenvectors are selected to
represent the transformation matrix for the new dimensional space.

In biometric problems, Irvine et al. [2008] calculate the mean of each of the reduced
dimensions in the training data to store a unique vector representing each subject.
Additionally, the classification process can be leveraged to other machine learning al-
gorithms such as k-nearest neighbour [Pal and Mitra 2012] or SVM [Ye et al. 2011].
The combination of PCA with other machine learning techniques has proven valuable
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with ECG [Wang et al. 2008], gait [Nickel et al. 2012], and PPG [Kavsaoğlu et al. 2014]
signals.

Linear discriminant analysis (LDA). LDA is a linear transformation technique sim-
ilar to PCA. However, while the goal of PCA is to get a lower dimensionality with a
reduction of information in each sample, the goal of LDA is to generate a projection
that maximizes the separation between samples from different classes. In LDA, the
eigenvectors and eigenvalues are calculated from a combination of the within-class
scatter matrix and the between-class scatter matrix.

Transformation of samples to the new vector space defined by the subset of eigenvec-
tors is performed in the same way as PCA. Further techniques can be used to perform
the classification step such as k-nearest neighbour [Wang et al. 2008; Spachos et al.
2011].

Other methods for feature selection and reduction, including mutual information
[Peng et al. 2005], correlation [Hall 1999] and fast correlation [Yu and Liu 2003], have
been widely used in the literature for all kinds of machine learning problems.

5. MATCHING UNIT

The matching unit receives feature vectors in the time, frequency, or any other domain
and outputs a decision. If the biometric system is working in verification mode, the de-
cision has two possible values: genuine user or impostor. When working in identifica-
tion mode, the decision can have as many values as subjects being identified. Wearable
biometric systems generally work in verification mode whether traditional and hybrid
systems can be used for both modes.

The location of the matching unit depends on the kind of biometric system. For tra-
ditional and hybrid systems, it is located in a traditional workstation, receiving in-
formation from multiple sensors (subjects). In wearable systems, it is embedded in
the same wearable device as the sensor. Alternatively, it can also be placed in a more
computational capable device such as a smartphone.

The matching unit uses similarity and machine learning techniques to produce its
decision. A summary of the most used similarity techniques, including its computa-
tional complexity, is given on section 5.1. The complexity analysis of each technique is
useful to evaluate their suitability when applying them to a wearable scenario. Simi-
larity measurement methods are widely used by machine learning algorithms to mea-
sure how different are two biosignals. Section 5.2 reviews the most recent machine
learning techniques that have been used to implement wearable and hybrid biometric
systems. In multi-modal biometric system, results from all matching techniques must
be combined together. Fusion approaches are reviewed in Section 5.3.

5.1. Signal Similarity

The method to computing similarity between two biosignals has a great impact on the
results of the matching unit. Distance and correlation functions are generally the basis
for quantitative measures of similarity between two signals.

5.1.1. Classic distance functions. Consider two feature vectors s = {s0, s1, . . . , sn} and
t = {t0, t1, . . . , tn} where each component of the vectors is mapped to a coordinate of a
point in space. The most common distance function is the Euclidean distance, which is
a measure in the Euclidean space:

deuclidean(s, t) =

√

√

√

√

n
∑

i=0

(si − ti)2 (1)
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The time complexity of the Euclidean distance is O(n). The Manhattan distance is
simpler to compute as it requires fewer number of operations:

dmanhattan(s, t) =

n
∑

i=0

|si − ti| (2)

However, its time complexity is also O(n). The Mahalabonis distance takes into ac-
count correlations between signal features to generate a distance that does not over-
weight higher magnitude components of the signals to compare [Mahalanobis 1936].
The Mahalabonis distance is sometimes referred as the normalised Euclidean distance
and is given by:

dmahalanobis(s, t) =

√

√

√

√

n
∑

i=0

(si − ti)2

σ2
si,ti

(3)

where σsi,ti is the standard deviation of si and ti over the set of all samples (feature
vectors). The time complexity of the Mahalanobis distance is dominated by the com-
putation of σi. In the first time of computation, complexity is bounded by O(n · m2)
where m is the number of samples available. For further executions, all σi are already
computed and complexity is O(n).

5.1.2. Dynamic time warping (DTW). DTW measures the distance between two time se-
ries. Let s and t be two feature vectors representing two time series of length n and m,
respectively, where s = {s1, s2, . . . , sn} and t = {t1, t2, . . . , tm}. DTW first constructs an
n × m cost matrix (D) where each element dij contains the distance d(si, tj), e.g., Eu-
clidean distances. In this way, each matrix element represents the alignment between
points si and tj of the two time series. A warping path (W ) is a finite set of contiguous
matrix elements pairs that starts at (s1, t1) and finishes at (sn, tm). The warping path
defines a possible mapping between the two time series s and t. DTW uses dynamic
programming to find the warping path that minimizes the total distance of its mapping
elements.More details on DTW can be found in [Kruskal and Liberman 1983]. DTW
requires to build a n×m matrix, so its time complexity is O(n2) when n = m.

5.1.3. FastDTW. To reduce the executing cost of DTW, some strategies introduce con-
straints to decrease the number of cells that are evaluated in the cost matrix [Sakoe
and Chiba 1978; Itakura 1975].

FastDTW initially reduces the resolution of the time series by averaging adjacent
data points (coarsening). FastDTW finds the minimum path using the regular DTW al-
gorithm over the reduced resolution data. The obtained minimum distance warp path
is used to project a new minimum distance warp path over a version of the data with
a higher resolution. The warping path is refined by searching the neighbours of the
projected path. This process continues until the path reaches the original resolution.

In FastDTW, the cost matrix is only calculated for the neighbour of each resolution
data. As the length of the warp path grows linearly with the size of the input, the
complexity of FastDTW is O(ln) = O(n), where l is the number of resolution reductions.
Additional details about FastDTW can be obtained in [Salvador and Chan 2007].

5.1.4. Correlation. Correlation measures the similarity between two feature vectors as
a function of the lag between them. The correlation between two signals of the same
length is calculated as:

Correlation(s, t) =

∑n

i=0
(si − σs)(ti − σt)

√

∑n

i=0
(si − σs)2

∑n

i=0
(ti − σt)2

(4)
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Table III. Time complexity of feature vector similarity measures

Distance Complexity
Euclidean O(n)
Manhattan O(n)
Mahalanobis O(n ·m2)/O(n)
DTW O(n2)
FDTW O(n)
Correlation O(n)
Coherence O(n · log(m))

n length of feature vector
m number of feature vectors

The complexity of a single correlation measure is O(n). The correlation measure can
be used to synchronize signals. If d is a delay introduced to one of the signals, it is
straightforward to measure the correlation between a signal and a delayed version of
the other signal:

Correlation(s, t, d) =

∑n

i=0
(si − σs)(ti−d − σt)

√

∑n

i=0
(si − σs)2

∑n

i=0
(ti−d − σt)2

(5)

If differently delayed versions of the signal are compared to each other, different cor-
relation values will be obtained (cross correlation). The complexity of the cross corre-
lation is O(n2), as d < n.

5.1.5. Coherence. The similarity of two signals can also be measured by comparing
their frequencies.This requires transforming the feature vector from the time domain
to the frequency domain, e.g., by the Fourier or the Discrete Cosine Transform.

The coherence measure can be seen as the counterpart of the correlation measure,
but in the frequency domain. The complexity of the coherence function depends on
the method for translating the signal to the frequency domain. If the Fast Fourier
Transform is used, the complexity of a coherence operation is bounded by O(n · log(n)).

5.1.6. Time Complexity. Table III describes the time complexity of each of the studied
similarity functions. Most them are linear in complexity. This makes their execution
faster, but also imposes some constraints to the input vectors such as being of the same
length. More complex similarity measures (DTW and coherence) avoid these draw-
backs, but with a much higher computational cost.

When designing a wearable biometric system, it is necessary to measure the amount
of comparisons that will be executed per query. If not selected accordingly, the similar-
ity function can become a bottleneck that reduces the acceptability of the system.

5.2. Machine Learning Algorithms

Machine learning algorithms used in biometrics try to solve two different problems.
Biometric identification (traditional and hybrid systems) is seen as a multi-class clas-
sification problem. Biometric verification (mostly found in wearable systems) are seen
as one-class classification problems. Although there are some algorithms specific for
each problem, some multi-class classification problems can be adapted to solve one-
class classification problems.

The output of matching learning algorithms executed by the matching unit is gen-
erally a numerical value that measures the degree of similarity between the queried
signal and a registered subject. After obtaining this result, a threshold t is usually
applied to determine the final decision. Varying t adjusts the false positive and false
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negative rates (FPR and FNR respectively)1, generating what is called a receiver op-
erating characteristic (ROC) curve [Hanley and McNeil 1982]. In these cases, the equal
error rate (EER) is used as a measure reflecting the quality of a biometric system. The
EER is the point in the ROC curve where the FPR is equal to the FNR. In general
terms, the lower the EER the better acceptance and protection against circumvention.

This section describes the machine learning approaches that have been used to
build wearable and hybrid biometric systems. Traditional biometric systems have not
been included in this analysis. Reviewed proposals are summarized in Table IV. For
each machine learning technique, the table lists related references; biosignal; kind of
biometric approach (identification or verification); experimental parameters (subjects,
samples and features); their results (equal error rate, accuracy, and false positive rate)
if provided; and whether they are part of a multi-modal system. If experiments were
done with different parameters, the results best fitting the biometric signal require-
ments (uniqueness, constancy, and so on) are selected. The rest of this section provides
a brief explanation of each of the machine learning techniques. For details on the fun-
damentals of these techniques, the reader is referred to [Bishop et al. 2006].

Proposals have been categorized as wearable or hybrid depending on the character-
istics of the system described in each of the works. Proposals that use a wearable de-
vices for sensing and wearables or smart personal devices to execute the decision have
been categorized as wearable systems. Works that use sensors that are medical-grade
wearables or traditional workstations as the matching unit have been categorized as
hybrid.

The majority of the analysed works have been categorised as hybrid. This is due
to the fact that researchers generally use workstations to perform (offline) training
and validation. The widespread adoption of emerging platforms such as Arduino, Intel
Eddison and other IoT and wearable development platforms can help researchers to
easily test their proposals in a wearable scenario.

5.2.1. Naive Bayes (NB). Naive Bayes uses the well known Bayes theorem to build a
probabilistic model of the subject’s features. The intuitive idea of a naive Bayes clas-
sifier is that future observations of a feature vector belonging to a subject will follow
the same probabilistic distribution of feature vectors that were given for training for
the same subject, and that the value of a feature is independent of the value taken
by other features. Naive Bayes can be directly used to build biometric identification
systems (with one class per subject), but must be modified when training data only
belongs to one class (biometric verification), which is the usual use case in wearable
scenarios. This is usually achieved by introducing a threshold; a specific sample is re-
jected as belonging to the registered subject if the calculated probability is below that
threshold.

As in most machine learning techniques, the size of the training dataset has a sub-
stantial impact on the results. In the case of naive Bayes [Sugimori et al. 2011] and
[Ho et al. 2012] studied the same signal and matching algorithm but obtained very
different results. In fact, the number of subjects in [Sugimori et al. 2011] was too small
(five) to consider their results representative.

1Some authors prefer using false acceptance rate FAR and false rejection rate FRR instead
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Table IV. Summary of machine learning techniques proposed for biometrics (if part of a multi-modal system, all ML techniques used are listed.

Wearable Systems
ML tech. Proposal Signal Mode Sensor M.U. Multi EER H FPR Subjects Samples Feat.

NB
[Cornelius et al. 2012] Skin cond. V WSD WSD No - 0.85 - 2-5 3680 7
[Cornelius et al. 2014] Skin cond. I WSD WSD No 0.127 - - 8 1078 48

SVM
[Casale et al. 2012] 3 axys acc. V WSD WSD No - - 0.01 20 2800 18
[Hestbek et al. 2012] 3 axys acc. I WSD WSD No 0.1 - - 36 14400* 12

GMM

[Cornelius et al. 2014] Skin cond. V WSD WSD No 0.127 - - 8 1078 48
[Shi et al. 2011] GPS V WSD WSD Yes - 0.99* 0.25* 50 2400 3
[Lu 2014] 3 axys acc. V WSD WSD Yes 0.14 - - 12 1 hour 87
[Meharia and Agrawal 2015] 3 axys acc. V WSD WSD X - 0.8 0.14 10 50 -

KNN [Derawi 2015] ECG I WSD WSD No 0.01 - - 30 3690 4

ANN
[Pasero et al. 2015] ECG I WSD WSD No - 0.8* 0 40 328 -
[Lee and Kim 2015] PPG I WSD WSD No - 0.96* 0.04 10 708 22

Hybrid Systems
ML tech. Proposal Signal Mode Sensor M.U. Multi EER H FPR Subjects Samples Feat.

NB
[Sidek et al. 2014] ECG I WM WSD No - 0.99 - 18 108 48
[Ho et al. 2012] 3 axys acc. V WSD SV No - 0.69 0.30 32 640 -
[Sugimori et al. 2011] 3 axys acc. I WSD SV No - 0.98 - 5 100 2

BN
[Sidek et al. 2014] ECG I WM WSD No - 0.98 - 18 108 48
[Singh et al. 2012] ECG V WM SV Yes 0.11 - - 78 6006 20

ANN
[Sidek et al. 2014] ECG I WM WSD No - 0.99 - 18 108 48
[Beritelli and Capizzi 2013] Heart sound V WSD SV No - 0.86* - 50 400* 32

KNN

[Reşit Kavsaoğlu et al. 2014] PPG I WSD SV No - 0.94 - 30 900* 20
[Sidek et al. 2014] ECG I WM WSD No - 0.99 - 18 108 48
[Nickel et al. 2012] 3 axys acc. I WSD WSD No - 0.82 - 36 20h 52
[El-Bendary et al. 2010] Heart sound I WM SV No - 0.93 - 40 10 *
[Rasmussen 2014] Skin cond. V, I WSD SV No 0.12* 0.88 0.02 80* 4000 -
[Bugdol and Mitas 2014] ECG I WSD SV Yes - 0.44 - 30 150 33
[Camara et al. 2015a] ECG I WM SV No - 0.9612 0.039 18 - 48

SVM
[Ho et al. 2012] 3 axys acc. V WSD SV No - 1.0 - 36 640 -
[Sugimori et al. 2011] 3 axys acc. I WSD - No - 0.98 - 5 100 2
[Ye et al. 2011] ECG I WSD SV No - 1.0 0.0 5 4800* 26

GMM
[Wahid et al. 2012] Heart sound V WM SV No - 0.86* - 80 160 24
[Zhao and Shen 2011] Heart sound I WM SV No - 1.0 0.0 30 90 -
[Fatemian et al. 2010] Heart sound I WM SV Yes 0.35* - - 21 126 -

HMM [Nickel et al. 2011] 3 axys acc. I WSD SV No 0.10 - - 48 1344 26

DT [Sugimori et al. 2011] 3 axys acc. I WSD - No - 0.98 - 5 100 2

* Estimated from data in reference
- Data not provided in reference
V Verification mode
I Identification mode
WM Wearable medical grade sensor
WSD Wearable or other smart-device such as a smartphone
SV Server or workstation that is not constrained in computing power
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5.2.2. Bayesian network (BN). A Bayesian network represents a probabilistic model of a
problem as a directed acyclic graph (DAG). In biometric systems, the signal features
s = {s1, s2, . . . , sn} and subjects U = {u1, u2, · · · , un} are represented as nodes of the
graph (one node per signal feature and one node for the subjects). Directed edges in the
Bayesian network that connect two nodes are associated with a probability p and rep-
resents the conditional probability that the source of the edge will happen given that
the destination node of the edge happens. Naive Bayes is a special case of Bayesian
network where the node representing the subject can only have children and features
are independent (nodes representing features have the subject node as their only par-
ent).

The probability of a signal belonging to a specific user is calculated chaining the
conditional probabilities of each of the nodes connected to the subject node. To assign
a query signal to a specific subject, the same process as in Naive Bayes is carried out.
The decision is based on the class with higher probability.

Sidek, Mai and Khalil [2014] studied both naive Bayes and Bayesian network with
the same training. Results obtained in both cases were very similar in accuracy.

5.2.3. Artificial neural networks (ANN). An ANN mathematically simulates the structure
of biological neural networks [Haykin and Network 2004]. A neural network is com-
posed of one input, one output and several hidden layers of neurons. Each neuron in
the neural network has a fixed number of inputs and produces one output. The neu-
rons in the input layer receive the outside stimulus (the biosignal feature vector) as
input. Each neuron in the neural network produces its output by applying a combina-
tion of functions (propagation, activation and transfer) to the neuron inputs. During
the training phase, the network is presented with samples from the training set and
the weights of the propagation function are adjusted depending on the output of the
neural networks and label of each training register. The neurons in the output layer
generate the output value of the neural network, which has different applications de-
pending on the problems where the network is being used. In biometrics, it can be used
to determine the identity of the subject that produced the input signal.

Artificial neural networks have been used in both wearable and hybrid biometric
systems. Pasero et al. [2015] used ANN to verify the identity of 40 subjects, achiev-
ing an accuracy of 80% with no false positives. Lee and Kim [2015] used a similar
approach to verify identities based on the subject PPG signal. Their results were bet-
ter (accuracy of 96%) but their subject population was not very representative (only
10 subjects). In Sidek et al. [2014] a multi-layer perceptron (MLP) to tell apart ECGs
was compared against Naive Bayes, Bayesian networks, and k-nearest neighbour. The
MLP was found to perform as well as naive Bayes and k-nearest neighbour, but the
number of samples is not very representative. Gautam [2013] used a MLP to distin-
guish the heart sound of ten different subjects. The MLP has ten neurons in the hidden
layer and achieved an accuracy of 0.90. Beritelli and Capizzi [2013] used a probabilis-
tic neural network to distinguish subjects by their heart sound. Authors reported an
accuracy of 86% with 50 different subjects.

5.2.4. K-nearest neighbour (KNN). KNN is a so-called lazy learning method that stores
feature vectors in the training dataset, and all processing is delayed until classifica-
tion. When the system is queried with a new signal, the feature vector is compared
with all stored samples using a distance function (see Section 5.1.1). The system re-
turns the class with the nearest k neighbours to the query signal. K-nearest neighbour
can be adapted to verification problems by reducing k to 1 and establishing a threshold
t to perform the decision based on the similarity measure obtained.

KNN its a very extended technique due to its simplicity and effectiveness. These rea-
sons also account for this popularity as a matching and decision algorithm for wearable
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biometric proposals. Independently of the signal used for classification, KNN obtains
very good accuracy results in most proposals. However, one of the drawbacks is this al-
gorithm is generally more computationally expensive than others because it requires
comparing the query sample with all the stored feature vectors.

5.2.5. Support vector machines (SVM). SVM is a statistical learning method that builds a
hyperplane that optimally separates the different classes of training samples [Hearst
et al. 1998]. The separation hyperplane is chosen to have the maximum possible dis-
tance between the closest points of each class (said to maximize the margin between
classes). There are some cases where no hyperplane can be determined without mis-
classifying any of the training classes. In this case, SVM chooses a hyperplane that
splits the examples with the minimum possible number of misclassified samples while
trying to maximize the distance between the nearest correctly classified training sam-
ples. The effectiveness of SVM depends on the kernel selected and the soft margin
parameter C. The former specifies the process to calculate the hyperplane. The latter
describes the influence of a single sample in the hyperplane. SVM was originally in-
tended for multi-class classification (biometric identification) but can be adapted to be
trained for one-class classification problems only [Schölkopf et al. 1999]. In this cases,
C is the parameter that defines how strict is the SVM when adapting to the training
dataset samples.

In [Casale et al. 2012; Hestbek et al. 2012] researchers used the accelerometer to
verify the identity of subjects while performing gestures. They were only able to verify
the identity of the subject while walking in a very constrained environment. Dandachi
et al. [2013] proposed a multimodal system consisting of accelerometer, gyroscope, and
GPS positioning to verify a subject’s identity. Their results were promising but involved
only three subjects. Ho et al. [2012] obtained a 100% accuracy using accelerometer
data, but their classification strategy was not exactly a biometric system. It was a mix
of identification and verification; their system accepts several subjects, but classified
them in two classes: enrolled or not enrolled. Ye et al. [2011] obtained similar results
with the ECG signal, but with a very limited population of individuals (5 subjects).

5.2.6. Gaussian mixture model (GMM). GMM is a probabilistic model that assumes that
all the samples from the same class (subject) can be generated by a weighted sum
of a finite number of Gaussian distributions. The weights of each distribution and
their parameters are obtained through different fitting methods, e.g., expectation-
maximization (EM) algorithm [Dempster et al. 1977] being the most common in the
literature. GMM generates one model per class in the classification problem and out-
puts the likelihood that the sample used as input belongs to the GMM class. GMMs
can be used for both verification and identification purposes. In a verification system
a probability threshold must be established to select samples as valid for that GMM
model. In a biometric identification system, the query sample is passed though all
subject’s GMMs and the one with more likelihood is selected.

GMM has been widely used in voice recognition systems [Reynolds and Rose 1995].
This is why most of its uses related to biometric identification have focused on sounds
emitted by the body, specifically the heart [Wahid et al. 2012; Zhao and Shen 2011;
Fatemian et al. 2010]. Experiments achieved accuracy between 0.86 and 1.0 with
medium-sized populations of subjects (between 10 and 80 subjects). GMM has also
been used for verification purposes using the accelerometer and skin conductance as
signals [Cornelius et al. 2014; Lu 2014; Meharia and Agrawal 2015; Shi et al. 2011]
with worst results. Equal error rate and false positive rates were above 0.14 in all
cases.
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5.2.7. Hidden Markov model (HMM). HMM is a particular kind of Bayesian network
[Ghahramani 2001]. In a HMM, the nodes of the DAG represent the state of a system
and a set of observations that configure the state of the system. The system transitions
from one state to the other depending on the observations and a set of transition proba-
bilities (edges of the DAG) that are previously unknown. HMM have been widely used
in several machine learning problems, but are specially known for its applications to
speech recognition [Ghahramani 2001].

[Nickel et al. 2011] trained a HMM for each subject by presenting two classes to each
of the HMM. The first class corresponds to samples that belong to the subject’s HMM
and the second class corresponds to samples belonging to other users. The researchers
were able to achieve an average EER of 0.10 with 48 different subjects.

5.2.8. Decision trees (DT). In a decision tree, each node evaluates a feature and tree
leafs specify the decision to make. In the biometric domain, decision nodes evaluate
the different components of the feature vector, and leafs specify the subject assigned
to each biosignal. Decision trees can be generated directly by experts or by inferring
their structure from training data. A well known algorithm to generate decision trees
given a training dataset is the C4.5 algorithm [Quinlan 2014]. This algorithm follows
a simple process to build the decision tree: (i) calculate the feature that provides the
highest information gain in the samples; (ii) create a decision node using the attribute
that better splits the training dataset in its classes; (iii) create sub-lists of samples us-
ing the decision criteria created; (iv) create a decision tree for all the sub-lists starting
at that decision node. The algorithm stops when all samples in a sub-list belong to a
specific class. In that case, the algorithm creates a decision node for that class.

Sugimori et al. [2011] found decision trees could identify subjects with high accuracy
using accelerometer data. Unfortunately, the subject population was only 5 subjects.

5.3. Multi-Modal Biometrics

Biometric systems rarely achieve perfect accuracy in practice due to many factors, such
as noise, incomplete training, or non-ideal machine learning algorithm, resulting in
false positives and false negatives. Additionally, a small fraction of the population may
not be able to provide a specific biometric signal due to disabilities or health problems.
To overcome some of these limitations and improve accuracy, it is natural to imagine
combining different biosignals during the recognition process [Hong et al. 1999]. This
combination can be performed at any of the stages of the biometric process (Figure 6):
sensing, feature extraction, matching, or decision making [Faundez-Zanuy 2005].
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Fig. 6. Location of different fusion levels mapped to different processes in a biometric system.

The benefits of multi-modal biometric systems must be evaluated carefully for a
particular application. Processing new biometric traits incurs an overhead in terms of
increased computational capabilities required in the system. This sophistication and
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Table V. Summary of multi-modal biometric references.

Proposal Signals Fusion Subjects Samples EER H
[Feng et al. 2013] Magnetometer and gyro. Feature 31 910 0.112 -
[Mondal and Nandy 2012] Rotation Feature 30 30 seconds - 1.00
[Singh et al. 2012] ECG, face and fingerprint Score 78 6084 0.0022 -
[Vildjiounaite et al. 2006] Accelerometer and voice Score 31 - 0.021 -
[Fatemian et al. 2010] ECG and PPG Decision 21 2070 - 0.97
[Agrafioti and Hatzinakos 2008] 12 lead ECG Decision 14 655 - 1.00
[Bugdol and Mitas 2014] ECG and voice Feature 30 150 - 0.92

- Data not provided in reference

corresponding cost may not be feasible or desirable for wearable devices [Jain and
Ross 2004]. Table V summarizes the results reported for different multi-modal bio-
metric approaches.Multi-modal biometric systems based on wearables could also use
information from non-wearables sensors to improve their accuracy. These could be be-
havioural information extracted from the mobile device [Bo et al. 2013] or a biosignal
captured from non-wearable sensors [Camara et al. 2015b] among others. In this work
we focus only on those that strictly use wearable devices.

5.3.1. Sensor level fusion. In sensor level fusion, the raw signals (r′, r′′, r′′′, . . .) from the
different sensors are combined into a single biosignal r. Sensor level fusion can be per-
formed before or after preprocessing the raw signal, but before the feature extraction
process. Combined signals at this stage should be highly related. Combining signals
from very different domains without loss of information is a very difficult task because
the signals can have very different meanings [Joshi et al. 2009].

A widely extended example of this approach is the fusion of 3-axis accelerometer
data into a unique signal for analysing gait [Lu 2014; Gafurov et al. 2006a].

5.3.2. Feature level fusion. In feature level fusion, each raw signal used in the multi-
modal system is processed independently to generate an independent feature vector
(s′, s′′, s′′′, . . .). Then, all feature vectors are combined into one vector s for use in the
matching process, e.g., by concatenating the different feature vectors. If some features
of the different vectors are closely related, they can also be combined by using a func-
tion, instead of concatenation [Joshi et al. 2009].

Agrafioti and Hatzinakos [2008] evaluated the accuracy of feature level fusion
against decision level fusion for a 12-lead ECG system. Instead of combining the sig-
nal from all ECG leads into one ECG signal, features for each lead are extracted and
then combined into a single feature vector (feature level fusion). Their results with 14
subjects show that both fusion approaches increase the accuracy compared to single
leads, and decision-level fusion was the most accurate for ECG. Unfortunately, 12-lead
ECG is not feasible for wearables. Bugdol and Mitas [2014] added voice features to
increase the accuracy of an ECG identification system from 44% to 92%. Feng et al.
[2013] studied the usage of accelerometer, magnetometer and gyroscope data to iden-
tify users when picking up phone calls. Their results found that accelerometer data
introduced noise into the process, reducing the accuracy of the multi-modal system.

5.3.3. Score level fusion. In score level fusion, the output of the matching algorithms
for each of the signals is combined. This means that each raw signal is processed to
generate a feature vector put into a different matching unit that has been trained only
with signals generated from that sensor. Outputs can be combined using weighted
sums or other combinatorial operation. The result is passed to the decision module to
obtain the final result.

Kumar et al. [2008] tried particle swarm optimization (PSO) [Kennedy 2010] to ob-
tain the optimal weights for combining the outputs from different matching algorithms
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for fingerprint and hand geometry images. Their approach obtained better results than
an analogous biometric system using decision level fusion (see next section). Another
example of score level fusion, Singh et al. [2012] combined ECG with facial and finger-
print recognition to improve the EER from 11% to 1%.

5.3.4. Decision level fusion. Decision level fusion combines the decisions from each of
the matching units. This kind of multi-modal fusion is particularly appropriate when
some subjects are unable to provide one of the biometric signals required by the sys-
tem. Decision level fusion is usually carried out by a voting system. Depending on the
confidence and accuracy of each of the sub-systems, decisions can be combined using a
weighted voting system.

Veeramachaneni et al. [2005] described a decision level fusion algorithm taking into
account the cost of wrong decisions to adapt in real time, thereby improving flexibil-
ity. The fusion could also be configured to be strict, i.e., all sub-systems must agree
on the classification output. This improved the security against impersonation attacks
but increased the number of false negatives. In verification mode, the system could be
configured to accept the subject identity if any of the sub-systems gives a positive out-
put. In this case, the system improved its usability but reduced its resilience against
attacks. Decision fusion algorithms can also be generated through machine learning.
Giot and Rosenberger [2012] experimented with genetic programming [Koza 1992] to
generate the fusion function, but results were only slightly better than weighted sums.

Agrafioti and Hatzinakos [2008] found that combining 12-lead ECG signals at deci-
sion level performed better than fusion at the feature level. Fatemian et al. [2010] also
showed that the accuracy of ECG as a biometric improved when combined with the
PPG signal at decision level.

6. OPEN ISSUES

The analysis of current proposals included in Table IV has led us to identify some key
issues that hinder the applicability of the obtained results. Rather than a criticism of
current works, we believe these are opportunities for researchers to address and solve
some of the still open problems in the wearable biometrics area. We group these issues
into four major groups: (i) biosignal quality; (ii) time complexity; (iii) datasets; and (iv)
vulnerability to attacks.

6.1. Biosignal Quality

Biometric signals should be distinguishable, permanent, collectable, and difficult to
imitate. Table VI quantifies the set of requirements for the biosignals that can be cap-
tured with the sensors relevant to this survey.

To measure distinguishability, we quantify the best results obtained in terms of ac-
curacy H (number of times the system outputs the correct decision), false positive rate
FPR, and equal error rate EER. Results from Table VII show that the choice of ma-
chine learning classifier is not critical. Choosing useful features and obtaining good
quality data are more important factors affecting classification results. Most of the
signals studied achieve a high accuracy, low false positive or equal error rates. How-
ever, only 5 out of 25 works performed experiments with 50 or more subjects. Some
signals are used to improve the accuracy of others (GPS and gyroscope with the ac-
celerometer) as they do not provide enough information to distinguish between users.
Experiments with ultraviolet, ambient light, skin temperature, and barometer have
not been reported in the literature yet.

Permanence is quantified by reviewing whether researchers tested their proposals
with biosignals taken more than a month apart. The effects of ageing have only been
studied for well established biometrics that cannot always be implemented in wearable
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Table VI. Signal quality summary (results from best proposals in each category).

Signal Distinct Permanent Collectable Imitability
EER H FPR Tested Tested Human Synthetic

PPG - 0.96* - x X x x
ECG 0.01 1.0 0.0 X X x x
Accelerometer 0.1 1.0 0.01 x X X x
Gyroscope - - 0.021 x X x x
Magentometer - - - x X x x
GPS - 0.99* 0.021 x X x x
Ambient light - - - x X x x
Skin temperature - - - x X x x
UV light - - - x X x x
Skin conductance 0.12* 0.88 0.02 x X x x
Heart sound 0.35* 1.0 0.0 x X x x
Barometer - - - x X x x

- No data available
* Estimated from data in reference
1 Multi-modal with sensor or feature fusion level
x Not tested
X Tested

devices [Lanitis 2010]. Only Da Silva et al. [2013] tested the accuracy of a biometric
system based on ECG four months after the template readings. Results showed an
increase from 1% to 9.1% in the EER.

In this survey, only sensors that can read biosignals without interfering with daily
activities have been considered. Therefore, we presume all signals are feasible to col-
lect. Nevertheless, in most of the experiments, ECG and PPG biometric signals have
been captured with medical grade devices and in very controlled environments. The
recent development of cheap sensors and platforms such as Bitalino [Alves et al. 2013]
or Angel Sensor [Seraphim Sense 2016] will help to collect results with a more gen-
eral purpose hardware. However, it remains to be seen if signals acquired in much
more noisy environments and with low-precision hardware are still good enough for
wearable biometrics.

As can be deduced from table IV, most research on wearable biometrics has been
focused on signals that are originated in the heart. PPG, ECG and heart sound are
used in 14 out of 25 proposals, being ECG and PPG the most used ones in most recent
works. The other widely used sensor is the accelerometer. It is used in 7 proposals.
Other signals are used on a small set of multi-modal proposals to improve the accuracy
of the biometric system. This is expected for some sensors that provide low information
such as light sensors. We foresee that other features such as the skin temperature will
play major roles when their sensors and their usage in biometrics are studied further.
Our research has shown also that that hybrid systems generally achieve better results
than wearable systems. This could be attributed to the quality of the sensors or the
differences in the classification problems. Multi-class classification problems (identi-
fication) are generally easier than one-class classification problem (verification), due
to the availability of samples from all classes during training. Another issue that has
arisen during our literature review is that biometric verification is not always tested in
the same way. Some of the works reviewed claim to be doing biometric verification, but
they use genuine and impostor samples for training. This is not a realistic setup, as in
most wearable environments the enrolment (training) will be done only with genuine
samples.
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Table VII. Summary of machine learning techniques used in wearable biometric proposals.

Algorithm Verification Identification Learning comp. Query comp.
Naive Bayes • X O(n ·m) O(m)
Bayesian network • X O(n ·m2) O(m2)
ANN • X O(n ·m2) O(m2)
KNN X X O(1) O(n) ·O(distancefunc)
SVM • X O(n2 ·m)*1 O(m)
GMM (with EM) X X O(n ·m · k)*2 O(m · k)
HMM X O(s2 ·m) O(m)
Decision trees (C4.5) X O(n ·m2) O(m)

*1 Using algorithm optimizations [Bordes et al. 2005].
Complexity is O(n3 ·m) without optimizations.

*2 With k the number of mixtures and using algorithm
optimizations in [Verbeek et al. 2003]. Complexity is
O(n ·m · k2) without optimizations.

• Requires adaptation
n Number of samples in training dataset
m Number of features in each sample
k Number of gaussian distributions
s States of the HMM

6.2. Time Complexity

In general terms, current biometric systems are being evaluated only in terms of their
accuracy or EER. However, for wearable devices, a very accurate algorithm that drains
the battery quickly or takes too much time to make a decision is not feasible.

The matching process is one of the most computationally expensive tasks in a bio-
metric system, along with pre-processing and feature extraction. Table VII offers a
summary of the computational complexity of previously described machine learning
algorithms. The complexity of machine learning algorithms greatly depends on the
implementation and some of its parameters. Parameters affecting computational com-
plexity are also listed in the table. In the cases where complexity depends on the imple-
mentation, the optimal implementation has been selected. When analysing the com-
plexity of the machine learning algorithms, special emphasis has to be put on the com-
plexity of the query process. Generally, the training or enrolment process is executed
only once.

Most of the algorithms have a complexity that depends linearly on the number of fea-
tures in each sample O(m). Bayesian networks using the belief propagation technique
increase this complexity to O(m2). In the case of ANNs, the computational complex-
ity does not depend only on the number of samples and features of each sample, but
also on the amount of neurons used (k), which must be greater than the number of
features (m). As k is bounded by m, we consider that the query complexity is O(m2).
KNN is a very efficient technique during training (O(1)), but the querying complexity
depends on the distance function used, as the querying signal must be compared to all
the reference signals O(n) ·O(distancefunc) where O(distancefunc) depends on the used
distance function (Table III). Depending on the distance function and amount of sig-
nals to compare, it can become a bottleneck in a biometric system. However, wearable
systems are presumed to store a small amount of samples from just one subject.

6.3. Datasets

The only dataset that has been used by more than one of the reviewed works is Phys-
ionet [Moody et al. 2001]. This dataset is an open archive of biosignals and processing
software for biomedical purposes. Although it includes a substantial number of sam-
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ples for ECG, PPG and other biosignals, their medical purpose makes them not suit-
able for wearable scenarios. Signals have been captured with medical grade sensors,
and some of the subjects are suffering from conditions that can affect the signal. The
other works surveyed used their own datasets. Another dataset, that is available upon
request is the one provided by the University of Toronto BioSec Lab [Wahabi et al.
2014]. Their dataset includes ECG and heart sound signals.

Preparing datasets of biosignals is a complex, time consuming, and usually ineffi-
cient task. In most of the cases, subjects are recruited using ads in a university or
research centre. This limits datasets to a small geographical area and very specific age
groups (college-level students). Additionally, the research team must prepare a sig-
nal acquisition protocol and pre-process all the signals obtained. A publicly available
dataset of biosignals would reduce the workload of researchers in this area and would
facilitate a fair comparison of all experiments. However, after years of research the
number of available datasets is very limited. This is generally due to the ethics and
privacy issues that can arise from sharing them publicly. Depending on the kind of
sensors used, these datasets contain very sensitive information in two senses. First,
they contain information that can be used to uniquely identify persons, as they are
used for biometric purposes. Additionally, depending on the kind of sensor used to cap-
ture data, they could also include information that could disclose medical conditions of
the volunteers that participated in the study. Providing means to test the suitability
of a matching algorithm without disclosing the underlying sensitive information from
the subjects is still a research issue. Having such a system could help researchers test
their systems without the need of gathering a dataset to test it.

Projects such as Apple’s ResearchKit can help to avoid geographical and age biases.
ResearchKit is a framework to develop mobile applications to perform research studies.
Apps developed with ResearchKit can survey users and gather data from the sensors
that are inside the device or connected to it. ResearchKit also eases the data collec-
tion process and provides informed consent forms for subjects participating in studies.
Nevertheless, it seems that for the moment, these framework is limited only to medical
studies.

6.4. Attacks to Wearable Biometric Systems

Another key issue of wearable biometric systems is their security. A biometric system
can be compromised by attacking any of its components or the communications be-
tween them (see Figure 7). Ratha et al. [2001] identified eight out of the nine different
attack points shown in Figure 7 for traditional biometric systems, the ninth being the
channel used to store the user’s signature during enrollment (number 5© in Figure
7). We next discuss potential attacks for the case of wearable biometric systems us-
ing these attack points and grouping them into two major categories: components and
channels.

6.4.1. Attacking communication channels. Communication channels are subject to four
main classes of threats: interception, interruption, modification, and fabrication of
messages. While the first one can be accomplished by a passive adversary (i.e., one
who can only eavesdrop on the channel), the other three require an active adversary
(i.e., one who can stop and inject messages). A wearable biometric system may have up
to five communication channel among components (see Figure 7): 2© (sensor → signal
processing unit), 4© (signal processing unit → matching algorithm), 5© (signal process-
ing unit → signature creator), 7© (signature database → matching algorithm), and 9©
(decision module → user). In a real system, the attacker might have access only to
a limited number of such channels. For example, the sensor and the signal process-
ing unit are sometimes combined and 2© is inside the sensor device, which might be
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out of the reach of the adversary. Similarly, 7© could be a system channel within the
smartphone if the signature database is in the device, or an Internet connection if the
database is stored in the cloud.

Interception can take place if the attacker has access to the channel and messages
are not encrypted. The goal pursued by capturing messages varies depend on the chan-
nel. For example, eavesdropping raw signals on 2© or feature vectors in 4© or 5© can
be needed for a subsequent replay attack. Raw signals can also be used to reduce
the search space when looking for another signal that produces the same feature vec-
tor [Ratha et al. 2001]. In other cases, it has been proven that some signals leak out
valuable information about another signal. For instance, pictures and recordings can
provide information about the subject’s face or gait [Gomez-Barrero et al. 2014; Liu
et al. 2009a]. The threat of interception can be generally mitigated by encrypting the
channel. Since most wearable sensors connect to the smartphone using Bluetooth, it
is important to securely pair the devices, authenticate both the sensor and the receiv-
ing devices and to ensure that communications are always encrypted. In the case of
7©, when the database is implemented as an external service accessible through an
Internet connection, standard security protocols such as TLS can be used.

Interruption on any system channel shown in Figure 7 will translate in a denial
of the recognition service. An attacker can achieve this by jamming the channel or
by sitting between the sender and receiver (i.e., in a man-in-the-middle setting) and
blocking messages between them. Preventing this threat is generally difficult if the
attacker has access to the channel and countermeasures (e.g., redundant channels)
can be expensive.

Modification and fabrication attacks can pursue different goals. For example, by re-
playing a valid users’ signal over 2© or a valid feature vector over 4©, an attacker can
get authenticated. Similarly, fabricating messages over 5© could permanently enroll
an attacker in the system. In general, preventing modification and fabrication attacks
requires the use of standard message authentication mechanisms and, in some cases
challenge-response schemes such as the one proposed in [Jain and Ross 2004] for bio-
metrics.
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6.4.2. Attacking components. The components of the wearable biometrics system can be
also attacked in a number of ways. The sensor ( 1©) can be presented with fake data that
mimics a valid user’s signal (e.g., the fake iris on contact lenses or fake fingerprints
on gelatin attacks). The software and firmware of the sensor can be also tampered
with, even remotely. These attacks can be difficult to prevent and detect (e.g., using
code integrity techniques) considering the lack of computational resources available
in cheap sensors. These attacks also affect the signal processing unit ( 3©), which can
be manipulated to override the feature extraction process. For example, the attacker
could be interested in stealing all feature vectors generated by this unit or generating
a particular feature vector.

A crucial component of the entire system is the database that stores the user’s signa-
tures ( 6©). The confidentiality and integrity of such data is paramount. Three common
goals for an attacker that involve attacking the database are: (i) stealing signatures;
(ii) associate a particular (fake) signature with an already enrolled user; and (iii) enroll
a new user and store the associated signatures. Providing protection to the database of
signatures has been widely studied in traditional biometrics. However, in the wearable
setting this might prove challenging. If the database is stored in the smartphone, it can
be compromised by a malicious app with sufficient privileges. Contrarily, keeping it in
an external server (i.e., the cloud) or a secure token entail a different set of risks and
can make the system too expensive.

Finally, more sophisticated attacks can be launched against the matching and de-
cision units ( 8© and 9©). Recall that these modules essentially implement a pattern
recognition system. Over the last decade, some work (see, e.g., [Barreno et al. 2006;
Barreno et al. 2010] for an overview) has studied how an adversary can strategically
play against machine learning algorithms to thwart their function. One major objec-
tive for the attacker could be to exploit weaknesses in the underlying classifier and
construct an invalid signal that would look valid. According to the terminology intro-
duced by Barreno et al. [2010], exploratory attacks might provide the attacker with
information about the inner workings of the classifier by selectively querying the bio-
metric system with carefully constructed signals. Similarly, in a causative attack the
adversary can strategically participate in the training process to contaminate the sam-
ples so as the system will later recognized him. The interested reader is referred to a
recent paper by Biggio et al. [Biggio et al. 2015] in which the authors discuss in detail
machine-learning related vulnerabilities of biometric systems, attacks, and potential
countermeasures.

6.4.3. Examples of existing attacks and research challenges. Many works justify the lack
of research on wearable biometric attacks due to the difficulty to reproduce biometric
signals such as the ECG or PPG [Singh et al. 2012; Sidek et al. 2014]. However, this
is not necessarily true, as other authors have noted that synthetic generation of these
biosignals is feasible but has yet to be studied [Agrafioti et al. 2011; Rasmussen 2014;
Cornelius et al. 2014]. This is also related to another important aspect of wearable bio-
metrics security: imitability of the used biosignals. The imitability of a signal depends
on two factors: the capacity of the attacker to capture the data necessary to generate a
valid signal, and the capacity to generate that signal so it can be read by the biometric
system. Imitability has been widely studied in the case of classic biometrics such as
the fingerprint or the iris, but it has passed unnoticed in most of the works focused in
wearable sensors.

Very few studies have addressed attacks to obtain information about valid signals. In
[Gafurov et al. 2006b; Liu et al. 2009a; Liu et al. 2009b; Tanviruzzaman and Ahamed
2014] researchers tested how attacks based on subject observation can reduce the ac-
curacy of the system, increasing the EER up to 10% more. However, the information
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about the signal is not enough, as described in [Gafurov et al. 2006b]. Attackers also
require specific training to reproduce the biosignal. In another work [Calleja et al.
2015], the authors point a web camera at the subject’s skin (forehead) to extract the
heart Inter-Pulse Intervals (IPI), which have been proposed as the basis for several
authentication protocols. Authors use artificial vision techniques to extract from the
camera image the PPG signal of the subject. This same strategy could be used to steal
PPG signals from subjects.

Externally observing the subject is not the only way to obtain a valid biometric sig-
nal. If the system components use wireless communications, attackers can take advan-
tage of the lack of mutual authentication to create fake system components to steal the
readings from the sensor. This kind of attack was used to obtain sensor readings from
Gamin wearable devices [Rahman et al. 2016]. Generating a valid signal from one
of these readings is just a matter of developing the necessary hardware to reply the
captured data.

7. CONCLUSIONS

In this survey, we have reviewed the state of the art on wearable biometric systems. We
have described a general model for biometrics and presented a classification of biomet-
ric systems depending on its components: sensor(s), signal processing unit, and match-
ing unit. We have provided a taxonomy to classify wearable sensors according to five
different dimensions. This classification allows researchers to identify the biometric-
related properties of sensors and devices embedding them.

Using these classifications, we have analysed most recent works related to wearable
and hybrid biometric systems. Our analysis shows that research in wearable biomet-
rics has several directions for improvement. Very few works analyse the time perfor-
mance of algorithms that must be executed in smart devices and wearables. Access
to new prototyping platforms such as Arduino or Intel Edison can help researchers to
evaluate their algorithms in a more realistic setting.

Another problem of current works is the difficulty to carry out a fair comparison
because of the lack of publicly available datasets, particularly signals obtained with
wearable hardware (i.e., not with medical grade equipment in hospital facilities). Eas-
ier access to sensors will also mean that data gathering and experimentation will be
easier and faster. It is no longer necessary to buy medical grade equipment to capture
biosignals in a non-invasive manner. This development, along with recent proposals
of research app frameworks, will help to develop new datasets that will hopefully be
made publicly available. While the results obtained in the analysed works look promis-
ing, there is a need to further analyse how some signals such as the ECG, PPG, and
accelerometer change in the long run.

Finally, we also recommend to further investigate the possible attacks that might
be directed at a wearable biometric system. Spoofing seems to be the most dangerous
attack and, in some cases, researchers take for granted that some signals cannot be
spoofed. Effort should also be devoted to study newly proposed biosignals to avoid
assumptions that can generate a false sense of security.
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A Reşit Kavsaoğlu, Kemal Polat, and M Recep Bozkurt. 2014. A novel feature ranking algorithm for biomet-
ric recognition with PPG signals. Computers in biology and medicine 49 (2014), 1–14.

James Kennedy. 2010. Particle swarm optimization. In Encyclopedia of Machine Learning. Springer, 760–
766.

Dong-Ju Kim and Kwang-Seok Hong. 2008. Multimodal biometric authentication using teeth image and
voice in mobile environment. Consumer Electronics, IEEE Transactions on 54, 4 (2008), 1790–1797.

Kenji Kira and Larry A Rendell. 1992. A practical approach to feature selection. In Proceedings of the ninth
international workshop on Machine learning. 249–256.

J Kittler, A Hilton, M Hamouz, and J Illingworth. 2005. 3D assisted face recognition: A survey of 3D imaging,
modelling and recognition approachest. In Computer Vision and Pattern Recognition-Workshops, 2005.
CVPR Workshops. IEEE Computer Society Conference on. IEEE, 114–114.

John R Koza. 1992. Genetic programming: on the programming of computers by means of natural selection.
Vol. 1. MIT press.

Joseph B Kruskal and Mark Liberman. 1983. The symmetric time-warping problem: from continuous to dis-
crete. Time Warps, String Edits and Macromolecules: The Theory and Practice of Sequence Comparison
(1983), 125–161.

a. Kumar, V. Kanhangad, and D. Zhang. 2008. Multimodal biometrics management using adaptive
score-level combination. 2008 19th International Conference on Pattern Recognition (2008), 2–5.
DOI:http://dx.doi.org/10.1109/ICPR.2008.4761879

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0000.



0:32 Blasco et al.

Hindra Kurniawan, Alexandr V Maslov, and Mykola Pechenizkiy. 2013. Stress detection from speech and
galvanic skin response signals. In Computer-Based Medical Systems (CBMS), 2013 IEEE 26th Interna-
tional Symposium on. IEEE, 209–214.

Andreas Lanitis. 2010. A survey of the effects of aging on biometric identity verification. International Jour-
nal of Biometrics 2, 1 (2010), 34–52.

Anthony Lee and Younghyun Kim. 2015. Photoplethysmography as a form of biometrie authentication. In
SENSORS, 2015 IEEE. IEEE, 1–2.

Paul Lee, Duncan Stewart, and Jolyon Barker. 2014. Deloitte TMT Predictions 2014. Technical Report.
Deloitte.

LG Electronics 2014. High-speed CAN transceiver. LG Electronics. http://www.lg.com/.

Jiayang Liu, Lin Zhong, and Jehan Wickramasuriya. 2009a. User evaluation of lightweight user
authentication with a single tri-axis accelerometer. Proceedings of the 11th International
Conference on Human-Computer Interaction with Mobile Devices and Services (2009), 1–10.
DOI:http://dx.doi.org/10.1145/1613858.1613878

Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. 2009b. uWave: Accelerometer-based
personalized gesture recognition and its applications. Pervasive and Mobile Computing 5, 6 (2009), 657–
675. DOI:http://dx.doi.org/10.1016/j.pmcj.2009.07.007

Hong Lu. 2014. Unobtrusive Gait Verification for Mobile Phones. (2014), 91–98.

Prasanta Chandra Mahalanobis. 1936. On the generalized distance in statistics. Proceedings of the National
Institute of Sciences (Calcutta) 2 (1936), 49–55.

Davide Maltoni, Dario Maio, Anil K Jain, and Salil Prabhakar. 2009. Handbook of fingerprint recognition.
springer.

Sebastien Marcel and José del R Millán. 2007. Person authentication using brainwaves (EEG) and maximum
a posteriori model adaptation. Pattern Analysis and Machine Intelligence, IEEE Transactions on 29, 4
(2007), 743–752.

Pallavi Meharia and Dharma P. Agrawal. 2015. The Human Key: Identification and Authentication in
Wearable Devices Using Gait. Journal of Information Privacy & Security 11, 2 (2015), 80–96. http:
//0-search.proquest.com.wam.city.ac.uk/docview/1698428070?accountid=14510

Microsoft 2016. Microsoft Band II. Microsoft. https://www.microsoft.com/microsoft-band.

G.N. Mills and H. Homayoun. 1994. Wrist-worn ECG monitor. (March 1 1994). http://www.google.com/
patents/US5289824 US Patent 5,289,824.

Soumik Mondal and Anup Nandy. 2012. Gait based personal identification system using rotation sensor.
Journal of Emerging . . . 3, 3 (2012), 395–402. http://www.researchgate.net/publication/233792801\
Gait\ Based\ Personal\ Identification\ System\ Using\ Rotation\ Sensor/file/9fcfd50ba42754743d.

pdf

George B Moody, Roger G Mark, and Ary L Goldberger. 2001. PhysioNet: a web-based resource for the study
of physiologic signals. IEEE Eng Med Biol Mag 20, 3 (2001), 70–75.

Claudia Nickel, Christoph Busch, Sathyanarayanan Rangarajan, and M Mobius. 2011. Using hidden
markov models for accelerometer-based biometric gait recognition. In Signal Processing and its Ap-
plications (CSPA), 2011 IEEE 7th International Colloquium on. IEEE, 58–63.

Claudia Nickel, Tobias Wirtl, and Christoph Busch. 2012. Authentication of smartphone users based
on the way they walk using k-NN algorithm. Proceedings of the 2012 8th International Conference
on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2012 (2012), 16–20.
DOI:http://dx.doi.org/10.1109/IIH-MSP.2012.11

Nargess Nourbakhsh, Yang Wang, Fang Chen, and Rafael A Calvo. 2012. Using galvanic skin response for
cognitive load measurement in arithmetic and reading tasks. In Proceedings of the 24th Australian
Computer-Human Interaction Conference. ACM, 420–423.

Nymi 2015. Nymi Band. Nymi. https://nymi.com/.

Saurabh Pal and Madhuchhanda Mitra. 2012. Increasing the accuracy of ECG based biometric analysis by
data modelling. Measurement: Journal of the International Measurement Confederation 45, 7 (2012),
1927–1932. DOI:http://dx.doi.org/10.1016/j.measurement.2012.03.005

E. Pasero, E. Balzanelli, and F. Caffarelli. 2015. Intruder recognition using ECG sig-
nal. In 2015 International Joint Conference on Neural Networks (IJCNN). 1–8.
DOI:http://dx.doi.org/10.1109/IJCNN.2015.7280740

Hanchuan Peng, Fulmi Long, and Chris Ding. 2005. Feature selection based on mutual information criteria
of max-dependency, max-relevance, and min-redundancy. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 27, 8 (2005), 1226–1238.

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0000.



A Survey of Wearable Biometric Recognition Systems 0:33

Konstantinos N Plataniotis, Dimitrios Hatzinakos, and Jimmy KM Lee. 2006. ECG biometric recognition
without fiducial detection. In Biometric Consortium Conference, 2006 Biometrics Symposium: Special
Session on Research at the. IEEE, 1–6.

Salil Prabhakar, Sharath Pankanti, and Anil K Jain. 2003. Biometric recognition: Security and privacy
concerns. IEEE Security & Privacy 1, 2 (2003), 33–42.

J Ross Quinlan. 2014. C4. 5: programs for machine learning. Elsevier.

M. Rahman, B. Carbunar, and U. Topkara. 2016. Secure Management of Low Power Fit-
ness Trackers. IEEE Transactions on Mobile Computing 15, 2 (Feb 2016), 447–459.
DOI:http://dx.doi.org/10.1109/TMC.2015.2418774

N. L. Ramanathan. 1964. A new weighting system for mean surface temperature of the human body. Journal
of Applied Physiology 19, 3 (1964), 531–533.

Kasper B Rasmussen. 2014. Authentication Using Pulse-Response Biometrics. Ndss February (2014), 23–26.

Nalini K. Ratha, Jonathan H. Connell, and Ruud M. Bolle. 2001. An Analysis of Minutiae Match-
ing Strength. Audio- and Video-Based Biometric Person Authentication 2091 (2001), 223–228.
DOI:http://dx.doi.org/10.1.1.87.8743

Christian Rathgeb and Andreas Uhl. 2011. A survey on biometric cryptosystems and can-
celable biometrics. EURASIP Journal on Information Security 2011, 1 (2011), 1–25.
DOI:http://dx.doi.org/10.1186/1687-417X-2011-3
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