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1. INTRODUCTION

Search engines are an invaluable tool for retrieving information from the Web. In re-
sponse to a user query, they return a list of results ranked in order of relevance to the
query. The user starts at the top of the list and follows it down examining one result at
a time, until the sought information has been found.

However, while search engines are definitely good for certain search tasks such as
finding the home page of an organization, they may be less effective for satisfying broad
or ambiguous queries. The results on different subtopics or meanings of a query will
be mixed together in the list, thus implying that the user may have to sift through a
large number of irrelevant items to locate those of interest. On the other hand, there
is no way to exactly figure out what is relevant to the user given that the queries are
usually very short and their interpretation is inherently ambiguous in the absence of
a context.

A different approach to Web information retrieval is based on categorizing the whole
Web, whether manually or automatically, and then letting the user see the results
associated with the categories that best match his or her query. However, even the
largest Web directories such as the Open Directory Project1 cover only a small fraction
of the existing pages. Furthermore, the directory may be of little help for a particular
user query, or for a particular aspect of it. In fact, the Web directories are most often
used to influence the output of a direct search in response to common user queries.

A third method is search results clustering, which consists of grouping the results
returned by a search engine into a hierarchy of labeled clusters (also called categories).
This method combines the best features of query-based and category-based search,
in that the user may focus on a general topic by a weakly-specified query, and then
drill down through the highly-specific themes that have been dynamically created from
the query results. The main advantage of the cluster hierarchy is that it makes for
shortcuts to the items that relate to the same meaning. In addition, it allows better
topic understanding and favors systematic exploration of search results.

To illustrate, Figure 1 shows the clustered results returned for the query “tiger” (as
of December 2006). Like many queries on the Web, “tiger” has multiple meanings with
several high-scoring hits each: the feline, the Mac OS X computer operating system,
the golf champion, the UNIX security tool, the Chinese horoscope, the mapping service,
and so on. These different meanings are well represented in Figure 1.

By contrast, if we submit the query “tiger” to Google or Yahoo!, we see that each
meaning’s items are scattered in the ranked list of search results, often through a large
number of result pages. Major search engines recognize this problem and interweave
documents related to different topics—a technique known as implicit clustering—but
given the limited capacity of a single results page, certain topics will be inevitably
hidden from the user. On the same query, the Open Directory does a good job in grouping
the items about the feline and the golf champion, but it completely fails to cover the
other meanings.

The systems that perform clustering of Web search results, also known as clustering
engines, have become rather popular in recent years. The first commercial clustering en-
gine was probably Northern Light, at the end of the 1990s. It was based on a predefined

1www.dmoz.org
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Fig. 1. Clustered search results for the query “tiger.” Screenshots from the commercial engine Vivı́simo (top,
www.vivivimo.com), with selection of cluster “Mac OS X,” and the open source Carrot2 (bottom, www.carrot2.
org), with selection of cluster “Tiger Woods.”
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set of categories, to which the search results were assigned. A major breakthrough was
then made by Vivı́simo, whose clusters and cluster labels were dynamically generated
from the search results. Vivı́simo won the “best meta-search engine award” assigned
by SearchEngineWatch.com from 2001 to 2003.

Nowadays, several commercial systems for topic clustering are available that may
output different clusters and cluster labels for the same query, although little is known
about the particular methods being employed. One common feature of most current
clustering engines is that they do not maintain their own index of documents; similar
to meta search engines [Meng et al. 2002], they take the search results from one or
more publicly accessible search engines. Even the major search engines are becoming
more involved in the clustering issue. Clustering by site (a form of clustering that
groups the results that are on the same Web site) is currently provided by several
commercial systems including Google. The concept (or entity) recognition that multiple
search engines are working on (for finding e.g., people, products, books) also seems
related to clustering of search results [Ye et al. 2003].

Not only has search results clustering attracted considerable commercial interest,
but it is also an active research area, with a large number of published papers dis-
cussing specific issues and systems. Search results clustering is clearly related to the
field of document clustering but it poses unique challenges concerning both the effec-
tiveness and the efficiency of the underlying algorithms that cannot be addressed by
conventional techniques. The main difference is the emphasis on the quality of cluster
labels, whereas this issue was of somewhat lesser importance in earlier research on
document clustering. The consequence has been the development of new algorithms,
surveyed in this article, that are primarily focused on generating expressive cluster la-
bels rather than optimal clusters. Note, however, that this article is not another survey
of general-purpose (albeit advanced) clustering algorithms. Our focus is on the systems
that perform search results clustering, in which such new algorithms are usually en-
compassed. We discuss the issues that must be addressed to develop a Web clustering
engine and the technical solutions that can be adopted. We consider the whole process-
ing pipeline, from search result acquisition to visualization of clustered results. We also
review existing systems and discuss how to assess their retrieval performance.

Although there have been earlier attempts to review search results clustering [Leuski
and Croft 1996; Maarek et al. 2000; Ferragina and Gulli 2005; Husek et al. 2006],
their scope is usually limited to the clustering techniques, without considering the
issues involved in the realization of a complete system. Furthermore, earlier reviews are
mostly outdated and/or largely incomplete. To our knowledge, this is the first systematic
review of Web clustering engines that deals with issues, algorithms, implementation,
systems, and evaluation.

This article is intended for a large audience. Besides summarizing current practice
for researchers in information retrieval and Web technologies, it may be of value to
academic and industry practitioners interested in implementation and assessment of
systems, as well as to scientific professionals who may want a snapshot of an evolving
technology.

The rest of the article is organized in the following way. Section 2 discusses the main
limitations of search engines that are addressed by clustering engines. Section 3 in-
troduces the definitional and pragmatic features of search results clustering. Section 4
analyzes the main stages in which a clustering engine can be broken down—namely,
acquisition of search results, input preprocessing, construction of clusters, and visual-
ization of clustered results. The algorithms used in the clustering stage are classified
based on the relative importance of cluster formation and cluster labeling. Section 5
provides an overview of the main existing systems whose technical details have been
disclosed. Section 6 deals with computational efficiency and system implementation.
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Section 7 is devoted to retrieval performance evaluation. We discuss how to compare
the retrieval effectiveness of a clustering engine to that of a plain search engine and
how to compare different clustering engines, including an experimental study of the
subtopic retrieval performance of several clustering algorithms. In Section 8 directions
for future work are highlighted and, finally, in Section 9 we present our conclusions.

2. THE GOAL OF WEB CLUSTERING ENGINES

Plain search engines are usually quite effective for certain types of search tasks, such
as navigational queries (where the user has a particular URL to find) and transactional
queries (where the user is interested in some Web-mediated activity). However, they
can fail in addressing informational queries (in which the user has an information
need to satisfy), which account for the majority of Web searches (see Broder [2002] and
Rose and Levinson [2004] for a taxonomy of Web queries). This is especially true for
informational searches expressed by vague, broad or ambiguous queries.

A clustering engine tries to address the limitations of current search engines by
providing clustered results as an added feature to their standard user interface. We
emphasize that clustering engines are usually seen as complementary—rather than
alternative—to search engines. In fact, in most clustering engines the categories created
by the system are kept separated from the plain result list, and users are allowed to
use the list in the first place. The view that clustering engines are primarily helpful
when search engines fail is also supported by some recent experimental studies of Web
searches [Käki 2005; Teevan et al. 2004].

The search aspects where clustering engines can be most useful in complementing
the output of plain search engines are the following.

—Fast subtopic retrieval. If the documents that pertain to the same subtopic have been
correctly placed within the same cluster and the user is able to choose the right path
from the cluster label, such documents can be accessed in logarithmic rather than
linear time.

—Topic exploration. A cluster hierarchy provides a high-level view of the whole query
topic including terms for query reformulation, which is particularly useful for infor-
mational searches in unknown or dynamic domains.

—Alleviating information overlook. Web searchers typically view only the first result
page, thus overlooking most information. As a clustering engine summarizes the
content of many search results in one single view on the first result page, the user
may review hundreds of potentially relevant results without the need to download
and scroll to subsequent pages.

In the next section we focus on search results clustering—the core component of
a Web clustering engine—discussing how its features compare to those of traditional
document clustering.

3. OVERVIEW OF SEARCH RESULTS CLUSTERING

Clustering is a broad field that studies general methods for the grouping of unlabeled
data, with applications in many domains. In general, clustering can be characterized
as a process of discovering subsets of objects in the input (clusters, groups) in such a
way that objects within a cluster are similar to each other and objects from different
clusters are dissimilar from each other, usually according to some similarity measure.
Clustering has been the subject of several books (e.g., Hartigan [1975]; Everitt et al.
[2001]) and a huge number of research papers, from a variety of perspectives (see Jain
et al. [1999] for a comprehensive review).
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Within general clustering, document clustering is a more focused field, closely re-
lated to this article’s topics. Document clustering was proposed mainly as a method of
improving the effectiveness of document ranking following the hypothesis that closely
associated documents will match the same requests [van Rijsbergen 1979]. The canon-
ical approach has been to cluster the entire collection in advance, typically into a hier-
archical tree structure, and then return the documents contained in those clusters that
best match the user’s query (possibly sorted by score). Document clustering systems
vary in the metrics used for measuring the similarity between documents and clusters,
in the algorithm for building the cluster structure, and in the strategy for ranking the
clustered documents against a query (see Willet [1988] for an early review and Manning
et al. [2008] for an updated one).

As the computational time complexity of most classical hierarchical clustering algo-
rithms is O(n2), where n is the number of documents to be clustered, this approach
may become too slow for large and dynamic collections such as the Web. Even though
clustering might take advantage of other similar computationally intensive activities
that are usually performed offline such as duplicate or near-duplicate detection, its cost
would further add to the inherent complexity of index maintenance.

For cluster-based Web information retrieval it is more convenient to follow a two-
stage approach, in which clustering is performed as a postprocessing step on the set
of documents retrieved by an information retrieval system on a query. Postretrieval
clustering is not only more efficient than preretrieval clustering, but it may also be more
effective. The reason is that preretrieval clustering might be based on features that are
frequent in the collection but irrelevant for the query at hand, whereas postretrieval
makes use only of query-specific features.

There are two types of postretrieval clustering. The clustering system may rerank
the results and offer a new list to the user. In this case the system usually returns the
items contained in one or more optimal clusters [Tombros et al. 2002; Liu and Croft
2004]. Alternatively, the clustering system groups the ranked results and gives the user
the ability to choose the groups of interest in an interactive manner [Allen et al. 1993;
Hearst and Pedersen 1996]. A clustering engine follows the latter approach, and the
expression search results clustering usually refers to browsing a clustered collection of
search results returned by a conventional Web search engine. Search results cluster-
ing can thus be seen as a particular subfield of clustering concerned with the identi-
fication of thematic groups of items in Web search results. The input and output of a
search results clustering algorithm can be characterized more precisely in the following
way.

The input is a set of search results obtained in response to a user query, each described
by a URL, a title, and a snippet (a short text summarizing the context in which the
query words appear in the result page). Assuming that there exists a logical topic
structure in the result set, the output is a set of labeled clusters representing it in the
closest possible way and organized in a set of flat partitions, hierarchy or other graph
structure.

The dynamic nature of the data together with the interactive use of clustered re-
sults pose new requirements and challenges to clustering technology, as detailed in the
following list.

—Meaningful labels. Traditional algorithms use the cluster centroid as cluster repre-
sentative, which is of little use for guiding the user to locate the sought items. Each
cluster label should concisely indicate the contents of the cluster items, while being
consistent with the meanings of the labels of more general and more specific clusters.

—Computational efficiency. Search results clustering is performed online, within an
application that requires overall subsecond response times. The critical step is the
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Table I. Search Results Clustering Versus Traditional Document Clustering

Clustering Cluster Cluster Input Cluster Cluster
Type Labels Computation Data Number Intersection GUI

Search results Natural Online Snippets Variable Overlapping Yes
clustering language
Document Centroid Offline Documents Fixed Disjoint No
clustering

acquisition of search results, whereas the efficiency of the cluster construction algo-
rithm is less important due to the low number of input results.

—Short input data description. Due to computational reasons, the data available to the
clustering algorithm for each search result are usually limited to a URL, an optional
title, and a short excerpt of the document’s text (the snippet). This contrasts with
using more coherent, multidimensional data descriptions such as whole Web pages.

—Unknown number of clusters. Many traditional methods require this number as an
input. In search results clustering, however, both the number and the size of clusters
cannot be predetermined because they vary with the query; furthermore, they may
have to be inferred from a variable number of search results.

—Overlapping clusters. As the same result may often be assigned to multiple themes,
it is preferable to cater for overlapping clusters. Also, a graph may be more flexible
than a tree because the latter does not easily permit recovery from bad decisions
while traversing the cluster structure. Using a graph, the results contained in one
cluster can be reached through several paths, each fitting a particular user’s need or
paradigm.

—Graphical user interface (GUI). A clustering engine allows interactive browsing
through clustered Web search results for a large population of users. It can thus
take advantage of Web-based graphical interfaces to convey more visual information
about the clusters and their relationships, provided that they are intuitive to use and
computationally efficient.

The main differences between search results clustering and traditional document
clustering are summarized in Table I.

In the next section we discuss how to address the conflicting issues of high accu-
racy and severe computational constraints in the development of a full Web clustering
engine.

4. ARCHITECTURE AND TECHNIQUES OF WEB CLUSTERING ENGINES

Practical implementations of Web search clustering engines will usually consist of four
general components: search results acquisition, input preprocessing, cluster construc-
tion, and visualization of clustered results, all arranged in a processing pipeline shown
in Figure 2.

4.1. Search Results Acquisition

The task of the search results acquisition component is to provide input for the rest
of the system. Based on the user-specified query string, the acquisition component
must deliver typically between 50 and 500 search results, each of which should contain
a title, a contextual snippet, and the URL pointing to the full text document being
referred to.

A potential source of search results for the acquisition component is a public Web
search engine, such as Yahoo!, Google, or Live Search. The most elegant way of
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Fig. 2. Components of a Web search clustering engine.

Table II. Programmatic Interfaces to the Most Popular Search Engines and their Limitations
as of December, 2007

Queries Results
Search Engine Protocol Per Day Per Search Terms of Service

Alexa SOAP or REST n/a 20 Paid service (per-query).
Gigablast REST/XML 100 10 Noncommercial use only.
Google

SOAP 1 000 10 Unsupported as of December 5,
2006. Noncommercial use only.

Google CSE REST/XML n/a 20 Custom search over selected sites/
domains. Paid service if XML feed
is required.

MSN Search SOAP 10 000 50 Per application-ID query limit.
Noncommercial use only.

Yahoo! REST/XML 5 000 100 Per-IP query limit. No commercial
restrictions (except Local Search).

fetching results from such search engines is by using application programming in-
terfaces (APIs) these engines provide. In the case of Yahoo!, for example, search
results can be retrieved in a convenient XML format using a plain HTTP request
(developer.yahoo.com/search/web/). This technique is commonly referred to as REST
(Representational State Transfer), but the spectrum of technologies used to expose a
search engine’s resources varies depending on the vendor (see Table II).

At the time of writing, all major search engines (Google, Yahoo!, Live Search) provide
public APIs, but they come with certain restrictions and limitations. These restrictions
are technical (maximum number of queries per day, maximum number of fetched results
per query), but also legal—terms of service allowing only non-commercial or research
use. While the former can affect the overall performance of a clustering engine (we
discuss this later in Section 6.1.1), the latter involves a risk of litigation. Access to
search services is usually made available commercially for a fee (like in the business
edition of Google’s Custom Search Engine, www.google.com/coop/cse).

Another way of obtaining results from a public search engine is called HTML scrap-
ing. The search results acquisition component can use regular expressions or other
form of markup detection to extract titles, snippets, and URLs from the HTML stream
served by the search engine to its end users. Due to relatively frequent changes of the
HTML markup, this method, if done manually, would be rather tedious and lead to
reliability and maintenance problems. HTML scrapers can be trained using machine
learning methods to extract the content automatically, but such techniques are not
widespread [Zhao et al. 2005]. Additionally, even though this technique was popular in
the early days of Web search clustering engines, it is nowadays strongly discouraged as
it infringes search engines’ legal terms of use (automated querying and processing of
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search results is typically prohibited). Besides, the public APIs we mentioned provide
a more reliable and faster alternative.

There exists an encouraging movement to standardize access to search engines called
Open Search (www.opensearch.org). A number of search feeds from various sources are
already available, but unfortunately the ones from major vendors return results in
HTML format only (suitable for scraping, but not for automated processing).

An alternative source of search results for the acquisition component is a dedicated
document index. This scenario is particularly useful when there is a need to search and
cluster documents that are not available through public search engines, for example,
enterprise, domain-specific content or IR test collections. In this case, the acquisition
component may additionally need to take responsibility for generating contextual doc-
ument snippets.

4.2. Preprocessing of Search Results

Input preprocessing is a step that is common to all search results clustering systems.
Its primary aim is to convert the contents of search results (output by the acquisi-
tion component) into a sequence of features used by the actual clustering algorithm. A
typical cascade goes through language identification, tokenization, shallow language
preprocessing (usually limited to stemming) and finally selection of features. We will
take a closer look at each step.

Clustering engines that support multilingual content must perform initial language
recognition on each search result in the input. Information about the language of each
entry in the search result is required to choose a corresponding variant of subsequent
components—tokenization and stemming algorithms—but it also helps during the fea-
ture selection phase by providing clues about common, unimportant words for each
language (stop words) that can be ignored. Another challenge for language identifi-
cation in search results clustering is the small length of input snippets provided for
clustering. The trigram-based method, analyzed in Grefenstette [1995], was shown to
be able to deal with this kind of input fairly successfully.

During the tokenization step, the text of each search result gets split into a sequence
of basic independent units called tokens, which will usually represent single words,
numbers, symbols and so on. Writing such a tokenizer for Latin languages would typi-
cally mean looking at spaces separating words and considering everything in between
to be a single token [Manning and Schütze 1999]. This simple heuristic works well for
the majority of the input, but fails to discover certain semantic tokens comprised of
many words (Big Apple or General Motors, for example). Tokenization becomes much
more complex for languages where white spaces are not present (such as Chinese) or
where the text may switch direction (such as an Arabic text, within which English
phrases are quoted).

An important quality of the tokenizer in search results clustering is noise-tolerance.
The contextual document snippets provided as input are very likely to contain: ellipsis
characters (“...”) demarcating fragments of the full document, URLs, file names, or other
characters having no easily interpretable meaning. A robust tokenizer should be able
to identify and remove such noise and prepare a sequence of tokens suitable for shallow
language preprocessing and feature extraction.

Finally, when binding a Web clustering engine to a source of search results that can
expose documents as sequences of tokens rather than raw text, the tokenization step
can be omitted in the clustering algorithms’ processing pipeline. Section 6.2.3 provides
more implementation-level details on such a setting.

Stemming is a typical shallow NLP technique. The aim of stemming is to remove the
inflectional prefixes and suffixes of each word and thus reduce different grammatical
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forms of the word to a common base form called a stem. For example, the words con-
nected, connecting, and interconnection would be transformed to the word connect. Note
that while in this example all words transform to a single stem, which is also a dictio-
nary word, this may not always be the case—a stem may not be a correct word. In fact
it may not be a word at all—a stem is simply a unique token representing a certain set
of words with roughly equal meaning. Because of this departure from real linguistics,
stemming is considered a heuristic method and the entire process is dubbed shallow
linguistic preprocessing (in contrast to finding true word lemmas). The most commonly
used stemming algorithm for English is the Porter stemmer [Porter 1997]. Algorithms
for several Latin-family languages can also be found in the Internet, for instance in the
Snowball project.2

It should be said that researchers have been arguing [Kantrowitz et al. 2000] as to
if and how stemming affects the quality of information retrieval systems, including
clustering algorithms. When a great deal of input text is available, stemming does not
seem to help much. On the other hand, it plays a crucial role when dealing with very
limited content, such as search results, written in highly inflectional languages (as
shown in Stefanowski and Weiss [2003a], where authors experiment with clustering
search results in Polish).

Last but not least, the preprocessing step needs to extract features for each search
result present in the input. In general data mining terms, features are atomic entities
by which we can describe an object and represent its most important characteristic to
an algorithm. When looking at text, the most intuitive set of features would be simply
words of a given language, but this is not the only possibility. As shown in Table III,
features used by different search results clustering systems vary from single words and
fixed-length tuples of words (n-grams) to frequent phrases (variable-length sequences
of words), and very algorithm-specific data structures, such as approximate sentences
in the SnakeT system. A feature class with numerous possible values (like all words
in a language) is often impractical since certain elements are closely related to each
other and can form equivalent classes (for example all words with a unique stem),
and other elements occur very infrequently or not at all. Many features are also ir-
relevant for the task of assessing similarity or dissimilarity between documents, and
can be discarded. This is where feature extraction, selection and construction takes
place. These techniques are well covered by a number of books and surveys (Yang
and Pedersen [1997] and Liu et al. [2003] place particular emphasis on text process-
ing), and we will omit their detailed description here, stopping at the conclusion that
the choice of words, albeit the most common in text processing, does not exhaust the
possibilities.

Regardless of what is extracted, the preprocessing phase ends with some information
required to build the model of text representation—a model that is suitable for the task
of document clustering and indirectly affects a difficult step that takes place later on—
cluster labeling.

4.3. Cluster Construction and Labeling

The set of search results along with their features, extracted in the preprocessing step,
are given as input to the clustering algorithm, which is responsible for building the clus-
ters and labeling them. Because a large variety of search results clustering algorithms
have been proposed, this raises the question of their classification. Clustering algo-
rithms are usually classified according to the characteristics of their output structure,
but here we take a different viewpoint.

2www.snowball.tartarus.org
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In search results clustering, users are the ultimate consumers of clusters. A cluster
which is labeled awkwardly, ambiguously, or nonsensically is very likely to be entirely
omitted even if it points to a group of strongly related and somehow relevant docu-
ments. This observation led to a very important conclusion (credited to Vivı́simo): in
search results clustering description comes first. We would like to embrace this crite-
rion and divide our discussion of algorithms according to how well they are prepared to
produce sensible, comprehensive, and compact cluster labels. We distinguish three cat-
egories of algorithms: data-centric, description-aware, and description-centric. In the
following sections we characterize challenges present in each group and provide a short
description of a representative algorithm for reference.

4.3.1. Data-Centric Algorithms. A typical representative of this group consists of a con-
ventional data clustering algorithm (hierarchical, optimization, spectral, or other), ap-
plied to the problem of clustering search results, often slightly modified to produce some
kind of textual representation of the discovered clusters for end-users.

Scatter/Gather [Cutting et al. 1992; Hearst and Pedersen 1996] is a landmark ex-
ample of a data-centric system. Developed in 1992 at Xerox PARC, Scatter/Gather is
commonly perceived as a predecessor and conceptual parent of all postretrieval cluster-
ing systems that appeared later. The system worked by performing an initial clustering
of a collection of documents into a set of k clusters (a process called scattering). This
step could be performed offline and provided an initial overview of the collection of
documents. Then, at querytime, the user selected clusters of interest and the system
reclustered the indicated subcollection of documents dynamically (the gathering step).
The query-recluster cycle is obviously very similar to search results clustering systems,
with the difference that instead of querying a back-end search engine, Scatter/Gather
slices its own collection of documents.

The data-centrism of Scatter/Gather becomes apparent by looking at its inner work-
ing. Let us briefly recall the concept of a vector space model (VSM) for text repre-
sentation [Salton et al. 1975]. A document d is represented in the VSM as a vector
[wt0

, wt1
, . . . wt� ], where t0, t1, . . . t� is a global set of words (features) and wti

expresses
the weight (importance) of feature ti to document d . Weights in a document vector
typically reflect the distribution of occurrences of features in that document, possibly
adjusted with a correcting factor that highlights the importance of features specific to
that particular document in the context of the entire collection. For example, a term
vector for the phrase “Polly had a dog and the dog had Polly” could appear as shown
below (weights are simply counts of words, articles are rarely specific to any document
and normally would be omitted).

d →

a

1

a
n

d

1

d
o

g

2

h
a

d

2

P
o

lly

2

th
e

1

Note that once a text is converted to a document vector we can hardly speak of the
text’s meaning, because the vector is basically a collection of unrelated terms. For this
reason the VSM is sometimes called a bag-of-words model.

Returning to Scatter/Gather, the clustering technique used there is the very popu-
lar agglomerative hierarchical clustering (AHC), with an average-link merge criterion
[Everitt et al. 2001]. This technique essentially works by putting each document in its
own cluster and then iteratively merging the two closest clusters until the desired num-
ber of k clusters is reached. The authors provide two additional heuristics—Buckshot
and Fractionation—to keep the processing time linear rather than quadratic with the
size of the input collection. The final result is a set of k clusters, each one described by
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Fig. 3. Keyword representation of clusters is often insufficient to comprehend the meaning of documents in
a cluster. Examples come from Lin and Pantel [2002] (left) and Hearst and Pedersen [1996] (right).

a trimmed sum profile—an average vector calculated from m documents closest to the
cluster’s centroid. It should be clear that recovering from such a cluster representation
to a semantically comprehensible cluster label is going to be a problem. Scatter/Gather’s
resolution to it is to construct cluster digests—selecting a set of most frequently occur-
ring keywords in the cluster’s (or trimmed sum’s) documents.

Data-centric algorithms borrow their strengths from well-known and proven tech-
niques targeted at clustering numeric data, but at some point they inevitably hit the
problem of labeling the output with something sensible to a human. This problem is
actually so difficult that the description of a cluster is typically recovered from its fea-
ture vector (or centroid) in the simplest possible way, and consists of a few unordered
salient terms. The output of the keyword set technique is however hardly usable. As
an illustration, Figure 3 presents screenshots of results from two data-centric systems,
including Scatter/Gather. The whole effort of coming up with an answer as to why the
documents have been placed together in a group is thus shifted to the user.

Other examples of data-centric algorithms can be found in systems such as Lassi,
WebCat or AIsearch, which will be characterized in Section 5. Another interesting
algorithm that is inherently data-centric, but tries to create features comprehensible
for users and brings us closer to the next section, is called tolerance rough set clustering
(TRSC) [Ngo and Nguyen 2004]. In TRSC, the bag-of-words document representation is
enriched with features possibly missing in a document and calculated using a tolerance
rough set model computed over the space of all of the collection’s terms. After clustering
is performed (using traditional K-means or AHC techniques), cluster labels are created
by selecting frequent word n-grams from the set of the cluster’s documents.

It should be noted that data-centric text clustering algorithms are not necessarily
worse than the algorithms in the other two groups (description-aware and description-
centric). Their only drawback is the basic problem with cluster labeling: keyword-based
representation seems to be insufficient from the user perspective and it makes this class
of algorithms less fit for solving our original problem.

4.3.2. Description-Aware Algorithms. The main difficulty in data-centric algorithms is
creating a comprehensible description from a model of text representation that is not
prepared for this purpose. Description-aware algorithms are aware of this labeling
problem and try to ensure that the construction of cluster descriptions is that feasible
and it yields results interpretable to a human.
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Fig. 4. A generalized suffix tree for three sentences: (1) cat ate cheese, (2) mouse ate cheese too, and (3) cat
ate mouse too. Internal nodes (circles) indicate phrases (on the path from the root node) that occurred more
than once in original sentences. Leaf nodes (rectangles) show the sentence number. A dollar symbol is used
as a unique end-of-sentence marker. Example after Zamir and Etzioni [1998].

One way to achieve this goal is to use a monothetic clustering algorithm (i.e., one in
which objects are assigned to clusters based on a single feature) and carefully select the
features so that they are immediately recognizable to the user as something meaningful.
If features are meaningful and precise then they can be used to describe the output
clusters accurately and sufficiently. The algorithm that first implemented this idea
was Suffix Tree Clustering (STC), described in a few seminal papers by Zamir and
Etzioni [1998, 1999], and implemented in a system called Grouper. In practice, STC
was as much of a break through to search results clustering as Scatter/Gather was to
the overall concept of using clusters as a text browsing interface. We now introduce its
fundamental concepts.

Zamir and Etzioni clearly defined STC’s objectives such as an online processing re-
quirement, and focused attention on cluster label descriptiveness. Driven by these
requirements they suggested using ordered sequences of words (phrases) as atomic
features in addition to isolated words. Not every sequence of words is a good phrase
though—phrases should be possibly self-contained (avoid references to other parts of
text), complete (should form correct grammatical structures) and meaningful (should
provide some information). Searching for candidates for good phrases one could split the
text into chunks [Abney 1991] and extract chunks with a noun head; these are known
to carry most of the information about objects in English. Instead of relying on NLP,
however, Zamir and Etzioni used frequent phrases—such sequences of words that ap-
pear frequently in the clustered documents (and fulfill some additional heuristic rules,
for example do not cross a sentence boundary). The ingenious element was in showing
how these phrases could be extracted in time linear with the size of the input, using a
data structure that had already been known for a long time—a generalized suffix tree
(GST).

For a sequence of elements e0, e1, e2, . . . ei; a suffix is defined as a subsequence
e j , e j+1, e j+2, . . . ei, where j ≤ i. A suffix tree for a given sequence of elements con-
tains any of its suffixes on the path from the root to a leaf node. A generalized suffix
tree is similar to a suffix tree, but contains suffixes of more than one input sequence
with internal nodes storing pointers to original sequences. Note that each internal node
of a GST indicates a sequence of elements that occurred at least twice at any position
in the original input. Figure 4 illustrates a GST created for three example sentences,
with words as basic units in the tree.

The rest of the STC algorithm is fairly simple. STC works in two phases. In the first
phase, it tokenizes the input into sentences and inserts words from these sentences into
a GST. After all, the input sentences have been added to the suffix tree, the algorithm
traverses the tree’s internal nodes looking for phrases that occurred a certain number of
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times in more than one document. Any node exceeding the minimal count of documents
and phrase frequency immediately becomes a base cluster. Note that so far this clus-
tering is monothetic—the reason for forming a cluster is frequent phrase containment,
and this phrase can be immediately used as the base cluster’s label. Unfortunately,
after the first step STC falls back on a simple merging procedure where base clusters
that overlap too much are iteratively combined into larger clusters (a single-link AHC
algorithm in the essence). This procedure is not fully justified—it causes the algorithm
to become polythetic and may result in chain-merging of base clusters that should not
be merged.

We should emphasize that STC made a great impact not because it had a much better
quality of document clustering (even if this was originally the authors’ intention), but
rather because it clearly motivated the need for sensible cluster labels and indicated
a way of efficiently constructing such labels directly from features, thus avoiding the
difficulties so typical of its data-centric cousins.

As an initial work on the subject, STC left much room for improvement. First, the
way it produced a hierarchy of concepts was based on an endlessly transitive rela-
tion of document overlap. This issue was addressed in a follow-up algorithm called
HSTC [Maslowska 2003]. In HSTC, the simple document overlap criterion in the merge
phase is replaced with a dominance relationship between base clusters. The most in-
teresting (topmost) clusters are extracted as a subset of nondominated base clusters
(so-called graph kernels).

The second problem with STC was the use of continuous phrases as the only features
measuring similarity between documents. This was shown to cause certain problems
in languages where the positional order of parts of speech in a sentence may change
[Stefanowski and Weiss 2003b]. A follow-up algorithm that tried to overcome this is-
sue was SnakeT, implemented as part of a system with an identical name [Ferragina
and Gulli 2004]. SnakeT introduced novel features called approximate sentences—in
essence noncontinuous phrases (phrases with possible gaps). SnakeT’s authors took
their algorithm one step further by expanding the potential set of cluster labels with
phrases acquired from a predefined index. Still, clustering precedes and dominates
the labeling procedure—something the last group of algorithms tries to balance and
sometimes even reverse.

4.3.3. Description-Centric Algorithms. Members of this group include algorithms that are
designed specifically for clustering search results and take into account both quality
of clustering and descriptions. In fact, quality of the latter is often placed before mere
document allocation; if a cluster cannot be described, it is presumably of no value to
the user and should be removed from the view entirely. This unorthodox way of placing
cluster descriptions before document allocation quality, descends directly from the very
specific application type. We believe description-centric algorithms reflect Vivı́simo’s
description comes first motto in the closest way.

The description-centric philosophy is omnipresent in the commercial search results
clustering systems. Vivı́simo has focused on providing sensible cluster descriptions from
the very beginning, but others—such as Accumo, Clusterizer or Carrot Search—also
quickly recognized the benefits for users resulting from comprehensible, meaningful
labels. For example, Accumo states on their Web site that “the quality of cluster titles
is crucial to the usability of any clustering system.” Interestingly, not many existing
research systems can be said to implement this thought in practice. We would like to
demonstrate a description-centric algorithm based on the example of Lingo [Osiński
et al. 2004; Osiński and Weiss 2005], a search results clustering algorithm implemented
in the open source Carrot2 framework.
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Lingo processes the input in four phases: snippets preprocessing, frequent phrase
extraction, cluster label induction, and content allocation. The initial two phases are
similar to what we described in Section 4.2, with the exception that instead of suffix
trees, frequent phrases are extracted using suffix arrays [Manber and Myers 1993].
What makes Lingo different is what happens to frequent phrases after they have been
extracted. Recall that frequent phrases in STC served as initial seeds of final clusters,
regardless of how much sense they actually made or how commonly they co-occurred
with each other. In contrast with that approach, Lingo attempts to identify certain
dominating topics, called abstract concepts, present in the search results and picks
only such frequent phrases that best match these topics.

To discover abstract concepts, the algorithm expresses all documents in the vector
space model and puts together term vectors for all documents to form a term-document
matrix; let us call it A. The value of a single component of this matrix depends on
the strength of the relationship between a document and the given term. Then, sin-
gular value decomposition (SVD) is applied to A, breaking it into three matrices: U ,
S, and V , in such a way that A = USVT , where U contains the left singular vec-
tors of A as columns, V contains right singular vectors of A as columns, and S has
singular values of A ordered decreasingly on its diagonal. An interesting property of
the SVD decomposition is that the first r columns of matrix U , r being the rank of
A, form an orthogonal basis for the term space of the input matrix A. It is commonly
believed that base vectors of the decomposed term-document matrix represent an ap-
proximation of topics—collections of related terms connected by latent relationships.
Although this fact is difficult to prove, singular decomposition is widely used in text
processing, for example in latent semantic indexing [Deerwester et al. 1990]. From
Lingo’s point of view, basis vectors (column vectors of matrix U ) contain exactly what
it has set out to find—a representation of the abstract concepts in the vector space
model.

Abstract concepts are quite easy to find, but they are raw sets of term weights still
expressed within the vector space model, which as we mentioned, is not very helpful
for creating semantic descriptions. Lingo solves this problem in a step called phrase
matching, which relies on the observation that both abstract concepts and frequent
phrases are expressed in the same term vector space—the column space of the original
term-document matrix A. Hence, one can calculate the similarity between frequent
phrases and abstract concepts, choosing the most similar phrases for each abstract
concept and thus approximating their vector representation with the closest (in the
sense of distance in the term vector space) semantic description available. Note that
if no frequent phrase can be found for a certain vector, it can be simply discarded—
this follows the intuition presented at the beginning of this section. The final step of
Lingo is to allocate documents to the frequent phrases selected in the previous step.
For each frequent phrase, the algorithm assigns documents that contain it. Compiling
everything together, we end up with a monothetic clustering algorithm (document-
cluster relationship is determined by label containment), where topics of document
groups should be diverse (SVD decomposition), and cluster descriptions comprehensible
(because they are phrases extracted directly from the input).

Lingo has shortcomings too—the SVD decomposition is computationally quite de-
manding, for example. However, the idea of using a data-centric algorithm to deter-
mine the model of clusters, followed by a certain process of label selection from a set
of valid, comprehensible candidates is quite general. Weiss [2006] shows how to mod-
ify a traditional data-centric k-Means algorithm to adjust it to the description-centric
pattern similar to the one we described here. Other algorithms, utilizing entirely dif-
ferent concepts, but classifiable as description-centric include SRC [Zeng et al. 2004]
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and DisCover [Kummamuru et al. 2004] (both reviewed in the following), the system
presented in Wang and Zhai [2007], which categorizes search results around the topic
themes learned from Web search logs, and even to some extent, techniques based on
concept lattices, as shown in the CREDO system [Carpineto and Romano 2004a] or
in Hotho et al. [2003]. In our opinion, being able to call an algorithm description-centric
is not a matter of a specific technique, but rather fulfillment of the objectives concerning
cluster labels—comprehensibility, conciseness and transparency of its relationship to
the cluster’s documents.

4.4. Visualization of Clustered Results

As the clustered results are primarily intended for browsing retrieval, the scheme cho-
sen for visualizing and manipulating the hierarchy is very important. The largely pre-
dominant approach is based on hierarchical folders, illustrated previously in Figure 1.
The system displays the labels of the top level of the cluster hierarchy using an in-
dented textual representation, and the user may click on each label to see the snippets
associated with it as well as to expand its subclusters, if any. The user can then repeat
the same operation on the newly displayed (sub-)clusters.

Usually, the most populated clusters are shown earlier and the clusters with very few
snippets are displayed on demand. Furthermore, all the snippets of one cluster that are
not covered by its displayed children are grouped into a dummy concept named “other.”
Figure 1 is an example in which only the top clusters of the top level of the hierarchy are
shown, and in which the user chose to see the documents associated with the cluster
“mac” without expanding its subclusters.

The folder-tree display has been successfully adopted by Vivı́simo and by many other
systems, including Carrot2, CREDO, and SnakeT. As the metaphor of hierarchical fold-
ers is used for storing and retrieving files, bookmarks, menus items, and so on, most
users are familiar with it and hence no training is required. Furthermore, the textual
folder hierarchy layout is very efficient to compute and easy to manipulate.

On the other hand, a textual indented representation is probably neither the most
compact nor the most visually pleasing tree layout. Through a graphical display, the
relationships in size, distance, and kind (folder or search results) between the clusters
can be rendered by rich spatial properties such as dimension, color, shape, orientation,
enclosure, and adjacency. The research on information visualization has explored a
huge number of techniques for representing trees. Two excellent reviews of this work
are Herman et al. [2000] and Katifori et al. [2007], the latter with a focus on information
retrieval.

In practice however, only a few alternative tree visualization schemes to the folder
layout have been used in the deployed clustering engines. The most notable system
is Grokker3. Taking a nesting and zooming approach, Grokker displays each cluster
as a circle and its subclusters as smaller circles within it (see Figure 5). The system
allows the user to zoom in on the child nodes, making them the current viewing level.
Another clustering engine that made use of an elaborate tree visualization technique
is Lassi [Maarek et al. 2000]. It provided the user with a fish-eye view, which makes it
possible to combine a focus node with the whole surrounding context through a distorted
representation [Sarkar and Brown 1994]. Simpler nonstandard approaches have been
taken in Grouper [Zamir and Etzioni 1999], where just one level of the hierarchy was
represented, using a raw table, and Grokker Text, which displayed the results in a
manner similar to Mac OS X’s Finder.

3www.groker.com
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Fig. 5. Clustered search results for the query “tiger.” Screenshots from the commercial engines Grokker and
KartOO.
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The clustering engines that do not follow a strict hierarchical organization can still
use a tree-based visualization, or they can adopt different strategies. CREDO, for in-
stance, builds a lattice structure that is subsequently transformed into a redundant
cluster tree for visualization purposes. By contrast, other systems use a truly graph-
based interface. The best known example is probably KartOO4, shown in Figure 5.
The results contained in a cluster are represented as a graph, in which the nodes are
individual results represented by their thumbnail and URL, the (sub)clusters are rep-
resented as virtual regions of the graph, and the edges are keywords shared by the
nodes. This information is usually not available in the other clustering engines, but it
comes at the cost of hiding the detailed content given in titles and snippets.

The system named WhatsOnWeb [Di Giacomo et al. 2007] further extends the graph-
based visualization paradigm by also displaying relationships between clusters. By
combining a graph drawing algorithm [Eades and Tamassia 1989] with a nesting and
zooming interaction paradigm, WhatsOnWeb displays an expandable map of the graph
of clusters, which preserves the shape of the drawing when the user clicks on some node
in the map. The system also supports different layouts: radial [Stasko and Zhang 2000]
and Treemaps [Johnson and Shneiderman 1991]. Similar to KartOO, WhatsOnWeb
does not show the textual content of search results.

Among the factors that may have hampered the deployment of more sophisticated
visualization schemes, one can consider their lack of friendliness, due to the inherent
complexity of some visualization metaphors, as well as the limited practical availability
of advanced displays, interactive facilities, and bandwidth. The ease of understanding
and manipulation on the part of the user indeed seems the most critical issue. A recent
comparison of textual and zoomable interfaces to search results clustering has shown
that even if the raw retrieval performance of the tested systems was comparable, users
subjectively preferred Vivı́simo’s textual interface [Rivadeneira and Bederson 2003]. In
another experiment [Turetken and Sharda 2005], a TreeMap visualization of clustered
results was found to be more effective than a ranked list presentation. Unfortunately,
in this latter experiment the effect of clustering was not decoupled from that of the
visual interface.

A powerful visualization technique that goes beyond the capabilities of the exist-
ing interfaces to Web clustering engines is the combination of multiple partial views,
although in our case it requires the ability to partition the document descriptors in
useful subsets (or facets). For example, when the data can be classified along orthog-
onal dimensions (e.g., functional, geographical, descriptive), it may be convenient for
the user to choose the descriptors in an incremental fashion, making decisions based on
the information displayed by the system for the current choice of the descriptors. This
technique has been explored in different fields and implemented in various guises (e.g.,
Roberts [1998]; Hearst et al. [2002]; Cole et al. [2003]; Hearst [2006]), and it may be
worth investigating even for visualizing search results clustering, especially for some
types of data and search tasks. An interesting discussion of emerging interface de-
signs that allow flexible navigation orders for the cases when a hierarchy’s content is
inherently faceted is presented in Perugini and Ramakrishnan [2006].

5. OVERVIEW OF WEB CLUSTERING ENGINES

In the following, we briefly review the most influential search results clustering systems
that have appeared in literature or have made a commercial impact. We make a distinc-
tion between research and commercial systems, even if such a separation may some-
times be difficult (SRC authors affiliated with Microsoft, DisCover authors affiliated

4www.kartoo.com
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Table III. A Summary of Research Search Results Clustering systems. URLs to Last-Known Demo Location is
Given Below the Table

System name Year Text Cluster Clustering On-line Clusters Source
(algorithm alias) Features Labels Method Demo Structure Code

Grouper (STC) 1998 single words, phrases STC yes flat, no
phrases (dead) concept cloud

Lassi 2000 lexical lexical AHC no hierarchy no
affinities affinities (desktop)

CIIRarchies 2001 single words word sets language model/ yes hierarchy no
graph analysis (dead)

WICE (SHOC) 2002 single words, phrases SHOC yes hierarchy no
phrases (dead)

Carrot2 (Lingo) 2003 frequent phrases Lingo yes flat yes
phrases

Carrot2 (TRSC) 2004 words, tolerance n-grams TRSC yes flat (optional yes
rough sets (of words) hierarchy)

WebCat 2003 single words words k-Means yes flat no
(dead)

AISearch 2004 single words word sets AHC + weighted yes hierarchy no
centroid covering (dead)

CREDO 2004 single words word sets concept lattice yes graph no

DisCover 2004 single words, phrases incremental cove- no hierarchy no
noun phrases rage optimization

SnakeT 2004 approximate phrases approx. sent. yes hierarchy no
sentences coverage

SRC 2004 n-grams n-grams SRC yes flat (paper) no
(of words) (of words) hierarchy (demo)

EigenCluster 2005 single words three divide-merge yes flat (optional no
salient terms (hybrid) hierarchy)

WhatsOnWeb 2006 single words phrases edge yes graph no
connectivity

CIIRarchies: http://www.cs.loyola.edu/∼lawrie/hierarchies/, WebCAT: http://ercolino.isti.cnr.it/webcat/, Carrot2:
http://www.carrot2.org, AISearch: http://www.aisearch.de, Credo: http://credo.fub.it, SnakeT: http://snaket.di.
unipi.it, SRC: http://rwsm.directtaps.net, EigenCluster: http://eigencluster.csail.mit.edu, WhatsOnWeb: http://gdv.
diei.unipg.it/view/tool.php?id=wow.

with IBM). Descriptions of research systems are ordered according to the approximate
date of first appearance (article publication, where applicable), commercial systems are
ordered alphabetically. Neither list is exhaustive.

5.1. Research Systems

The following list of research systems contains backreferences whenever the system
was previously discussed in this article. A summarized table of algorithmic features
and Web links to online demonstrations of systems (whether still functional or not) is
given in Table III. The computational complexity of the algorithms (exact or estimated)
is reported if available.

Grouper (STC). We described Grouper [Zamir and Etzioni 1999] in Section 4.3.2 while
talking about the STC algorithm.
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Lassi. In Lassi (an acronym for ‘librarian assistant’), the authors used a traditional
agglomerative hierarchical clustering algorithm, but they improved the feature selec-
tion phase [Maarek et al. 2000]. Instead of single words, pairs of words with strong
correlation of appearance in the input text are used (such pairs are said to share a
lexical affinity). An index of lexical affinities discovered in the input is later reused
for labeling the discovered clusters. The computational complexity of the algorithm is
O(n2), where n is the number of documents to be clustered.

CIIRarchies. CIIRarchies produces a hierarchy of concepts found in a document col-
lection by employing a probabilistic language model and graph analysis [Lawrie et al.
2001; Lawrie and Croft 2003]. The algorithm first builds a graph of terms connected by
edges with weights indicating conditional probabilities between a given pair of words.
Then a heuristic is used to detect dominating sets of vertices (topic terms) with high
vocabulary coverage and maximum joint conditional probabilities. The algorithm then
descends recursively to produce a hierarchy.

Even though CIIRarchies does not utilize a clustering algorithm directly, it is func-
tionally equivalent to a description-centric algorithm because clusters are formed
through the perspective of their future descriptions (unfortunately these consist of
single terms).

WICE (SHOC). Suffix trees used in the STC algorithm are known to be problematic in
practical implementations due to non-locality of data pointers virtually jumping across
the data structure being built. The authors of WICE (Web information clustering en-
gine) devise an algorithm called SHOC (semantic hierarchical online clustering) that
handles data locality and successfully deals with large alphabets (languages such as
Chinese). For solving the first problem, SHOC [Dong 2002; Zhang and Dong 2004] uses
suffix arrays instead of suffix trees for extracting frequent phrases. Then, the algorithm
builds a term-document matrix with columns and rows representing the input docu-
ments and frequent terms/phrases, respectively. Using singular value decomposition
(SVD), the term-document matrix is decomposed into two orthogonal matrices, U and
V , and the matrix of singular values S (see Section 4.3.3 for more information about
SVD decomposition). Based on the S matrix, SHOC calculates the number of clusters to
be created. The V matrix determines which documents belong to each cluster and the
largest element of each column of matrix U determines which frequent term or phrase
should be used to label the corresponding cluster. The fact that the U and V matrices
are orthogonal helps to ensure that clusters represent groups of dissimilar documents.

Note that SHOC is similar to the Lingo algorithm, although it lacks the safety vent
resulting from separate cluster label assignment and document allocation phases—all
base vectors of matrix U become clusters, regardless of whether a close enough frequent
phrase could be found to describe it.

WebCAT. WebCAT [Giannotti et al. 2003], developed at the Pisa KDD Laboratory, was
built around an algorithm for clustering categorical data called transactional k-Means.
Originally developed for databases, this algorithm has little to do with transactional
processing and is rather about careful definition of (dis)similarity (Jaccard coefficient)
between objects (documents) described by categorical features (words). WebCAT’s ver-
sion of transactional k-Means assumes that the more features (words) two documents
have in common, the more they are similar. A cluster is formed by finding documents
with at least τ shared words, where τ is called confidence. WebCAT’s computational
complexity is linear in the number of documents to be clustered, assuming a fixed
number of iterations. An algorithm with a very similar principle, but different imple-
mentation, was presented concurrently in Pantel and Lin [2002] and was adequately
called clustering with committees.
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Carrot2. Carrot2 combines several search results clustering algorithms: STC, Lingo,
TRSC, clustering based on swarm intelligence (ant-colonies), and simple agglomerative
techniques. We described Carrot2 and Lingo in Section 4.3.3, so we omit its further
description here.

Of some interest is the fact that committers affiliated with Carrot2 also started a
spin-off company called Carrot Search5 and offer a commercial successor—a clustering
engine called Lingo3G. Despite similar names, Lingo and Lingo3G are two completely
different clustering algorithms. While Lingo uses SVD as the primary mechanism for
cluster label induction, Lingo3G employs a custom-built metaheuristic algorithm that
aims to select well-formed and diverse cluster labels. In contrary to Lingo, Lingo3G
creates hierarchical clusters.

AISearch. A different cluster labeling procedure is shown in the weighted centroid
covering algorithm [Stein and Meyer zu Eissen 2004], used in the AISearch system.
The authors start from a representation of clusters (centroids of document groups) and
then build their word-based descriptions by iterative assignment of highest scoring
terms to each category, making sure each unique term is assigned only once. The com-
putational complexity of the algorithm is O(m log2 m), where m is the number of terms.
Interestingly, the authors point out that this kind of procedure could be extended to
use existing ontologies and labels, but the papers provide no insight as to whether this
idea has been integrated in the public demo of the system.

CREDO. In CREDO [Carpineto and Romano 2004a, 2004b], the authors utilize for-
mal concept analysis [Ganter and Wille 1999] to build a lattice of concepts (clusters)
later presented to the user as a navigable tree. The algorithm works in two phases. In
the first phase, only the titles of input documents are taken into account to generate the
most general concepts (to minimize the risk of proliferation of accidental combinations
of terms at the top level of the hierarchy). In the second phase, the concept lattice-based
method is recursively applied to lower levels using a broader input of both titles and
snippets. The computational complexity of the algorithm is O(nmC + m), where n is
the number of documents, m is the number of terms, and C is the number of clusters.
Although the system uses single words as features of search results, it can produce
multiple-word cluster labels reflecting the presence of deterministic or causal associa-
tions between words in the query context.

CREDO is an interesting example of a system that attempts to build the taxonomy
of topics and their descriptions simultaneously. There is no explicit separation between
clustering (concept formation) and labeling—these two elements are intertwined to pro-
duce comprehensible and useful output. Another feature of CREDO is that the structure
is a lattice instead of a tree. The navigation is thus more flexible because there are mul-
tiple paths to the same node, but the presence of repeated labels along different paths
may clutter the layout.

DisCover. In Kummamuru et al. [2004], the authors present a system called Dis-
Cover. The algorithm inside it works by defining an optimality criterion and progres-
sively selecting new concepts (features) from a set of candidates at each level of the
hierarchy. The selection process attempts to maximize coverage (defined as the number
of documents covered by a concept) and maintain distinctiveness between the candi-
date concept and other concepts on the same branch of the hierarchy. Concepts are
selected from a set of noun phrases and salient keywords, so the resulting algorithm

5www.carrot-search.com
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could be classified as description-centric. However, from the presented screenshots it
appears that cluster labels are usually single terms and hence their descriptive power
can be questioned. The computational complexity of DisCover is O(mC), where m is
the number of features and C is the number of clusters.

SnakeT. SnakeT [Ferragina and Gulli 2004, 2005] is both the name of the system
and the underlying algorithm. We described its main characteristics in Section 4.3.2.
An additional interesting feature of SnakeT is that it builds a hierarchy of possibly
overlapping folders. The computational complexity of the algorithm is O(n log2 n +
m log2 mp), where n is the number of documents, m is the number of features, and p is
the number of labels.

SRC. Developed at Microsoft Asia, SRC is an add-on to MSN Search. The algorithm
behind SRC [Zeng et al. 2004] is an interesting attempt to create a cluster label selection
procedure that is trained on real data. This way the authors replace an unsupervised
clustering problem with a supervised classification problem (selection of the best label
candidates according to a known preference profile). In the first step, a set of fixed-
length word sequences (3-grams) is created from the input. Each label is then scored
with an aggregative formula combining several factors: phrase frequency, length, intra-
cluster similarity, entropy, and phrase independence. The specific weights and scores
for each of these factors were learned from examples of manually prioritized cluster
labels. Experimentally, the computationally complexity of the algorithm grew linearly
with the number of documents.

EigenCluster. EigenCluster is a clustering system optimized for efficiency and scala-
bility. The algorithm employed by EigenCluster, called divide-and-merge [Cheng et al.
2005], is a combination of spectral clustering (efficient with sparse term-document ma-
trices) and dynamic programming (for merging nodes of the tree resulting from the
divide phase). The spectral clustering part is optimized so as to preserve sparsity of the
input data. If each cut through the term-document matrix is balanced, the complexity
of the algorithm is bounded by O(M log2 n), where M is the number of non-zero ele-
ments in the term-document matrix, and n is the number of documents. The authors
show that this theoretical bound is even lower on real-life data sets.

Even though EigenCluster is a relatively new system, it sticks to very simple cluster
labels. In the online demonstration, each cluster is labeled with three salient keywords;
phrases or more complex structures are not used.

WhatsOnWeb. WhatsOnWeb [Di Giacomo et al. 2007] explicitly addresses the prob-
lem of finding relationships between subtopics that are not captured by the ancestor/
descendant relation. The graph of clusters is computed in two steps. First, a snippet
graph is constructed using the number and the relevance of sentences (consecutive
stems) shared between the search results. Second, the clusters and their relationships
are derived from the snippet graph by finding the vertices that are most strongly con-
nected. Such a clustered graph is then pruned and displayed using an elaborate graph-
ical interface, as reviewed in 4.4.

WhatsOnWeb is also interesting because it is one of the few Web clustering engines
rooted in graph theory, together with Wang and Zhai [2007]. One drawback of the
system is the high response times required for processing a query (of the order of tens
of seconds), mainly due to the inefficiency of computing the clusters from the snippet
graph.
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Table IV. Commercial Companies Offering Technologies for Clustering Search Results

Cluster Clusters
Name Company labels URL structure

Accumo Accumo Phrases www.accumo.com Tree
Clusterizer CyberTavern Phrases www.iboogie.com Tree
Cowskid Compara Terms www.cowskid.com Flat
Fluster Funnelback Phrases www.funnelback.com Flat
Grokker Grokker Phrases www.grokker.com Graphical/Tree
KartOO KartOO Phrases www.kartoo.com Graphical/Tree
Lingo3G Carrot Search Phrases www.carrot-search.com Tree
Mooter Mooter Media Phrases www.mooter.com Graphical/Flat
WebClust WebClust Phrases www.webclust.com Tree
Vivı́simo Vivı́simo Phrases www.vivisimo.com Tree

5.2. Commercial Systems

A number of commercial systems offering postretrieval clustering exist but not much
is known with regard to the techniques they employ. The most broadly recognized and
cited commercial company specializing in clustering technology is Vivı́simo, standing
behind a clustering search engine, Clusty (we list a few other commercial clustering
engines in Table IV).

Recently a number of companies (Google, Gigablast, Yahoo!) have been experimenting
with various query-refinement and suggestion techniques. We decided not to list them in
Table IV because it is not known whether this functionality comes from a postretrieval
clustering algorithm or is achieved in a different way (e.g., by mining query logs).

6. EFFICIENCY AND IMPLEMENTATION ISSUES

As the primary aim of a search results clustering engine is to decrease the effort required
to find relevant information, user experience of clustering-enabled search engines is of
crucial importance. Part of this experience is the speed at which the results are delivered
to the user. Ideally, clustering should not introduce a noticeable delay to normal query
processing. In the following subsections we describe the factors that contribute to the
overall efficiency and summarize a number of techniques that can be used to increase
user-perceived performance.

6.1. Search Results Clustering Efficiency Factors

Several factors contribute to the overall computational performance of a search results
clustering engine. The most critical tasks involve the first three components presented
in Figure 2, namely search result acquisition, preprocessing, and clustering. The visu-
alization component is not likely to affect the overall system efficiency in a significant
manner.

6.1.1. Search Results Acquisition. No matter whether search results are fetched from
a public search engine (e.g., through Yahoo! API) or from a dedicated document index,
collecting input for clustering amounts to a large part of the total processing time.

In the first case, the primary reason for the delay is the fact that the number of search
results required for clustering (e.g., 200) cannot be fetched in one remote request. The
Yahoo! API allows up to 50 search results to be retrieved in one request, while Google
SOAP API returns a mere 10 results per one remote call. Issuing a number of search
requests in parallel can decrease the total waiting time, but, as shown in Table V, the
delays still fall in the 1–6 second range.
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Table V.
Time required to fetch 200 search results from various sources. The
experiment was performed on a computer with a broadband network
access; the results are averaged over 40 samples. Different queries
were used for each sample to avoid cache influence. Fetching was
performed in parallel requests if there was a cap for maximum results
per query, Lucene Index was stored on a local hard drive

Source Avg. delay [s] Std. dev. [s]

Yahoo! API 2.12 0.65
Google API 5.85 2.35
MSN API 0.56 0.43
Lucene (snippets) 1.78 0.50

When fetching search results from a dedicated document index, the overhead related
to network communication can be avoided. In this scenario, however, the document
retrieval engine will need to extract the required number of documents from its internal
storage, which can be equally time-consuming. Additionally, the engine may also need
to create contextual document snippets, which will increase the processing time even
further. Table V shows the time required to fetch 200 search results from a popular
open source document retrieval engine, Lucene, compared to the same number of search
results fetched from commercial search engines using their respective APIs. The times
reported in Table V include snippet creation; the index was stored on a local hard drive.
The results obviously depend on network congestion (remote APIs), on the capability of
local equipment used (Lucene), and also on the specific server processing the request
on the search engine side, but are generally representative of commodity hardware
and typical network locations.

6.1.2. Clustering. Depending on the specific algorithm used, the clustering phase can
significantly contribute to the overall processing time. Although most of the clustering
algorithms will have common components, such as input tokenization and stemming,
the efficiency of clustering is mainly a function of the computational complexity of the
core clustering element of a particular algorithm. The clustering component may in
turn comprise several steps.

In the case of the Lingo algorithm, for example, the most time consuming operation is
computing the SVD decomposition of the term-document matrix with a computational
complexity equal to O(m2n + n3), for a m × n matrix, where in the case of Lingo, n is
the number of search results being clustered, and m is the number of features used
for clustering. While this may seem costly, search results clustering is a very specific
domain, where problem instances rarely exceed a few hundred snippets (it is impractical
to fetch more than, say 500 search results, because of the network latencies). Search
results clustering systems must therefore be optimized to handle smaller instances and
process them as fast as possible. This assumption to some degree justifies the use of
techniques that would be unacceptable in other fields due to scalability issues.

In production-quality clustering the system efficiency of the physical implementa-
tion turns out to be just as important as the theoretical complexity of the algorithm.
A canonical example is frequent phrase extraction. In theory, Esko Ukkonen’s algo-
rithm [Ukkonen 1995] builds a suffix tree for a sequence of n elements with the cost
of O(n). In practice, the algorithm makes very inefficient use of memory caches and,
in the worst case when swap memory must be used, its performance degrades to an
unacceptable level. Suffix arrays, mentioned previously, have a higher theoretical com-
plexity of O(n log n), but are much more efficient in practice due to the locality of data
structure updates.
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Table VI.
Time required to cluster 50, 100, 200 and 400 search results using several algorithms
discussed in this survey: CREDO, Lingo, Lingo3G, Suffix Tree Clustering (STC), and
Tolerance Rough Set Clustering (TRSC). All algorithms used their default parameter and
threshold settings. The benchmark clustered search results retrieved from the Yahoo! API
for query “London”. For each dataset size and algorithm, we provide the time averaged
across 75 runs (preceded by 25 untimed warm-up runs to allow Internal Java virtual
machine optimizations to take place).

Algorithm 50 snippets [s] 100 snippets [s] 200 snippets [s] 400 snippets [s]

CREDO 0.031 0.088 0.272 0.906
Lingo 0.025 0.138 0.243 0.243
Lingo3G 0.009 0.020 0.045 0.070
STC 0.007 0.014 0.030 0.070
TRSC 0.072 0.552 1.368 4.754

Another example concerns the performance of tokenization. Tokenizers will have a
different performance characteristic depending on whether they were hand-written or
automatically generated. Furthermore, the speed of automatically generated tokenizers
(for the same grammar!) may vary greatly. According to the benchmarks authors of this
paper performed while implementing the Carrot2 framework,6 tokenizers generated by
the JavaCC parser generator were up to 10 times slower than equivalent tokenizers
generated using the JFlex package.

To give an impression of the processing effort involved in search results clustering,
Table VI provides clustering times for several algorithms discussed in this article. We
chose these systems because they were available to us for testing and they are repre-
sentative of the main categories discussed in this article. The times, with the exception
of TRSC, are all below one second, which makes such algorithms suitable for online
processing. Lingo imposes a limit on the maximum size of the term-document matrix
on which it then performs singular value decomposition. Therefore, the times required
to cluster 200 and 400 snippets are similar, at the cost of lower clustering quality in
case of the larger data set.

Concluding the performance discussion, let us again emphasize that the efficiency of
search results clustering is the sum of the time required to fetch the input from a search
engine and the time to cluster this input. For the Lingo algorithm, the time spent on
cluster construction accounts for about 10–30% of the total processing time (depending
on whether a local index or remote data source was used).

6.2. Improving Efficiency of Search Results Clustering

There are a number of techniques that can be used to further improve the actual and
user-perceived computational performance of a search results clustering engine.

6.2.1. Client-Side Processing. The majority of currently available search clustering en-
gines assume server-side processing—both search results acquisition and clustering
take place on one or more servers. One possible problem with this approach is that
during high query rate periods the response times can significantly increase and thus
degrade the user experience.

The commercial clustering engine Grokker took a different strategy whereby the
search results clustering engine was delivered to the user as a downloadable desktop

6All benchmarks related to the Carrot2 framework we present hereafter were performed on a Windows XP
machine with a Core2 Duo 2.0 GHz processor, 2 GB RAM and Sun Server JVM 1.6.x with options: -Xmx512m
-Xms128m -XX:NewRatio=1 -server.
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application.7 In this scenario, both search results acquisition and clustering would use
the client machine’s resources: network bandwidth and processor power, respectively.
In this way, scalability issues and the resulting problems could be avoided, at the cost
however, of for example, the need for initial application setup and the risk of the pro-
prietary implementation of a clustering algorithm to be reverse engineered.

6.2.2. Incremental Processing. As postulated by Zamir and Etzioni [1999], one desir-
able feature of search results clustering would be incremental processing—the ability
to deliver some, possibly incomplete, set of clusters to the users before fetching of the
search results has finished. Although incremental text clustering is especially useful
in those scenarios where documents arrive continuously, such as news stories, Usenet
postings, and blogs [Sahoo et al. 2006], it can also be used for improving the efficiency
of Web clustering engines (by halting the computation as soon as some time limit is
exceeded).

Some systems employ clustering algorithms that are incremental in nature, including
STC and the Self Splitting Competitive Learning algorithm [Zhang and Liu 2004]. The
latter is especially interesting because it dynamically adjusts the number of clusters to
the number of search results seen. Another fairly straightforward form of incremental
processing can be achieved with iterative clustering algorithms (e.g., k-means), whereby
a less accurate but faster solution can be obtained by halting the algorithm before it
reaches the termination condition. However, to the best of our knowledge, none of the
publicly available search results clustering engines offer full incremental processing as
a whole, for example, including the appropriate user interface.

Some sort of substitute of incremental behavior is used in the Carrot2 clustering en-
gine, which presents search results as they are being collected and outputs the clusters
after all search results have been downloaded. This is, however, an engineering trick
and not a full answer to the problem.

6.2.3. Pretokenized Documents. If the Web clustering engine can access the low-level
data structures of its underlying search engine8 and the index contains information
about the positions of tokens within documents, the clustering algorithm could fetch
tokenized documents straight from the index and save some of the time it would nor-
mally have to spend on splitting the documents into tokens. According to the authors’
experiences with the Carrot2 framework, tokenization accounts for about 5–7% of the
total clustering time, which in some cases may be enough of an improvement to justify
the use of pretokenized documents.

The price to be paid for this kind of optimization is a very tight coupling between the
source of search results and the clustering algorithm. Furthermore, the characteristics
of the tokenizer used by the search engine may not be fully in line with the requirements
of the clustering algorithm. For example, the search engine may bring all tokens to lower
case, while the clustering algorithm may prefer receiving tokens in their original form
for better presentation of cluster labels, especially those containing acronyms and other
nonstandard tokens.

7. EVALUATION OF RETRIEVAL PERFORMANCE

In this section we address the issue of evaluating the retrieval performance of a clus-
tering engine. For the sake of simplicity, we split the discussion in two parts. In the first

7This particular version of Grokker seems to be no longer available online.
8To the best of our knowledge, HTTP-based APIs for public search engines do not expose tokenized versions
of search results.
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we consider how to compare the retrieval effectiveness of search results clustering to
that of the ranked list of results without clustering. In the second we consider compar-
ing alternative clustering engines. The first task is more difficult because it involves
a comparison between two heterogeneous representations: a list of clusters of results
versus a list of plain results.

7.1. Search Results Clustering Versus Ranked Lists

Since clustering engines are meant to overcome the limitations of plain search engines,
we need to evaluate whether the use of clustered results does yield a gain in retrieval
performance over ranked lists.

The typical strategy is to rely on the standard approach developed in the information
retrieval field for evaluating retrieval effectiveness, which assumes the availability
of a test collection of documents with associated relevance judgments and employs
performance measures based on the two notions of recall (the ability of the system to
retrieve all relevant documents) and precision (the ability of the system to retrieve only
relevant documents). However, these measures assume that the results are presented
in ranked order; in our case, their application requires a preliminary transformation
of the clustered results into a plain list of results.

One obvious way to perform such a clustering linearization would be to preserve the
order in which clusters are presented and just expand their content, but this would
amount to ignoring the role played by the user in the choice of the clusters to be ex-
panded. In practice, therefore, some more informed usage assumption is made. One
of the earliest and simplest linearization techniques is to assume that the user can
choose the cluster with the highest density of relevant documents and to consider only
the documents contained in it ranked in order of relevance [Hearst and Pedersen 1996;
Schütze and Silverstein 1997]. A refinement of this method [Zamir and Etzioni 1998]
consists of casting the output of clustering engines as a clustered list, assuming that the
user can pick more than one optimal cluster, or even a fraction of it, when the cluster
contains many documents. In practice, however, the user may easily fail to choose the
optimal cluster(s) according to this definition.

The clustered list metaphor may be used to reorder the documents using a different
method. One can assume that the user goes through the list of clusters and switches
over from the current cluster to the next one as soon she sees that the number of non-
relevant documents contained in the current cluster exceeds the number of relevant
documents. Leuski [2001] suggested that this simple interactive method may be rather
effective.

A more analytic approach [Kummamuru et al. 2004], is based on the reach time:
a modelization of the time taken to locate a relevant document in the hierarchy. It
is assumed that, starting from the root, a user chooses one node at each level of the
hierarchy by looking at the descriptions of that level, and iteratively drills down the
hierarchy until a leaf node that contains the relevant document is reached. At this
point, the documents under the leaf node are sequentially inspected to retrieve the
relevant document.

Let s be the branching factor, d the number of levels that must be inspected, and
pi,c; the position of the i-th relevant document in the leaf node. The reach time for
the i-th document is: rtclustering = s · d + pi,c. Clearly, the corresponding reach time
for the ranked list is (where pi,r is the position of the i-th relevant document in the
ranked list): rtrankedlist = pi,r . The reach times are then averaged over the set of relevant
documents.

The reach time can be extended to the situation in which we want to assess the
ability of the system to retrieve documents that cover many different subtopics of the
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given user query, rather than documents relevant to the query as a whole. This task
seems very suitable for clustering engines because the subtopics should match the
high-level clusters. The measure, called subtopic reach time [Carpineto et al. 2009], is
defined as the mean, averaged over the query’s subtopics, of the smallest of the reach
times associated with each subtopic’s relevant results. It can be applied to both cluster
hierarchies and ranked lists.

If one is interested in maximizing recall rather than precision, it may be more useful
to consider how many nodes and snippets must be inspected to collect all the relevant
docs, rather than assuming that each relevant doc is retrieved in isolation [Cigarrán
et al. 2005]. This may more accurately model actual user behavior because the search
does not need to start again at the top of the hierarchy after each relevant document
has been retrieved.

Whether we aim at precision or recall, it seems that taking explicitly into account,
both the nodes that must be traversed and the snippets that must be read—as with the
reach time measures—is a better way of measuring the browsing retrieval effectiveness.
However, even this approach has drawbacks, because the cognitive effort required to
read a cluster description may be different from that required to read a document. On
the other hand, it is not guaranteed that a cluster label will allow the user to correctly
evaluate the contents of the documents contained in the cluster. Note that both the
reach time and subtopic reach time assume that the user is always able to choose
the optimal cluster, regardless of its label; in this sense, such measures provide an
upper bound of the true retrieval performance. The quality of the cluster labels is, in
practice, a key to high retrieval performance. This issue will be discussed in the next
section.

The need for a test collection with specified relevance judgments can be avoided by
analyzing user logs. Zamir and Etzioni [1999] compared search engine logs to clustering
engine logs, computing several metrics such as the number of documents followed, the
time spent, and the click distance. The interpretation of user logs is, however, difficult,
because such data usually refers to different users and search tasks and some modeling
of users’ actions is still required.

Although in this section, we have focused on automatic evaluation methods, it must
be noted that conducting user studies is a viable alternative or complementary ap-
proach [Chen and Dumais 2000; Turetken and Sharda 2005; Ferragina and Gulli 2005;
Käki 2005; and Carpineto et al. 2006]. The user performs some kind of information-
seeking task with the systems being compared, the user session is recorded, and the
retrieval performance is typically evaluated measuring the accuracy with which the
task has been performed, and its completion time. Such studies are especially useful
to evaluate inherently subjective features or to gain insights about the overall utility
of the methods being tested. The main disadvantage of interactive evaluation methods
is that the results may be ambiguous due to the presence of hidden factors, and cannot
be replicated.

The experimental findings reported in the literature are in general favorable to clus-
tering engines, suggesting that they may be more effective than plain search engines
both in terms of the amount of relevant information found and the time necessary to
find it. However, we must be cautious because these results may be biased by unrealis-
tic usage assumptions or unrepresentative search tasks. To date, the evaluation issue
has probably not yet received sufficient attention and there is still a lack of conclusive
experimental findings for demonstrating the superior retrieval performance of cluster-
ing engines over search engines, at least for some type of queries. This may also have
been one of the reasons why the major commercial search engines have so far been
reluctant to fully embrace the search result clustering paradigm.
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7.2. Comparing Alternative Clustering Engines

As there are so many clustering engines, it is important to devise methods for comparing
their performance. The most straightforward approach is to use the methods developed
in the clustering literature to evaluate the validity of search results hierarchies. One
can distinguish between internal and external validity [Jain and Dubes 1988], [Halkidi
et al. 2001].

Internal validity measures assess certain structural properties of clustering such as
cluster homogeneity, topic separation, and outlier detection. Such measures, which have
also been widely used for evaluating search results hierarchies, have the advantage that
they are based solely on the features that describe the objects to be grouped. However,
the fact that a hierarchy has certain structural properties does not guarantee that
it is of interest to the user. In many applications, including document clustering, it
may be more appropriate to evaluate cluster validity based on how well the clusters
generated by the system agree with the ground truth clusters generated by human
experts.

This is usually done by adopting a document categorization viewpoint [Sebastiani
2002], which consists of measuring the classification accuracy of the clustering algo-
rithm relative to a particular set of objects that have previously been manually as-
signed to specific classes. The Open Directory Project, already mentioned, and the
Reuters collection9 are two common test datasets used for evaluating classification
accuracy, with the F-measure probably being the best known performance measure.
If the correct classification is a hierarchy rather than a partition, it may be neces-
sary to flatten the results of the hierarchy or to consider the clusters at some specified
depth.

The amount of agreement between the partition generated by the clustering algo-
rithm and the correct classification can also be assessed using information-theoretic
entropy or related measures [Dom 2001]. Several clustering engines have been eval-
uated following this approach (e.g., Maarek et al. [2000]; Cheng et al. [2005]; Geraci
et al. [2008]). A more flexible agreement criterion that allows for justified differences
between the machine-generated and the human-generated clusters has been recently
proposed in Osiński and Weiss [2005] and Osiński [2006]. One example of such justified
difference, for which the algorithm is not penalized, is when a larger human-identified
group gets split into smaller pure subgroups. It should also be noted that although
the external measures for assessing cluster validity are conceptually distinct from the
internal measures, the former may be experimentally correlated with the latter [Stein
et al. 2003].

As remarked earlier, another key aspect that needs to be evaluated is the quality
of cluster labels. Aside from linguistic plausibility, the most important feature of a
label is how well it describes the content of the cluster. This can be cast as a ranking
problem, in which we measure the precision of the list of labels associated with the
clusters assuming that the relevance of the labels has been manually assessed for each
topic [Zeng et al. 2004; Spiliopoulou et al. 2005]. Alternatively, the goodness of labels
can be measured by analyzing their relationships to the clusters’ content, and can be
expressed, for instance, in terms of informativeness [Lawrie et al. 2001].

The criteria discussed so far do not explicitly take into account the performance
of the system in which the hierarchy is encompassed. As the intended use of search
results clustering is to find relevant documents, it may be convenient to evaluate the
hierarchies’ performance on a retrieval oriented task.

9www.daviddlewis.com/resources/testcollections
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Table VII. Comparison of Label-Driven Subtopic Reach Time of Five Clustering
Algorithms on the AMBIENT Test Collection

CREDO Lingo Lingo3G STC TRSC

14.96 15.05 13.11 15.82 17.46

We now describe an experimental study of the retrieval effectiveness of the same five
clustering algorithms tested for efficiency in Section 6.1.2. Our aim was to evaluate
their subtopic retrieval performance in a realistic scenario in which the user actions
are driven by the meaning of the cluster labels. We used the AMBIENT (AMBIgous
ENTries) test collection, a dataset specifically designed for evaluating subtopic infor-
mation retrieval. It consists of 44 topics, each with a set of subtopics and a list of 100
search results with corresponding subtopic relevance judgments. The topics were se-
lected from the list of ambiguous Wikipedia entries (those with “disambiguation” in
the title). The 100 search results associated with each topic were collected from Yahoo!
as of January 2008, and their relevance to each of the Wikipedia subtopics was then
manually assessed. The total number of retrieved subtopics (the Wikipedia subtopics
for which at least one relevant search result was retrieved) is 345, with an average of
6.46 relevant results per retrieved subtopic. AMBIENT is available online10; for a more
detailed description of the dataset see Carpineto et al. [2009].

To evaluate the subtopic retrieval performance, we used a modified version of the
subtopic reach time (SRT) measure introduced in Section 7.1. More precisely, for each
query’s subtopic, we first manually selected the most appropriate label among the list of
cluster labels created by the clustering algorithm. The SRT value was then computed
by summing the number of high-level clusters and the position of the first relevant
result in the cluster with the most appropriate label. For instance, the SRT for the
subtopic “Mac operating system” in the Vivı́simo portion of Figure 1 would be equal
to 11, given by the number of clusters in the first level (10) plus the position of the
first relevant search result (“Apple – Mac OS X”) within the most appropriate cluster
“Mac OS X” (1). When no appropriate label was found for the subtopic at hand, or
the cluster associated with the most appropriate label did not contain any relevant
result, we turned to the ranked list of search results (in this case the corresponding
SRT was given by the number of high-level clusters plus the position of the first result
relevant to the subtopic in the ranked list associated with the query). Note that in this
measure, unlike the optimal SRT discussed in the preceding section, only the search
results contained in a cluster with an appropriate label are considered. We refer to
it as label-driven SRT. A further advantage of label-driven SRT is that the quality of
cluster labels is seen as a component of the overall retrieval performance, as opposed
to evaluating the quality of cluster labels per se.

We ran each of the five systems on the AMBIENT dataset, computing their label-
driven SRT with the procedure described above. The results, averaged over over the set
of 44 queries, are shown in Table VII. The best performance was achieved by Lingo3G,
followed by CREDO, and Lingo, which are all representatives of the description-centric
algorithms. The subtopic reach times found for STC (description-aware class) and
TRSC (data-centric class) were higher. It is also interesting to note that the SRT
value computed for the plain ranked list of search results (those produced by Yahoo!)
would be equal to 22.46, thus much higher than any clustering algorithm tested in the
experiment.

It is important to emphasize that the evaluation methods presented so far, including
the subtopic reach time, are good at measuring specific, albeit important, aspects of the

10http://credo.fub.it/ambient
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Table VIII. Features of Retrieval Performance Evaluation Methods

Evaluation Cluster Classification Label Reach Subtopic User
Method Validity Accuracy Quality Time Reach Time Studies

Fully automatic � � � �

No need for test collection � � �

Mathematical measures � � � � �

Task oriented � � �

Labels handled � � �

overall clustering engine performance. Furthermore, they have shortcomings and may
not be accepted without reservation. In fact, performance evaluation is still largely an
open question. To compensate for the lack of a unified method and standard evaluation
benchmarks, usually one tries to collect multiple evidence in the hope of gaining consis-
tent results about the superiority of one method over another. Also, due to the paucity of
fully reliable or comprehensive automatic evaluation methods, one common approach
is to design experiments with external subjects. As discussed in the preceding section,
the focus of such experiments is on modeling an interactive information-finding task
and measuring relative performance [Carpineto et al. 2006, 2009; Otterbacher et al.
2006]. In addition, they may involve the use of questionnaires and surveys, by which
to identify the main usability issues [Ferragina and Gulli 2005] or evaluate the quality
of cluster labels [Geraci et al. 2008].

To conclude this section, in Table VIII we summarize the main characteristics of
several evaluation methods.

8. FUTURE TRENDS

The cluster hierarchies built from search results are far from being perfect. Even con-
sidering a single level, it is not always easy to figure out why some clusters have been
generated and others are missing. For instance, in the top level clusters created from
Vivı́simo in Figure 1, there are two subspecies of tiger, Siberian and White (or Bengal),
but the other three subspecies (Sumatran, South China, and Indochinese) are missing.
The lack of predictability of clustering output may become even more evident if the
level of granularity of the generated clusters is not uniform, as is often the case. In the
Vivı́simo example in Figure 1, the cluster “Foundation” is on a very specific aspect of the
animal meaning of tiger (a Canadian conservation organization exclusively dedicated
to the preservation of wild tigers), while “Pictures” is a broad cluster containing both
pictures and textual results related to various meanings of tiger.

Inconsistency is another problem. The contents of a cluster do not always correspond
to the label and the navigation through the cluster subhierarchies does not necessarily
lead to more specific results. For instance, the second element in the subcluster “Tiger
Woods” returned from Carrot2 in Figure 1 is an Encyclopaedia Britannica entry listing
the various meanings of tiger (including “woods”) and not a result on “Tiger Woods.”
Thus, it should be best placed at the top level of the hierarchy.

These kinds of errors are quite typical for clustering output, whereas users prefer
coherent and relatively complete category systems [Hearst 2006]. If the hierarchies
are not clearly understandable or predictable, the benefits of clustering may be over-
whelmed by the cost of navigating through a disorderly structure, and the overall ef-
fectiveness of the system may be prejudiced [Rodden et al. 2001].

The most important research issue is thus how to improve the quality and usability
of output hierarchies. Clearly, they would benefit from an improvement in the accuracy
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of the snippets returned by the auxiliary search engine, but here we do not address this
aspect because search results are regarded as the input. By focusing on postretrieval
clustering of the given search results, improvements can be made at the various stages
of the whole process, as discussed in the following.

One straightforward approach is to extract more powerful features for indexing the
retrieved results, although this may not automatically result in an improvement of the
retrieval performance of the resulting clustering structure. The proposed techniques
include using hyperlinks [Wang and Kitsuregawa 2002], named entities [Toda and
Kataoka 2005], external information available on the Internet [Gabrilovich 2006], and
temporal attributes [Alonso and Gertz 2006].

Another line of research is focused on generating more expressive or effective de-
scriptions of the clusters after the construction of the cluster hierarchy. Several tech-
niques are available. Multi-document summarization is probably the most natural way
to address the expressiveness issue [Harabagiu and Lacatusu 2005], while a smoother
transition from the cluster label to the cluster contents can be achieved by providing
cluster previews [Osdin et al. 2002]. Finding optimal cluster representatives [Liu and
Croft 2006] can be used to improve the effectiveness of cluster-based reranking, when
the user is not requested to choose one of the created clusters. Clustered results might
also be used as contexts for query refinement. This is suggested in Anagnostopoulos
et al. [2006], where a query consisting of several weighted terms is computed for each
class or cluster by using measures such as the Fisher Index [Chakrabarti et al. 1998].
Although such queries are probably not appropriate as browsing labels, they can be
effectively used to retrieve further results relevant to any cluster of interest.

It is also possible to try to improve the accuracy of the hierarchy structure. As there
is no clustering algorithm that is intrinsically better or more valid than the others,
provided that the structure of the data set is not incompatible with the model of the al-
gorithm [Estivill-Castro 2002], it may be convenient to combine the existing algorithms.
Method combination works well for classification [Kittler et al. 1998] and query expan-
sion [Carpineto et al. 2002], and there is evidence that this is also the case for clustering.
Fred and Jain [2005] have shown that merging the results of multiple clustering helps
identify clusters with non predefined shapes or structures. This ability may increase
the flexibility and robustness of the method used for identifying the topics in the search
results.

When the clustering process does not depend only on the search results, but is also
influenced by the user characteristics, we speak of personalization. From a machine
learning point of view, this is a semisupervised problem, in which the supervised knowl-
edge is expressed by constraints that must be obeyed by the cluster structure. Typical
constraints may specify document pairs that should be clustered together or rather kept
separated [Wagstaff et al. 2001], or a range tree with admissible parameter intervals
[Rigou et al. 2006], or even an order relation over the clusters [Bade and Nürnberger
2006]. Such constraints may be provided explicitly or inferred from the user behavior
(e.g., from a hierarchical folder).

Instead of optimizing the construction of the hierarchy structure, one can try to
reorganize a given structure based on user actions. This can be seen as another form
of personalized (adaptive) clustering. The proposed techniques exploit user feedback,
whether explicit or implicit (e.g., clickthrough data), to filter out parts of the hierarchy
that are presumably of no interest to the user Ferragina and Gulli [2005], Haase et al.
[2005]; Pierrakos and Paliouras [2005].

Besides trying to improve the basic methodology, recent research has identified new
application areas of search results clustering. A particularly timely topic is the fast
growing market of mobile search. The existing user interfaces, modeled after desktop
plain search engines, do not adequately address the challenges posed by small-screen,
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limited-input, low-bandwidth devices. By contrast, search results clustering, by its very
nature, has the potential of minimizing the amount of information transmitted and
displayed, as well reducing tedious user actions such as scrolling and keyword entry.
Such potentials have been preliminarily investigated in some recent works. Two mobile
versions of CREDO, suitable for personal digital assistants and cellular phones, are
described in Carpineto et al. [2006, 2009]. The systems, termed Credino (small CREDO,
in Italian) and SmartCREDO, are exclusively based on the search results and are
freely available online.11 Other approaches such as metadata [Karlson et al. 2006] or
bookmarks [De Luca and Nürnberger 2005] make use of additional knowledge.

A further challenge is represented by XML documents. In order to take advantage
of both their content and structure for clustering purposes, the traditional similarity
measures used by clustering algorithms have been enriched with a variety of struc-
tural features, such as tree edit distance and graph-based representation models (for
a review of recent approaches see Tagarelli and Greco [2006]). XML clustering is also
being investigated within INEX12, the INitiative for the Evaluation of XML Retrieval.
Coupled with the attempts at building semantic Web search engines [Ding et al. 2004],
this work can pave the way toward semantic Web clustering engines.

9. CONCLUSIONS

By showing the most likely meanings for any given request, search results clustering
narrows the semantic mismatching between the user need behind the request and the
list of results returned by a plain search engine. The technology of Web clustering
engines has reached a level of maturity in which a rich body of research has been
developed and several commercial systems are being deployed.

In this article, we have presented the most important scientific and technical aspects
of Web search result clustering. We have discussed the issues that must be addressed
to build a Web clustering engine and have reviewed and evaluated a number of existing
algorithms and systems.

A number of advances must be made before search results clustering entirely fulfills
the promise of being the PageRank of the future. First, more work needs to be done
to improve the quality of the cluster labels and the coherence of the cluster structure.
Second, more studies on user queries must be made to understand when search results
clustering is most useful. Third, there is a need for carefully engineered evaluation
benchmarks to allow cross-system comparison, and to measure progress. Fourth, ad-
vanced visualization techniques might be used to provide better overviews and guide
the interaction with clustered results.
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