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Background: Traditional Chinese medicine (TCM) treats diseases in a holistic manner, while TCM formulae are
multi-component, multi-target agents at the molecular level. Thus there are many parallels between the key ideas of
TCM pharmacology and network pharmacology. These years, TCM network pharmacology has developed as an
interdisciplinary of TCM science and network pharmacology, which studies the mechanism of TCM at the molecular
level and in the context of biological networks. It provides a new research paradigm that can use modern biomedical
science to interpret the mechanism of TCM, which is promising to accelerate the modernization and
internationalization of TCM.
Results: In this paper we introduce state-of-the-art free data sources, web servers and softwares that can be used in
the TCM network pharmacology, including databases of TCM, drug targets and diseases, web servers for the
prediction of drug targets, and tools for network and functional analysis.
Conclusions: This review could help experimental pharmacologists make better use of the existing data and methods
in their study of TCM.

Keywords: TCM network pharmacology; molecular networks; signaling pathways; databases; web servers

Author summary: TCM network pharmacology studies the therapeutic mechanism of TCM formulae from a systems
perspective and at the molecular level. Years of research in related fields has developed many databases and tools that are
useful for the study of TCM network pharmacology. In this paper, we introduce some of such free resources.

INTRODUCTION

These years have witnessed great progress in the
application of systems biology to the research field of
traditional Chinese medicine (TCM). Especially, TCM
network pharmacology has arisen as a new interdisci-
plinary science, which integrates the study of TCM
pharmacology with network science, systems biology,
computational science and bioinformatics [1–3]. TCM
treats diseases in a holistic way. At the molecular level,
TCM formulae are multi-component and multi-target
agents. Traditional reductionism method is difficult to
reveal the complicated interplays between the multiple
components and multiple targets of TCM formulae. TCM
network pharmacology is an exciting new approach to

help examine the explicit targets of active TCM
ingredients and define their function in the context of
molecular networks.
One of the critical problems of TCM network

pharmacology is to evaluate the synergistic effect of
TCM’s multiple targets in the disease-associated net-
works. According to the features of TCM that have
complex components, unclear targets and treat diseases
by holistic regulations, several network-based TCM
research strategies have been established (see Figure 1
for an example) [1,2,4,5]. A series of databases [6–9] and
algorithms [10–15] have been set up to provide data
source and methodological support for TCM network
pharmacology. Using these strategies, resources and
methods, the therapeutic mechanisms of many TCM
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formulae have been illustrated at the molecular level [16–
20], which help facilitate the modernization of traditional
Chinese medicine. However, it is still difficult for
experimental researchers to apply the theories and
algorithms of TCM network pharmacology. In this
paper, we survey some data resources and tools that can
be freely accessed online and easily used in the study of
TCM network pharmacology.

TCM DATABASES

ATCM formula usually consists of many natural products
such as herbs, animals and minerals, each of which
contains large numbers of chemical molecules. The active
compounds in the formula interact with dysfunctional
proteins related to a specific disease so as to treat the
disease. Therefore, the identification of active TCM
compounds and their targets is essential to understand the
underlying mechanisms of TCM formulae. Several
databases have been constructed to provide information

concerning all aspects of TCM, including diseases,
formulae, herbs or natural products, bioactive ingredients
and targets. These databases bridge the gap between TCM
and modern biomedical sciences and play important roles
in the study of TCM pharmacology. This section
introduces some free TCM databases. Table 1 lists a
summary of contents of these databases.

TCMSP

TCMSP (Traditional Chinese Medicine Systems Pharma-
cology Database and Analysis Platform) [8] consists of all
the 499 Chinese herbs registered in the Chinese
pharmacopoeia with 29,384 ingredients, 3,311 targets
and 837 associated diseases. Drug-target mappings were
obtained from HIT database [21] and the prediction
algorithm SysDT [22]. The disease information was
obtained from TTD database [23] and PharmGKB [24].
The information can be queried and downloaded. The
very special value of this database is that for each

Figure 1. A general workflow for TCM network pharmacology in the study of a TCM formula. The workflow includes the
identification of TCM’s effective active compounds, targets of the compounds and disease associated genes. Based on these data,

the construction and analysis of disease/drug-associated networks, and the identification of related signaling pathways help to
clarify the mechanism of the TCM formula. Such studies can facilitate drug discovery from well-validated TCM remedies and the
development of new drug combinations.

Table 1 The statistics of the TCM databases covered in this review
Databases No. of formulae No. of organisms No. of ingredients No. of protein targets

TCMID 46,929 8,129 43,413 None

TCMSP None 499 29,384 3,311

TCM-ID 1197 1102 12,117 None

HIT None > 1300 586 1301

TCM@Taiwan None 453 61,000 None

NPACT None None 1574 248

CancerHSP None 2439 3575 832

NPASS None 25,041 35,032 2,946
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compound, it provides its drug pharmacokinetic informa-
tion such as drug-likeness (DL), oral bioavailability (OB),
human intestinal absorption (HIA), blood-brain barrier
(BBB), intestinal epithelial permeability (Caco-2),
ALogP, fractional negative surface area (FASA-) and
number of H-bond donor/acceptor (Hdon/Hacc). Thus the
users can chose compounds with good drug-likeness and
ADME (absorption, distribution, metabolism, excretion)
feature for further study. Wang et al. used TCMSP to
perform ADME screen for active ingredients of Chinese
patent medicine Xinnaoxin Pill. They set the screening
thresholds as OB³30%, DL³0:18, HIA³70%, and B
BB > 0:3 and generated 18 active compounds satisfying
these criteria [25]. From this database they then obtained
218 putative targets for these compounds. Lee et al.
collected 447 compounds included in Yijin-Tang from the
TCMSP database and only 42 of them satisfy OB and DL
screening criteria [26]. Besides the 42 compounds, they
also included 4 other compounds below these criteria
which were reported as bioactive compounds in literatures
for further analysis. At last, they suggested that 10
compounds were bioactive compounds and key chemicals
of Yijin-Tang because each of them was linked to more
than four genes associated with hyperlipidaemia and
atherosclerosis.

TCMID

TCMID (Traditional Chinese Medicine Integrated Data-
base) [9] provides information about TCM formulas,
herbs, and compounds of herbs. It also includes
information of diseases and western drugs. This database
was constructed by integrating former databases and text-
mining. Specifically, the TCM formulas were collected by
text mining from literatures; herbs were extracted from
TCM-ID database [7] and text-mining; herbal ingredients
were got by text-mining methods and combining
information from other TCM databases, including
TCM@Taiwan [6], TCM-ID, and HIT. Information of
diseases and their associated proteins and drugs was
retrieved from DrugBank and OMIM. Previous version of
TCMID includes target information, which were collected
from databases HIT, STITCH [27], OMIM [28], Drug-
Bank [29] and text-mining. Recently, target information
cannot be found in this database. TCMID database allows
querying and downloading.
Here we briefly introduce the three databases whose

information has been included in TCMID. TCMID
(Traditional Chinese Medicine Information Database)
[7] collects information about TCM formulas, herbs and
compounds. It provides query about these information but
does not allow downloading the whole data. HIT (Herbal
Ingredients’ Targets Database Introduction) [21] is a
manually curated database that contains information on

the protein targets of compounds found in Chinese herbs.
Based on over 3,250 papers in the literature, HIT includes
1,301 protein targets affected by 586 herbal compounds
found in more than 1,300 Chinese herbs. TCM@Taiwan
[6] provides information about 61,000 compounds
included in 453 TCM herbs collected from Chinese
medical texts and scientific publications. Because its data
are manually retrieved from literature, HIT is a very
reliable database. We collected part of targets for
Shexiang Baoxin Pill’s active compounds from this
database for further network and functional analysis [16].

NPACT

NPACT (Naturally occurring Plant based Anticancerous
Compound-activity-Target database) [30] is a manually
curated database of plant derived compounds that show
anti-cancerous activity extracted from 762 papers. It
contains 1,574 compounds exhibiting activity against 353
cancer cell lines, 284 cancer-related protein targets and
1,980 experimentally validated compound-target interac-
tions. For each compound, it provides information on
their structure, properties, cancer type, cell lines,
inhibitory values (IC50, ED50, EC50, GI50), molecular
targets, commercial suppliers and drug likeness of
compounds. Users can query the database by compounds
and browse the information of the database from its web.

CancerHSP

CancerHSP (Anticancer Herbs database of Systems
Pharmacology) [31] contains 3,575 anticancer com-
pounds included in 2,439 anticancer herbs and 832
targets. The targets are got by text-mining or prediction.
The anticancer activities of these compounds based on
492 different cancer cell lines are also provided. The
database also shows the molecular structure and nine key
ADME parameters of each compound. Users can query
the database by herbs, compounds and targets. The data of
the database can be downloaded.

NPASS

The NPASS (the Natural Product Activity and Species
Source Database) [32] provides detailed information of
species sources and biological activities of natural
products. This database contains 35,032 unique natural
products (compounds) isolated from 25,041 source
organisms, including 16,581 plant species, 1,675 bacteria
species, 2,503 metazoa species and 2,107 fungi species. A
total of 5,863 targets of the compounds are provided,
2,946 of which are proteins. It also includes information
of other classes of targets, such as organisms and cell
lines. The data were collected from existing resources and
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manually annotated from literatures.

DRUG TARGET DATABASES

From Table 1 we can see that target information in current
free TCM databases is too scarce to satisfy the needs of
TCM research. Thus it is necessary for us to utilize other
sources. There are many general drug target databases or
chemical-protein interaction databases that provide large-
scale experimental or predicted drug/compound-protein
interaction data for small molecules. These databases
have been widely accepted and used by drug discovery
community. They can also be used to search or predict
protein targets for TCM active compounds. In fact, some
of them have been used in the study of TCM network
pharmacology. To get comprehensive information about
TCM formulae’s active ingredients and targets, it is better
to combine the results obtained from multiple resources.
For example, Fang et al. conducted a systems study for
identifying potential natural products which target
mutated genes across 15 cancer types or subtypes [33].
They collected natural products from 6 TCM databases,
including TCMID, TCMSP and TCM@Taiwan. The
targets of natural molecules were searched from 2 TCM
databases (TCMID and TCMSP) and 3 general chemical-
protein interaction databases (STITCH, ChEMBL and
BindingDB). This study found 848 significant anti-cancer
indications for 224 natural products. When we study
TCM formula Shexiang Baoxin Pill (SBP)’s effects on
cardio-vascular diseases (CVD), we collected its targets
from HIT and STITCH [16]. We found that SBP only
targets a very small fraction of CVD disease genes, which
is not like FDA approved CVD drugs that mainly target
specific disease genes. However, from the perspective of
network regulation, our study suggested that SBP
achieves its efficacy on CVD treatment by regulating
the disease network though interactions between genes,
instead of directly acting on CVD disease genes.
In this section we survey drug-target and chemical-

protein interaction databases. See Table 2 for statistics of
some databases of this class.

DrugBank

DrugBank provides comprehensive molecular informa-
tion about drugs and their mechanisms, including their
chemical, pharmacological, pharmaceutical, ADME,
interaction information and their targets [29,34]. The
first version of DrugBank was released in 2006. It has
been updated frequently. Currently DrugBank 5.0 con-
tains the information of 10,971 drugs and 4,900 protein
targets. The drugs consist of 2,391 FDA approved small
molecule drugs, 934 approved biotech drugs, 109
nutraceuticals and over 5,090 experimental drugs. This

database allows for web query and downloading. In the
study of TCM pharmacology, target information of
modern drugs can be used for the prediction of TCM’s
targets. In addition, modern drugs which treat the same
disease can be used as contrast. Information of these drugs
can be obtained from DrugBank. For example, in their
study on Yin-Huang-Qing-Fei capsule (YHQFC)’s effects
on chronic bronchitis, Yu et al. identified DrugBank’s
drugs having similar structures with YHQFC’s active
compounds and then regarded targets of these drugs as
putative targets of YHQFC [41]. They also acquired the
known therapeutic targets of drugs used to treat chronic
bronchitis from DrugBank for further network analysis. In
our study for Huang-Lian-Jie-Du-Tang (HLJDT)’s effects
on rheumatoid arthritis (RA), we retrieved all the 32
FDA-approved anti-RA drugs and their 51 targets from
DrugBank. We designed a network score to measure
drugs’ effects and found that HLJDT achieves a high
effect score, which is in the same order as that of one class
of anti-RA agents, anti-inflammatory agents [42].

TTD

TTD (Therapeutic target database) [23] provides informa-
tion about drugs, targets, targeted diseases and pathways.
The current version collects 34,019 drugs, including
2,544 proved drugs, 8,103 clinical trial drugs and 18,923
investigative drugs. Its 3,101 targets are classified as 445
successful targets, 1,121 clinical trial targets and 1,535
research targets. For each drug, its chemical structure,
targets, targeted diseases and involved pathways are
provided. Users can search the database by targets, drugs,
diseases and biomarkers, as well as predict targets for
compounds without target information using its drug
similarity searching tool. The similarity searching is based
on the Tanimoto similarity searching method. A query
compound can be input by its MOL, SDF or SMILES
format, and then the tool lists its similar compounds and
corresponding Tanimoto similarity scores. The targets of
the compounds with the highest scores can be predicted as
the targets of the query compound. The database also
allows for batch download. To study how the combination
of herb pair Euphorbia kansui (GS) andGlycyrrhiza (GC)
act on hepatocellular carcinoma ascites, Zhang et al. used
structural similarity comparison in TTD to get 13 and 102
putative targets of GS and GC, respectively [43]. Their
further topological analysis for the protein-protein net-
work between these targets found that the ADRB1-
PIK3CG interaction may play crucial role in connecting
the other targets in the network. Considering that ADRB1
and PIK3CG were putative targets of GS and GC,
respectively, and both had functional interactions with
AVPR2, which is a known therapeutic target for ascites,
they proposed that the GS-GC combination may exert
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synergy effects on ascites through the ADRB1-PIK3CG-
AVPR2 signal axis.

STITCH

STITCH (Search Tool for Interacting Chemicals) [27] is a
database of known and predicted interactions between
chemicals and proteins. The current version covers
interactions between 430,000 small molecules and
9,643,763 proteins from 2,031 organisms. STITCH
shares protein space with the gene association database
STRING, which is developed by the same team. The
interactions are derived from high-throughput experi-
ments, other primary databases, text-mining and compu-
tational prediction. The databases that STITCH collects
data include manually curated databases such as Drug-
Bank [34], GLIDA (GPCR-ligand database) [44], Mata-
dor [37], TTD (Therapeutic Targets Database) [45] and
CTD (Comparative Toxicogenomics Database) [46];
pathway databases such as KEGG (Kyoto Encyclopedia
of Genes and Genomes) [47], PID (Pathway Interaction
Database) [48], Reactome [49] and BioCyc [50]; and
experimental result databases such as ChEMBL [35],
PDSP Ki [51], and PDB (Protein Data Bank) [52]. Each
interaction in the database is assigned a score to indicate
its probability or binding affinity. When a compound is
searched via web of the database, its similar compounds
and similarity scores will be listed. Like TTD, the
database also supports the prediction of targets based on
structural similarity. The STITCH database can be
downloaded in full as well.

ChEMBL

ChEMBL contains much more drug-like bioactive
compounds than other drug target databases [35].
Currently, it contains 1,735,442 distinct compounds and
11,538 targets. The database provides structure, func-
tional, target and ADMET information for the com-
pounds. These data are manually collected from 67,722
peer-reviewed publications. The database can be searched
by compounds or targets.

BindingDB

BindingDB provides experimentally measured protein–
ligand binding affinity data, including values of Ki, Kd,
IC50 and EC50 [36]. It focuses chiefly on the interactions
between drug-like small molecules and proteins consid-
ered to be drug-targets. The data are collected from US
patents, scientific publications, and other databases such
as the PubChem [53] (4,5), ChEMBL [35], PDSP Ki [51]
and CSAR (www.csardock.org) [54]. The database
launched on the web in the year of 2000 and is updated

continually. Currently BindingDB contains 1,427,022
binding data between 639,152 small molecules and 7,026
protein targets.

ZINC

ZINC provides information about ligands and their
purchasability, targets, clinical trials and so on [55].
Currently the 15th version of ZINC contains over
400 million purchasable “drug-like” compounds,
which covers 204 commercial catalogs from 145
companies. The biological annotations of the compounds
are derived from third party databases and libraries, such
as HMDB [56], ChEMBL and DrugBank. ZINC
normalizes ligand-target binding affinity measure pKi,
IC50, EC50, AC50, and pIC50 to a single standard pKi
value. The database also affords predicted targets, which
were calculated by an algorithm combining the Similarity
Ensemble Approach (SEA) with the maximum Tanimoto
similarity. Applying this algorithm, over 171 million
commercially available compounds were predicted target-
ing at a total of 2,629 targets with significance. When
searching for a compound, the users can obtain informa-
tion about its chemical characteristics, known and
predicted targets, clinical trials and vendors who sell
this compound.

WEB SERVERS FOR TARGET
PREDICTION

Some TCM databases and chemical-protein interaction
databases, such as TCMSP, TTD, BATMAN-TCM [57]
and STITCH, also provide target prediction services. That
is, when we search these databases, some results are
actually predicted by the algorithms of databases. There
are some web servers and software that are specialized in
target prediction, which can be used like these databases
in the research of TCM pharmacology. For example,
when exploring the anti-proliferative activity of herb
Pelargonium sidoides DC, Pereira et al. used web servers
PharmMapper [58] and DRAR-CPI [59] to predict its
active compounds’ targets [60]. They identified 142
potential protein targets of the herb, in which 90 targets
were found to be related to cancer. Wei et al. used
commercial software MetaDrug from GeneGo, Inc to
predict putative targets of TCM formula Danhong
injection (DHI) [61]. They found that 8 transcription
factors (TFs), including pre-B-cell leukemia transcription
factor 1 and cyclic AMP-dependent transcription factor 1,
are putative target TFs for DHI-mediated protection
against cerebral ischemia.
In this section we introduce some non-commercial web

servers that provide service for the prediction of drug
targets.
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SuperPred

SuperPred is a web server for predicting targets and the
ATC (Anatomical Therapeutic Chemical) codes of
compounds [62]. Its predictions are based on the similar
property principle, which includes the 3D structural
similarity, the occurrence of fragments and the con-
cordance of physico-chemical properties. The target
prediction is performed by screening the input compound
against a database containing about 341,000 compounds,
1,800 targets and 665,000 compound-target interactions.
The database was created by extracting compound–target
interaction data from SuperTarget, ChEMBL and Bin-
dingDB. The ATC code prediction is based on a similarity
comparing pipeline including 2D, fragment and 3D
similarity. The input compound is screened against
2,600 compounds having known ATC codes. The ATC
codes of drugs are published by the World Health
Organization (WHO) for the classification of drugs. The
classification is based on therapeutic and chemical
characteristics of the drugs. The query compound can
be input by its name in PubChem or structure by SMILES
or MOL format.

SwissTargetPrediction

SwissTargetPrediction is a web server to predict the
targets of compounds based on a combination of 2D and
3D similarity measures with known compounds [63].
Predictions can be carried out in five different organisms,
including human, mouse, rat, cow and horse. The dataset
of known compound-protein interactions for prediction
was retrieved from the 16th version of ChEMBL
database. It consists of 280,381 small molecules interact-
ing with 2,686 targets, with the majority of targets (66%)
found in human. SwissTargetPrediction provides a score
for each predicted target to assess the likelihood of the
predictions to be correct. It also maps predictions by

homology within and between different species and
provides the likelihood score. Query compounds can be
input by structure as SMILES string or MOL file.

TargetNet

The web server TargetNet [64] predicts the targets of
compounds based on QSAR (quantitative structure
activity relationships) model, which mathematically
relates specific chemical features of molecules to their
bioactivities. Seven distinct molecular fingerprints are
employed to describe chemical characteristics of mole-
cules. The prediction uses a machine learning approach
called Naïve Bayes classifier. The database BindingDB is
used as training datasets. After a filtering process, a total
of 109,061 compounds and 623 human target proteins in
this database are used for model building. When the user
inputs a compound, the prediction scores of this molecule
toward all the 623 in-house proteins are calculated via 623
established QSAR models with selected performance
statistics. A molecular structure or a molecular file with
SMILES format is required for input.

PharmMapper

The pharmacophore means a molecular framework that
carries the essential features for a molecule to interact
with a specific target protein. A pharmacophore
model is a group of steric and electronic features of a
molecule that is necessary to ensure its optimal interac-
tions with a specific target protein for triggering or
blocking its biological activity. Ligand-based pharmaco-
phore modeling has been widely used in drug target
identification. The Pharm Mapper is a web server that
predicts protein targets of compounds based on pharma-
cophore model [58]. The prediction is performed by
matching the pharmacophore of the query compound
against an in-house pharmacophore model database.

Table 2 Statistics of some drug target databases
Databases No. of compounds No. of targets Ref.

DrugBank 10,971 4,900 [29,34]

TTD 34,019 3,101 [23]

STITCH 430,000 9,643,763 [27]

ChEMBL 1,735,442 11,538 [35]

BindingDB 639,152 7,026 [36]

SuperTarget 195,770 6,219 [37]

MATADOR 801 2,901 [37]

CancerDR 148 116 [38]

DGIdb 32,106 88,533 [39]

SuperDRUG 4,587 3,000 [40]
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Currently, the PharmMapper’s in-house pharmacophore
database includes 53,184 unique pharmacophore models.
PharmMapper accepts a file with a compound stored in
mol or SDF format.

SystemsDock

Molecular virtual docking is a kind of computational
method to evaluate the binding potential of a small
molecule to a target protein. It has been widely applied in
drug discovery. The web server SystemsDock [65]
utilizes a molecular docking algorithm called dock-IN
to assess protein–ligand binding potential and provides a
score to present the potential [66]. Users need to input
chemical molecules and their potential target proteins
they want to validate. Each time at most five molecules
and a group of proteins are allowed to input to the web
server. The input for compounds can be a structure file in
formats of 2D/3D SDF, Mol2 or SMILES. Proteins can be
input by their gene symbols or PDB IDs. Users can also
predict which proteins in a specific pathway are potential
targets of their compounds. In this case the molecular
pathway should be uploaded in SBML format with
CellDesigner™ tags. It is noted that molecular virtual
docking cannot be applied to proteins whose 3-D
structures are unknown. The SystemsDock can be used
to evaluate the binding affinity between small molecules
and their putative targets. For example, Zhang et al. applied
a similar software eHiTS [67] to evaluate the direct binding
efficiencies of the main chemical components of Euphor-
bia kansui and Glycyrrhiza with ADRB1 and PIK3CG,
respectively [43]. These two targets were predicted by TTD
using structural similarity comparison, and their interaction
is likely to play crucial role in connecting the other targets
in the PPI network between the targets.

DISEASE DATABASES

Clinical practices have proved the efficacy of TCM
formulae to the treatment of many chronic complex
diseases. Complex diseases are multi-factorial disorders
that are influenced by multiple genes in combination with
lifestyle and environmental factors. There are many
databases that collect disease-related gene information
for systems-level understanding of human diseases. They
are important sources for the research of TCM network
pharmacology. In this section, we introduce three
representative disease databases.

OMIM

The Online Mendelian Inheritance in Man (OMIM)
database [28] is a curated database that provides
information about the genetic component and relevant

genes for all the known mendelian disorders. It is a
comprehensive, authoritative compendium of human
genes, genetic phenotypes and the relationships between
them. The OMIM contains over 15,000 genes associated
with all known mendelian disorders. The information of
OMIM comes from the published peer-reviewed biome-
dical literature. The database is updated daily.

DisGeNET

DisGeNET is a comprehensive gene-disease association
(GDA) database [68] that provides the current knowledge
of human genetic diseases including Mendelian, complex
and environmental diseases. The information in DisGeNet
is integrated from expert curated repositories, GWAS
catalogues, animal models and the scientific literature.
Specifically, its data sources include the CTDTM (Com-
parative Toxicogenomics DatabaseTM) [69], UniProt/
SwissProt [70], ClinVar [71], Orphanet [72], the
NHGRI-EBI GWAS Catalog [73], GAD (Genetic Asso-
ciation Database) [74], MGD (the Mouse Genome
Database) [75], RGD (the Rat Genome Database) [76],
PsyGeNET [77], the Human Phenotype Ontology [78],
LHGDN (the Literature Human Gene Derived Network)
[79], and the BeFree [80]. The DisGeNET gives each
GDA three scores range from 0 to 1, the confidence score,
the Disease Specificity Index (DSI), and the Disease
Pleiotropy Index (DPI). The confidence score reflects the
reliability of the GDA by its recurrence across all data
sources. The DSI is inversely proportional to the number
of diseases associated to a particular gene, while the DPI
is proportional to the number of different (MeSH) disease
classes the gene is associated to. Thus a GDA with high
DSI suggests that the gene is more specific for that
disease, and a GDAwith low DPI means that the gene is
more specific for the disease class which the disease
belongs to. The current version of DisGeNET (v5.0)
contains 561,119 gene-disease associations between
17,074 genes and 20,370 diseases, disorders, traits, and
clinical or abnormal human phenotypes.

MalaCards

The MalaCards human disease database [81] is an
integrated compendium of human diseases and their
annotations. Currently, it includes information of 19,592
diseases consolidated from 72 sources. For each disease,
the database displays a web card with diverse annotative
information about this disease, such as disease classifica-
tions, disease summary, related diseases, associated
genes, therapeutic drugs and publications. The “Genes”
section of the web card provides the list of the genes
found to be associated with the disease. The MalaCards
assigns each disease-gene association a priority score,
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which is a weighted sum of individual scores derived
from eight sources, i.e., OMIM [28], ClinVar [71],
Orphanet [72], Humsavar of SwissProt [70], GeneTests
[82], DISEASES [83], Novoseek [84] and GeneCards
[85]. For each disease, the MalaCards defines a set of
‘elite’ genes, whose associations with this disease are
supported by manually curated and reliable sources.
Generally, the average number of associated genes per
disease in the MalaCards is larger than that in the OMIM
and smaller than that in the DisGeNET.

DigSee

DigSee [86] is a text mining search engine which provides
evidence sentences describing genes involved in the
development of disease through biological events.
Currently, DigSee supports all disease types and impor-
tant biological events, such as point mutation, gene
expression, regulation (positive regulation, negative
regulation), protein catabolism, phosphorylation, locali-
zation, binding, transcription, catalysis, acetylation,
hydroxylation, ubiquitination, methylation, glycosyla-
tion, and DNA methylation. All human genes can be
searched, and 14,608 genes are indexed in current system
version (v2.01). With the input of disease, genes or
events, users can obtain Medline abstracts with high-
lighted evidence sentences.

WEB SERVERS AND TOOLS FOR
NETWORK AND FUNCTIONAL ANALYSIS

Since TCM formulae are actually multi-component,
multi-target agents, annotating their targets in the context
of networks could facilitate revealing the mode of action.
Using network methods we can identify signaling path-
ways regulated by active ingredients in TCM formulae
and examine the interactions between target proteins and
the role of target proteins within networks. This helps
illustrate the potential impact of TCM-based therapy and
better elucidate its mechanisms of action. Here we
introduce some web servers and software tools that can
be used in network-based study of TCM pharmacology.

BATMAN-TCM

BATMAN-TCM (Bioinformatics Analysis Tool for
Molecular mechANism of TCM) [57] is an online
bioinformatics analysis tool for studying the molecular
mechanism of TCM. Users can input TCM formulae,
herbs, or compounds for analysis. The tool will predict
targets for the compounds in the formulae or herbs,
perform functional analysis of the predicted targets, and
construct and visualize the ingredient-target-pathway/
disease association network. Functional analyses of

targets output the enrichment of targets in biological
pathways, Gene Ontology functional terms and diseases.
Formula-herb-compound association data used in this tool
are extracted from the TCMID database. Potential targets
of TCM ingredients are predicted by a similarity-based
algorithm, which ranks potential drug-target interactions
based on their similarity to known drug-target interactions
in DrugBank, TTD and KEGG databases. This tool
provides a rapid one-stop service for analyzing TCM
formulae.

DAVID

Pathway enrichment analysis identifies signaling path-
ways significantly enriched with a group of genes or
proteins. Usually, drug target enriched pathways are
considered most likely to be regulated by the drug. Thus
this method has been widely used in the study of TCM
network pharmacology [17,18,26,87]. Enrichment analy-
sis can be easily performed using the online bioinfor-
matics platform DAVID (the Database for Annotation,
Visualization and Integrated Discovery) [88]. For exam-
ple, Yu et al. used DAVID to conduct pathway enrichment
analysis for the hubs in the PPI network between the
putative targets of Yin-Huang-Qing-Fei capsule
(YHQFC) and known therapeutic targets of the chronic
bronchitis [41]. It was found that the hubs were
significantly associated with various biological processes
associated with chronic bronchitis, such as asthma
pathway, cytokine–cytokine receptor interactions, T cell
receptor signaling pathway, vascular smooth muscle
contraction, and neuroactive ligand–receptor interaction.
These results suggest that YHQFC’s effects on chronic
bronchitis could be realized by regulating these pathways.
At the platform of DAVID, the users can upload a gene/

protein list and then use the Functional Annotation Tool
of DAVID to annotate the genes. This tool provides
enrichment analysis for the gene list from different
biological aspects, including biological pathways, GO
terms, protein-protein interactions, protein functional
domains, disease associations, gene tissue expressions,
literatures, and so on. Based on the co-association of
genes in different annotation terms, the DAVID Func-
tional Annotation Clustering tool can group similar,
redundant, and heterogeneous annotation terms into
annotation groups. This service condenses a long list of
annotation terms into fewer gene functional groups, thus
it can help the users better interpret the functions of their
gene list.

CMap

The CMap (Connectivity Map) [89,90] is an online
platform for finding disease–gene–drug relationships
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based on the similarity of their gene-expression signa-
tures. The CMap database contains huge number of gene-
expression profiles of cultured human cells which are
treated with drugs or bioactive compounds. Using the
online software tool provided by CMap, users can
compare gene expression signatures derived from their
own research, such as a disease or a drug-treatment
condition, with all perturbational signatures in the
database. CMap gives a score ranging from+1 to – 1
(+100 to – 100 in the new version CMap-L1000v1) to
measure the similarity between a query gene signature
and a reference profile in the database. A positive score
represents the degree of positive correlation and a
negative score denotes a negative correlation between
the query signature and the reference profile derived from
a specific chemical perturbation. Thus high positive
correlation of two chemical-treatment expression profiles
suggests that the two chemicals may confer related
physiological effects on the cell.
The original version of CMap (build 02) contains gene

expression profiles of the treatment of 1,309 small
molecules on 5 human cell lines [90]. Last year, the
next generation CMAP called CMap-L1000v1 was
released, which was expanded to 19,811 small molecule
compounds and 9 human cell lines. Besides small
molecule compounds, the new version also includes the
treatment of other perturbagens (18,493 shRNAs, 3,462
cDNAs and 314 biologics) on cell lines [89].
Wen et al. used CMap to examine TCM formula Si-

Wu-Tang (SWT) induced changes in gene expression
[91]. They found that the gene expression signature of
SWT-treated cells showed a high similarity with the
CMAP profiles of estradiol-treated MCF-7 cells, which
indicates SWT’s phytoestrogenic effect. This result is
consistent with SWT’s widely application in the treatment
of women’s diseases. Our team established the gene
expression profiles of MCF7 cells in response to 102
distinct TCM compounds. Then we used CMap to
perform a case study to show how our data can be
applied to reveal synergistic mechanism of TCM
components [92]. Recently, Yoo et al. reanalyzed our
data using the new version of CMap, they found that the
102 TCM compounds can be clustered into 4 groups
based on their mechanism of actions (MoAs), while the
MoAs could be clustered into 7 groups. Their further
analysis suggests that TCM components clustered in the
same MoAs are associated with similar disease indica-
tions [93]. These studies show that the CMap is a useful
platform for elucidating molecular mechanisms of TCM
when combined with microarray study.

Cytoscape

Cytoscape [94] is free software for integrating, visualiz-

ing, and analyzing data in the context of networks.
Cytoscape’s software Core provides basic functionality
to construct, visualize, layout and analyze the network;
to visually integrate the network with expression
profiles, phenotypes, and other molecular states; and
to link the network to databases of functional annota-
tions. Many works used Cytoscape for network
visualization [33]. Network topological analysis is an
important task in the research of TCM network
pharmacology, which can locate hub nodes playing
key roles in the network. When studying the pharma-
cological mechanisms of Wu-Tou-Dang (WTD) for the
treatment of RA, Zhang et al. constructed the interaction
network of WTD’s putative targets and known RA-
related targets. Then they used four topological
measures (degree, node betweenness, closeness and k
value) to find out hub proteins for further analysis [87].
In our research for Huang-Lian-Jie-Du-Tang (HLJDT)’s
anti-rheumatic effects, we found that most targets of
HLJDT are hubs of RA-associated network, suggesting
that HLJDT may interfere with RA by acting on proteins
in the central locations of the disease network with
multiple components [14]. Network topological analy-
sis can be easily done using Cytoscape’s tool called
“NetworkAnalyzer”.
The Core of Cytoscape is extensible through a series of

APPs, which can be installed and applied from a menu
interface of the software. The users first need to download
this software from the website of Cytoscape and then
install it on their computer. For example, an APP called
“clusterMaker” provides a series of methods, such as k-
means, MCL, Glay community detection algorithm, to
split a network into topological clusters. It has been
known that topological clusters in biological networks
may indicate relatively independent biological functions
[95–97]. Thus the decomposition of networks can help
better understand the interplays between multiple targets
of TCM formula at the scale of modules. In our previous
study on the anti-rheumatic mechanism of Tibetan
Medicated-Bath Therapy using Wuwei-Ganlu-Yaoyu-
Keli (WGYK), we first constructed a gene association
network affected by adjuvant arthritis (AA) and WGYK
and then decomposed this network into modules. We
found that different modules participate in different
aspects or stages of immune process regulation, including
pathogen recognition, proinflammatory response and
inflammatory signaling in innate immune defenses, innate
immune response and adaptive immune response [17].
This result suggests that WGYKm performs its therapeu-
tic effect on RA by regulating multiple stages of immune
process. These analyses can be performed by Cytoscape
and DAVID.
The Cytoscape software is user-friendly and very useful

for the study of TCM network pharmacology.
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PERSPECTIVE

By the combination of various chemical components,
TCM formulae could achieve similar therapeutic efficacy
as mono-ingredient agents at much lower doses of
separate compounds. The low-dose and multi-target
characteristics of TCM formulae may suppress drug
resistance and side effects. Thus TCM has unique
advantage in the treatment of complex chronic diseases
that require long-term medication. Currently, the para-
digm of “multi-target drug discovery” based on mole-
cular network is becoming a new trend, and drug
discovery tends to get resources and inspiration from
traditional drugs and folk medicines. Through studying
the main ingredients of TCM formulae and the role of the
targets in the context of cellular networks, TCM network
pharmacology helps us better understand the holistic,
coordinated and complementary features of TCM. The
web resources and tools introduced here may help
experimental pharmacologists making better use of
existing data and methods in the study of TCM network
pharmacology. Current TCM network pharmacology
investigates the interactions between multiple compo-
nents of TCM mainly through the interactions between
their targets. Such research can be thought as protein/
gene-centered study, which focuses on protein-protein or
gene-gene interactions. Recently, Kim et al. proposed a
compound-centered opinion, suggesting that structural
similarities of natural compounds to human metabolites
can facilitate the understanding of the mode of action of
traditional medicines [98]. We hope this inspirational
work can bring new insights and approaches to TCM
study. We expect that TCM network pharmacology could
provide useful inspiration and reference for the discovery
of new multi-component, multi-target drugs and combi-
national medication.
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