Technical Report A s

Number 646

Computer Laboratory

A survey of Wireless Sensor
Network technologies:
research trends and middleware’s role

Eiko Yoneki, Jean Bacon

September 2005

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom

phone +44 1223 763500

hitp:/fwww.cl.cam.ac.uk/

© 2005 Eiko Yoneki, Jean Bacon

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

hitp:/lwww.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

A survey of Wireless Sensor Network technologies:
research trends and middleware’s role

Eiko Yoneki and Jean Bacon
University of Cambridge Computer Laboratory
Cambridge CB3 OFD, United Kingdom

{eiko.yoneki, jean.bacon}@cl.cam.ac.uk

ABSTRACT

Wireless Sensor Networks (WSNs) provide a new paradigm for
sensing and disseminating information from various environ-
ments, with the potential to serve many and diverse applica-
tions. Current WSNs typically communicate directly with a
centralized controller or satellite. On the other hand, a smart
WSN consists of a number of sensors spread across a geographi-
cal area; each sensor has wireless communication capability and
sufficient intelligence for signal processing and networking of the
data. The structure of WSNs are tightly application-dependent,
and many services are also dependent on application semantics
(e.g. application-specific data processing combined with data
routing). Thus, there is no single typical WSN application, and
dependency on applications is higher than in traditional dis-
tributed applications. The application/middleware layer must
provide functions that create effective new capabilities for effi-
cient extraction, manipulation, transport, and representation of
information derived from sensor data. In this paper, we report
recent trends in wireless sensor network research including an
overview of the various categories of WSN, a survey of WSN
technologies and a discussion of existing research prototypes
and industry applications. We focus on middleware technology,
and describe details of some existing research prototypes, then
address challenges and future perspectives on the middleware.
This study highlights that middleware needs to provide a com-
mon interface for various functional components of WSN: de-
tection and data collection, signal processing, data aggregation,
and notification. By integrating sensing, signal processing, and
communication functions, a WSN provides a natural platform
for hierarchical information processing.

1. INTRODUCTION

The need to monitor and measure various physical phe-
nomena (e.g. temperature, fluid levels, vibration, strain,
humidity, acidity, pumps, generators to manufacturing
lines, aviation, building maintenance and so forth) is com-
mon to many areas including structural engineering, agri-
culture and forestry, healthcare, logistics and transporta-
tion, and military applications. Wired sensor networks
have long been used to support such environments and,
until recently, wireless sensors have been used only when
a wired infrastructure is infeasible, such as in remote and
hostile locations. But the cost of installing, terminating,
testing, maintaining, trouble-shooting, and upgrading a
wired network makes wireless systems potentially attrac-
tive alternatives for general scenarios.

Recent advances in technology have made possible the
production of intelligent, autonomous, and energy efficient
sensors that can be deployed in large numbers to form self

organizing and self healing WSNs in a geographical area.
Moreover, the dramatic reduction in the cost of this wire-
less sensor technology has made its widespread deployment
feasible, and the urgent need for research into all aspects
of WSNs has become evident. The WSN has great, long-
term potential for transforming our daily lives, if we can
solve the associated research problems.

The sensors that, when distributed in the environment,
comprise WSNs include cameras as vision sensors, micro-
phones as audio sensors, and those capable of sensing ul-
trasound, infra-red, temperature, humidity, noise, pressure
and vibration. Although the individual sensor’s sensing
range is limited, WSNs can cover a large space by inte-
grating data from many sensors. Diverse and precise in-
formation on the environment may thus be obtained. Sen-
sor networks are an emerging computing platform consist-
ing of large numbers of small, low-powered, wireless motes
each with limited computation, sensing, and communica-
tion abilities. It is still a challenge to realize a distributed
WSN comprising: small and cost effective sensor modules;
high speed, low latency and reliable network infrastruc-
tures; software platforms that support easy and efficient
installation of the WSN; and sensor information process-
ing technologies.

WSNs could potentially become a disruptive technology,
for example because of social issues such as security and
privacy, but the technological vision is for new and diverse
types of applications for the social good. The environ-
ment can be monitored for fire-fighting, to detect marine
ground floor erosion, and to study the effect of earthquake
vibration patterns on bridges and buildings. Surveillance
of many kinds can be supported, such as for intruder de-
tection in premises. Wireless sensors can be embedded
deeply within machinery, where wired sensors would not
be feasible because: wiring would be too costly; could not
reach the deeply embedded parts; would limit flexibility;
would represent a maintenance problem; or would prevent
mobility. Mobile items such as containers can be tagged,
as can goods in a factory floor automation system. Smart
price tags for foods could communicate with a refrigera-
tor. Other classes of application include car-to-car or in-
car communication.

But sensor network programming is difficult, and the
human programming resource is costly. Complexities
arise from the limited capabilities (processing, storage and
transmission range) and energy resources of each node as
well as the lack of reliability of the radio channel. As a re-
sult, application designers must make many complex, low-
level choices, and build up software to perform routing,
time synchronization, node localization and data aggrega-

tion within the sensor network. Unfortunately, little of this
software carries over directly from one application to an-
other, since it encapsulates application-specific tradeoffs
in terms of complexity, resource usage, and communica-
tion patterns. No WSN application will therefore be seen
as typical, and application-dependency will be higher than
in traditional distributed applications.

Recent WSN research has focused increasingly on the
application layer and an API at an appropriate abstrac-
tion level is needed urgently. Such an API would hide
from programmers the complexities of sensor nodes and
routing. The middleware technology must provide such
an abstract API. In WSNs, the task of middleware is to
collect large amounts of data from sensors, and/or on the
movement of sensors. It must then perform aggregation
and management of data in appropriate formats for the
target distributed applications. WSNs have recently re-
ceived a lot of attention in the research literature; recent
survey and overview papers are: [56, 227, 8, 52, 214, 69, 6,
66, 10, 4, 180, 117]. These papers focus on operating sys-
tems, routing, or applications.

In this paper we report the latest trends in WSN re-
search, focusing on middleware technology and related ar-
eas, and including application design principles. However,
we do not cover every possible WSN technology; for ex-
ample, mobile, ad hoc, communication technology may be
important for WSNs, but it is out of scope of this paper
because it already has an established base and hardware.
First, we give an overview of WSNs and design aspects of
applications, including existing research prototypes and in-
dustry applications. Secondly, we describe the technology
supporting these sensor applications from the view of sys-
tem architecture and network communication. We focus on
the middleware technology, describing the current state of
research that supports sensor network environments. We
then highlight outstanding issues and conclude with future
perspectives on middleware technology.

This paper continues as follows: section 2 describes char-
acteristics of WSNs, section 3 describes applications de-
sign principles, section 4 describes technologies supporting
WSNs, section 5 describes the recent hot topic program-
ming paradigms, section 6 summarizes middleware tech-
nologies, section 7 describes future challenges, and we con-
clude in section 8.

2. WIRELESS SENSOR NETWORKS

A WSN is a collection of millimeter-scale, self-contained,
micro-electro-mechanical devices. These tiny devices have
sensors, computational processing ability (i.e.CPU power),
wireless receiver and transmitter technology and a power
supply. In a WSN a large number of sensor nodes usu-
ally span a physical geographic area. For example, the
prototype of a future sensor node (mote) in the Smart
Dust project [188], performs the wireless communication
function, the sensor function, the power supply unit, and
the information processing function on the MEMS (Micro
Electro Mechanical System) chip, which has a scale only
of several millimeters.

Typical WSNs communicate directly with a centralized
controller or a satellite, thus communication between the
sensor and controllers is based on a single hop. In fu-
ture, a WSN could be a collection of autonomous nodes or
terminals that communicate with each other by forming a
multi-hop radio network and maintaining connectivity in a

decentralized manner by forming an ad hoc network. Such
WSNs could change their topology dynamically when con-
nectivity among the nodes varies with time due to node
mobility. But current, real-world deployment usually con-
sists of stationary sensor nodes.

WSNs are intelligent compared with traditional sensors,
and some WSNs are designed to use in-network processing,
where sensed data can be gathered in situ and transformed
to more abstract and aggregated high-level data before
transmission. The combination of processing power, stor-
age and wireless communication also means that data can
be assimilated and disseminated using smart algorithms.
The vast number of sensor nodes planned for many ap-
plications also implies a major portion of these networks
would have to acquire self organization capability.

Intuitively, a denser infrastructure would create a more
effective sensor network. It can provide higher accuracy
and has more energy available for aggregation. If not prop-
erly handled, a denser network can also lead to collisions
during transmission, and network congestion. This will
no doubt increase latency and reduce efficiency in terms
of energy consumption. One distinguishing characteristic
of WSNs is their lack of strong boundaries between sens-
ing, communication and computation. Unlike the Internet,
where data generation is mostly the province of end points,
in sensor networks every node is both a router and a data

source.
Low-level
tasks/queries
Internet & Sink/ .
Satellite Base Station|

High-level Interest
(tasks/queries)

Task Manager
Node

Cluster-Head
or Aggregator

V
Sensor Nodes

Sensor Deployment Area

User

Figure 1: WSN Overview

2.1 WSNsvs. MANETs

There are two major types of wireless ad hoc networks:
mobile ad hoc networks (MANETS) and wireless sensor
networks (WSNs). A MANET is an autonomous collec-
tion of mobile routers (and associated hosts) connected by
bandwidth-constrained wireless links. Each node is envi-
sioned as a personal information appliance such as a per-
sonal digital assistant (PDA) fitted out with a fairly so-
phisticated radio transceiver. The nodes are fully mobile.
The network’s wireless topology may change rapidly and
unpredictably. Such a network may operate in a stan-
dalone fashion, or may be connected to the larger Inter-
net. Factors, such as variable wireless link quality, propa-
gation path loss, fading, multiuser interference, power ex-
pended, and topological changes, significantly increase the
complexity of designing network protocols for MANETS.
Security, latency, reliability, intentional jamming, and re-
covery from failure are also of significant concern.

A WSN consists of a number of sensors spread across
a geographical area. Each sensor has wireless communica-
tion capability and sufficient intelligence for signal process-
ing and networking of the data. A WSN can be deployed in
remote geographical locations and requires minimal setup
and administration costs. Moreover, the integration of
a WSN with a bigger network such as the Internet or a

wireless infrastructure network increases the coverage area
and potential application domain of the ad hoc network.
Sensed information is relayed to a sink node by using multi
hop communication. The sink node is a sensor node with
gateway functions to link to external networks such as the
Internet and sensed information is normally distributed via
the sink node (see Fig.1).

WSNs differ from MANETS in many fundamental ways.
Viewing a WSN as a large-scale multi-hop ad hoc network
may not be appropriate for many real-world applications.
The communication overhead for configuring the network
into an operational state is too large. The number of nodes
in a WSN can be several orders of magnitude higher than
the nodes in an ad hoc network and sensor nodes that
are prone to failure are densely deployed. Sensor nodes
mainly use broadcast, while most MANET'Ss are based on
the Peer-to-Peer (P2P) communication paradigm. Infor-
mation exchange between end-to-end nodes will be rare
in WSNs. They are limited in power, computational ca-
pacity and memory, and may not have global IDs. WSNs
have a wide range of applications ranging from monitor-
ing environments, sensitive installations, and remote data
collection and analysis. In both MANETSs and WSNs the
nodes act both as hosts and as routers. They operate in a
self organizing and adapting manner. Research and devel-
opment in the areas of infrastructureless wireless networks
have been advancing at a fast pace, and more effort needs
to be dedicated in this direction for wide scale adoption
and deployment. Current sensor hardware is resource and
power constrained, but evolution of hardware and cost re-
duction will be improve rapidly. WSNs may eventually
share the properties of MANETS.

Processing sensor data: Processing the data gathered
by sensors distinguishes sensor networks from MANETS.
The end goal is the detection/estimation of some events of
interest, and not just communication. To handle and im-
prove the detection performance, it is useful to perform fu-
sion on the data from a single or multiple sensors. Data fu-
sion requires the transmission of data and control messages
and can be part of the WSN architecture. Collaborative
sensor-data processing is another factor that distinguishes
WSNs from MANETSs. To improve the detection rate of
events of interest it is often useful to aggregate data from
multiple sensors. This, again, requires the transmission of
data and control messages, and may put constraints on the
network architecture. See also section 3.2.9 and 3.4.

22 WSAN

Wireless sensor and actor networks (WSANSs) consist of a
group of sensors and actors (actuators) linked by a wire-
less medium to perform distributed sensing and actuation
tasks. In such a network, sensors gather information about
the physical world, while actors take decisions and then
perform appropriate actions upon the environment, which
allows a user to effectively sense and act at a distance.
However, due to the presence of actors, WSANs have some
differences from WSNs. [188] gives a good summary of re-
search issues in WSANs. Unlike sensor nodes which are
small, cheap devices with limited sensing, computation and
wireless communication capabilities, actors must be more
complex. Their function is more energy-consuming than
sensing and actors are resource-rich nodes equipped with
better processing capabilities, stronger transmission power
and longer battery life than sensors. The number of sensor

nodes deployed for collecting data on a phenomenon may
be of the order of hundreds or thousands. However, such a
dense deployment is not necessary for actor nodes due to
the different coverage requirements and physical interac-
tion methods of the acting task. Hence, there are far fewer
actors than sensors in WSANSs. To provide effective sensing
and actuating, a distributed local coordination mechanism
is necessary among sensors and actors.

In WSANS, depending on the application, there may be
a need to respond rapidly to sensor input. Moreover, so as
to provide correct actions, sensor data must still be valid
at the time of actuating. Therefore, the issue of real-time
communication is important in WSANSs since actions are
performed on the environment in response to the sensing.

WSANSs are fast emerging as a new sensing paradigm
based on the collaborative effort of large number of sen-
sors deployed close to or inside the phenomenon to be ob-
served and have the potential of providing diverse services
to numerous applications.

3. APPLICATION DESIGN PRINCIPLES

A vision of future ubiquitous computing is that tiny proces-
sors and sensors will be integrated with everyday objects in
order to make them smart. Smart objects can explore their
environment, communicate with other smart objects, and
interact with humans. Fig. 2 shows an application space
and potential real applications of the distributed WSN that
allow monitoring of a wide variety of environmental phe-
nomena with adequate quality and scale.

Senson, Types
MEMS
Ultrasonic sensors
Infra-Red
Cameras
Microphones
Humidity
Pressure
Temperature
Noise
Vibration

B P AN JRPS S S
oo ot @o® %“‘\6 5@ o o
Scale
nvironmenta
Oouservan’on
< Venicle Tracking >
Smart Space,

e Care

Health/Flderly Care

Application Space

Desity
Figure 2: Application Space

3.1 Potential Applications

Current applications in research prototype environments
or industry may be classified into the four categories below:

3.1.1 Disaster/Crime Prevention and Military Ap-
plications

Since 9/11, safety concerns about terrorism have increased
dramatically and sensor network related research includes
the detection and prevention of terrorist attacks. In [226],
sensor networks are used for environmental monitoring: to
detect distortion and structural problems in buildings in
order to prevent disasters. Radiation sensors can be de-
ployed in urban districts, for example at key road inter-
sections, to detect terrorist attacks using radioactive sub-
stances [36]. Military WSNs can detect information about
enemy movements, explosions, and other phenomena of in-
terest and it is possible to calculate the position of a sniper
using a sonic sensor [151, 199]. Many sensor network re-
search projects inside the United States have received the

support of DARPA (SenslIT [153]); it has become the cen-
tral topic in sensor network applications [237].

3.1.2 Environmental Applications

WSNs can be used to detect and monitor regional environ-
mental changes in plains, forests, oceans, flood-levels, pre-
cision agriculture etc. [153, 40, 46, 197, 38, 213]. The com-
mon characteristic of these applications is that sensor data
are aggregated in the servers and distributed with the lo-
cation, and other environmental information, to the users.
An example is GlacsWeb [153] which monitors glaciers in
order to observe changes, possibly caused by global warm-
ing. Burrel [40] uses sensors to control vineyards, and also
records and analyzes movements during the work of farm-
ers. Zhang [235] has developed ZebraNet for observing and
tracing wild animals using sensors.

3.1.3 Health Applications

Telemonitoring of human physiological data, tracking and
monitoring patients and doctors inside a hospital, and as-
sistance of the elderly are in this category. Wearable and
implantable sensors can monitor a broad variety of condi-
tions of the patients continuously at all times. This will
reduce delays in obtaining test results, thus having a direct
bearing on patient recovery rates. For trauma patients’
survival it is particularly important that physicians can
make a rapid and accurate diagnosis and recommend ap-
propriate treatment. Telemonitoring may also enable test-
ing and commencement of treatment in remote locations,
as well as assisting in the precise location of accident or
disaster sites.

3.1.4 Smart Spaces

Home automation and smart environments aim to create
an intellectual space by means of a large number of net-
worked sensors [190, 218, 68, 116]. Smart-Its [98] is a re-
search project which uses sensors in the goods we use in
daily life. Instead of bar-codes, where human interaction is
necessary, creating autonomous sensor networks allows the
position and quality of the goods (temperature humidity)
to be detected in order to realize automated management
systems. Managing inventory control, vehicle tracking and
interactive museums could be in this category.

3.2 Design Aspects

Current applications for WSNs are mostly research pro-
totypes or are custom made for a specific purpose. They
are insufficiently mature to deploy widely in real world
scenarios. At the current stage of research, there is still
limited generic off-the-shelf smart sensor nodes, and there
is not yet a generic application, which fulfills vastly diverse
objectives. There is no typical WSN structure and archi-
tecture, and the basic goals of a WSN largely depend on
the application. Single-hop networks, potentially using ex-
isting infrastructures (e.g. GSM) and devices (e.g. mobile
phones with embedded sensors), are most attractive to in-
dustry at present. When WSNs are deployed, applications
are not stand-alone but are integrated into a larger com-
puting infrastructure.

The difficulty of sensor network research is construct-
ing an open system that allows for the variety of real-
world phenomena. Hardware constraints, such as the re-
lation between capacity and power consumption, as well
as other resources, must be taken into account. To deal

with the complexity of sensor network research, Estrin et
al. [69] suggest two design principles. First, a data centric
design where the focus is managing sensor data instead
of managing nodes. Secondly, an application-specific ap-
proach, where designing the physical and social character-
istics of an application environment reduces the domain
of discourse of the research. Much sensor network research
tends to focus on specific hardware with efficient, ingenious
communication control algorithms and system control ar-
chitectures that address the specific resource constraints.
A generic architecture does not emerge.

In this section, we identify different aspects of the char-
acteristics of applications in order to help in designing
WSN applications. The aspects we define are based on
[182], extended with various data processing factors. Ap-
plying the right design approaches and technologies to the
WSN applications is critical.

Table 2 in the Appendix classifies the sample applica-
tions according to the above aspects (except Query ability,
Reliability, Self configuration and Security). The applica-
tions listed in the following subsections are research pro-
totypes, commercial products and experimental projects,
and the scale of the applications varies. All information
was obtained through online information and available
documents. The actual survey included over 50 projects.
Due to space limitations, only 12 are listed below, which
show various aspects of WSN applications.

3.2.1 Deployment

Sensor nodes may be installed at specific locations or be
placed randomly. After the initial deployment, sensors
may be added or replaced, which affects node location,
density, and the overall topology.

Programs for each sensor node may be placed manu-
ally or automatically at runtime (see the programming
paradigm in section 3.3).

3.2.2 Mobility

Sensor nodes may be attached to or carried by mobile en-
tities. Mobility may be either an incidental side effect, or
it may be a desired property of the system (e.g. to move
nodes to interesting physical locations), in which case mo-
bility may be either active (i.e. automotive) or passive (e.g.
attached to a moving object not under the control of the
sensor node). Mobility may apply to all nodes within a net-
work or only to a subset of nodes. The degree of mobility
may also vary from occasional movement with long periods
of immobility in between, to constant travel. Mobility has
a large impact on the expected degree of network dynam-
ics and hence influences the design of networking protocols
and distributed algorithms. The actual speed of movement
may also have an impact.

3.2.3 Infrastructure

The various communication modalities can be used in dif-
ferent ways to construct a communication network. Two
common forms are so-called infrastructure based networks
and ad hoc networks. In infrastructure based networks,
sensor nodes can only communicate directly with base sta-
tions. The number of base stations depends on the commu-
nication range and the area covered by the sensor nodes.
In ad hoc networks, nodes can communicate directly with
each other without an infrastructure. Nodes may act as
routers, forwarding messages over multiple hops on behalf
of other nodes.

Note that cost should not be forgotten. State of the
art technology allows a Bluetooth radio system to cost less
than 10 dollars. The cost of a sensor node should be much
less than 1 dollar in order for the sensor network to be
feasible.

3.2.4 Network Topology

One important property of a WSN is its diameter, that is,
the maximum number of hops between any two nodes in
the network. In its simplest form, a WSN forms a single-
hop network, with every sensor node being able to commu-
nicate directly with every other node. An infrastructure
based network with a single base station forms a star net-
work with a diameter of two. A multi-hop network may
form an arbitrary graph, but often an overlay network with
a simpler structure is constructed such as a tree or a set of
connected stars. The topology affects many network char-
acteristics such as latency, robustness, and capacity. The
complexity of data routing and processing also depends on
the topology.

Given the large number of nodes and their potential
placement in difficult locations, it is essential that the net-
work is able to self-organize; manual configuration is not
feasible. Moreover, nodes may fail (either from lack of en-
ergy or from physical destruction), and new nodes may
join the network. Therefore, the network must be able to
reconfigure itself periodically . Furthermore, while individ-
ual nodes may become disconnected from the rest of the
network, a high degree of connectivity must be maintained.

3.2.5 Density and Network Size

The effective range of the sensors defines the coverage area
of a sensor node. The density of the nodes indicates the de-
gree of coverage of an area of interest by sensor nodes. The
network size affects reliability, accuracy, and data process-
ing algorithms. The density can range from a few sensor
nodes to a hundred in a region, which can be less than 10m
in diameter. The density p is calculated as in [39]:

n(R) = (NmR)/A

where N is the scattered sensor nodes in region A, and
R is the radio transmission range. Generally, u(R) gives
the number of nodes within the transmission radius of each
node in region A.

3.2.6 Connectivity

The communication ranges and physical locations of indi-
vidual sensor nodes define the connectivity of a network. If
there is always a network connection (possibly over multi-
ple hops) between any two nodes, the network is said to be
connected. Connectivity is intermittent if the network may
be partitioned occasionally. If nodes are isolated most of
the time and enter the communication range of other nodes
only occasionally, we say that communication is sporadic.
Connectivity influences the design of communication pro-
tocols and data dissemination mechanisms.

3.2.7 Lifetime

Depending on the application, the required lifetime of a
sensor network may range from a few hours to several
years. The necessary lifetime has a high impact on the
required degree of energy efficiency and robustness of the
nodes, thereby requiring the minimisation of energy expen-
diture.

3.2.8 Node Addressability

This indicates whether or not the nodes are individually
addressable. For example, the sensor nodes in a parking
lot network should be individually addressable, so that the
locations of all the free spaces can be determined. Thus, it
may be necessary to broadcast a message to all the nodes
in the network. If one wants to determine the temperature
in a corner of a room, then addressability may not be so
important. Any node in the given region can respond.

3.2.9 Data Aggregation

Data aggregation is the task of data summarisation while
data are travelling through the sensor network. An exces-
sive number of sensor nodes can easily congest the network,
flooding it with information. The prevailing solution to
this problem is to aggregate or fuse data within the WSN
then transmit an aggregate of the data to the controller.

There are three major ways of performing data aggre-
gation: First, diffusion algorithms assume that data are
transmitted from one node to the next, thus propagat-
ing through the network to the destination. Along the
way data may be aggregated, mostly with simple aggrega-
tion functions and assuming homogeneous data. Second,
streaming queries are based on SQL extensions for contin-
uous querying. Here data are considered to be transient
while the query is persistent. Third, event graphs work on
streams of events and compose simple events into compos-
ite events based on an event algebra. The event algebras
from reactive middleware have been extended with tem-
poral constraints for event correlation and transmission
probabilities for WSNs. Events are consumed according
to event consumption modes.

The different approaches above influence when and
where aggregation of data in WSNs should be performed.
This involves how to deal with time in distributed and un-
reliable environments, with state, asynchrony and unstable
communication, redundancy and so forth. Different ag-
gregation mechanisms require different resources and will
therefore influence the routing strategy such as adapting
the routing to the application or vice versa. Decisions must
be made as to whether query processing is to be performed
at sensor nodes or only at designated, resource rich nodes,
placing simple filters at peripheral sensing nodes. Typical
aggregation operations include MAX, MIN, AVG, SUM
and many other well-known database management tech-
niques.

3.2.10 Query Ability and Propagation

There are two types of addressing in sensor network; data
centric, and address centric. In a data centric paradigm, a
query will be sent to specific region in the network, whereas
in addressing centric, the query will be sent to an individ-
ual node. A user may want to query an individual node
or a group of nodes for information collected in the re-
gion. Depending on the amount of data fusion performed,
it may not be feasible to transmit a large amount of the
data across the network. Instead, various local sink nodes
will collect data from a given area and create summary
messages. A query may be directed to the sink node near-
est to the desired location.

3.2.11 Data Dissemination

The ultimate goal of a WSN is to detect specified events of
interest in a sensor field and to deliver them to subscribers.
Because of the overlap in the proximity ranges of sensors,

the same phenomena might be recorded by multiple sen-
sor nodes. Alternatively, systematic aggregation might
lose all the data on the same phenomenon. End-to-end
event transfer schemes that fit the characteristics of WSNs
are needed, in the same way that delivery semantics of
asynchronous communication, such as publish/subscribe,
is needed for wired distributed systems.

The electric power consumed depends substantially on
how the sensor data is handled and communicated. Be-
cause the capacity of the battery of the sensor node is very
limited, it is necessary to consider the extent to which the
demands of applications can be met. Adaptive commu-
nication protocols (Power aware Protocols, that consider
power consumption, are actively being researched.

3.2.12 Real-Time

Object tracking applications may need to correlate events
from different source nodes in real-time. Real-time support
(e.g. a physical event must be reported within a certain pe-
riod of time) may be critical in WSNs. This aspect affects
time synchronization algorithms, which may be affected by
the network topology and the communication mechanism
deployed.

3.2.13 Reliability

The reliability Ry(t) or fault tolerance of a sensor node is
modelled in [97] using the Poisson distribution to capture
the probability of not having a failure within the time in-
terval (0; t):

Ry (t) = exp(—Axt)

where A\, and t are the failure rate of sensor node k£ and
the time period, respectively. The fault tolerance level de-
pends on the application of the WSN.

3.2.14 Self Configuration

Given the large number of nodes and their scattered place-
ment in hostile locations, it is essential that the net-
work be able to self-organize. Moreover, nodes may fail
from limitation of energy, from physical destruction or any
other means, and new nodes may need to join the net-
work. The nodes can also coordinate to exploit the redun-
dancy provided by high density so as to extend the over-
all system lifetime. The large number of nodes deployed
in these systems will preclude manual configuration, and
the environmental dynamics will preclude design-time pre-
configuration. Nodes will have to self-configure to establish
a topology that provides communication under stringent
energy constraints. The network must be able to continu-
ously and periodically reconfigure itself so that it can con-
tinue to function properly and serve its purpose. A high
degree of connectivity is essential.

3.2.15 Security

Threats to a WSN are described in [14] and classified into
the following categories:

e Passive Information Gathering: If communications
between sensors, or between sensors and intermedi-
ate nodes or collection points are in clear, then an
intruder with an appropriately powerful receiver and
well designed antenna can passively pick off the data
stream.

e Subversion of a Node: If a sensor node is captured

it may be tampered with, interrogated electronically
and perhaps compromised. Once compromised, the
sensor node may disclose its cryptographic keying
material, and access to higher levels of communica-
tion and sensor functionality may be available to the
attacker. Secure sensor nodes, therefore, must be de-
signed to be tamper proof and should react to tam-
pering in a fail-complete manner where cryptographic
keys and program memory are erased. Moreover, a
secure sensor needs to be designed for its emanations
not causing sensitive information to leak from it.

e False Node: An intruder might add a node to a sys-
tem and feed false data or block the passage of true
data. Typically, a false node is a computationally ro-
bust device that impersonates a sensor node. While
such problems with malicious hosts have been studied
in distributed systems, as well as ad-hoc networking,
the solutions proposed there (group key agreements,
quorums and per-hop authentication) are in general
too computationally demanding for sensors.

e Node Malfunction: A node in a WSN may malfunc-
tion and generate inaccurate or false data. Moreover,
if the node serves as an intermediary, forwarding data
on behalf of other nodes, it may drop or garble pack-
ets in transit. Detecting and culling these nodes from
the WSN becomes an issue.

e Node Outage: If a node serves as an intermediary or
collection and aggregation point, what happens if the
node stops functioning? The protocols employed by
the WSN need to be robust enough to mitigate the
effects of outages by providing alternate routes.

e Message Corruption: Attacks against the integrity
of a message occur when an intruder inserts itself
between the source and destination and modifies the
contents of a message.

e Denial of Service: A denial of service attack on
a WSN may take several forms. Such an attack
may consist of jamming the radio link, exhausting
resources or misrouting data. Karlof and Wagner
[118] identify several DoS attacks including: Black
Hole, Resource Exhaustion, Sinkholes, Induced Rout-
ing Loops, Wormholes, and Flooding that are directed
against the routing protocol employed by the WSN.

e Traffic Analysis: Although communications might be
encrypted, an analysis of cause and effect, commu-
nications patterns and sensor activity might reveal
enough information to enable an adversary to defeat
or subvert the mission of the WSN. Addressing and
routing information transmitted in clear often con-
tributes to traffic analysis.

Security aspects of wireless sensor networks have received
little attention compared with other aspects. The main
focus of WSN security has been on centralized communi-
cation approaches; there is a need to develop distributed
approaches.

3.3 Operational Paradigms

An operational scenario for sensor networks, including data
processing, requires consideration of complex combination

of the aspects described in the previous section. Opera-
tional paradigms of sensor nodes vary and depend on the
deployment of the sensor nodes and applications. Opera-
tional paradigms may be classified into the following cate-
gories [14], where it is assumed that a base station or sink
node exists as part of WSNs.

3.3.1 Single-hop to Sink

Sensor nodes sense and transmit the data to the sink nodes
(e.g. base station or cluster head nodes), which is within
range of transmission, thus routing or coordination among
nodes is not required. This paradigm, therefore, uses a cen-
tralized, point-to-point, single-hop communication model,
as though the infrastructure supported wireless networks.
The sensors take periodic measurements and transmit this
data directly either immediately following data collection
or when scheduled, at some periodic interval. A problem
of this paradigm is that sensor nodes are out of commu-
nication when they are out of radio range from the sink
nodes.

3.3.2 Multi-hop to Sink

This paradigm allows sensor nodes far away from the
sink nodes to transmit data to neighbouring sensor nodes,
which in turn forward the data toward the sink nodes. The
forwarding process may involve multiple sensor nodes on
the path between the source node and the collection point.
Thus, this paradigm uses a centralized, multi-hop commu-
nication model. Regardless of the length of the path, the
data eventually reaches the collection point. Coordination
among nodes in routing the data to the base station is part
of this paradigm.

3.3.3 On-Demand Operation

In this paradigm, sensors receive commands from a con-
troller, either directly or via forwarding, and configure
themselves based on the requests. Both the Single-hop
to Sink and Multi-hop to Sink paradigms are many-to-one
communication models, designed exclusively for non on-
demand data transmission. On the other hand, in On-
demand Operation, commands may be broadcast from the
controller (e.g. base station) to the entire WSN, or may be
unicast to several sensor nodes in (one-to-many communi-
cation). Data transmission is expensive in a WSN, and non
on-demand data transmissions may reduce the lifetime of
the WSN significantly. Also, transmissions may be unnec-
essary (e.g. 100 sensor nodes reporting directly to a sink
that the temperature in the region is 35C). If transmissions
could be regulated appropriately, then the lifetime of the
WSN could be increased without affecting the quality of
information reaching the sink.

Consider, for example, a group of sensor nodes that are
deployed to monitor temperature. Upon deployment, all
nodes begin operating in the idle mode, which is a low
power mode. The controller broadcasts a wakeup to the
group, which react to this command by making the transi-
tion to the active state. Subsequently, the controller broad-
casts a get data command, which solicits data from the
sensor nodes. Finally, the controller instructs the sensor
nodes to idle and the cycle repeats periodically. Thus, the
combination of the one-to-many and many-to-one commu-
nication models is more energy efficient than simply using
the latter for non on-demand data transmission. If unicast
messaging is employed, then some form of addressing of
each individual node needs to be employed. However, no

guarantees on the unicast message actually reaching the
intended recipient can be given, because none of the nodes
in the WSN may be aware of either route(s) to the recipient
or the topology of the WSN.

3.3.4 Self Organization

Upon deployment, the WSN self organizes, and a central
controller(s) learns the network topology. Knowledge of
the topology may remain at the controller (e.g. base sta-
tion) or it may be shared, in whole or in part, with the
nodes of the WSN. This paradigm may include the use
of more powerful sensors that serve as cluster heads for a
small coalition within the WSN, and it requires a strong
notion of routing. This paradigm extends the bidirectional
communication model by introducing the concept of self or-
ganization. It consists of three primary tasks: node discov-
ery, route establishment and topology maintenance. The
accomplishment of these three tasks leads to the forma-
tion of a true WSN. While the previous paradigms used
a centralized communication model, this and the follow-
ing paradigms seek to employ a combination of central-
ized and distributed communication in order to allow the
WSN to perform as efficiently as possible. Topology main-
tenance in a WSN is unlike that in any other wireless net-
work. In WSNs, nodes may be stationary or mobile. When
there is no mobility, the topology, once established, usu-
ally does not change. However, as nodes perform their
assigned tasks they deplete and eventually exhaust their
energy store, causing them to die. The WSN may be re-
freshed by the periodic addition of new nodes to the WSN.

3.3.5 Data Aggregation

This paradigm is that data aggregation is performed in
order to reduce the traffic and conserve the power (see Data
Aggregation in section 3.2.9). All sensor nodes transmit
the data towards the base station (or sink nodes) in either
an on-demand or non on-demand manner.

3.3.6 Reacting Process

All the above paradigms essentially consider gathering
data and delivering them to sink nodes. Nodes in the
WSN are not concerned with the semantics of the data
obtained through the sensing task. Predicated upon their
own measurements and upon the values of incoming data,
requires that sensor nodes act based on those values. The
action may be a calculation, or actions triggered by in-
coming data. If multi routing protocols are operated in
the WSN, an action may be a decision on the choice of
protocol. Alternatively, the routing protocol may be per-
formed based only on the geographical location, in which
case the node processes accordingly. A sensor actuator
node can analyze the data and react to change the state
of the real world such as sending commands to actuators.
WSAN belongs to this paradigm.

3.4 Aggregation, Filtering and Correlation

Sensor fusion is a combination of sensed data or data de-
rived from sensed data such that the resulting informa-
tion gives more information than individual sensed data.
Sometimes, the information may be acquired from mul-
tiple sources (sensor, database, information gathered by
human, etc.). Since sensor fusion algorithms often afford
information about the measurement instant, or even co-
ordinated distributed measurements, at a particular point
in time, the employment of a time-triggered architecture

for distributed sensor fusion systems is advantageous. In-
network data aggregation in WSN summarizes sensor val-
ues in some or all of a sensor network, and it highlights
an importance of data aggregation. Many aggregation op-
erations come from database operations such as taking an
average or maximum value in existing middleware (e.g.,
TinyDB [146]). However, the aggregation process funda-
mentally depends on an application’s requirement, and to
fulfil the request, a simple aggregation may not be enough.
It may also involve event (data) filtering and correlation
during processing sensor data. It is important to use ap-
proaches taken from global computing in the processing of
sensor data.

Event Correlation is essential when the data is produced
in a WSN and multi-step operation carries the data from
event sources to the end-applications. These may reside
in the Internet and it must be possible to combine in-
formation collected by wireless devices with higher level
information or knowledge in distributed environments.

In [230], we introduced a generic composite event seman-
tics, which combines traditional event composition with
the generic concept of data aggregation in wireless sen-
sor networks. The main focus is on supporting time and
space related issues such as temporal ordering, duplica-
tion handling, and interval-based semantics, especially for
wireless network environments. We presented event cor-
relation semantics defining precise and complex temporal
relationships among correlated events using interval-based
semantics.

Event correlation is deployed sometimes as a part of ap-
plications, event notification services, or middleware ser-
vices. Definition and detection of composite events vary,
especially over distributed environments. Event composi-
tion operators do not necessarily have the same semantics
in different network environments, while similar semantics
might be expressed using different operators.

Many event-based middlewares offer content-based fil-
tering. Here, subscribers use flexible querying languages
to declare their interests with respect to event contents.
Event filtering allows specific attribute values on an event
type to be selected, while event correlation addresses the
temporal and spatial relation among instances of event
types. Filtering and correlation share many properties.
WSNs led to new issues to be addressed in event corre-
lation. Traditional networking research approached data
aggregation as an application-specific technique that can
be used to reduce the network traffic. Fig.3 highlights the
relation among aggregation, filtering and correlation.

TinyDB is an inquiry processing system for sensor net-
works and takes a data centric approach, where each node
keeps its data, and nodes execute retrieval and aggregation
(in-network aggregation), with on-demand based operation
to deliver the data to external applications. TinyLIME
[57] is enhancing LIME (Linda In Mobile Environments)
to operate on TinyOS. In TinyLIME, a partitioned tuple
space, as well as LIME is maintained on each sensor node,
and a coordinated tuple space is formed when connect-
ing with the base station within one hop. This works as
middleware by offering an abstract interface to the applica-
tion. The current form of TinyLIME does not provide any
data aggregation function. Only a data filtering function,
based on the Linda/LIME operation, is provided at the
base station node. On the other hand, TinyDB supports
a data aggregation function via SQL query, but redun-
dancy/duplication handling is not clear thus far.

10

Correlation

Event X

Events

Event Y

Data Contents

' Filtered Events

Event'Instances

Filtering

Aggregated

Events

Aggregation

Figure 3: Filtering, Aggregation and Correlation

The coordination of nodes within WSN differs from the
other wireless ad hoc networks, where the group of nodes
act as a single unit of processors in many cases. For a
single phenomenon, multiple events may be produced in
order to avoid the loss of event instances, which is a to-
tally different concept from traditional duplicate events.

Middleware research for WSN has recently increased,
but most research focuses on in-network operation for spe-
cific applications. A global view of event correlation, filter-
ing and aggregation over whole distributed systems must
be addressed. Aggregation should have three stages: local,
neighbour, and global.

4. TECHNOLOGIES SUPPORTING WSN

The advance of WSN depends on a wide range of tech-
nologies, such as hardware, system software and network
communication. One of the difficult issues for WSNs is
that the application requirements on WSNs differ from
one application to another. In [135], 20 different prop-
erties are measured by commercial sensor systems using
electrical, photonic, seismic, chemical and other transduc-
tion principles. Desirable, quantified properties are ease
of installation, self identification, self diagnosis, reliability,
time awareness, and locality awareness. The results show
that it is not easy to define generic requirements on ac-
curacy and sampling rate, for sensor nodes and networks.
Fig. 4 outlines the technologies surrounding WSNs.

‘ Application

‘ Localization ‘

Data management

System Architecture

Position Optimization

Calibration

‘ Sensing/Wireless Devices ‘ ‘ Power Control

‘ Hardware ‘

Figure 4: Technologies for WSNs

This section describes various technologies supporting
sensor networks. The issues related to the sensor node
hardware is out of scope in this paper. We focus on the
system and network communication technologies in this
section and discuss the current state of these technologies.

4.1 System Architecture

This section describes a research trend in system architec-
ture including operating systems, positioning and track-
ing targets, localization, time synchronization, security,
and programming paradigms. We locate the programming
models topic in section 5.

4.1.1 System Software and Platform

Many research groups in both academia and industry are
currently devoted to the development of sensor platforms.
One of the first and probably most popular platforms is
Berkeley motes. TinyOS [96] is an operating system to
control the hardware of motes. TinyOS is an open source
project to provide microkernels. These include stripped-
down versions of functional units in operating systems that
can be selected to provide system support only when their
functionality is needed. The bottom line is that due to
severe restriction on various resources, the system should
consist of only those functionalities needed, whether im-
plemented in hardware or system software.

TinyOS provides lightweight thread support and efficient
network interfaces. Two issues in particular are addressed:
(1) to support concurrency, different flows of data must be
kept moving simultaneously, and (2) the system must pro-
vide efficient modularity (i.e., hardware and application-
specific components must combine with little processing
and storage overhead). Users can select only the mini-
mum component that the application needs from among
these component groups. Components can be executed in
parallel, and while waiting events, resource consumption
(Neither Blocking nor Polling are done) is minimised.

NesC [72], which is a C language extension can be used
on TinyOS. NesC has the feature such as event driven,
parallel execution, component orientation etc. and corre-
sponds to the components and event processing of TinyOS.
Greenstein et al. [59] offer a component library SNACK
(Sensor Network Application Construction Kit) to facili-
tate the development on TinyOS. Dai et al. [76] propose
the file system ELF (Efficient Log structured Flash file
system) for storage using flush memory.

4.1.2 Localization

When sensor information is obtained from a certain sensor
node, its physical position is that at which the sensor infor-
mation is obtained. Therefore, the position of the sensor
node is essential information for analyzing sensor informa-
tion. This information can be used for various algorithms
such as location based routing [165].

Various research has focussed on detecting the positions
of sensor nodes. For example, Moore [158] proposes an
algorithm that successfully locates nodes in a sensor net-
work with noisy distance measurements, using no beacons
or anchors. Shang [193] and Ji [111] use multi dimensional
scaling (MDS) to identify positions. This uses connectivity
information such as who is within communications range of
whom to derive the locations of the nodes in the network,
and can take advantage of additional data, such as esti-
mated distances between neighbours or known positions for
certain anchor nodes, Moreover, Cheng [49] proposes the
technique of a time based positioning scheme (TPS). TPS
relies on TDoA (Time-Difference-of-Arrival) of RF signals
measured locally at a sensor to detect range differences
from the sensor to three base stations. These range dif-
ferences are averaged over multiple beacon intervals before
they are combined to estimate the sensor location through
trilateration.

11

Accurate positioning is a key for many sensor applica-
tions including surveillance networks, robotic sensors, lo-
cation based routing in WSNs, smart spaces and environ-
mental monitoring by mobile sensors. Although GPS can
potentially provide accurate positioning, the complexity of
the required receivers may be too costly for inexpensive
sensor nodes. Furthermore, the GPS signal is extremely
weak and positioning can be unreliable inside buildings or
under dense foliage. These drawbacks to GPS position-
ing have led to increasing interest in GPS-less distributed
radio location methods for wireless sensor networks.

4.1.3 Spatial Temporal Correlation

WSNs are characterized by the dense deployment of sensor
nodes that continuously observe physical phenomena. Be-
cause of high density in network topology and the nature
of the physical phenomena, sensor observations are highly
correlated in space and time domains.

e Spatial Correlation: Typical WSN applications re-
quire spatially dense sensor deployment for reliable
coverage.

e Temporal Correlation: Event tracking may require
sensor nodes to periodically perform observation and
transmission of sensed data.

The spatial and temporal correlations along with the col-
laborative nature of the WSN bring significant potential
advantages for efficient communication protocols. Akyildiz
et al. [9] proposes a theoretical framework to model the
spatial and temporal correlations in sensor networks. The
objective of this framework is to enable the development of
efficient communication protocols which exploit these ad-
vantageous intrinsic features of the WSN paradigm.

An example of a communication abstraction is Spatial
Programming [30] which uses Smart Messages to provide
content-based spatial references to embedded resources.

4.1.4 Position Optimisation

Coverage is the spatial sensing range of a sensor node. This
has to be coordinated among sensor nodes to avoid redun-
dancy, and to take account of communication distance and
other characteristics of sensing tasks. Research on posi-
tioning sensor nodes has taken different approaches. For
example, sensor nodes can move to optimise their own po-
sitions [41, 198, 175, 219]. Batalin [22] proposes a sensor
architecture that combines both fixed and mobile sensor
nodes to achieve a spatio temporal environment coverage.
Mobility allows the networked sensor system to always seek
the most efficient spatio temporal sampling distribution to
achieve a specified accuracy of environmental variable re-
construction. Further, mobility also permits the system
to respond to initially unpredictable and variable envi-
ronmental evolution. Recently Ravelomanana et al. [177]
analysed various critical transmitting/sensing ranges for
connectivity and coverage in three-dimensional sensor net-
works. Kumar et al. [127] formulate the coverage problem
as a decision problem, and analyses to determine whether
every point in the service area of the sensor network is cov-
ered by at least k sensors, where k is a predefined value.
The sensing ranges of sensors can be unit disks or non unit
disks. They present polynomial time algorithms, in terms
of the number of sensors that can easily be translated to
distributed protocols.

4.1.5 Time Synchronization

The management of time and time related operations in
WSNs is essential to timestamp events, control an oper-
ation cycle, synchronize network operations and so forth.
Network Time Protocol (NTP) [157] is an Internet stan-
dard. NTP allows for assignment of real-time timestamps
with given maximal errors. Global and partial order of
events can be obtained with a certain accuracy based on
timestamps. However, NTP requires frequent message ex-
change to synchronize a clock in each node, and existence
of NTP server cannot be expected in WSN environments.
This results in NTP not being suitable for WSNs and a new
type of time synchronization is needed [201]. Dai et al. [58]
propose an architecture TSync, where push and pull time
synchronization mechanisms are combined. Maréti et al.
[158] use flooding in multi hop sensor networks. Li et al.
[137] discuss three methods to achieve global synchroniza-
tion in a sensor network: a node based approach, a hier-
archical cluster based method, and a fully locad diffusion
based method. Their Diffusion Method is a synchronous
and asynchronous implementation of diffusion based pro-
tocols.

Prakash et al. [173] present a GPS based virtual global
clock that is used for timestamping events, and deploys a
similar concept 2g-precedence. Without the existence of
GPS, there is no means to synchronize the clocks of all
the nodes in a deterministic fashion with an upper bound
independent of the message propagation delay and sys-
tem size. Logical time cannot be used to determine tem-
poral ordering, because causal ordering of events in the
real world must be obtained. Thus, physical time has to
be used requiring clock synchronization. However, most
of the synchronization algorithms rely on partitioned net-
works. Post-facto synchronization [65] is based on unsyn-
chronized local clocks but limits synchronization to the
transmit range of the mobile nodes. In [184], Romer takes
a similar approach using unsynchronized clocks. The idea
of the algorithm is not to synchronize the local computer
clocks of the devices but instead to generate timestamps
from a local clock. When such locally generated times-
tamps are passed between devices, they are transformed to
the local time of the receiving device. Lucarelli et al. [143]
builds protocols on the recent work of Hong, Cheow, and
Scaglione [99] in which the synchronization update rules are
mode led by a system of pulse coupled oscillators. They
define a class of models that converge to a synchronized
state based on the local communication topology of the
sensor network only, thereby lifting the all-to-all commu-
nication requirement implicit in [99]. Under some rather
mild assumptions of the connectivity of the network over
time, these protocols still converge to a synchronized state
when the communication topology is time varying.

4.1.6 Object Tracing

A standard problem of WSNs includes the problem of local-
ization of one observation object (target) perceived by two
or more sensors. For instance, to measure the position of
an intruder vehicle according to sensor information on each
sensor node located in an area. Bergamo [24] proposes to
identify the position using a sensor array of iPAQs. Cheng
et al. [48] propose dynamic construction of clustering. In-
stead of assuming the same role for all the sensors, their
vision is a hierarchical sensor network that is composed of
(1) a static backbone of sparsely placed high capability sen-

12

sors which will assume the role of a cluster head (CH) upon
triggering by certain signal events; and (2) moderately to
densely populated low end sensors whose function is to pro-
vide sensor information to CHs upon request. A cluster is
formed and a CH becomes active, when the acoustic sig-
nal strength detected by the CH exceeds a predetermined
threshold. The active CH then broadcasts an information
solicitation packet, asking sensors in its vicinity to join the
cluster and provide their sensing information. The pro-
posed dynamic clustering algorithm effectively eliminates
contention among sensors and yields more accurate esti-
mates of target locations as a result of better quality data
collected and fewer collisions. Zhang et al. [235] propose a
tree based approach to facilitate sensor nodes collaborating
in detecting and tracking a mobile target. As the target
moves, many nodes in the tree may become distant from
the root of the tree, and hence a large amount of energy
may be wasted for them to send their sensing data to the
root. Hu et al. [102] introduce the sequential Monte Carlo
Localization method and argue that it can exploit mobility
to improve the accuracy and precision of localization. Gui
et al. [78] propose a collaborative messaging scheme that
wakes up and shuts down the sensor nodes with spatial and
temporal preciseness. This approach quantifies the trade-
off between power conservation and quality of surveillance
while presenting guidelines for efficient deployment of sen-
sor nodes for target tracking application. EnviroTrack [1]
is the first programming support for sensor networks that
explicitly supports tracking mobile objects (see details in
6.2.3).

4.1.7 Security

Sensor network security is a critical issue but minimal re-
search has been done compared to other aspects of WSNs.
Sensor nodes are resource-constrained and embedded in
physical environments, where unlimited resource for the
calculation can not be expected. A different technology
from existing network security is required for WSNs. In
[14], Avancha et al. provide a good summary of the direc-
tion of security research in WSNs. Wood [224] provides a
survey of many kinds of denial of service attacks in sensor
networks and discusses defence technologies. Perrig de-
scribes necessary technologies for the security for WSNs
[171] and sumarises as follows.

For network communication, desired technologies are
sharing methods of encryption keys and encrypting meth-
ods [62], privacy, DoS (denial of service) attack, secure
routing, discovery of malicious nodes and their restora-
tion. [170] addresses secure communication in resource con-
strained sensor networks, introducing two low level secure
building blocks. For system support, group management,
invasion discovery and secure data aggregation are needed.
Karlof implemented TinySec [119] as an encryption module
for the link layer. TinySec has achieved operation on the
resources of TinyOS that are very limited. Karlof [118] an-
alyzed security flaws of various routing protocols on WSNs;
and proposed countermeasures to enhance sensor network
routing. To defend against the rushing attack, this paper
proposed that every node only process beacon messages
through bidirectional links as well as verified neighbour
nodes. While the issue of intrusion tolerance has been
known for quite some time, recent increase in the need
for safety critical systems has significantly raised research
activity in this area. Recent projects addressing intrusion
tolerance include [174, 187]. All these projects are aimed at

providing intrusion tolerance capabilities in a traditional,
resource rich computing environment.

The use of hybrid models for communication security
will enable easier integration of data aggregation and key
management algorithms. This will also ensure flexibility
and adaptability of the WSN; self healing mechanisms and
the ability to react to changing conditions can also be easily
integrated. Both centrad and distributed key management
techniques for WSNs have been discussed in the literature.
Research efforts directed toward this problem have shown
that key distribution in WSNs can be energy efficient and
secure under certain conditions.

Distributed key management techniques are completely
independent of any security architecture. For example, the
work on secure pebblenets [21] is mainly concerned with
choosing a key manager in every round, but does not ad-
dress the issues involved in using the key for encryption,
authentication or other security functions. On the other
hand, the SPINS project [170] assumes pre-deployed key-
ing in the entire security architecture. The ideal security
model will consist of a combination of robust, energy ef-
ficient, secure key distribution mechanisms with well de-
fined, comprehensive security architectures. A similar sit-
uation is observed when security architectures and data
aggregation algorithms are considered. Current security
architectures do not really consider the issue of integrat-
ing data aggregation algorithms; rather they assume that
designated nodes, such as the controller or cluster heads,
will perform the required aggregation functions. On the
other hand, data aggregation algorithms assume complete
and unhindered cooperation among all sensor nodes in the
WSN as far as performing the aggregation functions is con-
cerned. This assumption is non-trivial; a security protocol
that supports such a cooperation model will not be scal-
able because pairwise communication security is required
across the WSN. Thus, integration of energy efficient data
aggregation algorithms with robust security architectures
is essential in designing the ideal security model.

Flexibility, adaptability and self healing mechanisms are
essential to the functioning of a WSN and optimal resource
use during its lifetime. None of the existing security archi-
tectures use the data associated with sensed environmen-
tal conditions to help detect the beginnings of attacks or
of aberrant behaviour by nodes. This reduces the ability
of the WSN to protect itself from attacks mounted within
and outside the network. In fact, detecting and preventing
attacks from within, i.e. attacks mounted by compromised
nodes, is a harder problem than preventing external at-
tacks such as jamming. Thus, the move toward the ideal
security model calls for the design and development of com-
pact, lightweight mechanisms to capture and reason over
data describing environmental and security conditions.

While there is little need for security in environmen-
tal monitoring, intelligent agriculture or radiation detec-
tion and other natural or wide range phenomenon, when a
similar setting is used to monitoring human activities, the
concern about privacy, and even safety, becomes a major
factor. WSNs in assisted living or intelligent offices, are
valuable in terms of automation, remembering and remote
assistance. But the same technology that allows doctors
and relatives to monitor the condition of an elderly per-
son can lead to breaches of privacy if data is processed
in an improper manner or accessed by unauthorized per-
sons. The capabilities of automated analysis and remote
access make this new generation of sensing technology an

13

even worse threat to individuals’ privacy. This issue can
be addressed with a combination of technical measures and
analytic frameworks from the perspective of law and psy-
chology. Techniques such as tighter access control to the
collected data, secure channel communications, options for
users to voluntary opt out, or control of data granular-
ity can all mitigate the privacy concern. Regarding the
privacy issue from the perspective of law, Jacobs has sug-
gested an analytic framework based on the Fourth Amend-
ment and Supreme Court ruling, with an audience of con-
cern, and the motivation of the reasoning process as the
two axes of the paradigm [110].

MANET Security: MANETSs employ a distributed,
multi-hop, node-centric communication model. In a
MANET, users control their wireless devices, however the
device itself has some degree of autonomy. The autonomy
is best illustrated by a device’s choosing the most appro-
priate set of neighbouring devices to contact based on user
requirements. Thus, communication in MANETS is node
centric, rather than user centric. We may immediately
observe that device authentication and data confidential-
ity are much more important than access control, which
may not be relevant in certain situations. Unlike infras-
tructure supported wireless networks, the security problem
confronted by a MANET is to mitigate the actions of mali-
cious users who may attempt to disrupt communication in
the network. Thus, security protocols in MANETSs employ
mechanisms such as certificates to authenticate users and
encrypt data using symmetric or asymmetric algorithms.
Due to the fact that MANETSs allow multi-hop communica-
tions, most attacks are directed against the protocols that
route data between intermediate nodes on the path from
source to destination. Thus, network level security is the
focus of attention in security research related to MANETS.
Protocols and methods designed to address this issue in-
clude SEAD [100], Ariadne [101], security enhancements in
AODYV [26], secure position aided routing [43], secure ad
hoc routing [168] and an on-demand secure routing proto-
col resilient to Byzantine failures [15]. End-to-end security
is a non-trivial problem in MANET'Ss because security pro-
tocols must rely on intermediate nodes which, depending
upon their individual capabilities, may not contain all of
the mechanisms required by the protocols.

4.2 Network and Communication Control

This section describes research trends in network and com-
munication control in WSNs. A more intensive survey of
network communication can be found in [4, 6]. The re-
search on network control includes that on communication
methods, saving power consumption, congestion control,
topology management, routing, and modelling. Current
architectures for the Internet and ad hoc wireless networks
may not be used for WSNs for the following reasons.

e Number of sensor nodes in a WSN is much higher
than an ad hoc network.

e Sensor nodes failure rate is high.
e Sensor nodes are more resource constrained.
e Sensor nodes are limited in power.
e The use of acknowledgement packets should be used
sparingly.
Thus, an architecture for WSNs will be:

e Combine power and routing awareness.

Integrate data with network protocols.
e Communicate power efficiently.

e Share tasks among neighbour nodes.

Several research projects have reported on new network
control algorithms to solve sensor network specific prob-
lems such as constrained resources, localization and power
consumption.

4.2.1 Power Saving Communication Protocol

Sensors are meant to be left in a real environment for the
long term and saving power consumption is an important
issue. The function that consumes most power in WSNs is
communication. Reducing power consumption requires op-
timisation across all layers, from the physical layer, chan-
nel coding, and media access control layer up through the
routing, transport, and application layers. The MAC layer
plays the most crucial role in the communication protocols
for energy efficiency, especially for networks with low duty
cycling radios. In [67, 172], a low power operation through
a careful codesign approach combining a dedicated duty
cycled radio with a low power MAC protocol is proposed.
Reason et al. [178] introduce a technique of application
aware radio duty cycling called on-demand spatial TDMA
for a moderatesize, multi-hop, sensor network,.

4.2.2 Congestion Control

Congestion control in wired networks is usually done using
end-to-end and network layer mechanisms acting in con-
cert. However, this approach does not solve the problem
in wireless networks because concurrent radio transmis-
sions on different links interact with and affect each other,
and because radio channel quality shows high variability
over multiple timescales. WSNs are based on broadcasts
as the main communication mechanism. Hull et al. [106]
examine three techniques that span different layers of the
traditional protocol stack: hop by hop flow control, rate
limiting source traffic when transit traffic is present, and
a prioritised medium access control (MAC) protocol. The
combination of these techniques can improve network ef-
ficiency. Ee et al. [64] propose a distributed and scalable
algorithm that eliminates congestion within a sensor net-
work, and that ensures the fair delivery of packets to a
central node, or base station. Kang et al. [115] show a
method to estimate the communication capacity of end-
to-end in WSNs.

4.2.3 Topology Management

Heinzelman et al. [92] propose and analyze a low energy
adaptive clustering hierarchy (LEACH). This is a protocol
architecture for micro sensor networks that combines the
ideas of energy efficient cluster based routing and media
access together with application specific data aggregation
to achieve good performance in terms of system lifetime,
latency, and application perceived quality. LEACH in-
cludes a new, distributed cluster formation technique that
enables self organization of large numbers of nodes, algo-
rithms for adapting clusters and rotating cluster head po-
sitions to distribute the energy load evenly among all the
nodes, and techniques to enable distributed signal process-
ing to save communication resources. Sohrai et al. [206]
propose a formation mechanism for wireless unattended

14

ground sensor applications using a multi-cluster hierarchi-
cal topology (Rendezvous Clustering Algorithm), where a
novel dual radio architecture is used. Smaragdakis et al.
[203] propose SEP, a heterogeneity-aware protocol to pro-
long the time interval before the death of the first node,
which is crucial for many applications where the feedback
from the sensor network must be reliable. SEP is based on
weighted election probabilities of each node becoming the
cluster head according to the remaining energy in each
node. Younis et al. [232] propose a similar approach,
HEED (Hybrid Energy Efficient Distributed clustering),
that periodically selects cluster heads according to a hy-
brid of their residual energy and a secondary parameter,
such as a node’s proximity to its neighbours or node de-
gree. Cerpa et al. [44] propose an adaptive self configura-
tion topology mechanism, where the ASCENT algorithm
is deployed. ASCENT only builds a subset of the nodes
necessary to establish a routing forwarding backbone. In
ASCENT, each node assesses its connectivity and adapts
its participation in the multi-hop network topology based
on the measured operating region. Initially a small num-
ber of active nodes participate in routing, the rest being in
passive mode. Nodes in passive mode regularly turn to test
mode and change to active mode when there are not many
neighbour nodes and loss of the packets is high. Ma et al.
[144] propose a hub spoke network topology that is adap-
tively formed according to the resources of its members.
A protocol named Resource Oriented Protocol (ROP) was
developed to build the network topology. This protocol
principally divides the network operation into two phases.
In the topology formation phase, nodes report their avail-
able resource characteristics, based on which a network
architecture is built optimally.

4.2.4 Routing

Many routing protocols have been proposed [103, 95,
215, 56], where the network topology changes frequently
because of node failure and communication conditions.
Helmy et al. [95] propose an architecture that is geared to-
wards one shot frequent queries in sensor networks. Their
approach aims at reducing the total energy cost of query
resolution as opposed to searching for high quality routes.
The architecture uses a hybrid approach, where each node
collects information about nodes in its proximity, up to R
hops away, using a link state protocol. Beyond this prox-
imity, the novel notion of contacts that act as short cuts to
reduce the degrees of separation between the request source
and the target is introduced. Trakadas et al. [215] classify
a selection of algorithms proposed for ad hoc networks ac-
cording to their relevance and efficiency. A spatial position
node from GPS or other coordination mechanisms can be
used for geographic routing and there have been many pro-
posals using this, such as [155, 191, 71]. Survey papers [4,
6, 215] contain useful details of routing protocols in WSNs.
Data routing approaches in WSNs fall into into three main
categories, namely data centric, hierarchical and location
based. A few other protocols follow the traditional net-
work flow and QoS modelling methodology.

There are some hybrid protocols that fit under more than
one category as shown in Table 1. The table summarizes
the classification of the hybrid protocols (see more detailed
explanation in [6]. Protocols, which name the data and
query the nodes based on some attributes of the data are
categorized as data centric. Many researchers follow this
paradigm in order to avoid the overhead of forming clus-

Routing protocol Reference || Data Centric Hierarchical | Location QOS Network Aggregation
Based Flow

1. SPIN 90] v v

2. Directed Diffusion 108] v v

3. Rumor Routing 37] v v

4. Shah et al. 192 v v

5. GBR 189 v v

6. CADR 53 v

7. COUGAR 61 v NV

8. ACQUIRE 186] v

9. LEACH 91] v v

10. TEEN&APTEEN 149 v v v

11. PEGASIS 138 v v

12. Younis et al. 231 v v

13. Subramanian et al. 211 v v

14. MECN&SMECN 179 v v

15. GAF 228 v v

16. GEAR 233 v

17. Chang et al. 45] v v

18. Kalpakis et al. 113] v v

19. Akkaya et al. 5] v v

20. SAR 205] v

21. SPEED 36] v v

Table 1: Classification of routing protocols in sensor networks

ters, the use of specialized nodes etc. However, the naming
schemes such as attribute value pairs might not be suffi-
cient for complex queries and they are usually dependent
on the application. Efficient standard naming schemes are
one of the most interesting future research direction re-
lating to this category. On the other hand, cluster based
routing protocols group sensor nodes to relay the sensed
data efficiently to the sink. The cluster heads are some-
times chosen as specialized nodes that are less energy con-
strained. A cluster head performs aggregation of data and
sends it to the sink on behalf of the nodes within its cluster.
The most interesting research issue regarding such proto-
cols is how to form the clusters so that the energy con-
sumption and contemporary communication metrics such
as latency are optimised. The factors affecting cluster for-
mation and cluster head communication are open issues for
future research. Moreover, the process of data aggregation
and fusion among clusters is also an interesting problem to
explore.

Protocols that utilize the location information and topo-
logical deployment of sensor nodes are classified as location
based. The number of energy aware location based ap-
proaches found in the literature is rather small. The prob-
lem of intelligent utilization of the location information in
order to aid energy efficient routing is the main research
issue. Spatial queries and databases using distributed sen-
sor nodes and interacting with the location based routing
protocol are open issues for further research.

Although the performance of these protocols is promis-
ing in terms of energy efficiency, further research is needed
to address issues such as Quality of Service (QoS) posed
by video and imaging sensors and real-time applications.
Energy aware QoS routing in sensor networks will ensure
guaranteed bandwidth (or delay) through the duration of
connection as well as providing the use of the most energy
efficient path. QoS routing in sensor networks has several
applications including real-time target tracking in battle
environments, emergent event triggering in monitoring ap-
plications etc.

Currently, there is little research that looks at handling
QoS requirements in an energy constrained environment

15

like sensor networks. Another interesting issue for rout-
ing protocols is the consideration of node mobility. Most
of the current protocols assume that the sensor nodes and
the sink are stationary. However, there might be situations
where the sink, and possibly the sensors, need to be mobile.
In such cases, the frequent update of the position of the
command node and the sensor nodes and the propagation
of that information through the network may excessively
drain the energy of nodes. New routing algorithms are
needed in order to handle the overhead of mobility and
topology changes in such an energy-constrained environ-
ment. Other possible future research for routing protocols
includes the integration of sensor networks with wired net-
works (i.e. the Internet).

4.2.5 Modelling

The technology that estimates the performance of the sen-
sor network beforehand is requested by modelling, and an-
alyzing the operation of the sensor network of a real en-
vironment. That helps to investigate a theoretical perfor-
mance of the network control in a real environment, where
networks are more dynamic. For example, under ideal set-
tings, drastic performance improvement over strictly ad-
dress centric routing schemes is proven. While geographic
routing has been shown to be correct and efficient when
location information is accurate, its performance in the
face of location errors is not well understood. Helmy et al.
[207, 122] analyse the impact of inaccurate location infor-
mation in geographic routing, which is caused by mobility
of nodes. Zhou et al. [238] investigate an effect of radio
irregularity on the communication performance in WSNs.
They analyze the impact of radio irregularity on some of
the well-known MAC and routing protocols. A widely em-
ployed energy saving technique is to place nodes in sleep
mode, corresponding to low power consumption and re-
duced operational capabilities. Chiasserini et al. [51] use a
Markov model of a sensor network whose nodes may enter
a sleep mode and investigate the system performance in
terms of energy consumption, network capacity, and data
delivery delay.

4.2.6 Group Management

A collaborative group is a useful concept to form groups by
geographic proximity, roles, or resource availability. How-
ever managing groups in a distributed manner requires re-
liable communication and consensus. Kumer et al. [128]
describe a data aggregation and consensus algorithm for
object location and tracking applications in WSNs. This
consensus algorithm permits ad hoc, in-network, group for-
mation in response to a detected event. By reaching a con-
sensus in the network, only a single message needs to be
sent leading to significant savings in communication costs
and prolonging the life of the network. The event is for-
warded to the tracking application at a base station.

5. PROGRAMMING PARADIGMS

The area of high level languages for programming diverse,

distributed networks of sensors has begun to receive at-
tention during the last few years. This section describes
research trends in programming models for WSNs.

Currently, the majority of sensor network applications
are implemented as complex, low level programs that spec-
ify the behaviour of individual sensor nodes. The most
popular platform currently available for WSN program-
ming is TinyOS. TinyOS provides a component based ar-
chitecture that targets resource constrained nodes by offer-
ing only a limited set of services, disallowing dynamic al-
location, and providing a simple concurrency model. Typ-
ically the same application is deployed on every node.

The embedded nature of WSNs requires the propaga-
tion of new program code over the network. For example,
[105] addresses network programming (the programming of
nodes by disseminating code over the network). Each node
maintains the most recent data by periodic broadcast. Dis-
tributed virtual machines is introduced to provide conve-
nient high-level abstractions to application programmers,
while implementing low level distributed protocols trans-
parently in an efficient manner. This approach is taken
in MagnetOS [142], which exports the illusion of a single
Java virtual machine on top of a distributed sensor net-
work. The application programmer writes a single Java
program. The runtime system is responsible for code par-
titioning, placement, and automatic migration such that
total energy consumption is minimized.

The Maté virtual machine takes the same approach, be-
ing built on top of TinyOS, but allows more flexibility in
terms of code mobility than TinyOS. This is achieved by
allowing code to move and be updated through the net-
work. However, Maté’s ability to allow code mobility is
highly limited such as to version updating.

While TinyOS targets small, highly resource constrained
nodes, other programming frameworks instead address the
needs of systems with larger, more capable nodes. Sen-
sorWare, a sensor network programming framework [33],
addresses some of the challenges of mobile code by ex-
pressing its sensor network tasks as Tcl scripts written in
a tasking language. Scripts can move from node to node
through the network acting as mobile code based on an
agent based model.

Thus far there is no agreed solution. A high-level, global
programming model, where the application can be speci-
fied in terms of system wide behaviour, which is then com-
piled down to the per-device program is desirable. The
challenge in programming for WSNs is to coordinate the
sensing, coolaborative processing, and data flow in the net-

16

work, so that the required functionality is achieved. When
an end user manually translates the global application be-
haviour in terms of local actions at each node, applica-
tion logic will be tightly linked with the part of the pro-
gram that coordinates lower level services such as resource
management, routing, localization and so forth. This lack
of separation between system level code and application
level code results in high complexity of programming for
WSNs. The limited computation, communication, and en-
ergy available on individual sensor nodes makes for difficult
programming: that of decomposing complex, systemwide
behaviour into the local actions to be taken at each node.
This approach is top down and has the potential to signif-
icantly ease the burden of programming these large, com-
plex systems.

Programming for sensor networks brings two main is-
sues; programming abstractions and programming sup-
port. The former is focused on providing programmers
with abstractions of sensors and sensor data. The latter
is providing additional runtime mechanisms that simplify
program execution. Examples of such mechanisms include
safe code execution, or reliable code distribution.

Furthermore, in program development for sensor net-
works, it is impossible to debug on the real sensor network,
where devices are resource poor and crash prone, and it
is highly distributed with a large amount of information
sharing and cooperative processing. Efforts for the simu-
lation environment to confirm how the sensor network op-
erates beforehand are TOSSIM simulation Environments
[133] and Power TOSSIM [196]).

5.1 Programming Abstraction

Programming abstractions fall into two categories; applica-
tion level and system level. The former defines and manip-
ulates events at the desired level of semantic abstraction
(e.g., latest position of target, location of all faulty sensors).
The latter precisely specifies distributed computation and
communication (e.g., apply f(z) to all z within 10m, send
data item d to 10 mearest nodes) The tradeoffs between
these two models are expressiveness, efficiency, reusability
and automation. Existing programming abstractions can
be classified into the following categories.

Data Based Model: The model follows a traditional
query based approach such as TinyDB [146]. The code is
split into two parts. The server side code deals with query
parsing, query planning and optimisation, while the sen-
sor side code is responsible for routing, query aggregation,
partial data aggregation, and lifetime specification, and so
forth. The approach is a straightforward extension of tra-
ditional queries, with sensor network specific modification
to the query language, and to incorporate message rout-
ing and data aggregation. This model is applied to collect
streaming numeric data.

room2

L
B

room3

SELECT room.id, avg(light)
FROM sensor s (¢}
GROUP room.id

SAVPLE PERI OD 1h;

Figure 5: Database based Model

One of the more intriguing suggestions is cross layer
modification to achieve better efficiency. This approach is
not popular in traditional layered network protocol mod-
els, but may merit considerations in this case due to the
limitation in resources and the pursuit of lightweight im-
plementation. Fig.5 shows WSN as a distributed database.

Agent Based Model: When writing an agent, the pro-
grammer can read or write the agents local variables both
on the heap and in the nodes local variables. The agent can
move to another node. An agent could read sensor values,
actuate devices, and send arbitrary radio packets. Un-
der this model, arbitrary algorithms can be implemented.
Agent propagation (in a sense, routing) is a decision made
by the programmer and coded into the agents self forward-
ing logic. The actuators in sensor networks need coopera-
tive control to achieve the common goal. How sensing and
actuating units should specify the conditions and reactions
to follow can be defined in a formal language. The use of
such a language eases the programming of a distributed
system, and provides simplicity by formal analysis and au-
tomated reasoning. Fig.6 shows mobile agent (active sen-
sor) model.

Language ties
services into tasks

Figure 6: Mobile Agent Model

Macroprogramming Model: Another approach to
programming large, complex sensor networks is macro-
programming, which considers a WSN’s global behaviour,
rather than the low level actions of individual nodes. End
users specify tasks at a higher level, where the embed-
ded system’s details of node communication protocols are
hidden. PARCs PIECES framework [139] presents a state
centric abstraction for programming a sensor network.
PIECES emphasizes a state as the core concept in the
model. It has the notion of collaboration groups that ab-
stracts out common patterns in application specific com-
munication and resource allocation. The number of nodes
is typically quite large in sensor networks, and the com-
plexity resulting from the large number of participants
makes some form of higher level abstraction a necessity.
The sensors are divided into groups based on their loca-
tions or functionalities, which allows programmers to deal
with nodes as a group. The concept of principal is used
to keep and maintain the state associated with physical
phenomena, and each state has only one principal that
stores, updates, and responds to queries as to the value of
the state. The task of programming the system becomes
the task of how to define interaction between principals
without worrying about the low level, per node operation
and hurdles. An application developer specifies a compu-
tation as the creation, combination, and transformation
of states, which naturally map to the vocabulary used by
signal processing and control engineers. More specifically,
an application program is written as algorithms for state
update and observation, with input supplied by dynam-
ically created collaboration groups. This higher level of

17

abstraction allows domain experts not familiar with pro-
gramming to define the system behaviour using the terms
they are familiar with, namely the various states. This ap-
proach bridges the gap between node centric programming
and high-level processing. In contrast, Hood [222] pro-
poses Neighbourhood oriented algorithms, where a node
can identify a subset of nodes around it by a variety of cri-
teria and share state with those nodes. This abstraction
allows developers to design distributed algorithms in terms
of the neighbourhood abstraction itself, instead of decom-
posing them into component parts such as messaging pro-
tocols, data caches, and neighbour lists. In applications
that are already neighbourhood based, this abstraction is
shown to facilitate good application design and to reduce
algorithmic complexity, inter component coupling, and to-
tal lines of code.

The above classification is one view, at an early stage of
research in this area. Fig.7 shows an example of a holistic
view of the various functionalities in WSNs.

Macro-programming models

System-wide middleware services: Logical namespaces,
virtual topologies, event-based addressing

Library APIs: Creation, management, and operations upon
logical neighborhoods of the host node

Node-centric programming models

Filtering, correlation,
QoS mgmt, fusion

Routing protocols

Routing mechanisms
(geographic, data-centric)

Sensor variables of
application interest

Infrastructure protocols
(localization, time-synch)

Sensing capabilities

Topology management, ;
(type, number, Jocutlmp,

medium access control
Network deployment

Figure 7: Layers of abstraction for application de-
velopment on WSNs
(from [18])

This wide range of programming abstractions has intro-
duced ideas such as in-network query processing [146, 145,
33|, event-based processing [120], native threaded virtual
machines [220, 147, 183], and on-node script interpreting
[33]. examples of macroprogramming methodologies for
WSNs are TinyDB [146], Regiment [163], Kairos [79], ATaG
[17], SensorWare [33], market based macroprogramming’s
pricing [147], diffusion’s aggregation [108], and Semantic
Streams [221]. TinyDB provides a declarative SQL-like
query interface for sensor data, and ATaG offers a mixed
imperative declarative programming style and data driven
flow. Regiment is a demand driven functional language
with support for region based aggregation. Karios is an
imperative, control driven programming paradigm provid-
ing a distributed shared memory abstraction to node level
programming. Semantic Streams’ markup and declarative
query language, based on Prolog, is used to specify queries
over semantic information. The selection, writing and op-
timisation of low level modules to implement the query-
ing is performed by a service composition framework, as
described later. Complementary to the work on program-
ming abstractions is network programming. Such systems
enable high-level composition of sensor network applica-
tions (Sensorware [33] and SNACK [76]), efficient distribu-

tion of code (Deluge [105]), support for sandboxed applica-
tion execution (Maté [132]), and techniques for automatic
performance adaptation (Impala [140]). Rather than define
a programming model, Application Specific Virtual Ma-
chines ASVMs [134] provide a way to implement and build
the runtime underlying whichever model a user needs.

For self configuration, various approaches are devised.
Examples include coverage [202]; aggregator placement [31];
clustering, routing and addressing [125, 205, 212]. [125] uses
a fixed set of roles to build a network wide backbone infras-
tructure. However, none of these approaches are generic
frameworks that support the assignment of user defined
roles in an application specific manner. Only recently,
neighbourhood programming abstractions [220, 222] have
been proposed, where network neighbours can easily share
variables.

A goal of macroprogramming is to simplify sensor net-
work application design by providing high-level program-
ming abstractions and primitives that automatically com-
pile down to the complex, low level operations imple-
mented by each sensor node.

The current research on programming models focusses
on the configuration, propagation, and aggregation of
WSNs. Within the proposed models, function units of
sensor nodes are defined as roles, tasks, or services. The
high-level representation of problems can be queries, ser-
vice requests, composite events, or regular expressions. Ex-
pressiveness of high-level languages is an important aspect,
and a distributed data processing framework is desirable.
One of important issues is that end users’ semantic re-
quests must be translated correctly into the operations in
WSNs through programming. This requires expressiveness
of languages and accurate mapping between requests and
operations, and it may require ontology involvement. Se-
mantic Web Services (SWS) address similar problems in
their domain. Knowledge may be produced by the pattern
of sensing behaviours, too. In SWS, semantically described
modular programs are created so that they can automati-
cally compose new services from the modular components.
In WSNs thus far, in many research prototypes, queries
have been simple enough to be decomposed. When real
world applications use macroprogramming, this will be an
issue to be solved.

5.2 Amorphous Computing

Sensors can detect atomic pieces of information, and the
information gathered from different devices will be ana-
lyzed and provide data that was impossible to obtain with-
out these technologies. Combining regional sensed data
from the different locations may spawn further informa-
tion. Localized algorithms, in which simple local node be-
haviour achieves a desired global object, may be necessary
for sensor network coordination. Modelling such systems
is attempted by studying biological systems, distributed
robotics, and amorphous computing. Amorphous comput-
ing, proposed by Abelson et al. [2], aims at discovering new
approaches for programming and controlling a vast number
of unreliable parts to achieve emergent global behaviours,
such as some desired patterns. These are called compu-
tational entities, which are usually irregularly placed and
locally interacting. This technology is especially suitable
for such environments where the desired global behaviours
can only be achieved based on local information and in-
teractions among entities. [160] demonstrates how to form
coordinate systems, arbitrary two and three dimensional

18

shapes, arbitrary graphs of wires, and origami like folding
patterns. Yet the Amorphous Computing effort has not to
date provided a model for programming rather than pat-
tern formation.

5.3 Existing Programming Models

In this section we describe existing programming models
and paradigms (see also Middleware Technology in section
6).

Recent macroprogramming may fall into two classes:
one focuses on providing the programmer abstractions
that simplify the task of specifying nodes’ local behaviour
within a distributed computation, while the second en-
ables programmers to express the global behaviour of the
distributed computation. In the former class, three dif-
ferent types of programming abstractions have been ex-
plored. For example, Liu et al. [140] and Cheong et al. [50]
have considered node group abstractions that permit pro-
grammers to express communication within groups sharing
some common group state. Data centric mechanisms are
used to efficiently implement these abstractions. By con-
trast, Mainland et al. [220] and Whitehouse et al. [222]
show that topologically defined group abstractions (neigh-
bourhoods and regions respectively) are capable of express-
ing a number of local behaviours powerfully. Finally, the
work on EnviroTrack [1] provides abstractions for physi-
cal objects in the environment, enabling programmers to
express tracking applications.

5.3.1 Kairos

Kairos [79] offers a network programming model that al-
lows the programmer to express, in a centralized fashion,
the desired global behaviour of a distributed computation
on the entire sensor network. Kairos compile time and
runtime subsystems expose a small set of programming
primitives, while hiding from the programmer the details
of distributed code generation and instantiation, remote
data access and management, and inter node program flow
coordination.

Kairos provides abstractions for expressing the global
behaviour of distributed computations. Kairos does not
contain explicit abstractions for nodes, but rather ex-
presses a distributed computation in a network indepen-
dent way. Thus, it is similar to the work on SQL-
like expressive but Turing incomplete query systems (e.g.,
TinyDB [146, 145] and Cougar [61]).

DFuse [126] provides support for expressing computa-
tions over logical topologies or task graphs, which are then
dynamically mapped to a network instances. Exporting
the network topology as an abstraction can impose some
rigidity in the programming model. It can also add com-
plexity to maintaining the mapping between the logical and
the physical topology when nodes fail. Complementary to
these approaches, node dependent abstractions allow a pro-
grammer to express the global behaviour of a distributed
computation in terms of nodes and node state. This is an
approach that Kairos is using.

Regiment [163] takes a similar approach to Kairos. While
Kairos focuses on a narrow set of flexible, language-
agnostic abstractions, Regiment focuses on exploring how
functional programming paradigms might be applied to
programming sensor networks in the large, while Split-C
[239] provides split local global address spaces to ease par-
allel programming. Kairos provides these through the re-
mote variable access facility, but confines itself to the C

Centralized

Kairos Preprocessor & Language Compiler -

Annotated

Program

Link with runtime
& distribute

Binary

Link with runtime ., Link with runtime

& distribute | & distribute
Sensor Node Sensor Node q
Program Kairos Runtime Program Kairos Runtime
Thread Cached Objects Thread Cached Objects
coﬁ{rol k l:l l:l ---------- I:l co::rol k I:l l:l T l:l ____________________________
A Managed Objects . Managed Objects
| |:| l:l I:l L l:l l:l l:l
Sync Queue Manager Sync Queue Manager
Read/\Write E % Read/Vrite E %
Requests Replies Requests Replies
[Multi-hop wireless network]

Figure 8: Programming Architecture in Kairos
(from [79])

language that lacks a rich object oriented data model and
a language level concurrency model. Therefore, the funda-
mental concepts in these two works are language specific.
Fig.8 shows an overview of Kairos Programming Architec-
ture.

5.3.2 Abstract Task Graph

The Abstract Task Graph (ATaG) [17] is a data driven
programming model for end-to-end application develop-
ment on networked sensor systems. An ATaG program
is a system level, architecture independent specification of
the application functionality.

[nodes-per-instance: 1] [nocles-pel -instance:1]] [[one-on-node-ID:0]]

[periodic:10] [any-data] [any-data]
SampleAnd Leader Supervisor
Threshold

TargetAlert

Figure 9: Object Tracking in ATaG
(from [17])

The application is modelled as a set of abstract tasks
that represent types of information processing functions
in the system, and a set of abstract data items that rep-
resent types of information exchanged between abstract
tasks. Input and output relationships between abstract
tasks and data items are explicitly indicated as channels.
Each abstract task is associated with user-provided code
that implements the information processing functions in
the system. Appropriate numbers and types of tasks can
then be instantiated at compile time or runtime to match
the hardware and network configuration, with each node
incorporating the user-provided code, automatically gen-
erated glue code, and a runtime engine that manages all
coordination and communication in the network. Fig.9
shows a program for an object tracking. The ATaG pro-
grammer first models each behaviour in terms of a pattern
of node level interaction. The next step is to identify the
types of processing and the types of data in the system.
SampleAndThreshold, Leader, and Supervisor are defined
as abstract tasks, while TargetAlert and TargetInfo are ab-

19

stract data. The input/output interfaces of the abstract
tasks are shown in Fig.9. The final step is to associate
annotations (shaded rounded rectangles) to indicate task
placement and information flow patterns. In this example,
TargetAlert is produced only if SampleAndThreshold de-
tects an object, then TargetAlert is sent to all other nodes
that might have detected the object. Leader determines
if its own reading is the maximum of all readings received
and TargetInfo is produced only if a node decides its own
reading is the highest.

5.3.3 Active Sensor Networks

Rather than proposing a new programming approach to in-
network processing, Active Sensor Networks [134] proposes
an architecture for implementing a programming model’s
underlying runtime. The Maté virtual machine (a tiny
bytecode interpreter) [132] is extended by generalizing its
simple VM into an architecture for building application
specific virtual machines (ASVMs). ASVMs address three
of Maté’s main limitations: flexibility, concurrency, and
propagation.

Introducing lightweight scripting to a network makes it
easy to process data at, or very close to, its source. This
processing can improve network lifetime by reducing net-
work traffic, and can improve scalability by performing lo-
cal operations locally. Similar approaches have appeared
before in other domains. Active disks proposed pushing
computation close to storage as a way to deal with band-
width limitations, active networks argued for introducing
in-network processing to the Internet to aid the deploy-
ment of new network protocols, and active services sug-
gested processing at IP end points.

VM Template

Store

.... Scheduler
|

Concurrency Manager

‘ Capsule

Code
Capsules

Threads

o g g
Figure 10: ASVM architecture
(from [221])

Active Sensor Network introduces dynamic computation
into a sensor network. Active networking is most similar,
but the differing goals and constraints of the Internet and
sensor networks lead to very different solutions. Fig.10
shows the ASVM functional decomposition. ASVMs have
three major abstractions: handlers, operations and cap-
sules. Handlers are code routines that run in response to
system events, operations are the units of execution func-
tionality, and capsules are the units of code propagation.
ASVMs have a threaded execution model and a stack based
architecture.

5.3.4 Object State Machine (OSM)

Kasten et al. propose Object State Machine (OSM) [120], a
programming model and language for sensor nodes based
on finite state machines. OSM provides an abstraction
for managing the complexity of event triggered program-
ming. OSM extends the event paradigm with states and
transitions, such that the invocation of actions becomes a
function of both the event and the program state. OSM in-
troduces state attributes that allow sharing of information
among actions. They can be considered local variables
of a state with support for automatic memory manage-
ment. OSM specifications can be compiled into sequential
C code that requires only minimal runtime support, result-
ing in efficient and compact systems. OSM borrows the
concept of hierarchical and parallel composition of state
machines from Statecharts [83] as well as the concept of
broadcast communication of events within the state ma-
chine. From SyncCharts [12] it adopted the concept of
concurrent events. Variables are typically not fundamen-
tal entities in control oriented FSM models. Models that
focus both on the transformative domain (data process-
ing, stream processing) and the control oriented domain,
typically include variables as intrinsic entities. Finite State
Machines with Datapath (FSMD) [60] introduced variables
to the FSM model in order to reduce the number of states
that have to be declared explicitly. Like OSM, this model
allows programmers to choose to specify program state ex-
plicitly (with machine states) or implicitly with variables.
FSMD are flat, that is, they do not support hierarchy and
concurrency, and variables have global scope and lifetime.
On the contrary, variables in OSM are bound to a state hi-
erarchy. OSM allows access to the values of events in com-
putational actions. A valued event is visible in the scope
of both the source and the target state of a transition (in
out and in actions, respectively). A number of frameworks
for programming individual sensor nodes have been pro-
posed. With one exception, all frameworks fall into one of
two basic categories: event-based systems (such as Maté
[132]) and multi-threaded systems (SensorWare [33]). Ap-
plications built according to either model have an implicit
notion of program state. In contrast, in OSM program
state can be modelled explicitly.

5.3.5 Regiment

Regiment [163, 164] is a functional macroprogramming lan-
guage for sensor networks. The basic concept is simi-
lar to Kairos [79] providing programming abstraction by
expressing the global behaviour of distributed computa-
tions. The essential data model in Regiment is based on
region streams, which represent spatially distributed, time
varying collections of node state. A region stream might
represent the set of sensor values across all nodes in an
area or the aggregation of sensor values within that area.

20

Regions provide a means of expression spatial and logi-
cal relationships between sensor nodes, transparent data
sharing between nodes, and efficient reduction operations
within regions. Abstract regions expose the tradeoff be-
tween resource usage and the accuracy of collective opera-
tions, allowing applications to tune energy and bandwidth
consumption to meet accuracy targets.

Regiment is a purely functional language, which gives
the compiler considerable leeway in terms of realizing re-
gion stream operations across sensor nodes and exploiting
redundancy within the network. Regiment allows the user
to perform general operations (e.g., MAP, FOLD, and FIL-
TER), which map a function over, aggregate over, or filter
all the data in a region. The system determines where and
when data is stored and operations are performed in the
network.

5.3.6 Semantic Streams

Semantic Streams [221] is a framework that allows users
to pose declarative queries over semantic interpretations
of sensor data. For example, instead of querying raw sen-
sor data, the user can query vehicle speeds; the system
decides which sensor data and which operations to use to
infer the vehicle speeds. The user can also place constraints
on values such as the confidence with which the speed was
measured or the amount of energy consumed to measure
the speeds. This framework is designed to work in a shared
sensor infrastructure, where multiple queries may coexist
for extended periods of time, instead of a hand designed,
single purpose sensor network. Semantic Streams takes a
semantic service programming model and provides a ser-
vice description language and a query processor that sup-
port the programming model.

Senvice
Embedding

Query
Planning

Service Discovery/
Seli-Monitoring

Runtime
+— Senice
Composer

Service
Instances

Execution

- ®

Planning and Execution in Semantic

Figure 11:
Streams
(from [221])

Semantic Streams is similar to the approaches described
above in that the user issues a query specifying global be-
haviour. One main difference is that the user is required
to understand which operations to run over the raw sen-
sor data and how to interpret the meaning of the results.
Semantic Streams allows the user to issue queries over se-
mantic values directly without addressing which data or
operations are to be used. The advantages of semantic
queries are analogous to those of macroprogramming in
general: the user of macroprogramming need not specify
the best time and place to execute each operation, while
the user of semantic queries need not specify which opera-
tions to run or which data to run them over. This allows
the user to make less low level decisions while allowing
the system an extra degree of freedom to optimise dur-
ing execution. In Fig.11, the user first poses a query to
the query processor, which derives an acceptable service

graph. That graph is passed to the execution engine along
with all variable unification and constraint sets resulting
from planning. The execution engine may call back to the
query processor during replanning.

5.3.7 Abstract Region

TinyDB [146], Cougar [108], and IrisNet [161] provide a
high-level SQL or XML based query interface to sensor net-
work data. Queries are deployed into the network, stream-
ing results to one or more base stations, and aggregation
is used to reduce communication overhead. systems have
tremendous value and abstract away many details of com-
munication, aggregation, and filtering. However, they are
not well-suited for developers who wish to implement spe-
cific behaviour at a lower level than the query interface.
For example, TinyDB is focused on relaying aggregate data
along a spanning tree rooted at a base station. While
this mechanism can support complex algorithms such as
contour finding, TinyDB must expose an internal contour
finding operator to queries. In [220], Abstract Regions ars
proposed, providing a set of communication abstractions
that can be used to implement higher-level services, such
as queries. Their ultimate aim is creating a framework for
programming sensor networks, and using abstract regions
as a building block for a high-level programming language
for sensor networks. They define Region as a group of
geographically or topological related nodes. The essen-
tial idea is to capture communication patterns, locality,
and resource tradeoff in a high level language that com-
piles down to the detailed behaviour of individual nodes.
Shielding programmers from the details of message rout-
ing, in-network aggregation, and achieving a given fidelity
under a fixed resource budget should greatly simplify ap-
plication development for this new domain. At the same
time, the communication abstraction should yield control
over resource usage and make it possible for applications
to balance the tradeoff between energy/bandwidth con-
sumption and the accuracy of collective operations. The
notion of communicating within, and computing across,
a neighbourhood (for a range of definitions of neighbour-
hood) is a useful concept for sensor applications. Simi-
lar concepts are evident in other communication models
for sensor networks, although often exposed at a much
higher level of abstraction. For example, directed diffu-
sion [108] and TinyDB [146] embody similar concepts but
lump them together with additional semantics. Abstract
regions are fairly low level and are intended to serve as
building blocks for these higher-level systems. Abstract
regions can be used to implement a form of directed dif-
fusion. Other communication abstractions include GHT
[176], Spatial Programming [30], DIFS [75], and SPIN [90].
These systems are generally focused on a specific commu-
nication or aggregation model rather than supporting a
wide range of applications.

5.3.8 Market Based Macroprogramming (MBM)

Market based macroprogramming (MBM) [147] is a new
paradigm for achieving globally efficient behaviour in sen-
sor networks. Rather than programming the individual,
low level behaviours of sensor nodes, MBM defines a vir-
tual market where nodes sell actions (such as taking a
sensor reading or aggregating data) in response to global
price information. Nodes take actions to maximize their
own utility, subject to energy budget constraints. The be-
haviour of the network is determined by adjusting the price

21

vectors for each action, rather than by directly specifying
local node actions, resulting in a globally efficient alloca-
tion of network resources. In this approach, individual
sensor nodes act as self interested agents that operate in
a virtual market, and receive profit for performing sim-
ple, local actions in response to globally-advertised price
information. Sensor nodes run a very simple cost evalua-
tion function, and global behaviour is induced throughout
the network by advertising price information that drives
nodes to react. The prices can be dynamically tuned by
the centralized market maker to meet systemwide goals of
lifetime, accuracy, or latency based on the needs of the
sensor network programmer.

5.3.9 Generic Role Assignment

Romer et al. have examined Generic Role Assignment
[183], where sensor nodes are assigned user defined roles
based on their capabilities. Almost any sensor network
application requires some form of self configuration, where
sensor nodes take on specific functions or roles in the net-
work without manual intervention. These roles may be
based on varying sensor node properties (e.g. available
sensors, location, network neighbours) and may be used to
support applications requiring heterogeneous node func-
tionality (e.g., clustering, data aggregation). Their ap-
proach of role assignment is similar to cellular automata,
where the state of a particle in a regular arrangement
is completely defined by the previous values of a neigh-
bourhood of particles around it. They argue that the
assignment of user defined roles is a fundamental part
of a wide range of sensor network applications. Conse-
quently, a framework for assigning roles to sensor nodes in
an application-specific manner could significantly ease sen-
sor network programming, and outline the general struc-
ture of such a framework with a first approach to its re-
alization. One possible way to implement Rémer et al.’s
approach could be on top of neighbourhood programming
abstractions such as Abstract Region [220] or Hood [222].
Fig.12 shows an overview of Generic Role Assignment ar-
chitecture.

Gateway

o e

Role f
Specifications |
Sensor Node

|:| Role Assignment Algorithm

{>€/] 7 Property Directory battery = 50%
T Applications

pos_x = 12.3
Network

pos_y = 3.4
role = ON

Figure 12: Generic Role Assignment Architecture
(from [183])

5.3.10 Declarative Resource Naming (DRN)

Declarative Resource Naming (DRN) [109] is influenced
by Spatial Programming (SP) [30, 88]. SP shares a vi-
sion of programming for wireless networks of embedded
systems as a unit, simplifying resource accesses as vari-
able accesses, exposing the space property to the pro-
grammers, hiding network details, and supporting impera-
tive programming. Spatial Programming uses Smart Mes-
sages to provide content-based spatial references to em-
bedded resources. To simplify the programming of Wire-
less Networks of Embedded Systems (WNES) [109] propose

Declarative Resource Naming (DRN) to program WNES
as a whole (i.e., macroprogramming) instead of several
network-ed entities. DRN allows programmers to describe
declaratively a set of desired resources by their runtime
properties and to map this set to a variable. Using DRN,
resource accesses are simplified to completely network-
transparent accesses of variables. DRN provides both in-
dividual and group accesses to the desired set. Group ac-
cesses (i.e., parallel accesses) reduce total access time and
energy consumption because of possible in-network pro-
cessing. Additionally, we can associate each set with tun-
ing parameters (e.g., timeout, energy budget) to bound
access time or to tune resource consumption. However, SP
supports only sequential resource accesses whereas DRN
supports both sequential and parallel accesses. Accessing
resources in parallel can significantly reduce the total ac-
cess time and the overall energy consumption (by enabling
in-network processing). Additionally, SP is purely imper-
ative programming but DRN is a hybrid between declar-
ative programming and imperative programming. Unlike
the DRN binding, the SP binding is, by default, static,
even though dynamic binding in SP is provided as an op-
tion. This problem is similar to that of TCP. Packet loss
and unbound acknowledgement delay are handled using
timeout.

5.3.11 Maté

Maté [132] is a byte code interpreter (VM) running on
TinyOS, that provides safe program execution environ-
ments, runtime re-programming, and an event-driven
stack-based architecture. The interpreter provides high-
level instructions (such as an atomic message send) which
the machine can interpret and execute. Each virtual ma-
chine instruction executes in its own TinyOS task. Code is
broken into capsules and it operates self distribution (dif-
fusion) controlling identification and versions. However it
maintains a static set of execution events, limited assembly
level programming and single, centralized shared variables.
It also provides reliability. The process of re-programming
a sensor network is simple using Maté. When a new pro-
gram is created and is to be deployed, it is given a newer
version number and broadcast to the network. Once a cap-
sule with a newer version is received, the mote will install
it and forward it on to its neighbours. Over time the new
program will disseminate through the network via broad-
cast.

6. MIDDLEWARE TECHNOLOGY

Middleware usually lies between the operating system and
the application in traditional environments, where func-
tionality of the operating system is well established. For
WSNs, however, the interfaces of operating systems are
still a research issue, and many applications execute hard-
ware operations directly without operating system compo-
nents. Thus, middleware for WSNs needs to have a clear
future vision so that all technologies supporting WSNs fit
properly with future middleware. In general, middleware
for sensor networks can be defined as software that pro-
vides data aggregation, control and management mecha-
nism adapting to the target application’s need, where data
are collected from sensor networks. Existing research on
sensor networks has focused on the hardware technology,
thus a bottom-up approach has been pursued. However,
recent progress in sensor network technology, and an ex-

22

pansion of the associated research community, has brought
a consensus that a general technique is required for access-
ing sensor data from external applications. But a mid-
dleware as a service-oriented, top-down, standard frame-
work, linked with external applications, has not yet been
advocated. Recent evolution of sensor network technology
highlights the importance of data aggregation and man-
agement. This section describes the current state of mid-
dleware research on sensor networks.

Blumenthal [29] describes the task of middleware for
WSN is providing easy access from the complex sensor net-
works, and followings are four key requirements:

Scalable for resource constraints.

e Generic for different applications with common inter-
face.

e Adaptive to reconfigure its structure.

Reflective to change the behaviour depending on the
environments and circumstances.

Romer [181] emphasises:

e Event-based and data centric communication: Event
based reactive communication protocols and content-
based communication are necessary, as for the
WWW.

e A holistic view of the Internet and sensor networks:
The scope of middleware is not only to aggregate in-
formation from sensor nodes but also to cover devices
and networks connected to the WSN.

e Application knowledge in nodes: A mechanism to
embed the application knowledge into the infrastruc-
ture and the WSN should be provided.

e An adaptive fidelity algorithm: This requires infras-
tructure to provide appropriate mechanisms for se-
lecting parameters, or whole algorithms, which solve
a certain problem with the best quality under given
resource constraints.

e Automatic configuration: WSN nodes must operate
unattended, which means that middleware for WSNs
has to provide new levels of support for automatic
configuration and error handling.

Yu [234] describes design principles as follows:

e Data centric: Data centric mechanisms for data pro-
cessing and querying within the network should be
provided. Due to its simplicity, flexibility, and ro-
bustness, cluster based network architecture has been
widely used in the design and implementation of net-
work protocols and collaborative signal processing
applications for WSNs. A cluster based architec-
ture is suitable for hosting the data centric processing
paradigm from both geographical and system design
perspectives.

e Application knowledge: Integrating knowledge of ap-
plications into the services provided by the middle-
ware is important. A tradeoff needs to be explored
between application specificity and generality of the
middleware.

e Localized algorithms: Localized algorithms should be
used collectively to achieve a desired global objec-
tive while providing system scalability and robust-
ness. Since the cluster based architecture localizes

the interaction of sensor nodes, and hence the co-
ordination and control overhead within a restricted
vicinity, it is reasonable to regard each cluster as a
basic function unit of the middleware. Consequently,
the middleware performs as a distributed software
composed of multiple clusters.

e Lightweight: Middleware should be lightweight in
terms of the computation and communication re-
quirements.

e Trading QoS of application: Resource sharing when
resources are limited means that it is very likely that
the performance requirements of all the running ap-
plications cannot be satisfied simultaneously. There-
fore, it is necessary for the middleware to trade the
QoS of various applications against each other.

The main functionality of middleware for sensor networks
is to support the development, maintenance, deployment,
and execution of sensing based applications. This includes
mechanisms for formulating complex high-level sensing
tasks, communicating these tasks to the WSN, coordina-
tion of sensor nodes to split a task and distribute it to
the individual sensor nodes, data fusion for merging the
sensor readings of the individual sensor nodes into a high-
level result, and reporting the result back to the task is-
suer. Moreover, appropriate abstractions and mechanisms
for dealing with the heterogeneity of sensor nodes should
be provided.

In this section, we introduce existing middlewares for
sensor networks based on the design principles described
above. We classify middleware into several categories:
First, with the distributed database approach, a data
driven approach is described. Secondly, an event-based
approach, to deal with real-time data in the sensor net-
works, and thirdly QoS oriented middleware is described.
Fourthly, Internet oriented middleware aims at construct-
ing the infrastructure of information processing and fifthly,
an agent based approach is described Finally, we include
traditional centralized sensor systems for contrast. All the
approaches attempt to address the resource constrained
nature of sensor network environments. The classification
in this section is based on the the design principles dis-
cussed in previous sections. We focus on the application
interface and the required resources, see also the program-
ming model in section 5.

6.1 DataDriven Approach

This section introduces the research on a middleware
framework based on the data driven approach. In future,
a large number of sensor devices will be deployed, and
the management of their data will become complex. The
user should be able to access the necessary data without
knowledge of the sensor network. Recently, the data driven
approach to manage sensor data is increasing in popular-
ity, where each node keeps the data, and those nodes ex-
ecute retrieval and aggregation (in-network aggregation)
with on-demand based operation to deliver the data to the
external applications. This approach supports no asyn-
chronous state formations. The data driven approach de-
rives from a database abstraction, where applications de-
fine collective node states to represent portions of their
world model. An important issue here is expressiveness
to define certain collective node states based on the inter-
face language, such as SQL queries. When queries become

23

complex and dynamic, it will be too complex to bridge to
atomic functions in WSN.

6.1.1 Cougar

In many existing sensor network frameworks, the sensor
data has been assumed to be transmitted and stored in
the gateway server according to a preprogrammed pro-
cedure. In such an approach, a different data collection
scheme requires a change in the program. Moreover, the
overhead due to load on the gateway server, and redun-
dant data transmission, cannot be neglected. Cougar [61,
229, 32] is an architecture that treats a sensor network as
a distributed database, where a large number of sensor
nodes are connected through a multi-hop wireless network
and each node keeps sensor data. A query optimiser is lo-
cated on the gateway node to generate distributed query
processing plans after receiving queries from outside. The
query plan is created according to catalog information and
the query specification. Such a query plan specifies both
the data flow (between sensors) and an exact computation
plan (for each sensor). The plan is then disseminated to
all relevant sensor nodes. Control structures are created
to synchronize sensor behaviour, and the query is started.
At run time, data records flow back to the gateway node
as in-network computation happens on-the-fly. Bonnet [32]
characterises, and emphasizes spatial and temporal conti-
nuity about query processing in sensor networks for Cougar
development.

e Monitoring queries are long running contnously.

e The desired result of a query is typically a series of
notifications of system activity (periodic or triggered
by special situations).

e Queries need to correlate data produced simultane-
ously by different sensors.

e Queries need to aggregate sensor data over time win-
dows.

e Most queries contain some condition restricting the
set of sensors that are involved (usually geographical
conditions).

The usual relational database approach on query operation
is not sufficient for real-time query processing, which the
sensor network requires. Thus, in Cougar, it is proposed
to divide the model of the sensor data into a user expres-
sion and an internal expression. First, the user expression
is a query, and an Abstract Data Type (ADT) is defined
for the sensor, and it proposes the query language of the
syntax similar to SQL. For instance, query processing for
a monitor can be described as follows.

SELECT R.s.getTemp() FROM R
WHERE R.floor = 3 AND S$every(60);

R means the ADT of the sensor, and temperature is de-
scribed as (R.s.getTemp()) that is notified from the sensor,
which exists on the third floor (R.floor=38) (every(60)) ev-
ery 60 seconds. Cougar interprets such an enquiry expres-
sion, and the mapping is done to an internal expression of
the enquiry execution plan (Query Execution Plan). The
query processing that continues timewise by executing this
enquiry execution plan can be achieved.

6.1.2 SINA

SINA (Sensor Information Networking Architecture) [194,
209] is a middleware architecture that abstracts the net-
work of a sensor node as a distributed object for query

(1 —pkA

o
1—-p

P

(a)

b)

7

(:1--* P)

STy

O
(c)

P

M Frontendora designated sensor node

O Responding sensor node

.1 Non-responding sensor node

Figure 13: Response Implosion in SINA
(from [209])

operation, and task allocation. An overview of the mid-
dleware architecture is shown in Fig. 14. SINA aims to
achieve scalability and low power consumption in sensor
networks. SINA consists of the following function compo-
nents.

e Hierarchical clustering: The sensor nodes contain the
function to build the hierarchical cluster structure
dynamically.
Attribute based Name management: The sensor
node is managed by the name based on the attribute
but note ID. For instance,
[type = temperature,location = NE,

temperature = 103|
means all the sensors indicating 103 degrees in the
northeast division.
Position management: The position of the sensor
node is measured, and managed by GPS etc.

——————————————— Sensor
SINA Mlddlewztre Applicatighs
answers events b == J==
— — 7'
|- t-‘k //1 O\'""/ - |
/ asking i e e
Juerying /momtormg | I @ 7
,\ ‘h,/ @— @ Sensor
(A) ®) Nodes

Figure 14: SINA Middleware Model
(from [194])

Using the above functions, the execution environments of
SINA cooperate with each other among sensor nodes. This
operation mechanism can be programmed by using SQTL
(Sensor Query and Tasking Language). Internal processing
of SQTL is converted into a script similar to the Query
Execution Plan of Cougar, and executed in an execution
engine: Sensor Execution Environment(SEE). SQTL is a
query language that looks like SQL for the user application,
and it can access sensor information by using SQTL.

The following three primitive operations aim to achieve
effective information aggregation:

e Sampling Operation: When all the sensors respond
simultaneously, there will be an explosion (response
implosion) (Fig. 13 (a)), thus when the adjoining
node responds, a probabilistic operation (Fig. 13 (b))
either to respond or not is done.

Self orchestrated operation: An intentional operation
delay for the response implosion.

Diffused computation operation: An operation that
gives restricted communication only with a node that
is adjacent (Fig. 13 (c)).

24

6.1.3 TinyDB

TinyDB [145, 94, 223, 73, 146] is an enquiry processing
system for sensor networks that operates on TinyOS. In
TinyDB, the concept of query processing (acquisitional
query processing(ACQP)) is introduced. When query pro-
cessing occurs the sensor node performs sensing in order to
respond to the query. High level queries are decomposed
and distributed to the networks. It is necessary to write a
program in the C language, corresponding to the content
of the query on TinyOS and its processing. In ACQP of
TinyDB, the SQL is enhanced for query processing and
this query is converted to internal code, and executed for
data retrieval and aggregation. For instance, the descrip-
tion that looks like the following SQL is used. Consider
the following query:

SELECTnodeid, light, temp
FROM sensors
SAMPLE PERIOD 1s FOR 10s

This query specifies that each device should report its own
id, light, and temperature readings (contained in the vir-
tual table sensors) once per second for 10 seconds. Re-
sults of this query stream to the root of the network in
an online fashion, via the multi-hop topology, where they
may be logged or output to the user. The output con-
sists of a stream of tuples, clustered into 1s time intervals.
Each tuple includes a timestamp corresponding to the time
it was produced. When a query is converted to internal
codes, it optimises power consumption and communication
in TinyDB. Fig. 15 lists the key new techniques introduced
in TinyDB, summarizing what queries they apply to and
when they are most useful.

TinyDB approach is similar to Cougar, but it considers
more optimisations in resource-constrained sensor network
environments.

6.1.4 DFuse: A Framework for Distributed Data
Fusion

DFuse [126] focuses on the following key problems:
e What are basic processing elements that compose the
data fusion?
e How to assign the data aggregation tasks to specific
sensor nodes dynamically?
DFuse is a framework for data fusion application develop-
ment on decentralized distributed sensor networks. The
architecture of DFuse emphasizes the following two char-
acteristics:

Technique (Section)

Summary

Event-based Queries

Lifetime Queries

Interleaving Acquisition/Predicates
Exemplary Aggregate Pushdown
Event Batching

SRT

Communication Scheduling
Data Prioritization

Snooping
Rate Adaptation

Avoid polling overhead

Satisfy user-specified longevity constraints

Avoid unnecessary sampling costs in selection queries

Avoid unnecessary sampling costs in aggregate queries

Avoid execution costs when a number of event queries fire
Avoid query dissemination costs or the inclusion of unneeded
nodes in queries with predicates over constant attributes

Disable node’s processors and radios during times of inactivity
Choose most important samples to deliver according to a user-
specified prioritization function

Avoid unnecessary transmissions during aggregate queries
Intentionally drop tuples to avoid saturating the radio chanmnel,
allowing most mmportant tuples to be delivered

Figure 15: Summary of acquisitional query processing techniques in TinyDB
(from [145])

Fusion API: The fusion API offers programming ease for
a complex sensor fusion application. The API allows any
synthesis operation on stream data to be specified as a
fusion function, ranging from simple aggregation (such as
min, max, sum, or concatenation) to more complex per-
ception tasks (such as analyzing a sequence of video im-
ages). The API consists of structure management, correla-
tion control, computation management, memory manage-
ment, status and feedback handling, and failure/latency
handling. Integrated operations on a variety of stream data
over a complex aggregation process such as the analysis of
the video images are enabled. In DFuse, the application
is described as a brief data flow graph, called Task Graph
where the Fusion API is used. The network is dynamically
formed dynamically based on Task Graph, and optimisa-
tion is done afterwards by dynamic relocation described as
follows.

A distributed algorithm for fusion function place-
ment and dynamic relocation: There is a combinatori-
ally large number of options for placing the fusion functions
in the network. Hence, finding an optimal placement that
minimizes communication is difficult. Also, the placement
needs to be reevaluated quite frequently considering the
dynamic nature of WSNs. Their approach is a heuristic
based algorithm to find a good (according to some pre-
defined cost function) mapping of fusion functions to the
network nodes. The mapping is reevaluated periodically
to address dynamic changes in nodes power levels and net-
work behaviour.

DFuse uses a distributed role assignment algorithm for
placing fusion points in the network. Role assignment is a
mapping from a fusion point in an application task graph
to a network node. The distributed role assignment algo-
rithm is triggered at the root node. The inputs to the algo-
rithm are an application task graph (assuming the source
nodes are known), a cost function, and attributes specific
to the cost function. The output is an overlay network
that optimises the role to be performed by each node of
the network. A network node can play one of three roles:
end point (source or sink), relay, or fusion point. An end
point corresponds to a data source or a sink. The network
nodes that correspond to end points and fusion points may
not always be directly reachable from one another. In this
case, data forwarding relay nodes may be used to route
messages among them. The routing layer is responsible for
assigning a relay role to any network node. The role assign-
ment algorithm assigns only the fusion point roles. The

25

cost function includes Minimize transmission cost (MT),
Minimize power variance (MPV), and Minimize ratio of
transmission cost to power (MTP). For example, a fusion
function f with m input data sources (fan-in) and n output
data consumers (fan-out), the transmission cost for placing
f on node k is formulated as:

Cur(k, f) = > 1%, t(source;) x hopCount(input;, k)
+ 225, t(f) * hopCpount(k, output;)

Here, t(z) represents the transmission rate of the data
source x, and hopCount(i, k) is the distance (in number
of hops) between node ¢ and k. The cost is optimised by
moving the position at which a Fusion Point is allocated
to minimize this cost function to the adjacent node. The
example that the position of the node, where the Fusion
Point is allocated, moves is shown in Fig. 16 Linear opti-
misation is performed in this example. If all the inputs to
a fusion node are coming via a relay node (Figure 16(A)),
and there is data contraction at the fusion point, then the
relay node will become the new fusion node, and the old
fusion node will transfer its responsibility to the new one
(Figure 16(B)). In this case, the fusion point is moving
away from the sink, and coming closer to the data source
points. Similarly, if the output of the fusion node is going
to a relay node, and there is data expansion, then again
the relay node will act as the new fusion node. In this case,
the fusion point is coming closer to the sink and moving
away from the data source points.

Fusion
Paint

Fusion
Point
il ®)

Source Relay Sink Source Relay Sink

Figure 16: Linear Optimisation Example
(from [126])

DFuse shows that the operation time of the network is
extended by power saving and stabilization effects by in-
troducing dynamic role allocation with an evaluation ex-
periment with iPAQ.

6.1.5 TinyLIME

TinyLIME [57] is extended from the decentralized data
sharing middleware LIME. LIME is an extension of Linda,
providing memory sharing. TinyLIME is enhanced for a
mobile environment for a sensor network platform.

Baeze Station Hoat

i

'

i

: i palititabiiei
i ' MoteAgent
! i mote

! i - requesat and LEmE < mote
i i “config” e w requsstiresponss
: : >
: i o
H i

1 1

i i Limified guarantess
H H LimsTuplsSpacs| mots data huple

! 1 “motes” amg . Treshness
|| e [.

]] aws e remowe

t H emde oid upies

i ! nistoricsl data - —
] i P

1 L - - -

P SEens

i

i

1

1

i

i

i

'

1

Figure 17: Architecture Overview of TinyLIME
(from [57])

Linda: Linda enables two or more systems to share a tuple
space using reading (rd), writing (out) and deleting (in).
For instance, < “foo”,9,27.5 > can be written by the op-
eration out(< “fo00”,9,27.5 >) and and it can be read by
the operation rd(< “foo”, ?integer, ? float >).

LIME: A coordinated tuple space is formed from the par-
titioned tuple spaces that each distributed system main-
tains. This occurs only when the maintaining nodes con-
nect to the LIME system.

That is, communication via the shared memory space is
possible only while the system maintains the mutual con-
nections. For instance, the common tuple space that op-
erates by building LIME into PDAs can be achieved only
while the PDAs comprise an ad hoc network, and data ex-
change operations similar to Linda are possible.

Abstraction of sensor network: The TinyLIME model
has been designed and implemented for the Crossbow
Mote platform, exploiting the functionalities of TinyOS.
On standard hosts, TinyLIME is implemented as a layer
on top of LIME without requiring any modification, there-
fore reasserting the versatility of the LIME model and mid-
dleware. In TinyLIME, a tuple space partition resides on
each sensor node, and a coordinated tuple space is formed
when connecting it with the host with one hop or multi
hop (see Fig.17). The sensor data can be read by exe-
cuting the read operation of Linda such as rd(p) for this
coordinated tuple space. Thus, TinyLIME can abstract
the collection of data from the sensor network as an op-
eration on the shared memory space (tuple space). This
works as middleware by offering an abstracted interface to
the application programmer in the sensor network.

In TinyLIME, the client host accesses the sensor node
through the class named MoteLimeTupleSpace. One tuple
is usually shown by <sensor type, sensor value, number of
the epoch of the sensor node, timestamp>. The sensor data
is read by executing the rd operation with template Mote-
LimeTemplate along with this sensor type. The retrieval is

26

demanded from the tuple space of the Base Station Host
when there is no data appropriate to the tuple space. The
Base Station is regularly updated with sensor data and
exports it to the tuple space.

6.2 Event Based Approach

A main purpose of sensor use in applications is preventing
disasters and crimes by observing abnormalities. When
an abnormality is observed, an alert should be raised in
real-time to the user, and it requires event driven data
processing mechanism. In another scenario, applications
need to continuously collect and integrate data generated
from a large and physically dispersed contingent of sensor
nodes. There are many devices exchanging data, whilst
some information sources and sinks may not be present in
the network at that moment. Therefore, request/response
communication is not adequate. For example, a client that
requests instantaneous updates of information would need
to continuously poll the information providers leading to
network overload and congestion. Moreover, as energy is
a scarce resource, unnecessary information requests should
be avoided.

When designing real-time systems, the time triggered
approach is expensive in the case where the expected
rate of primitive event occurrence is low. An alterna-
tive is to use an event triggered approach where the
execution is driven by the events. Event-driven com-
munication is an asynchronous paradigm that decouples
senders and receivers. Its clients are event publishers and
event subscribers among which one-to-many and many-
to-many communication is supported by a message trans-
mission and notification service. An extension to this ba-
sic model allows messages to be associated with topics.
In this case, subscribers only receive messages associated
with the topic(s) to which they have subscribed. The
publish/subscribe paradigm has become popular, because
asynchronous and multipoint communication is well suited
for constructing reactive distributed computing applica-
tions.

This section describes middleware that aims at event
processing for sensor networks and some middleware that
uses a publish/subscribe paradigm.

6.2.1 DSWare

Data Service Middleware (DSWare) [136] is middleware
which takes a data-centric approach by defining the com-
mon data service and group based service parts of various
applications. DSWare lies between the application layer
and the network layer providing a data service abstraction
to applications.

The real-time event service handles unreliability of in-
dividual sensor reports, correlation among different sen-
sor observations, and inherent real-time characteristics of
events. The event service supports confidence functions,
which are based on data semantics, including the relative
importance of sub events and historical patterns. When
the failure rate is high, the event service enables partial
detection of critical events to be reported in a timely man-
ner. DSWare performs routing in real-time taking power
consumption into account. DSWare consists of six function
components as shown in Fig.18.

1¥aia
Subscriplion

TFvent Detection

| -

Data Storage

Ciroup
Management

| Scheduling | I

Figure 18: DSWare Framework
(from [136])

L

Daa Caching

1) DataStorage: DSWare aims to distribute the data
on specific sensor nodes or aggregated the data in groups
for load balancing and to improve reliability.

Data that describes different occurrences of some type
of activity can be mapped to certain locations so that fu-
ture queries for this type of data do not require flooding
to the whole network. The Data Storage Component in
DSWare provides similar mechanisms to store information
according to its semantics with efficient data lookup, and
it is robust under node failure. Correlated data can be
stored in geographically adjacent regions to enable possi-
ble aggregation and in-network processing.

2) Data Caching: The Data Caching Service provides
multiple copies of the data most requested. This data is
spread out over the routing path to reduce communica-
tion, increase availability and accelerate query execution.
A simplified feedback control scheme is used to decide dy-
namically whether to place copies of the data around the
frequently queried nodes.

3) Group Management: The Group Management
component uses cooperation between group members to
achieve reliability of sensor information and detection and
exclusion of abnormal sensor nodes. Normally functioning
sensors within a geographic area provide similar sensor val-
ues. A value that most nodes in a group agree on should

27

have higher confidence than a value that is in dispute or
varies widely. Based on similar observations by nearby
sensors in a sufficiently dense area, erroneous results from
the particular sensor nodes can be recognized. The sus-
picious nodes can be discarded in later coordination and
computations in order to provide more reliable measure-
ments. Some tasks require cooperation of multiple sen-
sors. Movement and speed approximations require more
than one sensor to combine their observations to calculate
the direction and velocity. When a region has adequate
density of sensors, a portion of them can be put into sleep
mode to save energy.

4) Event Detection: An observation is the low level
output of a sensing device during a sensing interval. It is a
measurement of the environment. An event is an activity
that can be monitored or detected in the environment and
is of interest to the application. The types of event that
can be detected and are potentially of interest are pre-
registered according to the specific applications. Events
are categorized into different types and may also be atomic
events and compound events. An atomic event refers to an
event that can be determined based only on an observation
of a sensor.

Suppose we have registered the following events:

A high temperature event represents the observation that
the temperature is higher than a specified threshold. A
light event represents an occurrence of a sharp change in
the light intensity. An acoustic event represents the occur-
rence of an unusual sound matching a certain signature.
An explosion event might be defined as the three events
above being reported in the same region within a specified
time interval.

A confidence function specifies the relationships among
sub events of a compound event with other factors that
affect the decision such as relative importance, sensing re-
liability, historic data, statistical model, fitness of a known
pattern and proximity of detections. In reality, an event al-
ways has meaningful contexts, which can be modelled using
a Finite State Machine (FSM). For example, in a residen-
tial monitoring system, morning, afternoon, and evening
can be states of this system. Moreover, each sub event
has an absolute validity interval (avi) associated with it.
The avi depicts the temporal consistency between the en-
vironment and its observed measurement. Continuing the
explosion example, the temperature sub-event can have a
longer avi because high temperature usually will last for a
while, while the light sub-event may not last long because
in an explosion, a sharp increase in the intensity of light
would happen only for a short period of time. To register
an event of interest, an application submits a request in
the following SQL-like statement:

INSERT INTO EVENT_LIST
(EVENT_TD, RANGE_TYPE, DETECTING RANGE,
SUREVENT_SET, REGTSTRANT_SET, REPORT_DEADLINE,
DETECTION_DURATION [, SPATIAL_RESOLUTION]
[, ACTIONS])
VALUES 0

The RANGE_TY PE can be GROUP or AREA. The De-
tecting Range is the groups description (e.g., Group ID) or
the areas coordinates range.The Subevent Set defines a set
of sub events and their timing constraints, for instance as
follows:

‘ Application 1 | | Application 2 |

| Application 3 | ‘ Application 4 ‘

Asynchronous Network Transmission
Protected FLASH Access
Application Timer Control

GPS Data Event Handler
Application Timer Event Handler
Network Packet Event Handler
Network Send Done Event Handler

| Adapter |

| Operation Scheduler |

‘ Updater |

‘ Event Filter |

| Network Interface |

Access and Control to All Devices

GPS Data Event
Radio Packet Event
Timer Event

| [cru | [radio | [Gps | [rrasu] [rimer | [wor | |

Figure 19: Layered architecture and interfaces in Impala
(from [141])

Subevent_Set { Time_window,
Phase_set,
Confidence_function,
Min_confidence,
(sub-event_1, avil),
[(sub-event_2, aviZ),...1}

5) Data Subscription: As a type of data dissemina-
tion service, Data Subscription queries are very common
in sensor networks. These queries have their own char-
acteristics, including relatively fixed data feeding paths,
stable traffic loads for nodes on the paths, and possible
merges of multiple data feeding paths. When several base
stations subscribe for the data from the same node at dif-
ferent rates, the Data Subscription Service places copies of
the data at some intermediate nodes to minimize the total
amount of communication. In Fig.20, when there are mul-
tiple subscribers (node 1 and node 2) for the data at node
0, the Data Subscription Service detects the proximity of
the two paths and merges these two paths by placing a
copy of the data at node 5 and lets node 5 send data to
the two subscribers during each requesting interval.

‘so 2
3

Figure 20: Data Subscription in DSWare
(from [136])

6) Scheduling: The Scheduling component schedules
other components. Two most important scheduling op-
tions are energy aware and real-time scheduling.

6.2.2 Impala

Impala [141, 140] has been built as part of the ZebraNet,
in which sensing nodes are placed on free ranging wildlife
to perform long-term migration studies on a collection of
animals in an ecosystem. It is a middleware architecture
that enables application modularity, adaptivity, and re-
pairability in wireless sensor networks. Fig.19 shows the

28

system architecture of Impala. The upper layer contains
all the application protocols, while the lower layer contains
three middleware agents: the Application Adapter, the Ap-
plication Updater, and the Fvent Filter. Impala is essen-
tially a runtime system that acts as a lightweight event
and device manager for each mobile wireless sensor node
in the system. The applications, the Application Adapter,
and the Application Updater are all programmed into a
set of event handlers, which are invoked by the Event Fil-
ter when the associated events are received. The Appli-
cation Adapter changes the communication protocol ac-
cording to the executing context. Improvements in perfor-
mance, power consumption and robustness are achieved by
adapting the communication protocol according to the run-
time conditions. The Application Updater renews software
automatically. The Fvent Filter captures and dispatches
events to the above system units and initiates chains of pro-
cessing. Impala has five types of event: Timer FEvent for
the timer, Packet Event signals that a network packet has
arrived. Impala has two types of packets, application-to-
application packets and updater-to-updater packets. The
intended receiver of the packet handles these events. Send
Done Event for signalling that a network packet has been
sent or its send has failed. (Data Event for signalling that
the sensing device is ready to read, and Device Fvent for
signalling that a device failure is detected. The Applica-
tion Adapter handles these events.

Adaptation is implemented through Impala’s event-
based programming model, and occurs in response to a
range of events. Some events, like timer events, signal that
time has passed since the last status check; the adapter
may then choose to query application or system states in
order to determine if any adaptation should be performed.
Other events, like device events, have sources external to
Impala and signal an external event for Impala to respond
to, such as the failure of a particular radio transceiver; the
adapter should then examine the impact of the failure and
determine whether to dispatch another application to work
around it.

6.2.3 EnviroTrack

EnviroTrack [1] is the first programming support for sensor
networks that explicitly supports tracking mobile objects.
Its abstractions and underlying mechanisms are well-suited
to monitoring targets that move in the physical world. Dy-

namic group administration is performed, and a leader
is maintained by periodic message exchanges among the
group. EnviroTrack is a middleware layer that exports
a new address space in the sensor network (see Fig.21).
In this space, physical events in the external environment
are the addressable entities. This type of addressing is
convenient for applications that need to monitor environ-
mental events. For example, a surveillance application that
monitors vehicle movement behind enemy lines may assign
unique labels to individual vehicles. Their state can then
be addressed by reference to these labels. Moreover, com-
puting or actuation objects can be attached to individual
addresses.

eriodic

B T A <
nvoca g‘ Application

References to state
N T eader Member
Timer
Aggregation [Periodic
Famietion: = Sensor Reportin
Send/Receirle| State, = - L34 &
Start/Stop
Message Trigeger Trigger
Transport Function: Function:
Protocols Sense, Sense,
Leader
Enable/Disable | Join/Leave Join/Leave

Lightweight Group Management and Leader Election

Figure 21: Middleware Architecture in Enviro-
Track

(from [1])

The attached computation or actuation is then per-
formed in the physical neighbourhood of the named entity.
Hence, for example, a microphone could be turned on at
some network address (e.g., one that names a vehicle in
the external environment) to listen in on the correspond-
ing environmental object. As the named vehicle moves,
the middleware will turn on the appropriate nearby node
microphones so that a non-interrupted audio stream is de-
livered to the receiver, despite the mobile nature of the
source. Communication can also occur between two mo-
bile endpoints. For example, a walking soldier with a PDA
may track the position of a suspect vehicle detected else-
where in the network. In essence, EnviroTrack supports:

e Exporting a novel logical address space in which ex-
ternal environmental objects are the labelled entities.

e Allowing arbitrary data, computation, or actuation
to be attached to such logical network addresses.
These data, computation, and actuation are encap-
sulated in an abstraction as tracking objects.

The EnviroTrack middleware library implements a set of
protocols that offload from an application developer the
details of inter object communication and object mobility,
as well as the maintenance of tracking objects and their
state. It abstracts away the fact that computation asso-
ciated with the object may be distributed and performed
by all sensor nodes in the vicinity of the tracked physical
entity. As the tracked entity moves, the identity and loca-
tion of the sensor nodes in its neighbourhood change, but
the tracking object representing it remains the same. The
programmer thus interacts with a changing group of sen-
sor nodes through a simple, uniquely addressable, object
interface. Fig.22 shows the programming model.

29

Context type: CAR
Context Label: Car02

Context type: FIRE
Context Label: FireO1

Fire
Tracking
jects|

[Vehicle
[Tracking

Agoreg.
Objects|

State

Agoreg.
State

Sensor Network Abstraction Laver

~

gy O
SIS

Ay

o S Group & Y

. Sensing FIRE ;

~ -

w2 9 o
- ToREE o
O oL O
\ Group O s
‘. Sensing CAR

o 1/5

\
~

Figure 22: EnviroTrack Programming Model
(from [1])

Group management services, shown at the bottom of
Fig.21 maintain coherence of context labels, where a group
of sensors identifying the same entity in the environment
produce a single context label. Fig.23 shows the outline of
an object tracking.

e ——
Context: Pupp

Follower
Node

Figure 23: Tracking Objects in EnviroTrack

Contexts are created when a node first senses a condi-
tion. The node immediately starts a leader election pro-
cess in which it randomly chooses a small timeout value.
A node which times out first sends a message informing its
neighbours that it is leader. Upon receipt of this message,
other nodes sensing the same condition become members.
A nodes communication radius has to be larger than twice
its sensing radius such that all nodes sensing the same
target are within each others communication range. An
elected group leader sends periodic heartbeats, which are
received by all group members. Leader heartbeats have
three purposes. First, they inform current members that
the leader is alive. Should the leader die, a new leader elec-
tion is started after a timeout. Second, they carry appli-
cation state that must persist across leader handoffs. This
state is recorded by all member nodes. This mechanism al-
lows new leaders to continue computations of failed leaders
from the last state received. An application can explicitly
create a persistent state primitive and read it. Finally,
heartbeats are overheard past the groups perimeter thus
informing neighbouring nodes of the existence of a con-
text label. Nodes that cannot sense the target themselves
but know of its existence from nearby leader heartbeats
are called group followers. If these nodes subsequently
sense the condition, they join the present group instead of
forming a new context label. The mechanism ensures that
multiple spurious context labels do not emerge around the
same target. When the leader gets out of sensory range
from the target, it sends a leader handoff message which
initiates a new leader election. The resulting behaviour is
that a group with a unique leader is created around each
target. Membership changes and leader (and state) hand-

offs occur automatically as the target moves.

6.2.4 CORTEX

CORTEX [27] provides a programming model that sup-
ports the development of applications constructed from
mobile sentient objects taking into account the provision of
incremental real-time and reliability guarantees as well as
the design of an open, scalable system architecture that re-
flects the heterogeneous structure and performance of the
networks. Publish/Subscribe based middleware for ad hoc
networks is used by the sentient object model to dissemi-
nate context and other data.

A sentient object is an encapsulated entity, with its in-
terfaces being sensors and actuators. Sensors are defined
as entities that produce events in reaction to a real world
stimulus, whilst actuators are defined as entities which con-
sume events and react by attempting to change the state
of the real world. The sentient object contains a sensory
capture component, which performs sensor fusion based on
Bayesian networks. It provides an efficient approach to in-
telligent reasoning based on a hierarchy of contexts. Fig.24
shows a sentient object and its internals.

Stigmergic Coordination
/ External Environment \

Produce| @

Context |Inference
Represen |[Engine
tation

Sensory
Capture

@ Sentient Object

— Event

Figure 24: Sentient Object Model
(from [27])

Internally, a sentient object consists of three major func-
tional components:

e The sensory capture component is responsible fusing
the outputs of multiple sensors, and uses probabilistic
models, including Bayesian networks, to deal with
inherent sensor uncertainties.

e The context representation component maintains a
hierarchy of potential contexts in which an object
can exist, and the current active context.

e The inference engine component is a production rule
based inference engine and supporting knowledge
base, giving objects the ability to intelligently con-
trol actuation based on their context.

The CORTEX middleware supports diverse application
domains such as cooperating sentient vehicles [200] and
smart living environments. A particular configuration of
the middleware for the mobile ad-hoc networks (MANETS)
is shown in Fig.25. This configuration was targeted to-
wards the cooperating sentient vehicles application, where
context-aware, autonomous vehicles travel from a given
source to destinations and cooperate with other vehicles
to avoid collisions, obey road side traffic lights and give
way to pedestrians.

In more detail, sentient objects consume events from
a variety of different sources including sensors and event
channels, fuse them to derive higher-level contexts, reason

30

about them using expert system logic (based on a CLIPS
inference engine), and produce output events whereby they
actuate the environment or interact with other objects.
This example is exploring the area of autonomous vehicle
navigation in which vehicles, represented as mobile sentient
objects, have the objective of travelling along a given path,
defined by a set of GPS way points. Every vehicle acts as
a sentient object that cooperates with other vehicles (sen-
tient objects) by inter vehicle communication mechanisms
and with other infrastructure objects (e.g. traffic lights or
speed signals).

>

_ -
E 3

J | Sensor 'usion.

o Tnlerence Fngine |
D Publish-Subscribe service
2 for MANET QoS Mam |
=7
i | Ad-hoce Multicast | | Task & Resource |
A
R E 3
= Payload 1CB control Timely Computing

chanmnel chanmel Basc (TCR)

E 3 +*

TWLAN 802.11b (ad hoc) . Windows CE OS |

Figure 25: CORTEX Middleware Architecture
(from [27])

6.2.5 Mires

Mires [208] is middleware based on the publish/subscribe
paradigm for messaging in WSN. The operation assumes
a WSN, of hierarchical structure, communicating with the
nodes of a wired network on which applications reside via
a single sink node that is a gateway between the WSN and
the applications. Initially, the nodes in the sensor network
create advertisements for their available topics (e.g. tem-
perature and humidity) collected from local sensors. Next,
the advertisement messages are routed to the sink node us-
ing a multi-hop routing algorithm. A user application (e.g.
via a graphical user interface) connected to the sink node
is able to select (i.e. subscribe to) the advertised topics of
interest that are to be monitored. Messages correspond-
ing to these subscriptions are then broadcast down to the
sensor network nodes. After receiving the subscriptions,
sensor nodes publish their collected data via the sink node
to the network-based applications.

| Routing Il Service, I ecoce | Servicey I

Publish/subscribe service

<. =

| Operating System |
[Sensors CPU Radio]

Figure 26: Mires Overview
(from [208])

Additional services (e.g. a data aggregation service) may
easily be integrated with the publish/subscribe service if
they implement the appropriate interfaces. Fig.26 shows
an overview of the Mires architecture. From the bottom
to the top, the first block corresponds to the sensor nodes
hardware components. It generally includes a micro con-
troller unit, one or more sensors and a radio transceiver.
These components are directly interfaced and controlled

by the operating system (OS). The low level services pro-
vided by the OS can be accessed through standard inter-
faces. Mires has a simple architecture, however it imple-
ments high-level publish/subscribe by providing services
and routing while hiding the low level complexity of the
sensor network.

6.2.6 Scope

Scope [210] is a generic abstraction for the definition of
groups of nodes. Multi purpose WSNs will be heteroge-
neous in most cases: for each application only a specific
type of sensor node or some parts of the monitored envi-
ronment may be relevant. Scope proposes a middleware
framework based on publish/subscribe messaging within
the group of nodes, which can be in geographically close
proximity, sensor type, and so forth. The multi purpose
networks can be tackled from two directions. On the one
hand, there are low level implementations that focus on
programming individual sensors and their sensing/acting
and communication facilities directly such as TinyOS. On
the other hand, there is work on declarative query proces-
sors offering high-level interfaces [146], which do not allow
explicit control on the level of individual nodes. The dif-
ficulty lies in finding a good tradeoff between the univer-
sality of such high-level interfaces and the degree to which
application specific details can be passed and utilized for
the optimisation of routing and resource scheduling. Scope
aims to bridge the gap between high and low level in-
terfaces and enable the partitioning of WSN functional-
ity. Scope as a middleware building block facilitates the
construction of tailored services in multi purpose WSNs.
Fig.27 shows an abstract model of Scope applications in a
WSN.

Applications Application 1

T

Scope B

Application 2

Descriptive Scopes

Implemeantation

modules

Mode featurg
Geographical
Network topology
Security
Priority
Visibility

Instantiation
of scopes

Membership policies Communication policies

Low-level Servicas MNetworking, Neighbor Management. Localization, . . .

Figure 27: Abstract Model of Scope Applications
(from [210])

6.3 QoS Oriented Approach

In this section, middleware that aims to provide quality of
sensor data and reliability of the collected data, depending
on application requirements, is described.

6.3.1 MiLAN

MiILAN (Middleware Linking Applications and Networks)
[89, 150, 159] is middleware for sensor networks for applica-
tions that require QoS on the sensor information, such as
monitoring patients for medical treatment. Here, QoS of
sensor information indicates its reliability, that is, a correct
value from a sensor of reliability 1.0 without fail can be re-

31

quested by an application. MiLAN allows sensor network
applications to specify their quality needs, and adjusts
the network characteristics to increase application lifetime
while still meeting those quality needs. Fig.28 shows a
high-level diagram of a system that employs MiLAN.

App 1

U)
b
&
3
ass

.:El-—."?(NetNDrk I)

ol T R -

Figure 28: MIiLAN System Overview
(from [89])

Ela.ta

Unlike traditional middleware that sits between the ap-
plication and the operating system, MiLAN has an archi-
tecture that extends into the network protocol stack, as
shown in Fig.29

Application/Sensors MliLard AR
MiLAN
Plug-in Abstraction
T T
o Natwark e — 2 Pestwerk
e | ZEEE | specr Shein | Soni
LzCAP Cone TCP/UDP | =550 Transport
HCI IF/Ad Hoo Routing | Routing
Eluetooth Stack 80211 MAC MAC
Bluetooth Radio 802.11 Radio Physical

Bluetooth Netwaork IEEE 80211 Network Generic Network

MIiILAN Protocol Stack
(from [89])

Figure 29:

As MIiLAN is intended to sit on top of multiple physi-
cal networks, an abstraction layer is provided that allows
network specific plug-ins to convert MiLAN commands to
protocol-specific commands that are passed through the
usual network protocol stack. Therefore, MiLAN can con-
tinuously adapt to the specific features of whichever net-
work is being used for communication (e.g. determining
scatternet formations in Bluetooth networks etc.) in order
to best meet the applications’ needs over time.

In order to determine how to best serve the application,
MiLAN must know (1) the variables of interest to the ap-
plication, (2) the required QoS for each variable, and (3)
the level of QoS that data from each sensor or set of sensors
can provide for each variable. Note that all of these may
change based on the application’s current state. During
initialization of the application, this information is con-
veyed from the application to MiLLAN via State based Vari-
able Requirements and QoS graphs. These sets of sensors
define the application feasible set F'a, where each element
in Fa is a set of sensors that provides QoS greater than
or equal to the application-specified minimum acceptable
QoS for each specified variable. For example, in a per-
sonal health monitor, for a patient in medium stress with
a high heart rate, normal respiratory rate, and low blood
pressure, the application feasible sets in Fa that MiLAN
should choose to meet the specified application QoS are
shown in Table 1. MiLLAN must choose which element of

Client Re

uests

APPLICATION _1 i

[Dynamic Service Broker]

I
L3

Information Collection Module ‘

ste) ol statc interval
Sy stern snupsh;

reedback

{

Resource Provistoning Module

=
] hased collection

ta | = e

K-

: = dynamic range Haaregate mobil]

E = biased collection, based collection,
=]
=
- -} =
= a E
= 2 =
= g r P

= e
[Network Moniioring Module i

=
=
e
]
=
=
B
-
=
=
=

Combined path
& server sele o)
Toad-based

server selection
e
i, e

1OCAML0n aware
services

ity-bas
server selection

0

INFORMA TION

SOURCE

Figure 30: Dynamic Service Broker Framework in AutoSec
(from [80])

Fa should be provided to the application. This decision
depends on network level information.

MiILAN dynamically creates the combination of sensors
to adapt to the application’s QoS request and improve
physical resources (e.g. transmission distance and band-
width). Thus, it has the function to adjust the trade-off
between QoS and the cost of the sensor network (for in-
stance, energy consumption).

6.3.2 QUASAR

Unlike conventional distributed database systems, a sensor
data architecture must handle extremely high data gen-
eration rates from a large number of small autonomous
components. And unlike the emerging paradigm of data
streams, it is infeasible to think that all this data can be
streamed into the query processing site, due to server band-
width and energy constraints of battery-operated wire-
less sensors. Then, Quality-Aware Sensing Architecture
(QUASAR) [131, 82] proposes the sensor data architecture,
that must become quality-aware, regulating the quality of
data at all levels of the distributed system, and supporting
user applications’ quality requirements in the most efficient
manner possible. For example, QUASAR aims to process
the quality-aware queries (Qo,Qs) such as “Retrieve the
sensor IDs and temperatures (within T5° C) of all sensors
whose temperature is above 30° in a certain area R”.

6.3.3 AutoSec

Automatic Service Composition, AutoSeC [80], is a dy-
namic service broker framework for effective utilization of
resources within a distributed environment. Distributed
applications have QoS requirements that can be translated
into the underlying system level resources and, in this re-
spect, AutoSeC does resource management within a sensor
network by granting access control to applications in order
to meet QoS requirements on a per sensor basis. Crucially,
meeting these requirements entails the AutoSeC middle-
ware dynamically choosing a combination of information
collection and resource provisioning policies from a given
set based on user needs and system state. Since the choice
of policies is done by AutoSeC, the application developer
or system administrator is relieved from the tedious task
of having to make a choice from the set of policies that are

32

available.

Fig.30 presents an overview of the AutoSec framework.
AutoSeCs directory service is centralized and stores sys-
tem state information concerning three categories of pa-
rameters: (1) network parameters e.g. bandwidth, end-
to-end delay, (2) server parameters e.g. buffer capacity,
CPU utilization, disk space, and (3) client parameters e.g.
client connectivity, capacity etc. Each of these parame-
ters can be represented by either one value or a range of
values with an upper and lower value. The information
collection module determines whether to update the infor-
mation repository with the current system image. This
is influenced by the rate at which samples are collected.
The higher the sampling interval, the higher the accuracy
of the directory services information, and the higher the
overhead introduced into the system. Hence the informa-
tion collection module has to maintain a balance between
the information accuracy and the overhead introduced by
the directory service maintenance. The resource provision-
ing module uses information received from the directory
service regarding the current system state to perform re-
source allocation. It uses intelligent mechanisms to choose
appropriate resources e.g. servers, routing paths to ser-
vice QoS based requests. It takes into account the current
network and server utilization parameters provided by the
directory service to allocate resources in a way that opti-
mises overall system performance. Once new clients are
assigned a path and/or server, they set up a connection
to the assigned server on the assigned path. Routers and
servers along the assigned path check their residual capac-
ity and perform either of two actions; admit the connection
and reserve resources or reject the request. Once the con-
nection of a client to a server terminates, the client makes
a termination request and the resources along the formerly
assigned path are reclaimed by the resource provisioning
module. The network monitoring modules are distributed,
with each module monitoring parts of the entire network.
Each module probes routers and servers to collect system
state information. These probes consolidate the sample
values collected by the routers and servers before they for-
ward them to the monitor. The network monitoring mod-
ules finally transmit the information to the information
collection module which performs updates on the direc-

%t

—__ Level 3 (Areas)

"

Figure 31: 3-level hierarchical cluster-based network
(from [107])

tory service. AutoSeCs dynamic service broker performs
all the decision making functions regarding what combi-
nations of resource provisioning and information collection
policies that satisfy user requests and match current sys-
tem conditions. It also decides when to switch between
these policies at run-time.

6.4 Internet Oriented Approach

To date, work in the sensor network community has fo-
cused on collecting and aggregating data from specific net-
works with an associated base station. The problem of
delivering this data to external systems is typically left
open. Unlike the traditional closed network setting for
specific applications, middleware for multi purpose sensor
networks should offer a more open platform where vari-
ous applications can access the sensor information. Use of
the Internet is an intuitive approach to achieve open sensor
network middleware. In this section, middleware that aims
to integrate sensor networks and the Internet is described.

6.4.1 Web based query management

In [107], a web based query and management programming
model using a gateway is proposed. Basically all sensor
readings go to a gateway, a powerful node that has con-
nection to the outside world. Most of the data processing,
aggregation, as well as query transformation and the web
front end to the database module reside in the gateway.
The system can be configured using the web front end via
the gateway. A WSN is assumed with a 3-level regional
hierarchy (shown in Fig.31), and the entire network em-
ploys 3-level hierarchy: areas, clusters, and sensor nodes.
To facilitate scalable operations in sensor networks, sen-
sor nodes should be aggregated to form clusters based on
their power levels and proximity. A cluster head is elected
from the sensor nodes belonging to the same cluster, and
is responsible for acquiring data from the sensor nodes in
its cluster. An area consists of cluster heads. That is, the
entire sensor network has some areas, an area has some
clusters, and a cluster head has some sensor nodes. Such
a 3-level hierarchical structure is useful for managing the
sensor network regionally.

6.4.2 Data Collection Network (DCN)
The Hourglass project [195] proposes an Internet based

33

infrastructure that handles aspects of naming, discovery,
schema management, routing, and aggregating data from
potentially many geographically diverse sensor networks,
called Data Collection Network (DCN). DCN addresses
the following problems:

e Intermittent connectivity: How does a DCN manage
communications with mobile or poorly connected en-
tities that may exhibit intermittent connectivity with
the rest of the infrastructure? How does the DCN
ensure that the data flow is not disrupted during dis-
connection.

e Management of resource: How does a DCN infras-
tructure become aware of, and broker access to, a
wide range of sensor networks and services that may
exist in different administrative domains, each with
different interfaces and access rights?

e Service composition: How do applications tie to-
gether a suite of services for processing data flow-
ing from sensor networks? What is the model for
mapping application data requirements onto indi-
vidual services, and how are those services instan-
tiated and managed? How do applications integrate
application-specific processing into an existing DCN?

e Supporting heterogeneity: How does a DCN infras-
tructure provide services in the presence of resource-
constrained devices? What minimal functionality is
needed by all participants? How should a DCN ac-
commodate devices of varying capabilities?

An example of an Hourglass system structure with one
realized circuit is shown in Fig.32. A circuit can be de-
scribed by a set of circuit links between service providers
(SPs) and the schema of data travelling over these links.
Data flow in Hourglass is based on a circuit, which is a
data path through the system that ensures that an ap-
plication receives the data in which it is interested. A
circuit includes intermediate services that perform opera-
tions on the data. Services are organized into distinct ser-
vice providers that capture a single administrative domain.
Each service provider includes a circuit manager, which is
responsible for the set-up and management of circuits, and
a registry, which aids service discovery. Hourglass services
have well specified interfaces that are used to communicate

Service Provider 3

Data
Producer

(Registry)
= Circuit
Commmd
Manager
Cresiony D
A3

cgistry
Circuit
Manager
s
~o

AN —
Disconnected s e)
Circuit Link egistry

Service Provider 1

Service Provider 2

Service Provider 4

Data Producer =
Clircuit
(Proxy)
(Manager)

Non-Hourglass Sensor Network

Figure 32: Example of Hourglass System
(from [195])

with other services, the circuit manager, and the registry
for circuit establishment, data routing, circuit disconnec-
tion, and service discovery. An existing entity can join an
Hourglass system by implementing the core functionality
required by these interfaces.

The structure of a circuit is specified in the Hourglass
Circuit Descriptor Language (HCDL). The HCDL is an
XML defined language that applications use to define de-
sired circuits to be established by Hourglass. An HCDL
circuit description can exist in three forms: the nodes of an
unrealized circuit are not tied to actual service instances
in the system, a partially realized circuit contains some of
the bindings, whereas a fully realized circuit includes all of
the service endpoints for the services used by the circuit.
An unrealized circuit includes constraints on the services
that may be instantiated at a certain node in the circuit.
It is the task of the circuit manager to resolve an unreal-
ized circuit into a realized one, subject to the constraints
imposed by the application. Data flowing along a circuit
may be filtered, aggregated, compressed, or temporarily
buffered by a set of services that exist in the Hourglass
infrastructure. These primitives allow applications to con-
struct powerful assemblies of sensor networks and infras-
tructure services. Circuits are constructed with the aid of
a registry that maintains information on resource availabil-
ity and a circuit manager that assigns services and links
to physical nodes in the network. In addition, Hourglass
supports a set of in-network services such as filtering, ag-
gregation, compression, and buffering stream data between
source and destination.

6.4.3 WISE

WISE (Web-based Intelligent Sensor Explorer) [169, 104] is
a framework to provide the services: (1) a publishing facil-
ity to allow sharing of real-time sensor data on the Web;
(2) a search mechanism to enable unsolicited users to dis-
cover relevant sensors; and (3) an intelligent browser to
provide the user interface to view, analyze, and query the
sensor data streams in intelligible ways. The future Inter-
net, where innumerable sensing systems will be deployed
by numerous publishers, exposes different data which can
be shared freely with a wide range of unsolicited users,
much like the way web pages are publicly shared today.
The Web Services approach is taken in WISE, because this
technology has become mature, with well-defined specifi-
cations. Unlike existing work, the WISE environment is
not a sensor database management system. Rather, it is

34

an extension to the Web to enable exchange of sensor data
and sharing of sensor applications. A summary of the dif-
ferences between the current database approach and the
proposed environment is shown in Fig.33.

Existing Sensor
Database
Management
Systems

Proposed WISE
Framework

Number of
Drata
Providers

ere Moo

Data Users Tarrgered users Cinsoficired wusers

Schema
: Fomogeneons Forerogencons
Design = z

T A Frerer Bor Frasr o
clerter sovrces throtesi o

Srrenvser

Serprpresas
sprecific
caprprliceiticrrns

Data Usage

Figure 33: Sensor DB Management Systems and
WISE
(from [169])

Fig.34 shows a high level WISE environment. To publish
the data, the geographers provide relevant metadata for
their sensors; and a service description as well as a WSDL
file is automatically created on a Sensor Data Server (SDS)
to hold the metadata. The service description is then up-
loaded to a UDDI registry. Sometime later, a biologist
looking for related sensors enters search criteria into a lo-
cal Sensor Data Browser (SDB). This software connects to
the UDDI registry and looks for relevant service descrip-
tions. As the browser displays a list of relevant service
descriptions on the screen, the biologist identifies the de-
sired sensor and clicks on it. In response, the browser
interacts with the SDS using the operations defined in a
Sensor Stream Control Protocol (SSCP). As the browser
gets the real-time stream using a Sensor Stream Trans-
port Protocol (SSTP), it feeds the data to a Visualizer
for display. The various components are described in the
following subsections.

6.4.4 IrisNet

IrisNet [74, 162, 161] is middleware for globally distributed
sensing systems. Sensors themselves are resourceful and
capable of providing dense sensor data such as video
streams. The project follows a traditional two tier ar-
chitecture, where sensor nodes are the leaves and servers
are the core. IrisNet takes the design approach of build-
ing and querying wide area sensor databases. The system
behaviour is programmable in the sense that senselets are

Browser

Figure 34: High-level environment in Wise
(from [169])

placed on sensor nodes, which can filter, store, process and
analyze the collected data locally. IrisNet offers a program-
ming interface where the service provider can easily add
the new sensor service. Data are only transmitted when
queried, and both query and response data are routed in-
telligently to the requesting user. This work deals with
widely-deployed, resource-abundant, powered sensors like
webcams and organizes them into a distributed database.
The entire data-base is treated logically as a single XML
document which is partitioned among multiple sites. The
techniques proposed are effective for fragmenting and par-
titioning a database, routing and processing queries, and
caching remote data locally. This work, however, does not
consider streaming data and only works with a predefined
database, i.e. all the sensors are assumed to be owned by
the same organization.

6.5 Agent Based Approach

Frameworks for software agent development within the
agent community are well-developed and common; a rep-
resentative example is the Java Agent Framework (JAF).
The agent community has begun to consider the use of
agents for sensor network applications as well. In this
section agent based middleware is described. Gator Tech
Smart House [93] is an good example that exploits an agent
technology and service oriented architecture at lower lay-
ers. The use of service oriented programmable spaces is
broadening the traditional programmer model. They uti-
lize OSGi platform building a surrogate service bundle.
Smart house further specifies a programming model for
smart environment embodied in a middleware. In which
the implementation of a smart environment is divided into
four layers, physical (sensor), sensor platform (sensor sur-
rogate), context and knowledge (system level services) and
application layers.

6.5.1 Sensorware

SensorWare [33, 34] is a general middleware framework
based on agent technology, where the mobile agent con-
cept is exploited. Mobile control scripts in Tcl model
network participants functionalities and behaviours and
routing mechanisms to destination areas. Agents migrate
to destination areas performing data aggregation reliably.
The script can be very complex and diffusion gets slower
when it reaches destination areas. Wireless ad hoc sen-
sor networks have emerged as one of the key growth areas
for wireless networking and computing technologies. So
far these networks/systems have been designed with static
and custom architectures for specific tasks, thus providing
inflexible operation and interaction capabilities. Sensor-
ware’s vision is to create sensor networks that are open to

35

multiple transient users with dynamic needs. The replica-
tion and migration of such scripts in several sensor nodes
allows the dynamic deployment of distributed algorithms
into the network. SensorWare, defines, creates, dynami-
cally deploys, and supports such scripts. SensorWare is de-
signed for iPAQ devices with megabytes of RAM. The ver-
bose program representation and on-node Tcl interpreter
can be acceptable overheads, however they are not yet on
a mote.

6.5.2 RUNES

The project RUNES (Reconfigurable Ubiquitous Net-
worked Embedded Systems) [185] aims to enable the cre-
ation of large-scale, widely distributed, heterogeneous net-
worked embedded systems that interoperate and adapt
to their environments. A general goal is to provide an
adaptive middleware platform and application develop-
ment tools that allow programmers the flexibly to interact
with the environment where necessary, whilst affording a
level of abstraction that facilitates ease of application con-
struction and use. The RUNES approach to middleware
provision is to build the middleware in terms of a well-
defined, language-independent component model which is
supported by a minimal runtime API. The required hetero-
geneous realization of the component model Fig. 35, which
is a local model, for various types of devices is achieved by
providing different implementations of the runtime API,
and by implementing components themselves in various
ways. For example, on a PDA running a standard OS, com-
ponents might be sets of Java classes or as Linux shared
objects; whereas on a sensor motes micro controller, com-
ponents might be implemented simply as segments of ma-
chine code.

capsule
interface
ensme

AL c

component

biadiag

| receptacle

Figure 35: Elements of RUNES Component Model
(from [185])

This provides support for dynamic adaptation to chang-
ing conditions; a fundamental requirement in the context-
aware scenarios typical of networked embedded systems.
Moreover, the RUNES middleware reaches down into lay-
ers that typically belong to the network and the operating
system, therefore providing a unified approach to configu-
ration, deployment and reconfiguration at multiple levels
of abstraction. Distribution is assumed to be built on top

of this foundational layer. The component model itself is
complemented by two further architectural elements: com-
ponent frameworks and reflective meta models. A meta
model can be used to manage system reconfiguration in
a distributed environment. A high level view of the re-
configuration meta model is shown in Fig. 36. The meta
model is based on principles of code mobility and can be
used dynamically to transfer code, state and data between
RUNES nodes.

|classimer |—| Instance |_|>| 1 ogicalMobility Entity

. AN .
0. 1

DataType

Nutable/-\nrzbule |—>| Attribute |

transfers

Deployer

Figure 36: Reconfiguration Meta-Model
(from [185))

6.6 Centralized Approach

In this section, as a contrast to the recent decentralized
systems, traditional centralized sensing systems are intro-
duced. These systems aim to support specific applications
such as location systems.

6.6.1 Active BAT

Sentient computing is a type of ubiquitous computing
which uses sensors to perceive its environment and react
accordingly. A use of the sensors is to construct a world
model, which allows location-aware or context-aware ap-
plications to be constructed. One research prototype of a
sentient computing system was the work at AT&T Lab-
oratories in the 1990s and the research continues at our
Computer Laboratory by means of the Active BAT sys-
tem [84]. This is a low power, wireless, indoor location
system accurate up to 3cm. It uses an ultrasound time-of-
light trilateration technique to provide accurate physical
positioning.

Fixed receivers

Ceiling

Mobile transmitter
(BAT)

Ultrasonic transponder
Measure pulse time-of-flight
Radio synchronised

Figure 37: Active BAT

Users and objects carry Active BAT tags. In response to
a request that the controller sends via short-range radio, a
BAT emits an ultrasonic pulse to a grid of ceiling mounted
receivers. At the same time that the controller sends the
radio frequency request packet, it also sends a synchro-
nized reset signal to the ceiling sensors using a wired serial
network. Each ceiling sensor measures the time interval
from reset to ultrasonic pulse arrival and computes its dis-
tance from the BAT. The local controller then forwards
the distance measurements to a central controller, which

36

performs the trilateration computation. Statistical prun-
ing eliminates erroneous sensor measurements caused by a
ceiling sensor hearing a reflected ultrasound pulse instead
of one that travelled along the direct path from the BAT
to the sensor. The SPIRIT (SPatially Indexed Resource
Identification and Tracking) [84] provides a platform for
maintaining spatial context based on raw location infor-
mation derived from the Active BAT location system. It
uses CORBA to access information and spatial indexing
to deliver high-level events such as ’Alice has entered the
kitchen’ to listening context aware applications. SPIRIT
models the physical world in a bottom up manner, trans-
lating absolute location events for objects into relative lo-
cation events, associating a set of spaces with a given ob-
ject and calculating containment and overlap relationships
among such spaces, by means of a scalable spatial index-
ing algorithm. However, this bottom-up approach is not
as powerful in expressing contextual situations.

6.6.2 SCAFOS

SCAFOS [121] is a framework summarizing a vast rate of
low level sensor data into forms which can be used by high-
level applications. SCAFOS addresses similar problems to
macroprogramming. It is based on the Active BAT, thus
data comes from the centralized database, where sensor
data is received from the Active BAT system. Primitive
events, especially those arising from sensors, e.g., that a
user is at position (x; y; z), are too low level to be mean-
ingful to applications. Existing models for creating higher-
level, more meaningful events, from low level events, are
insufficient to capture the user’s intuition about abstract
system state. Furthermore, there is a strong need for user-
centred application development, without undue program-
ming overhead. Applications need to be created dynam-
ically, and remain functional, independently of the dis-
tributed nature and heterogeneity of sensor driven systems
and even while the user is mobile. Both issues combined
necessitate an alternative model for developing applica-
tions in a real-time, distributed sensor driven environment
such as Sentient Computing. SCAFOS provides powerful
tools for inferring abstract knowledge from low level, con-
crete knowledge, verifying its correctness and estimating
its likelihood. Such tools include Hidden Markov Mod-
els, a Bayesian Classifier, Temporal First Order Logic, the
theorem prover SPASS and the production system CLIPS.
Secondly, SCAFOS provides support for simple application
development through the XML-based SCALA language.
By introducing the new concept of a generalized event, an
abstract event, defined as a notification of changes in ab-
stract system state, expressiveness compatible with human
intuition is achieved when using SCALA. The applications
that are created through SCALA are automatically inte-
grated and operate seamlessly in the various heterogeneous
components of the context aware environment even while
the user is mobile or when new entities or other applica-
tions are added or removed in SCAFOS.

7. FUTURE CHALLENGES

In this section, we describe the future perspectives for re-
search in WSNs.

Hardware: Hardware research seems to be slowing down.
Based on prototype hardware from current research, inter-
est is moving to the development of commercial products.

Sensor Network
Applications

Node or central
workstation

| Application 1 D [Application 2 D

Agplication 3 D

[Locabion Services Application AP Ih

Localization
Algorithms

Irérastricture
Assisted

Node or cerntral
workstation

H ‘ o D

Centralized
(DemEmministc &
Probabilistic]

Outlier Detection ard Constraint Checking]3

Preprosessing &
Measurement

Clustenng and
Leader Election

Sensor
Caibratrion

Node soffware

Storage Layers

Mezsurem et Pre-
processing and Storage

N eignbarhood
Discovery

Time
Synchronizaton

ACDUSic &
Sensor hardware, Ultrasonic

drivers and sensor

=]

Radio Signa
Stregtn

- -

Inertial
Sesors

Node software &
hardware

T
Modalities

abstractions

Figure 38: SOA Model

Research interests are moving towards more applied areas.
The world will surely change if Motes in millimeter squares,
like smart dust, are achieved. However, the miniaturiza-
tion of Mote by MEMS has yet to be realized and is by
no means guaranteed. Contributions to sensor miniaturi-
sation from Europe are desirable.

7.1 System Architecture

A great deal of research on system architecture is predi-
cated on hardware assumptions (e.g. resource constrained
devices such as Mote). Hardware progress will be dra-
matic, as in the past, so there should be more research
targeting the support of less resource-constrained hard-
ware and focussing on building intelligent systems. For
example, Batlin et al. [22] propose dynamic task alloca-
tion that applies research from intelligent robots and multi
agent systems. Capturing the concept of WSNs in a wider
view is important in expanding the sensor network research
area. Another example is that the synchronization update
rules, led by a system of pulse-coupled oscillators, realizes
the synchronization of states at all nodes [99]. Also, re-
cent rapid progression of macroprogramming includes the
use of amorphous computing. These new movements show
understanding of WSN’s characteristics, especially, amor-
phous computing demonstrates system coordination. The
current stage of amorphous computing has not yet been
integrated with programming, but future progress is likely
to be significant.

7.2 Network

There is a lot of research that modifies and enhances ex-
isting network technology to adapt to the resource con-
strained sensor network environments. The recent ongo-
ing macroprogramming research makes us reconsider the
necessity of general network routing mechanisms, which
may not be required under some macroprogramming. The
goal of network communication and control is to provide
simple and versatile abstractions for communication, data
dissemination, and remote execution. The framework for
network coordination can be used to implement algorithms
for leader election, group management, and in-network ag-
gregation. Thus, we expect to see not only an abstraction
of networks but also abstractions of sensor data, applica-
tion’s purposes, and so forth, that provide task-oriented
communication mechanisms.

7.3 Middleware

37

The majority of current middleware for WSNs is based on
the data centric approach, and a fundamental idea natu-
rally came from database management systems (DBMS).
The database community has taken the view that declar-
ative programming, through a query language, provides
the right level of abstraction for accessing, filtering, and
processing relational data. The middlewares that take a
database approach such as [146] provides an interface for
data collection but they do not provide general purpose
distributed computation. For example, it is complex to
implement arbitrary aggregation and filtering operators
and communication patterns with query languages. Thus,
more general interfaces for global network programming
are desirable.

The evolution of DBMS as a middleware in wired net-
works led to CORBA and Web Services, that focus on
the interfaces with other systems. This predicts that the
evolution of middleware for WSNs will be towards an in-
tegrated application service. Research for sensor networks
with different architectures, to operate cooperatively, will
become important in the future. Moreover, standardiza-
tion problems that past middleware technology faced will
be repeated in WSNs.

A service is an interesting concept to be applied in
WSNs. It may be a role on a sensor node, or a function
providing location information. Services allow cascading
without previous knowledge of each other, and enable the
solution of complex tasks, where functional blocks are sep-
arated in order to increase flexibility and enhance scala-
bility of sensor network node functions. A key issue is to
separate the software from the underlying hardware and
to divide the software into functional blocks with a proper
size and functionality.

Thus far, much current sensor network research has been
applied to environment monitoring systems, where the en-
vironments are extreme. However, sensor networks will be
part of our daily life in future and we must control such
surroundings (e.g. as smart spaces). Middleware research
is to control sensor networks in a daily scenario but interac-
tion with the user has not yet been addressed. Estrin and
others [69] summarize two design ideas below, which point
out the importance of data centric and application specific
design. They insist that the design principles should be
fundamentally different from existing computer network
design because of resource constraints in sensor network
environments.

e Data Centric: More consideration of the manage-

ment of sensor data than only node management.
e Application Specific: Consideration of application

environments, physically and socially.
Here, middleware technology based on the Human Cen-
tric approach to support our daily life is desirable. Such
human centric middleware requires even more intelligent
information processing systems. Current research on the
allocation of a dynamic role to the sensor node is only a be-
ginning of applying an intelligent, decentralized algorithm
in this research area.

There have been many efforts to provide programming
paradigms or virtual machines, and progress in macro-
programming is significant. However, macroprogramming
may be a approach or a technology to support and real-
ize programming paradigms for WSNs but is not essen-
tial. Many existing middlewares take different approaches
such as Spatial Programming using smart messages [30].
Thus far, these two research communities are not work-
ing together. An appropriate integration of the traditional
approach of middleware with new technologies will be de-
sirable instead each technology attempting to support a
specific application scenario. In other words, middleware’s
mission is creating new paradigms to combine new tech-
nologies for WSNs.

Much research for middleware currently focusses on pro-
viding generic programming paradigms to ease application
developers’ tasks, such as data processing or object mon-
itoring. In future, WSNs will carry high bandwidth, low
latency streaming data from a variety of sources, such as
cameras and multimedia. This requires sophisticated in-
network processing (e.g. image fusion and object tracking).
Providing various data fusion techniques in a generic man-
ner will be a task of middleware for WSNs.

To realize a vision of the sensor network as a ”Nerve
system buried under the building and the city”, integrat-
ing intelligent distributed computing with middleware is
necessary, and middleware research will become more im-
portant in the future.

7.4 Service Oriented Architecture

There has been an effort to architect middleware for WSNs
using service oriented architecture (SOA) (RUNES [185],
P2PComp [70], and one.world [77]). In this section, we
describe a middleware architecture that envisages an inte-
grated service oriented architecture. The middleware for
WSNs should offer an open platform for users to utilize
seamlessly various resources in physically interacting envi-
ronments, unlike the traditional closed network setting for
specific applications.

When designing the middleware for sensor networks, het-
erogeneity of information over global distributed systems
must be considered. The sensed information by the de-
vices is aggregated and combined into higher-level infor-
mation or knowledge and may be used as context. The
publish /subscribe paradigm becomes powerful in such en-
vironments. For example, a publisher node in event broker
middleware can act as a gateway from a WSN, perform-
ing data aggregation and distributing filtered data to other
networks based on contents. Event broker nodes that offer
data aggregation services can efficiently coordinate data
flow. Especially with the distributed event-based mid-
dleware over peer-to-peer (P2P) overlay network environ-
ments, the construction of event broker grids will extend
the seamless messaging capability over scalable heteroge-
neous network environments. Event Correlation will be a

38

multi-step operation from event sources to the final sub-
scribers, combining information collected by wireless de-
vices into higher-level information. Service Oriented Archi-
tecture (SOA) is a well proven concept for distributed com-
puting environments. It decomposes applications, data,
and middleware into reusable services that can be flexibly
combined in a loosely coupled manner. SOA maintains
agents that act as software services performing well-defined
operations. This paradigm enables the users to be con-
cerned only with the operational description of the service.
All services have a network addressable interface and com-
munication via standard protocols and data formats (i.e.,
messages). SOA can deal with aspects of heterogeneity,
mobility and adaptation, and offers seamless integration
of wired and wireless environments.

Generic service elements are context model, trust and
privacy, mobile data management, configuration, service
discovery, event notification, and the following are the key
issues addressed for our design.

e Flexible discovery mechanisms for ad hoc networks,
which provide the reliable discovery of newly or spo-
radically available services.

e Support for adaptive communication modes, which
provides an abstract communication model under-
lying different transport protocols. Notably, event-
based communication is suitable for asynchronous
communication.

Peer-to-peer networks and grids offer promising paradigms
for developing efficient distributed systems and applica-
tions. Grids are essentially P2P systems. The grid com-
munity recently initiated a development effort to align grid
technologies with Web Services: the Open Grid Services
Architecture (OGSA) [166] lets developers integrate ser-
vices and resources across distributed, heterogeneous, dy-
namic environments and communities. The OGSA model
adopts the Web Services Description Language (WSDL)
to define the concept of a grid service using principles and
technologies from both the grid and Web Services. The ar-
chitecture defines standard mechanisms for creating, nam-
ing, and discovering persistent and transient grid-service
instances. The convergence of P2P and Grid computing
is a natural outcome of the recent evolution of distributed
systems, because many of the challenging standards issues
are quite closely related.

The Open Services Gateway Initiative (OSGi) [167] is
focused on the application layer and open to almost any
protocol, transport or device layers. The three key aspects
of the OSGi mission are multiple services, wide area net-
works, and local networks and devices. Key benefits of
the OSGi are that it is platform independent and applica-
tion independent. In other words, the OSGi specifies an
open, independent technology, which can link diverse de-
vices in the local home network. The central component
of the OSGi specification effort is the services gateway.
The services gateway enables, consolidates, and manages
voice, data, Internet, and multimedia communications to
and from the home, office and other locations.

7.4.1 Service Semantics

Service semantics is an important issue, in addition to the
service definition, so that services can be coordinated in the
space. The model of the real world is of a collection of ob-
jects, where objects maintain state using sensor data, and

Service Composition Open APIs

Service Layer

Service
Management
Layer
(Service Semantics)

-

Event Broker Layer

| Event Type |

Sensor Component Layer

Physical Layer |

Figure 39: Middleware Architecture with Wireless Sensor Data

applications’ queries and subscriptions are a relevant sets
of objects. Fig.40 shows an example of object mappings
among applications, middleware and sensor components.

(e
L

Building
p o “Andy”
T T

ﬁ’emperatur% [Position J [Contact J [Rei‘;‘:cej

Figure 40: Mapping Real World to Applications

Applications

7

Social Person

Service objects

'-»

Sensors

Objects are tightly linked to event types in an event
broker. Exploiting semantics will let the pervasive space’s
functionality and behaviour develop and evolve. Space spe-
cific ontologies will enable such exploitation of knowledge
and semantics in ubiquitous computing.

7.4.2 Layer Functionality

The brief functionality of each layer is shown below (see
Fig.39).

Physical Layer: This layer consists of the various sen-
sors and actuators.

Sensor Component Layer: A sensor component layer
can communicate with a wide variety of devices, sensors,
actuators, and gateways and represent them to the rest
of the middleware in a uniform way. A sensor component
effectively converts any sensor or actuator in the physi-
cal layer to a software service that can be programmed or
composed into other services. Developers can thus define
services without having to understand the physical world.
Decoupling sensors and actuators from sensor platforms
ensures openness and makes it possible to introduce new
technology as it becomes available.

Event Broker Layer: This layer is a communication
layer between Sensor components and the Service layer.
It supports asynchronous communication using the pub-
lish /subscribe paradigm. Event filtering, aggregation, and
the correlation service is a part of this layer.

Service Layer: This layer contains the Open Services
Gateway Initiative (OSGi) framework, which maintains

39

leases of activated services. Basic services represent the
physical world through sensor platforms, which store ser-
vice bundle definitions for any sensor or actuator repre-
sented in the OSGi framework. A sensor component reg-
isters itself with the service layer by sending its OSGi ser-
vice definition. Application developers create composite
services via the Service Management Layer’s functions to
search existing services and using other services to com-
pose new OSGi services. Canned services, which may be
useful globally, could create a standard library.

A context is represented as an OSGi service composition,
where the context can be obtained. The context engine
is responsible for detecting, and possibly recovering from,
such states.

Service Management Layer: This layer contains an
ontology of the various services offered, and the appliances
and devices connected to the system. Service advertise-
ment and discovery use service definitions and semantics
to register or discover a service. Service definitions are
tightly related to the event types used for communication
in the Event Broker Layer including composite formats.
The reasoning engine determines whether certain compos-
ite services are available.

Application Interface: An application interface pro-
vides open interfaces for applications to manage services,
including the management of contexts.

8. CONCLUSIONS

Middleware has been a key technology in supporting dis-
tributed systems by providing common communication
mechanisms. For WSN applications, distributed pro-
gramming abstractions and middleware will be important.
However, to support resource-constrained devices, it may
not be sufficient to extend existing approaches. Heavy-
weight middleware, with overloaded abstraction layers, will
exceed the capabilities of WSNs. The structure of the
WSN may also be highly application dependent, and many
services are not independent of the application semantics
(e.g. application specific data processing combined with
data routing). Data aggregation, event correlation, real-
time, asynchronous and intermittent communication are
additional challenges.

Design challenges for WSN applications may be cate-
gorized as follows. First, wireless networking: given the
hardware limitations and physical environment in which

the nodes must operate, along with application level re-
quirements. The algorithms and protocols must be de-
signed to provide a robust and energy efficient communi-
cation mechanism. Design of physical layer methods such
as modulation, routing issues and mobility management
must be solved. Second, applications/middleware: at the
application/middleware layer, processes aim to create ef-
fective new capabilities for efficient extraction, manipula-
tion, transport, and representation of information derived
from sensor data. In most applications, WSNs have vari-
ous functional components: detection and data collection,
signal processing, data aggregation, and notification. By
integrating sensing, signal processing, and communication
functions, a WSN provides a natural platform for hierar-
chical information processing. It allows information to be
integrated at different levels of abstraction, ranging from
detailed microscopic examination of specific targets to a
detailed view of the aggregate behaviour of targets. Any
events in the environment can be processed on three levels:
node, local neighbourhood, and global.

The sensor network is an area of research where various
technologies cover a wide field. However, it is not easy to
coordinate these different research areas. Obtaining hard-
ware is being improved while the development environment
and management software are not yet sufficient. Develop-
ment is difficult without the accumulation of special know-
how on hardware and building an operating system in a
sensor node. Building hardware, software, and the mid-
dleware as reliable base components will be a key issue to
communicate precisely among researchers, which will con-
tribute to dramatic progress in sensor network research.

We believe that the issues described in this paper touch
on several directions for required research and technolo-
gies for WSN applications. Their applications and poten-
tial benefits are wide-ranging and could ultimately break
the barrier between the physical and digital worlds. There
are huge obstacles to overcome, not only in terms of tech-
nology, but also in sociology, security and ecology before
WSNs become the reality.

Acknowledgement. This research is funded by EP-
SRC (Engineering and Physical Sciences Research Coun-
cil) under grant GR/557303. We would like to thank
Jon Crowcroft and Andrea Passarella (University of Cam-
bridge) for constructive comments and suggestions.

9. REFERENCES

[1] Abdelzaher, T. et al. EnviroTrack: Towards an
environmental computing paradigm for distributed
sensor networks. Proc. ICDCS, 2004.

[2] Abelson, H. et al. Amorphous Computing. CACM,
43(5):7482, 2000.

[3] Abrach, H. et al. MANTIS: system support for
multimodAl NeTworks of in-situ sensors. Proc. WSNA,
2003.

[4] Al-Karaki, J.N. et al. Routing Techniques in Wireless
Sensor Networks: A Survey. IEEE Wireless
Communications, Vol. 11, No. 6, pp.6-28, 2004.

[5] Akkaya, K. et al. An Energy-Aware QoS Routing
Protocol for Wireless Sensor Networks. Proc. MWN,
2003.

[6] Akkaya, K. et al. A survey on routing protocols for
wireless sensor networks. Elsevier Ad Hoc Network
Journal, 2004.

[7] Akyildiz, I. et al. Wireless sensor and actor networks:
research challenges. Elsevier Ad Hoc Networks, 2,

40

pp-351-367, 2004.
[8] Akyildiz, I. et al. Wireless sensor networks: a survey.
Elsevier Computer Networks, 38, 2002.
[9] Akyildiz, I. et al. On Exploiting Spatial and Temporal
Correlation. Proc. WiOpt, 2004.
Akyildiz, I. et al. A Survey on Sensor Networks. IEEE
Communications Magazine, 2002.
Alan, C. et al. Communicating real-time state machines.
IEEE Trans. Softw. Eng., vol. 18, no. 9, pp. 805816,
1992.
Andre, C. et al. Representation and analysis of reactive
behaviors: A synchronous approach. Proc. CESA, 1996.
ARGO. ARGO - Global Ocean Sensor Network.
www.argo.ucsd. edu..
Avancha, S. et al. Wireless Sensor Networks. Kluwer
Academic/Springer Verlag Publishers, 2003.
Awerbuch, B. et al. An On-Demand Secure Routing
Protocol Resilent to Byzantine Failures. Proc. ACM
Workshop on Wireless Security (WiSe), 2002.
Bakshi, A. et al. Algorithm design and synthesis for
wireless sensor networks. Proc. ICPP, 2004.
Bakshi, A. et al. The Abstract Task Graph: A
Methodology for Architecture-Independent
Programming of Networked Sensor Systems. Proc.
EESR, 2005.
Bakshi, A. et al. System-level Support for
Macroprogramming of Networked Sensing Applications.
Proc. Pervasive, 2005.
Balarin, F. et al. Hardware-software co-design of
embedded systems: the POLIS approach. Kluwer
Academic Publishers, 1997.
Baldus, H. et al. Reliable Set-Up of Medical
Body-Sensor Networks. Proc. EWSN, 2004.
Basagni, S. et al. Secure Pebblenets. Proc. MobiHoc,
2001.
Batalin, M.A. et al. Call and response: experiments in
sampling the environment. Proc. SenSys, 2004.
Beckwith, R. et al. Pervasive Computing and Proactive
Agriculture. Proc. PERVASIVE, 2004.
Bergamo, P. et al. Collaborative Sensor Networking
Towards Real-Time Acoustical Beamforming in
Free-Space and Limited Reverberance. IEEE
Transactions on Mobile Computing, Vol.3, No.3, pp.
211-224, 2004.
Beutel, J. et al. Prototyping Wireless Sensor Network
Applications with BTnodes. Proc. EWSN, 2004.
Bhargava, S. et al. Security Enhancements in AODV
Protocol for Wireless Ad Hoc Networks. Proc. Vehicular
Technology Conference , 2001.
Biegel, G. and Cahill, V. A Framework for Developing
Mobile, Context-aware Applications. Proc. PerCom,
2004.
Blumenthal, J. et al. Wireless Sensor Networks - New
Challenges in Software Engineering. Proc. ETFA, 2003.
Blumenthal, J. et al. SeNeT's - Test and Validation
Environment for Applications in Large-Scale Wireless
Sensor Networks. Proc. INDIN, 2004.
Borcea, C. et al. Spatial programming using smart
messages: Design and implementation. Proc. ICDCS,
2004.
Bonfils, B. et al. Adaptive and decentralized operator
placement for in-network query processing. Proc. IPSN,
2003.
Bonnet, P. et al. Towards Sensor Database Systems.
Proc. MDM, 2001.
Boulis, A. et al. Design and implementation of a
framework for efficient and programmable sensor
networks. Proc. MobiSys, 2003.
Boulis, A. et al. Aggregation in sensor networks: An
energy - accuracy tradeoff. Proc. IEEE workshop on
Sensor Network Protocols and Applications, 2003.
[35] Boussinot, F. et al. The ESTEREL Language. Proc.

(10]

(11]

[12]
[13]
[14]

(15]

[16]

(17)

(18]

(19]

20]
21]
(22]
23]

[24]

25]

(26]

27]

(28]

29]

(30]

(31]

(32]

33]

(34]

[54]

[55]

[56]

[57]

[58]

IEEE, vol. 79, no. 9, pp. 12931304, 1991.

Brennan, S.M. et al. Radiation Detection with
Distributed Sensor Networks. IEEE Computer, Vol. 37,
No. 8, pp. 57-59, 2004.

Braginsky, D. et al. Rumor Routing Algorithm for
Sensor Networks. Proc. WSNA, 2002.

Britton, M. et al. The SECOAS project: Development
of a self organizing,wireless sensor network for
environmental monitoring. Proc. workshop SANPA,
2004.

Bulusu, N. et al. Self-Configuration Localization
Systems. PhD Dissertation, UCLA, 2002.

Burrell, J. et al. Vineyard Computing: Sensor Networks
in Agricultural Production. IEEE Pervasive Computing,
Vol.3, No.1, pp. 38-45, 2004.

Butler, Z. et al. Event-Based Motion Control for
Mobile-Sensor Networks. IEEE Pervasive Computing,
Vol.2, No.4, pp. 34-42, 2003.

Butler, Z. et al. Networked Cows: Virtual Fences for
Controlling Cows. WAMES, 2004.

Carter, S. et al. Secure Position Aided Ad hoc Routing
Protocol. Proc. CCN02, 2002.

Cerpa, A. et al. ASCENT: Adaptive Self-Configuring
sEnsor Networks Topologies. IEEE Transactions on
Mobile Computing, Vol.3, No.3, pp. 272-285, 2004.
Chang, J.H. et al. Maximum Lifetime Routing in
Wireless Sensor Networks. Proc. ATIRP, 2000.
Chaudhary, S. et al. Architecture of Sensor based
Agricultural Information System for Effective Planning
of Farm Activities. Proc. SCC, 2004.

Chen,S . et al. Database-Centric Programming for
Wide-Area Sensor Systems. Proc. DCOOS, 2005.
Chen, W. et al. Dynamic Clustering for Acoustic Target
Tracking in Wireless Sensor Networks. IEEE
Transactions on Mobile Computing, Vol.3, No.3, pp.
258-271, 2004.

Cheng, X. et al. TPS: A Time-Based Positioning
Scheme for Outdoor Wireless Sensor Networks. Proc.
Infocom, 2004.

Cheong, E. et al. Tinygals: a programming model for
event driven embedded systems. Proc. SAC, 2003.
Chiasserini, C.F. et al. Modeling the Performance of
Wireless Sensor Networks. Proc. Infocom, 2004.
Chong, C. et al. Sensor Networks: Evolution,
Opportunities and Challenges. Proc. IEEE, 91(8), 2003.
Chu, M. et al. calable Information-Driven Sensor
Querying and Routing for ad hoc Heterogeneous Sensor
Networks. International Journal of High Performance
Computing Applications, 2002.

Costa, P. et al. The RUNES Middleware: A
Reconfigurable Component-based Approach to
Networked Embedded Systems. Proc. PIMRC, 2005.
Culler, D. et al. Overview of Sensor Networks. IEFEFE
Computer Magazine, August, 2004.

Culpepper, B.J. et al. Design and analysis of Hybrid
Indirect Transmissions (HIT) for data gathering in
wireless micro sensor networks. SIGMOBILE Mobile
Computing and Communications Review, Vol.8, No.1,
pp.6183, 2004.

Curino, C. et al. TinyLIME: Bridging Mobile and Sensor
Networks through Middleware. Proc. PerCom, 2005.
Dai, H. et al. TSync: a lightweight bidirectional time
synchronization service for wireless sensor networks.
ACM SIGMOBILE Mobile Computing and
Communications Review, Vol.8, No.1, pp. 125 139,
2004.

Dai, H. et al. ELF: an efficient log-structured flash file
system for micro sensor nodes. Proc. SenSys, 2004.
Daniel, D. et al. Introduction to high level synthesis.
IEEFE Des. Test, vol. 11, no. 4, pp. 4454, 1994.
Demers, A. et al. The Cougar Project: a
work-in-progress report. ACM SIGMOD,Vol. 32, No. 4,

41

(62]

[63]

[64]

[65]

(6]

[67)

[68]

[69]
[70]
[71]
[72]

[73]

[74]

[75]
[76]

[77)

(78]

[79]

(80]

(81]
(82]

(83]

[84]
85
/86]
87]

(88]

(89]

pp. 53-59, 2003

Du, W. et al. A Key Management Scheme for Wireless
Sensor Networks Using Deployment Knowledge. Proc.
Infocom, 2004.

Dunkels, . et al. Contiki - a Lightweight and Flexible
Operating System for Tiny Networked Sensors. Proc.
EmNetSI, 2004.

Ee, C.T. et al. Congestion control and fairness for
many-to-one routing in sensor networks. Proc. SenSys,
2004.

Elson, J. et al. Time Synchronization for Wireless
Sensor Networks. Proc. Int. Parallel and Distributed
Processing Symposium, 2001.

Elson, J. et al. Sensor networks: A bridge to the
physical worlds. Wireless Sensor Networks Book,
Kluwer Academic Publishers, 2004.

Enz, C.C. et al. WiseNET: An Ultralow Power Wireless
Sensor Network Solution. IEEE Computer, Vol. 37, No.
8, pp-62-70,2004.

Essa, I.A. et al. Ubiquitous Sensing for Smart and
Aware Environments. IEEE Personal Communications,
pp-47-49, 2000.

Estrin, D. et al. Next Century Challenges: Scalable
Coordination in Sensor Networks. Proc. MobiCom, 1999.
Ferscha, A. et al. A Light-Weight Component Model for
Peer-to-Peer Applications. Proc. MDC, 2004.

Fang, Q. et al. Locating and Bypassing Routing Holes in
Sensor Networks. Proc. Infocom, 2004.

Gay, D. et al. The nesC language: A holistic approach
to networked embedded systems. Proc. SIGPLAN, 2003.
Gehrke, J. et al. Query Processing in Sensor Networks.
IEEE Pervasive Computing, Vol.3, No.1, pp. 46-55,
2004.

Gibbons, P.B. et al. IrisNet: An Architecture for a
Worldwide Sensor Web. IEEE Pervasive Computing,
Vol.2, No.4, pp. 22-33, 2003.

Greenstein, B. et al. A distributed index for features in
sensor networks. Proc. SNPA, 2003.

Greenstein, B. et al. A sensor network application
construction kit (SNACK). Proc. SenSys, 2004.
Grimm, T. et al. A system architecture for pervasive
computing. Proc. ACM SIGOPS European Workshop,
2000.

Gui, C. et al. Power conservation and quality of
surveillance in target tracking sensor networks. Proc.
MobiCom, 2004.

Gummadi, R. et al. Macro-programming Wireless
Sensor Networks using Kairos. Proc. DCOSS, 2005.
Han, Q. et al. AutoSeC: An Integrated Middleware
Framework for Dynamic Service Brokering. IEEE
Distributed Systems Online, Vol.2, No.7, 2001.

Han, C. et al. A dynamic operating system for sensor
nodes. Proc. MobiSys, 2005.

Han, Q. et al. Energy Efficient Data Collection in
Distributed Sensor Environments. Proc. ICDCS, 2004.
Harel, D. et al. Statecharts: A visual formalism for
complex systems. Science of Computer Programming,
vol. 8, no. 3, pp. 231274, 6 1987.

Harter, A. et al. The Anatomy of a Context-Aware
Application. Proc. MobiCom, 1999.

Harvard Univ .

hitp: //www.eecs.harvard. edu/ werner/projects/volcano/.
He, T. et al. SPEED: A stateless protocol for real-time
communication in sensor networks. Proc. ICDCS, 2003.
He, T. et al. Energy-efficient surveillance system using
wireless sensor networks. Proc. MobiSys, 2004.
Heidemann, J. et al. Building efficient wireless sensor
networks with low-level naming. Proc. ACM SOSP,
2001.

Heinzelman, W. et al. Middleware to support sensor
network applications. IEEE Network, Vol. 18, No.1,
pp.6-14, 2004.

[90]

[91]

[92]

[96]

[97]

(98]

[100]

[101]
[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

Heizelman, W. et al. Adaptive protocols for information
dissemination in wireless sensor networks. Proc.
Mobicom, 1999.

Heinzelman, W. et al. nergy-efficient communication
protocol for wireless sensor networks. Proc. the Hawaii
International Conference System Sciences, 2000.
Heizelman, W. et al. An application-specific protocol
architecture for wireless microsensor networks. IEEE
Transactions on Wireless Communications, Vol. 1,
No.4, pp. 660-670, 2002.

Helal, S. et al. The Gator Tech Smart House: A
Programmable Pervasive Space. IEEE Computer, Vol.
38, No. 3, pp. 50-60, 2005.

Hellerstein, J.M. et al. eyond Average:Toward
Sophisticated Sensing with Queries. Proc. IPSN, 2003.
Helmy, A. et al. CAPTURE: location-free
contact-assisted power-efficient query resolution for
sensor networks. ACM SIGMOBILE Mobile Computing
and Communications Review, Vol.8, No.1, pp. 27 47,
2004.

Hill, J. et al. System architecture directions for
networked sensors. Proc. ACM Int. Conf.on
Architectural Support for Programming Languages and
Operating Systems, 2000.

Hoblos, G. et al. Optimal design of fault tolerant sensor
networks. Proc. IEEE EEE International Conference on
Control Applications, 2000.

Holmquist, L.E. et al. Building Intelligent Environments
with Smart-Its. IEEE Computer Graphics and
Applications, vol.24 No.1, pp. 56-64, 2004.

Hong, Y.W. et al. Time synchronization and reach-back
communications with pulse-coupled oscillators for UWB.
Proc. Ultra Wideband Systems and Technologies, 2003.
Hu, Y. et al. SEAD: Secure Ef.cient Distance Vector
Routing for Mobile Wireless Ad Hoc Networks. Proc.
WMCSA, 2002.

Hu, Y. et al. Ariadne: A Secure On-Demand Routing
Protocol for Ad hoc Networks. Proc. MobiCom, 2002.
Hu, L. et al. Localization for mobile sensor networks.
Proc. MobiCom, 2004.

Hu, X. et al. A novel route update design for wireless
sensor networks. ACM SIGMOBILE Mobile Computing
and Communications Review, Vol.8, No.1, pp. 18 26,
2004.

Hua, K.A. et al. WISE: A Web-Based Intelligent Sensor
Explorer Framework for Publishing, Browsing, and
Analyzing Sensor Data over the Internet. Proc. ICWE,
2004.

Hui, J. et al. The dynamic behavior of a data
dissemination protocol for network programming at
scale. Proc. SenSys, 2004.

Hull, B. et al. Mitigating congestion in wireless sensor
networks. Proc. SenSys, 2004.

Hwang, . et al. A Design and Implementation of
Wireless Sensor Gateway for Efficient Querying and
Managing through World Wide Web. IEEE
Transactions on Consumer Electronics, Vol. 49, No. 4,
pp. 1090-1097, 2003.

Intanagonwiwat, C. et al. Directed diffusion: a scalable
and robust communication paradigm for sensor
networks. Proc. Int. Conf. on Mobile Computing and
Networking, 2000.

Intanagonwiwat, C. et al. Declarative Resource Naming
for Macroprogramming Wireless Networks of Embedded
Systems. Univ. Calif. San Diego Technical Report
CS52004-0800, 2004.

Jacobs, A. et al. A Framework for Comparing
Perspectives on Privacy and Pervasive Technologies.
IEEE Pervasive Computing, Vol.2, No.4, 2003.

Ji, X. et al. ensor Positioning in Wireless Ad-hoc Sensor
Networks with Multidimensional Scaling. Proc. Infocom
, 2004.

Juang, P. et al. Energy-Efficient Computing for Wildlife

42

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]
[127]
[128]

[129]

[130]

[131]
[132]

[133]

[134]

[135]

[136]

Tracking: Design Tradeoffs and Early Experiences with
ZebraNet. Proc. ASPLOS X, 2002.

Kalpakis, K. et al. Maximum lifetime data gathering
and aggregation in wireless sensor networks. Proc.
NETWORKS, 2002.

Kambil, A. et al. Auto-ID across the value chain: from
dramatic potential to greater efficiency and profit. Tech.
Rep. ACN-AUTOID-BC-001, MIT, 2002.

Kang, J. et al. End-to-end channel capacity
measurement for congestion control in sensor networks.
Proc. SANPA, 2004.

Kang, P. et al. Smart Messages: A Distributed
Computing Platform for Networks of Embedded
Systems. The Computer Journal, Vol. 47, No. 4, pp.
475-494, 2004.

Karl, H. et al. A short survey of wireless sensor
networks. Technical Report TKN-03-018, Technocal
University Berlin, 2003.

Karlof, C. et al. Secure routing in wireless sensor
networks: Attacks and countermeasures. Ad Hoc
Networks, 1(2-3), 2003.

Karlof, C. et al. TinySec: a link layer security
architecture for wireless sensor networks. Proc. SenSys,
2004.

Kasten, O. et al. Beyond Event Handlers: Programming
Wireless Sensors with Attributed State Machines. Proc.
IPSN, 2005.

Katsiri, E. et al. An Extended Publish/Subscribe
Protocol for Transparent Subscriptions to Distributed
Abstract State in Sensor-Driven Systems using Abstract
Events. Proc. DEBS, 2004.

Kim, Y. et al. Modeling and analyzing the impact of
location inconsistencies on geographic routing in
wireless networks. Proc. , Vol.8, No.1, pp. 48 60, 2004.
Klavins, E. Distributed Algorithms for Cooperative
Control. IEEE Pervasive Computing, Vol. 3, No. 1, pp.
56-65, 2004.

Kling, R. et al. Intel Mote: An Enhanced Sensor
Network Node. Proc. Int. Workshop on Advanced
Sensors, Structural Health Monitoring and Smart
Structures, 2003.

Kochhal, M. et al. Role-based hierarchical self
organization for wireless ad hoc sensor networks. Proc.
WSNA, 2003.

Kumar, R. et al. DFuse: A Framework for Distributed
Data Fusion. Proc. SenSys, 2003.

Kumar, S. et al. On k-coverage in a mostly sleeping
sensor network. Proc. MobiCom, 2004.

Kumar, M. et al. Efficient data aggregation middleware
for wireless sensor networks. Proc. MASS, 2004.

Kwon, T. J. et al. Efficient Flooding with Passive
Clustering (PC) in Ad Hoc Networks. Computer
Communication Review, 32(1):4456, 2002.

Lampe, M. et al. The Potential of RFID for Moveable
Asset Management. Workshop on Ubiquitous
Commerce, Ubicomp 03, 2003.

Lazaridis, I. et al. QUASAR: Quality Aware Sensing
Architecture. ACM SIGMOD Record, 2004.

Levis, P. et al. Mat: a tiny virtual machine for sensor
networks. Proc. USENIX/ACM ASPLOS X, 2002.
Levis, P. et al. TOSSIM: accurate and scalable
simulation of entire TinyOS applications. Proc. SenSys,
2003.

Levis, P. et al. Active Sensor Networks. Proc.
USENIX/ACM Symposium NSDI, 2005.

Lewis, P. et al. Wireless Sensor Networks - Smart
Environments: Technology Protocols and Applications.
Chapter 2, Wiley-InterScience, 2005.

Li, S. et al. Event Detection Services Using Data Service
Middleware in Distributed Sensor Networks. Proc. Int.
Workshop on Information Processing in Sensor
Networks, 2003.

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]
[151]
[152]
[153]
[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

Li, Q. et al. Global Clock Synchronization in Sensor
Networks. Proc. Infocom, 2004.

Lindsey, S. et al. PEGASIS: Power Efficient GAthering
in Sensor Information Systems. Proc. IEEE Aerospace
Conference, 2002.

Liu, J. et al. State-Centric Programming for
Sensor-Actuator Network System. IEEE Pervasive
Computing, Vol.2, No.4, pp.50-62, 2003.

Liu, T. et al. Impala: a middleware system for managing
autonomic, parallel sensor systems. Proc. ACM
SIGPLAN, 2003.

Liu, T. et al. Implementing software on
resource-constrained mobile sensors: experiences with
Impala and ZebraNet. Proc. MobiSys, 2004.

Liu, H. et al. Design and Implementation of a Single
System Image Operating System for Ad Hoc Networks.
Proc. MobiSys, 2005.

Lucarelli, D. et al. Decentralized synchronization
protocols with nearest neighbor communication. Proc.
SenSys, 2004.

Ma, Y. et al. System Lifetime Optimization for
Heterogeneous Sensor Networks with a Hub-Spoke
Topology. IEEE Transactions on Mobile Computing,
Vol.3, No.3, pp. 286-294, 2004.

Madden, S. et al. TAG: a Tiny Aggregation Service for
Ad-Hoc Sensor Networks. Proc. OSDI, 2002.

Madden, S. et al. TinyDB: An Acqusitional Query
Processing System for Sensor Networks. ACM
Transactions on Database Systems, Vol.30, No.1, 2005.
Mainland, G. et al. Using virtual markets to program
global behavior in sensor networks. Proc. SIGOPS
European Workshop, 2004.

Mainwaring, A. et al. Wireless Sensor Networks for
Habitat Monitoring. Proc. WSNA, 2002.

Manjeshwar, A. et al. TEEN : A Protocol for Enhanced
Efficiency in Wireless Sensor Networks. Proc.
International Workshop on Parallel and Distributed
Computing Issues in Wireless Networks and Mobile
Computing, 2001.

Mark, A. et al. Providing Application QoS through
Intelligent Sensor Management. Proc. SNPA, 2003.
Marti, M. et al. Shooter Localization in Urban Terrain.
IEEE Computer, Vol. 37, No. 8, pp. 60-61, 2004.
Marti, M. et al. The flooding time synchronization
protocol. Proc. SenSys, 2004.

Martinez, K. et al. Environmental Sensor Networks.
IEEE Computer, Vol. 37, No. 8, pp. 50-56, 2004.
Martinez, K. et al. GLACSWEB: A Sensor Web for
Glaciers. Proc. EWSN, 2004.

Melodia, T. et al. Optimal Local Topology Knowledge
for Energy Efficient Geographical Routing in Sensor
Networks. Proc. Infocom, 2004.

Michahelles, F. et al. Applying Wearable Sensors to
Avalanche Rescue. Computers and Graphics,
27(6):839-847, 2003.

Mills, D.L. Internet Time Synchronization: The
Network Time Protocol. IEEE trans. Communications,
39(10), 1991.

Moore, D. et al. Robust distributed network localization
with noisy range measurements. Proc. SenSys, 2004.
Murphy, A. et al. MiLAN: Middleware Linking
Applications and Networks. TR-795, University of
Rochester, Computer Science, 2002.

Nagpal, R. et al. Organizing a global coordinate system
from local information on an ad hoc sensor network.
Proc. workshop IPSN, 2003.

Nath, S. et al. IrisNet: An Architecture for Enabling
Sensor-Enriched Internet Service. ntel Research
Pittsburgh Technical Report IRP-TR-03-04, 2003.
Nath, S. et al. A Distributed Filtering Architecture for
Multimedia Sensors. Proc. BaseNets, 2004.

Newton, R. et al. Region Streams: Functional

43

[164]

[165)

[166]
[167]
[168]
[169]

[170]

[171]
[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180)

[181]

[182]

[183]

[184]

[185)

[186]

[187]

[188]

[189]

Macroprogramming for Sensor Networks. Proc. DMSN,
2004.

Newton, R. et al. Building up to Macroprogramming:
An Intermediate Language for Sensor Networks. Proc.
IPSN, 2005.

Niculescu, D. et al. Positioning in ad hoc sensor
networks. IEEE Network, Vol. 18, No. 4, pp. 24- 29,
2004.

Open Grid Services Architecture

hitp: //www.ggf.org/ogsa-wg/.

The OSGi Alliance The OSGi framework.
hitp://www.osgi.org, 1999.

Papadimitratos, P. et al. Secure Routing for Mobile Ad
hoc Networks. Proc. CNDS, 2002.

Peng, R. et al. A Web Services Environment for
Internet-Scale Sensor Computing. Proc. SCC, 2004.
Perrig, A. et al. SPINS: Security Protocols for Sensor
Networks. Wireless Networks Journal (WINET),
8(5):521.534, September 2002.

Perrig, A. et al. Security in wireless sensor networks.
CACM, Vol. 47, No. 6, pp. 53-57, 2004.

Polastre, J. et al. Versatile low power media access for
wireless sensor networks. Proc. SenSys, 2004.

Prakash, R. et al. Causality and the Spatial-Temporal
Ordering in Mobile Systems. Mobile Networks and
Applications, 9(5):507-516, 2004.

Ramasamy, H.V. et al. Quantifying the cost of providing
intrusion tolerance in group communication systems.
Proc. DSN, 2002.

Rao, R. et al. Purposeful Mobility for Relaying and
Surveillance in Mobile Ad Hoc Sensor Networks. IEEE
Transactions on Mobile Computing, Vol.3, No.3,
Pp.225-232, 2004.

Ratnasamy, A. et al. GHT: A geographic hash table for
data-centric storage in sensornets. Proc. WSNA, 2002.
Ravelomanana, V. et al. Extremal Properties of Three
Dimensional Sensor Networks with Application. IEEE
Transactions on Mobile Computing, Vol.3, No.3, pp.
246-257, 2004.

Reason, J.M. et al. A study of energy consumption and
reliability in a multi-hop sensor network. ACM
SIGMOBILE Mobile Computing and Communications
Review, Vol.8, No.1, pp. 8497, 2004.

Rodoplu, V. et al. Minimum energy mobile wireless
networks. IEEE Journal of Selected Areas in
Communications, 1999.

Rentala, P. et al. Survey on Sensor Networks. Technical
Report, UTDCS-33-02, University of Texas at Dallas,
2002.

Romer, K. et al. Middleware Challenges for Wireless
Sensor Networks. ACM Mobile Computing and
Communication Review, October 2002.

Romer, K. et al. The Design Space of Wireless Sensor
Networks. IEEE Wireless Communications, 2004.
Romer, K. et al. Generic role assignment for wireless
sensor networks. Proc. ACM SIGOPS European
Workshop, 2004.

Romer, K. Time Synchronization in Ad Hoc Networks.
ACM Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc01), 2001.

Reconfigurable Ubiquitous Networked Embedded
Systems . http://www.ist-runes.org, 2005.

Sadagopan, N. et al. The ACQUIRE mechanism for
efficient querying in sensor networks. Proc.
International Workshop on Sensor Network Protocol
and Applications, 2003.

Sames, D. et al. Developing a heterogeneous intrusion
tolerant corba system. Proc. DSN, 2002.
Satyanarayanan, M. et al. Of Smart Dust and Brilliant
Rocks. IEEE Pervasive Computing, Vol.2, No.4, pp.2-4,
2003.

Schurgers, C. et al. Energy efficient routing in wireless

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]
[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

sensor networks. MILCOM Proceedings on
Communications for Network-Centric Operations:
Creating the Information Force, 2001.

Schramm, P. et al. A Service Gateway for Networked
Sensor Systems. IEEE Pervasive Computing, Vol.3,
No.1, pp. 66-74, 2004.

Seada, K. et al. Energy-efficient forwarding strategies for
geographic routing in lossy wireless sensor networks.
Proc. SenSys, 2004.

Shah, R. et al. Energy Aware Routing for Low Energy
Ad Hoc Sensor Networks. Proc. WCNC, 2002.

Shang, Y. et al. Improved MDS-Based Localization.
Proc. Infocom, 2004.

Shen, C.C. et al. Sensor Information Networking
Architecture and Applications. E Personal
Communications Magazine, Vol.8, No. 4. pp. 52-59,
2001.

Shneidman, J. et al. Hourglass: An Infrastructure for
Connecting Sensor Networks and Applications. Harvard
Technical Report TR-21-04, 2004.

Shnayder, V. et al. Simulating the power consumption
of large-scale sensor network applications. Proc. SenSys,
2004.

Shum, L. et al. Distributed Algorithm Implementation
and Interaction in Wireless Sensor Networks. Proc.
workshop SANPA, 2004.

Sibley, G.T. et al. Robomote: A Tiny Mobile Robot
Platform for Large-Scale Sensor Networks. Proc. ICRA,
2002.

Simon, G. et al. Sensor network-based counter sniper
system. Proc. Sensys, 2004.

Sivaharan, T. et al. Cooperating Sentient Vehicles for
Next Generation Automobiles. Proc. WAMES, 2004.
Sivrikaya, F. et al. Time synchronization in sensor
networks: a survey. IEEE Network, Vol. 18, No. 4,
pp-45- 50, 2004.

Slijepcevic, S. et al. Power efficient organization of
wireless sensor networks. Proc. ICC, 2001.
Smaragdakis, G. et al. SEP: A Stable Election Protocol
for clustered heterogeneous wireless sensor networks.
Proc. SANPA, 2004.

Sohrabi, K. et al. Protocols for Self Organization of a
Wireless Sensor Network. Personal Communication
Magazine, 7:1627, 2000.

Sohrabi, K. et al. Protocols for self-organization of a
wireless sensor network. IEEE Personal
Communications, Vol.7, No.5, pp.16-27, 2000.

Sohrabi, K. et al. Methods for Scalable Self-Assembly of
Ad Hoc Wireless Sensor Networks. IEEE Transactions
on Mobile Computing, Vol.3,No.4, pp. 317-331, 2004.
Son, D. et al. The Effect of Mobility-Induced Location
Errors on Geographic Routing in Mobile Ad Hoc and
Sensor Networks: Analysis and Improvement Using
Mobility Prediction. IEEE Transactions on Mobile
Computing, Vol.3, No.3, pp. 233-245, 2004.

Souto, E. et al. A message-oriented middleware for
sensor networks. Proc. workshop on Middleware for
pervasive and ad-hoc computing, 2004.
Srisathapornphat, C. et al. Sensor Information
Networking Architecture. Proc. Int. Workshops on
Parallel Processing , 2000.

Steffan, J. et al. Scoping in wireless sensor networks.
Proc. workshop on Middleware for pervasive and ad-hoc
computing, 2004.

Subramanian, L. et al. An Architecture for Building Self
Configurable Systems. Proc. IEEE/ACM Workshop on
Mobile Ad Hoc Networking and Computing, 2000.
Subramanian, L. et al. An architecture for building
selfconfigurable systems. Proc. MobiHoc, 2000.
Szewczyk, R. et al. An analysis of a large scale habitat
monitoring application. Proc. SenSys, pp. 214 - 226,
2004.

44

[214]

[215]

[216]

[217]

[218]
[219]
[220]
[221]

[222]

[223]

[224]

[225]

[226]
[227]
[228)

[229]

[230]

[231]

[232]

[233)

[234]

[235]

[236]

[237]

[238)

[239)

Tilak, S. et al. A Taxonomy of Wireless Micro-Sensor
Network Models. Mobile Computing and
Commumnications Review, Vol.6, No.2, 2002.

Trakadas, P. et al. Efficient routing in PAN and sensor
networks. ACM SIGMOBILE Mobile Computing and
Communications Review, Vol.8, No.1, pp. 10 17, 2004.
UAV. The 29 Palms Experiment: Tracking vehicles with
a UAV-delivered sensor network.
tinyos.millennium.berkeley. edu/29Palms.htm.

Vahid, F. et al. SpecCharts: A VHDL Front-End for
Embedded Systems. Proc. Trans. on CAD, vol. 14, no.
6, pp.694706, 1995.

Wanat, R. et al. Enabling Ubiquitous Sensing with
RFID. IEEE Computer, pp. 84-86, 2004.

Wang, G. et al. Movement-Assisted Sensor Deployment.
Proc. Infocom, 2004.

‘Welsh, M. et al. Programming sensor networks with
abstract regions. Proc. NSDI, 2004.

Whitehouse, K. et al. Hood: A neighborhood
abstraction for sensor networks. Proc. MobiSys, 2004.
Whitehouse, K. et al. Semantic streams: A framework
for declarative queries and automatic data
interpretation. Technical Report MSR-TR-2005-45,
Microsoft Research, 2005.

Woo, A. et al. Networking support for query processing
in sensor networks. CACM, Vol. 47, No. 6, pp. 47-52,
2004.

Wood, A. et al. Denial of service in sensor networks.
IEEE Computer, 35(10):54.62, 2002.

Wu, M. et al. Novel Component Middleware for
Building Dependable Sentient Computing Applications.
ACM Workshop on Component-oriented approaches to
Context-aware computing, ECOOP, 2004.

Xu, N. et al. A wireless sensor network for structural
monitoring. Proc. SenSys, 2004.

Xu, N. A Survey of Sensor Network Applications.
University of Southern California, 2003.

Xu, Y. et al. Geography-informed energy conservation
for ad hoc routing. Proc. MobiCom, 2001.

Yao, Y. et al. The Cougar Approach to In-Network
Query Processing in Sensor Networks. ACM SIGMOD,
Vol. 31, No. 3, pp.9-18, 2002.

Yoneki, E. et al. Unified Semantics of Event Correlation
over Time and Space in Hybrid Network Environments.
Proc. CooplS, 2005.

Younis, M. et al. Energy-Aware Routing in
Cluster-Based Sensor Networks. Proc. MASCOT, 2002.
Younis, O. et al. Distributed Clustering in Ad-hoc
Sensor Networks: A Hybrid, Energy-Efficient Approach.
Proc. Infocom, 2004.

Yu, Y. et al. Geographical and Energy-Aware Routing:
A Recursive Data Dissemination Protocol for Wireless
Sensor Networks. Technical Report, UCLA-CSD
TR-01-0023, 2001.

Yu, Y. et al. Issues in designing middleware for wireless
sensor networks. IEEE Network, Vol. 18, No.1, pp. 15-
21, 2004.

Zhang, W. et al. Optimizing Tree Reconfiguration for
Mobile Target Tracking in Sensor Networks. Proc.
Infocom, 2004.

Zhang, P. et al. Hardware design experiences in
ZebraNet. Proc. SenSys, 2004.

Zhao, F. et al. Wireless Sensor Networks : An
Information Processing Approach. Morgan Kaufmann,
2004.

Zhou, G. et al. Impact of radio irregularity on wireless
sensor networks. Proc. MobiSys, 2004.

hitp: //www.cs.berkeley.edu/projects/parallel /castle

/split-c/.

APPENDIX

Deploy- Mobility | Infra- Topology | Density | Connec- Lifetime | Node Aggrega- | Dissemi- | RT
ment struc- (Size) tivity Ad- tion nation
ture dress
1.GreatDuck | manual- | static base, star of | dense connected | 7 id global send to | -
onetime gateway | clusters (10s- months diffusion base
100s)
2.ZebraNet manual- all, con- | base, graph dense sporadic one year | id global send to | -
onetime | tinuous, | GPS (10s- diffusion base
passive 100s)
3.Glacier manual- all, con- | base, start sparse connected | several id global send to | -
onetime | tinuous, | GPS, (10s- months diffusion base
passive GSM 100s)
4.Hearding manual- all, con- | base, graph dense intermit- | days to | id global send to | -
onetime | tinuous, | GPS (10s- tent weeks diffusion base
passive 100s)
5.0cean random, | all, con- | satellite star sparse intermit- | 4-5 years | - neighbor forward -
iterative | tinuous, (1300) tent global to satel-
passive diffusion lite
6.Grape manual- | static base tree sparse connected | several id global multi -
onetime (20m) months diffusion tier
(100s) bcast
7.Avalanche manual- | all, con- | rescuer’s | start dense connected | days id global bcast -
onetime | tinuous, | PDA (10s- diffusion 802.11x
passive 100s)
8.VitalSign manual all, con- | ad hoc single dense connected | days to | id composite | bcast RT
tinuous, hop (10s) months event,
passive diffusion
9.Tracking random all, oc- | UAV graph sparse intermit- | weeks to | id composite | bcast RT
casional, (10s- tent years event,
passive 1000s) (UAV) diffusion
10.ToolBox manual all, oc- | base star sparse connected | months id global send to | -
casional, (10s) to years diffusion base
passive
11.Supply manual all, oc- | base star sparse connected | months id global send to | -
casional, (10s) to years diffusion base
passive
12.Volcano manual static base star sparse connected | days id streaming | send to | -
(10s) base
Table 2: Wireless Sensor Network Application Classification

1. Bird Observation on Great Duck Island: WSN
is being used to observe the breeding behavior of a small
bird called Leach’s Storm Petrel [148] on Great Duck Is-
land. Nodes can measure humidity, pressure, temperature,
and ambient light level. Burrow nodes are equipped with
infrared sensors to detect the presence of the birds. The
burrows occur in clusters and the sensor nodes form a mul-
tihop ad hoc network. The base station computer is con-
nected to a database back-end system via a satellite link.
Sensor nodes sample their sensors about once a minute and
send their readings directly to the database back-end sys-
tem.

2. ZebraNet: A WSN is being used to observe the be-
havior of wild animals within a spacious habitat (e.g., wild
horses, zebras, and lions) [112] at the Mpala Research Cen-
ter in Kenya. Of particular interest is the behavior of indi-
vidual animals. Animals are equipped with sensor nodes.
An integrated GPS receiver is used to obtain estimates of
their position and speed of movement. Whenever a node
enters the communication range of another node, the sen-
sor readings and the identities of the sensor nodes are ex-
changed. At regular intervals, a mobile base station (e.g.,
a car or a plane) moves through the observation area and

45

collects the recorded data from the animals it passes.

3. Glacier Monitoring: A WSN is being used to mon-
itor sub-glacier environments at Briksdalsbreen, Norway
[154]. A lengthy observation period of months to years
is required. Sensor nodes are deployed in drill holes at
different depths in the glacier ice and in the till beneath
the glacier. Sensor nodes are equipped with pressure and
temperature sensors and a tilt sensor for measuring the
orientation of the node. Sensor nodes communicate with
a base station deployed on top of the glacier. The base
station measures supra-glacial displacements using differ-
ential GPS and transmits the data collected via GSM.

4. Cattle Herding: A WSN is being used to implement
virtual fences, with an acoustic stimulus being given to an-
imals that cross a virtual fence line [42]. Movement data
from the cows controls the virtual fence algorithm that
dynamically shifts fence lines. For the first experiment,
each sensor node consists of a PDA with a GPS receiver,
a WLAN card, and a loudspeaker for providing acoustic
stimuli to the cattle as they approach a fence. The nodes
form a multi-hop ad hoc network, forwarding movement
data to a base station The base station transmits fence
coordinates to the nodes.

5. Ocean Water Monitoring: The ARGO project [13]
is using a WSN to observe the temperature, salinity, and
current profile of the upper ocean. The goal is a quan-
titative description of the state of the upper ocean and
the patterns of ocean climate variability. The nodes are
dropped from ships or planes. The nodes cycle to a depth
of 2000m every ten days. Data collected during these cy-
cles is transmitted to a satellite while nodes are at the
surface.

6. Grape Monitoring: A WSN is being used to monitor
the conditions that influence plant growth (e.g., temper-
ature, soil moisture, light, and humidity) across a large
vineyard in Oregon [23]. In a first version of the system,
sensor nodes are deployed across a vineyard in a regular
grid about 20 meters apart. A temperature sensor is con-
nected to each sensor node via a cable. A laptop computer
is connected to the WSN via a gateway to display and log
the temperature distribution across the vineyard. The sen-
sor nodes form a two-tier multi-hop network, with nodes
in the second tier sending data to a node in the first tier.
7. Rescue of Avalanche Victims: A WSN is being used
to assist rescue teams in saving people buried in avalanches
[156]. The goal is to better locate buried people and to
limit overall damage by giving the rescue team additional
indications of the state of the victims and to automate the
prioritization of victims (e.g., based on heart rate, respira-
tion activity, and level of consciousness). For this purpose,
people at risk (e.g., skiers, snowboarders, and hikers) carry
a sensor node that is equipped with an oximeter (a sensor
which measures the oxygen level in blood), and which per-
mits heart rate and respiration activity to be measured.
8. Vital Sign Monitoring: Wireless sensors are be-
ing used to monitor vital signs of patients in a hospital
environment [20]. Compared to conventional approaches,
solutions based on wireless sensors are intended to improve
monitoring accuracy whilst also being more convenient for
patients. Various medical sensors (e.g., electrocardiogram)
may be subsequently attached to the patient.

9. Tracking Military Vehicles: A WSN is being used
to track the path of military vehicles (e.g., tanks) [216].
Sensor nodes are deployed from an unmanned aerial vehicle
(UAV). Magnetometer sensors are attached to the nodes in
order to detect the proximity of tanks. Nodes collaborate
in estimating the path and velocity of a tracked vehicle.
Tracking results are transmitted to the unmanned aerial
vehicle.

10. Smart Tool Box: Tools are equipped with RFID
tags, and the tool box contains a mobile RFID system (in-
cluding a tag reader antenna integrated into the tool box)
[130]. The tool box issues a warning for safety reasons if a
worker attempts to leave the building site while any tools
are missing from his or her box. The box also monitors
how often and for how long tools have been in use.

11. Smart Supply Chain: Smart identification tech-
nology can significantly improve the efficiency of supply
chains and the internal logistics processes of companies
[114]. In such scenarios, the automatic identification and
localization of goods at instance level can help to prevent
faulty deliveries. Every bottle of mineral water, the box
containing the bottles, and the container for the boxes are
tagged. RFID readers are installed along the supply chain
to check whether the correct quantity of goods and the
correct product instances have passed.

12. Monitoring Volcanic Eruptions: WSN mon-
itors eruptions at Volcano Tungurahua, an active vol-

46

cano in central Ecuador. This network consisted of five
tiny, low-power wireless sensor nodes, three equipped with
a specially-constructed microphone to monitor infrasonic
(low-frequency acoustic) signals emanating from the vol-
canic vent during eruptions. Over 54 hours of continuous
infrasound data are collected, transmitting signals over a
9 km wireless link back to a base station at the volcano
observatory, (see [85] for more details).

