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A Survey on 3D Object Detection Methods for
Autonomous Driving Applications

Eduardo Arnold, Omar Y. Al-Jarrah, Mehrdad Dianati, Saber Fallah, David Oxtoby and Alex Mouzakitis

Abstract—An Autonomous Vehicle (AV) requires an accurate
perception of its surrounding environment to operate reliably.
The perception system of an AV, which normally employs ma-
chine learning (e.g., deep learning), transforms sensory data into
semantic information that enables autonomous driving. Object
detection is a fundamental function of this perception system
that has been tackled by several works, most of which use
2D detection methods. However, 2D methods do not provide
depth information, which is required for driving tasks, such as
path planning, collision avoidance, etc. Alternatively, 3D object
detection methods introduce a third dimension that reveals more
detailed object’s size and location information. Nonetheless, the
detection accuracy of such methods needs to be improved. To
the best of our knowledge this is the first survey on 3D object
detection methods used for autonomous driving applications. This
paper presents an overview of 3D object detection methods and
prevalently used sensors and datasets in AVs. It then discusses
and categorizes recent works based on sensors modalities into
monocular, point cloud-based and fusion methods. We then sum-
marize the results of the surveyed works and identify research
gaps and future research directions.

Index Terms—Machine learning, deep learning, computer
vision, object detection, autonomous vehicles, intelligent vehicles.

I. INTRODUCTION

BETWEEN the years 2016 and 2017, the number of

road casualties in the U.K. was approximately 174,510

, of which 27,010 were killed or severely injured casualties

[1]. As reported by the U.S. Department of Transportation,

more than 90% of car crashes in the U.S. are attributed to

drivers’ errors [2]. The adoption of connected and autonomous

vehicles is expected to improve driving safety, traffic flow and

efficiency [3]. However, for an autonomous vehicle to operate

safely, an accurate environment perception and awareness is

fundamental.

The perception system of an Autonomous Vehicle (AV)

transforms sensory data into semantic information, such as

identification and recognition of road agents (e.g., vehicles,

pedestrians, cyclists, etc.) positions, velocity and class; lane

marking; drivable areas and traffic signs information. Notably,
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the object detection task is of fundamental importance, as

failing to identify and recognize road agents might lead to

safety-related incidents. For instance, failing in detecting a

leading vehicle can result in traffic accidents, threatening

human lives [4].

One factor for failure in the perception system arises from

sensors limitations and environment variations such as lighting

and weather conditions. Other challenges include generalisa-

tion across driving domains such as motorways, rural and

urban areas. While motorways have well-structured lanes with

vehicles following a standard orientation, urban areas exhibit

vehicles parked at no particular orientation, more diverse

classes such as pedestrians, cyclists, and background clutter

such as bollards and bins. Another factor is occlusion, when

one object blocks the view of another, resulting in partial or

complete invisibility of the object. Not only objects’ sizes can

be very dissimilar, e.g., comparing a truck with a dog, but

objects can be very close or far away from the subject AV.

The object’s scale dramatically affects the sensors’ readings,

resulting in very dissimilar representations for the objects of

the same class.

Despite the aforementioned challenges, the performance

of 2D object detection methods for autonomous driving has

greatly improved, achieving an Average Precision (AP) of

more than 90% on the well established “KITTI” object de-

tection benchmark [5]. While 2D methods detect objects on

the image plane, their 3D counterpart introduce a third dimen-

sion to the localization and size regression, revealing depth

information in world coordinates. However, the performance

gap between 2D and 3D methods in the context of AVs is still

significant [6]. Further research should be conducted to fill the

performance gap of 3D methods, as 3D scene understanding

is crucial for driving tasks. A comparison between 2D and 3D

detection methods is presented in Table I.

In previous work Ranft & Stiller [7] reviewed machine

vision methods for different tasks of intelligent vehicles,

including localization and mapping, driving scene understand-

ing and object classification. In [8], on-road object detection

was briefly reviewed among other perception functions, how-

ever, authors predominantly considered 2D object detection.

Mukhtar et al. [9] reviewed 2D vehicle detection methods

for Driver Assistance Systems with focus on motion and

appearance-based approaches using a traditional pipeline. A

traditional pipeline consists of segmentation (e.g., graph-based

segmentation [10] and voxel-based clustering methods [11]),

hand-engineered feature extraction (e.g., voxel’s probabilistic

features [11]) and classification stages (e.g., a mixture of bag-

of-words classifiers [12]).
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TABLE I
2D VERSUS 3D OBJECT DETECTION

Advantages Disadvantages

2D Object

Detection

Well established datasets
and detection architectures.
Usually RGB only input
can achieve accurate re-
sults in the image plane.

Limited information: lack
of object’s pose, occlusion
and 3D position informa-
tion.

3D Object

Detection

3D bounding box provides
object size and position in
world coordinates. These
detailed information allows
better environment under-
standing.

Requires depth estimation
for precise localization.
Extra dimension
regression increases
model complexity. Scarse
3D labelled datasets.

Unlike traditional pipelines, which optimize each stage

individually, end-to-end pipelines optimize the overall pipeline

performance. An end-to-end detection method leverages learn-

ing algorithms to propose regions of interest and extract fea-

tures from the data. The shift towards representation learning

and end-to-end detection was possible by using deep learning

methods, such as deep convolutional networks, which showed

a significant performance gain in different applications [13],

[14]. In this paper we focus on end-to-end pipelines and

learning approaches, since these have become the state-of-

the-art for 3D object detection and have rapidly progressed

in recent years.

This paper presents an overview of 3D object detection

methods and prevalently used sensors and datasets in AVs. We

discuss and categorise existing works based on sensor modality

into: monocular-based methods, point cloud-based methods

and fusion methods. Finally, we discuss current research

challenges and future research directions. The contributions

of this paper are as follows:

• summarizing datasets and simulation tools used to eval-

uate the performance of detection models

• providing a summary of 3D object detection advance-

ments for autonomous driving vehicles

• comparing 3D object detection methods performances on

a baseline benchmark

• identifying research gaps and future research directions.

This paper is structured as follows. Section II describes

commonly used sensors for perception tasks in autonomous

vehicles. Section III lists well-referenced datasets used for ob-

ject detection in AVs. We review 3D object detection methods

in Section IV. Section V compares the performance of existing

methods on a benchmark dataset and highlights research

challenges and potential research opportunities. Section VI

provides a brief summary and concludes this work.

II. SENSORS

Although humans primarily use their visual and auditory

systems while driving, artificial perception methods rely on

multiple modalities to overcome shortcomings of individual

sensors. There are a wide range of sensors used by autonomous

vehicles: passive ones, such as monocular and stereo cameras,

and active ones, including lidar, radar and sonar. Since most

research on perception for AVs focus on cameras and lidars,

Fig. 1. IMX390 sensor sample image on a tunnel exit. The image on the left
was taken with both LED flickering mitigation and High-Dynamic-Ranging
(HDR) capability enabled. The top right image shows HDR functionality
without LED flickering mitigation – note that the traffic sign velocity indicator
does not appear. The bottom right image shows the image without any of
the functionalities enabled, clearly showing the sensor capabilities. Image
obtained from the Sony website [21].

these two categories are described in higher detail. A more

comprehensive report on current sensors for AV applications

can be found in [15], [16].

A. Cameras

Monocular cameras provide detailed information in the form

of pixel intensities, which at a bigger scale reveal shape and

texture properties. The shape and texture information can be

used to detect lane geometry, traffic signs [17] and the object

class [7].

One disadvantage of monocular cameras is the lack of depth

information, which is required for accurate object size and

position estimation. A stereo camera setup can be used to

recover depth channels. Such configuration uses matching al-

gorithms to find correspondences in both images and calculate

the depth of each point relative to the camera, demanding more

processing power [18].

Other camera modalities that offer depth estimation are

Time-of-Flight (ToF) cameras where depth is inferred by

measuring the delay between emitting and receiving modulated

infrared pulses [19]. This technology has been applied for ve-

hicle safety applications [20], but despite the lower integration

price and computational complexity has low resolution when

compared to stereo cameras.

Camera sensors are susceptible to light and weather con-

ditions. Examples range from low luminosity at night-time to

extreme brightness disparity when entering or leaving tunnels.

The recent use of LEDs on traffic signs and vehicles brake

lights creates a flickering problem. It happens as the camera

sensor cannot reliably capture the emitted light due to the

LEDs’ switching behaviour. Sony has recently announced a

new camera technology designed to mitigate flickering effects

and enhance colors dynamic range [21], as illustrated in Figure

1. Additionally, image degradation can occur due to rainy or

snowy weather. Chen et al. [22] propose to mitigate this using

a de-raining filter based on a multi-scale pyramid structure and

conditional generative adversarial networks.
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Fig. 2. The two images show the point clouds obtained by two lidar sensors
on the same scene. The top image was captured using the newer VLS-128
model while the bottom one used the standard HDL-64 model. Image obtained
from [24].

B. Lidar

Lidar sensors emit laser beams and measure the time

between emitting and detecting the pulse back. The timing

information determines the distance of obstacles in any given

direction. The sensor readings result in a set of 3D points,

also called Point Cloud (PCL), and corresponding reflectance

values representing the strength of the received pulses. Unlike

images, point clouds are sparse: the samples are not uniformly

distributed in space. As active sensors, external illumination is

not required and thus more reliable detection can be achieved

considering adverse weather and extreme lighting conditions

(e.g., night-time or sun glare scenarios).

Standard lidar models, such as the HDL-64L [23], use an

array of rotating laser beams to obtain 3D point clouds in

360 degrees and up to 120m radius. This sensor can output

120 thousand points per frame, which amounts to 1,200

million points per second on a 10 Hz frame rate. Velodyne

recently announced the VLS-128 model [24] featuring 128

laser beams, higher angular resolution and 300m radius range.

Figure 2 shows a comparison between the point densities of

the two models. The announcement suggests that the increased

point density might enhance the recall of methods using this

modality but challenges real time processing performance. The

primary challenge to the widespread use of lidar is its price:

a single sensor can cost more than $70,000. Nevertheless, this

price is expected to decrease in the following years with the

introduction of solid state lidar technology [25] and large scale

production.

Some methods rely on both lidar and camera modalities.

Before fusing these modalities it is required to calibrate the

sensors to obtain a single spatial frame of reference. In [26] the

authors propose to use polygonal planar boards as targets that

can be detected by both modalities to generate accurate 3D-

2D correspondences and obtain a more accurate calibration.

TABLE II
SENSORS COMPARISON

Advantages Disadvantages

Monocular

Camera

Readily available and inex-
pensive. Multiple specifica-
tions available.

Prone to adverse light
and weather conditions.
No depth information
provided.

Stereo

Camera

Higher point density when
compared to lidar. Provides
dense depth map.

Depth estimation is
computationally expensive.
Poor performance with
textureless regions or
during night-time. Limited
Field-of-View (FoV).

Lidar 360 degrees FoV, precise
distance measurements.
Not affected by light
conditions.

Raw point cloud does not
provide texture informa-
tion. Expensive and large
equipment.

Solid-State

lidar

No moving mechanical
parts, compact size. Large
scale production should
reduce final cost.

Limited FoV when com-
pared to mechanical scan-
ning lidar. Still under de-
velopment.

However, having spatial targets makes this method laborious

for on-site calibration. As an alternative, Ishikawa et al. [27]

devised a calibration method without spatial targets using

odometry estimation of the sensors w.r.t. the environment to

iteratively calibrate them.

C. Discussion

Monocular cameras are inexpensive sensors, but they lack

depth information which is required for accurate 3D object

detection. Depth cameras can be used for depth recovery, but

fail in adverse lighting conditions and textureless scenes and

ToF camera sensors have limited resolution. In contrast, lidar

sensors can be used for accurate depth estimation during night-

time, but is prone to noise during adverse weather, such as

snow and fog, and cannot provide texture information. We

summarize the advantages and disadvantages of each sensor

modality in Table II.

III. DATASETS

As learning approaches become widely used the need of

training data also increases. The availability of large scale

image datasets such as ImageNet [28] allowed fast develop-

ment and evolution of image classification and object detection

models. The same phenomena occurs in the driving scenario,

where more data means broader scenario coverage. In partic-

ular, tasks such as object detection and semantic segmentation

require finely labelled data. In this section we present common

datasets for driving tasks, specifically to object detection.

One of the most used datasets in the driving context

is KITTI [29], which provides stereo color images, lidar

point clouds and GPS coordinates, all synchronized in time.

Recorded scenes range from well-structured highways, com-

plex urban areas and narrow countryside roads. The dataset

can be used for multiple tasks: stereo matching, visual odom-

etry, 3D tracking and 3D object detection. In particular, the

specific object detection dataset contains 7,481 training and
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7,518 test frames, which are provided with sensor calibration

information and annotated 3D boxes around objects of interest.

The annotations are categorized in “easy, moderate and hard”

cases, according to object size, occlusion and truncation levels.

Despite widely adopted, this dataset has several limitations.

Notably, limited sensor configuration and lighting conditions:

all the measurements were obtained by the same set of sensors

during daytime and mostly under sunny conditions. In addition

the classes frequency is highly unbalanced [30] – 75% car, 4%

cyclist and 15% pedestrians. Furthermore, most scene objects

follow a predominant orientation, facing the ego-vehicle. The

lack of variety challenges the evaluation of current methods in

more general scenarios, reducing their reliability for real-world

applications.

Considering these limitations and the expensive process of

obtaining and labelling a dataset, Gaidon et al. proposed the

Virtual KITTI dataset [31]. The authors manually recreated

the KITTI environment using a game-engine, 3D model assets

and the original video sequences, see Figure 3. Different

lighting and weather conditions, vehicles colors and models,

etc., were adjusted to automatically generate labelled data.

They provide approximately 17,000 frames consisting of the

photo-realistic images, a depth frame, and pixel-level semantic

segmentation ground-truth. Additionally, the authors assessed

the transferability across real and virtual domains for a track-

ing application (which requires detection). They evaluated a

tracker trained on real images and tested on virtual ones.

The results revealed that the gap in performance is minimal,

showing the equivalence of the datasets. They also concluded

that the best performance was obtained when training on the

virtual data and fine-tuning on real data.

Simulation tools can be used to both generate training data

on specific conditions or to train end-to-end driving systems

[32], [33]. Using virtual data during training can enhance the

performance of detection models on real environments. This

data can be obtained through game-engines [34] or simulated

environments [31]. CARLA [35] is an open-source simulation

tool for autonomous driving that allows flexible environmental

setup and sensor configuration. It provides several 3D models

for pedestrians, cars and includes two virtual towns. Envi-

ronmental conditions, such as weather and lighting, can be

adjusted to generate unseen scenarios. The virtual sensor suite

includes RGB and depth cameras with ground-truth segmenta-

tion frames and a ray-casting lidar model. Another simulation

tool, Sim4CV [36] allows easy environment customization and

simultaneous multi-view rendering of the driving scenes, while

providing ground-truth bounding boxes for object detection

purposes.

IV. 3D OBJECT DETECTION METHODS

We divide 3D object detection methods in three categories:

monocular image, point cloud and fusion based methods. An

overview of methodology, advantages and limitations for these

methods is provided in Table III. The following subsections

address each category individually.

Fig. 3. Frames from 5 real KITTI videos (first column) and respective virtual
clones on Virtual KITTI (second column). Image from [31].

A. Monocular image based methods

Although 2D object detection is a largely addressed task that

has been successfully tackled in several datasets [37], [38], the

KITTI dataset offers particular settings that pose challenges

to object detection. These settings, common to most driving

environments, include small, occluded or truncated objects and

highly saturated areas or shadows. Furthermore, 2D detection

on the image plane is not enough for reliable driving systems:

more accurate 3D space localization and size estimation is

required for such application. This section focuses on methods

that are able to estimate 3D bounding boxes based only on

monocular images. Since no depth information is available,

most approaches first detect 2D candidates before predicting

a 3D bounding box that contains the object using neural

networks [39], geometrical constraints [40] or 3D model

matching [41], [42].

Chen et al. propose Mono3D [39], which leverages a

simple region proposal algorithm using context, semantics,

hand-engineered shape features and location priors. For any

given proposal, these features can be efficiently computed

and scored by an energy model. Proposals are generated by

exhaustive search on 3D space and filtered with Non-Maxima

Suppression (NMS). The proposals are further scored by a

Fast R-CNN [37] model that regresses 3D bounding boxes.

The work builds upon the authors’ previous work 3DOP

[43], which considers depth images to generate proposals in a

similar framework. Despite using only monocular images, the

Mono3D model slightly improves the performance obtained

by [43], which uses depth images. Pham et al. [44] extends

the 3DOP proposal generation considering class-independent

proposals, then re-ranks the proposals using both monocular

images and depth maps. Their method outperforms both 3DOP

and Mono3D methods, despite using depth images to refine

proposals.

An important characteristic of driving environments is se-

vere occlusion present in crowded scenes where vehicles can

block the view of other agents and themselves. Xiang et
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TABLE III
COMPARISON OF 3D OBJECT DETECTION METHODS BY CATEGORY

Category Methodology/Advantages Limitations/Drawbacks Research Gaps

Monocular Uses single RGB images to predict
3D object bounding boxes. Predicts 2D
bounding boxes on the image plane
then extrapolate them to 3D through re-
projection constraints or bounding box
regression.

The lack of explicit depth information
on the input format limits the accuracy
of localization performance.

CNNs that estimate depth channels
could be investigated to increase local-
ization accuracy.

Point-cloud

Projection Projects point clouds into a 2D image
and use established architectures for ob-
ject detection on 2D images with exten-
sions to regress 3D bounding boxes.

Projecting the point cloud data in-
evitably causes information loss. It also
prevents the explicit encoding of spatial
information as in raw point cloud data.

The encoding of the input image is per-
formed with hand-engineered features
(point density, etc.). Learned input rep-
resentations could improve the detection
results.

Volumetric Generates a 3 dimensional represen-
tation of the point cloud in a voxel
structure and uses Fully Convolutional
Networks (FCNs) to predict object de-
tections. Shape information is encoded
explicitly.

Expensive 3D convolutions increase
models inference time. The volumetric
representation is sparse and computa-
tionally inefficient.

Volumetric methods have not consid-
ered region proposals, which could im-
prove both localization accuracy and
processing time.

PointNet Uses feed-forward networks consuming
raw 3D point clouds to generate predic-
tions on class and estimated bounding
boxes.

Considering the whole point cloud as
input can increase run-time. Difficult es-
tablishing region proposals considering
raw point inputs.

PointNet architectures rely on region
proposals to limit the number of points.
Proposal methods based uniquely on
point-cloud data should be investigated.

Fusion Fuses both front view images and point
clouds to generate a robust detections.
Architectures usually consider multiple
branches, one per modality, and rely on
region proposals. Allows modalities to
interact and complement each other.

Requires calibration between sensors,
and depending on the architecture can
be computationally expensive.

These methods represent state-of-the-
art detectors. However, they should be
evaluated on more general scenarios
including diverse lighting and weather
conditions.

al. introduce visibility patterns into the model to mitigate

occlusion effects through object reasoning. They propose the

3D Voxel Pattern (3DVP) [41] representation that models

appearance through RGB intensities, 3D shape as a set of

voxels and occlusion masks. This representation allows to

recover which parts of the object are visible, occluded or

truncated. They obtain a dictionary of 3DVPs by clustering

the patterns observed on the data and training a classifier

for each specific pattern given a 2D image segment of the

vehicle. During the test phase the pattern obtained through

classification is used for occlusion reasoning and 3D pose

and localization estimation. They achieve 3D detection by

minimizing the reprojection error between the projected 3D

bounding box to the image plane and the 2D detection. Their

pipeline is still dependent on the performance of Region

Proposal Networks (RPNs).

Although some RPNs were able to improve traditional

proposal methods [37] they still fail to handle occlusion,

truncation and different object scales. Extending the previous

3DVP framework, the same authors propose SubCNN [45],

a CNN that explores class information for object detection at

the RPN level. They use the concept of subcategory, which are

classes of objects sharing similar attributes such as 3D pose

or shape. Candidates are extracted using convolutional layers

to predict heat maps for each subcategory at the RPN level.

After Region of Interest (ROI) proposal the network outputs

category classification along with refined 2D bounding box

estimates. Using 3DVPs [41] as subcategories for pedestrian,

cyclist and vehicle classes, the model recovers 3D shape,

pose and occlusion patterns. An extrapolating layer is used

to improve small object detection by introducing multi-scale

image pyramids.

Despite the previous 3DVP representations [41], [45] allow

to model occlusion and parts appearance, they are obtained

as a classification among an existing dictionary of visibility

patterns common in the training set. Thus, may fail to gener-

alize to an arbitrary vehicle pose that differs from the existing

patterns. To overcome this, Deep MANTA [42] uses a many-

task network to estimate vehicle position, part localization and

shape based only on monocular images. The vehicle shape

consists of a set of key points that characterize the vehicle 3-

dimensional boundaries, e.g. external vertices of the vehicle.

They first obtain 2D bounding regression and parts localization

through a two-level refinement region-proposal network. Next,

based on the inferred shape 3D model matching is performed

to obtain the 3D pose.

Previous attempts performed either exhaustive search on

the 3D bounding box space [39], estimated 3D pose through

a cluster of appearance patterns [41] or 3D templates [42].

Mousavian et al. [40] first extend a standard 2D object detector

with 3D orientation (yaw) and bounding box sizes regression.

This is justified by the box dimensions having smaller variance

and being invariant with respect to the orientation. Most

models use L2 regression for orientation angle prediction. In

contrast, the authors propose a Multi-bin method to regress

orientation. The angle is considered to belong to one of n

overlapping bins and a network estimates the confidence of

the angle belonging to each bin along with a residual angle

to be added to the bin center to recover the output angle. The

3D box dimensions and orientations are fixed as determined
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by the network prediction. Then 3D object pose is recovered

solving for a translation matrix that minimizes the reprojection

error of the 3D bounding box w.r.t. the 2D detection box on

the image plane.

All previous monocular methods can only detect objects

from the front-facing camera, ignoring objects on the sides

and rear of the vehicle. While lidar methods can be used

effectively for 360 degrees detection, [46] proposes the first

360 degrees panoramic image based method for 3D object

detection. They estimate dense depth maps of panoramic

images and adapt standard object detection methods for the

equirectangular representation. Due to the lack of panoramic

labelled datasets for driving, they adapt the KITTI dataset

using style and projection transformations. They additionally

provide benchmark detection results on a synthetic dataset.

Monocular methods have been widely researched. Although

previous works considered hand-engineered features for region

proposals [39], most methods have shifted towards a learned

paradigm for Region Proposals and second stage of 3D model

matching and reprojection to obtain 3D bounding boxes. The

main drawbacks of monocular based methods is the lack of

depth cues, which limits detection and localization accuracy

specially for far and occluded objects, and sensitivity to

lighting and weather conditions, limiting the use of these

methods for day time. Also, since most methods rely on a

front facing camera (except for [46]), it is only possible to

detect objects in front of the vehicle, contrasting to point

clouds methods that, in principle, have a coverage all around

the vehicle. We summarize the methodology/contributions and

limitations of monocular methods in Table IV.

B. Point cloud based methods

Current 3D object detection methods based on point-clouds

can be divided into three subcategories: projection based,

volumetric representations and point-nets. Each category is

explained and reviewed below, followed by a summary dis-

cussion.

1) Projection methods: Image classification and object

detection in 2D images is a well-researched topic in the

computer vision community. The availability of datasets and

benchmarked architectures for 2D images make using these

methods even more attractive. For this reason, point cloud

(PCL) projection methods first transform the 3D points into

a 2D image via plane [47], cylindrical [48] or spherical

[34] projections that can then be processed using standard

2D object detection models such as [49]. The 3D bounding

box can then be recovered using position and dimensions

regression.

Li et al. [48] uses a cylindrical projection mapping and a

Fully Convolutional Network (FCN) to predict 3D bounding

boxes around vehicles only. The input image resulting from

the projection has channels encoding the points’ height and

distance from the sensor. This input is fed to a 2D FCN

which down-samples the input for three consecutive layers and

then uses transposed convolutional layers to up-sample these

maps into point-wise “objectness” and bounding box (BB)

prediction outputs. The first output defines if a given point

is part of a vehicle or the background, effectively working as

a weak classifier. The second output encodes the vertices of

the 3D bounding box delimiting the vehicle conditioned by the

first output. Since there will be many BB estimates for each

vehicle, an NMS strategy is employed to reduce overlapping

predictions based on score and distance. The authors train this

detection model in an end-to-end fashion on the KITTI dataset

with loss balancing to avoid bias towards negative samples or

near cars, which appear more frequently.

While previous methods used cylindrical and spherical

projections, [30], [50], [51] use the bird-eye view projection

to generate 3D proposals. They differ regarding the input

representation: the first encodes the 2D input cells using the

minimum, median and maximum height values of the points

lying inside the cell as channels, while the last two use height,

intensity and density channels. The first approach uses a Faster

R-CNN [13] architecture as a base with an adjusted refinement

network that outputs oriented 3D bounding boxes. Despite

their reasonable bird-eye view results, their method performs

poor orientation angle regression. Most lidar base methods use

sensors with high point density, which limits the application

of the resulting models on low-end lidar sensors. Beltran et

al. [51] propose a novel encoding that normalizes the density

channel based on the parameters of the lidar being used.

This normalization creates a uniform representation and allows

to generalise the detection model to sensors with different

specifications and number of beams.

One fundamental requirement of safety-critical systems de-

ployed on autonomous vehicles, including object detection,

is real-time operation capability. These systems must meet

strict response time deadlines to allow the vehicle to respond

to the environment. Complex-YOLO [30] focus on efficiency

using a YOLO [52] based architecture, with extensions to

predict the extra dimension and yaw angle. While classical

RPN approaches further process each region for finer predic-

tions, this architecture is categorized as a single-shot detector,

obtaining detections in a single forward step. This allows

Complex-YOLO to achieve a runtime of 50 fps, up to five

times more efficient than previous methods, despite inferior,

but comparable detection performance.

Quantifying the confidence of predictions made by an AV’s

object detection system is fundamental for the safe operation

of such vehicle. As with human drivers, if the system has

low confidence on its predictions, it should enter a safe state

to avoid risks. Although most detection models offer a score

for each prediction, they tend to use softmax normalization to

obtain class distributions. Since this normalization forces the

sum of probabilities to unity, it does not necessarily reflect the

absolute confidence on the prediction. Feng et al. [53] uses a

Bayesian Neural Network to predict the class and 3D bounding

box after ROI pooling, which allows to quantify the network

confidence for both outputs. The authors quantify epistemic

and aleatoric uncertainties. While the former measures the

model uncertainty to explain the observed object, the latter

relates to observation noises in scenarios of occlusion and

low point density. They observed an increase in detection

performance when modelling aleatoric uncertainty by adding

a constraint that penalizes noisy training samples.
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TABLE IV
SUMMARY OF MONOCULAR BASED METHODS

Method Methodology/Contributions Limitations

Mono3D
[39]

Improves detection performance over 3DOP that relied on the depth
channel.

Poor localization accuracy given the lack of depth cues.

3DVP [41] Novel 3DVP object representation includes appearance, 3D shape and
occlusion information. Classification among an existing set of 3DVPs
allows occlusion reasoning and recovering 3D pose and localization.

Fixed set of 3DVPs extracted during training limits generalisa-
tion to arbitrary object poses.

SubCNN
[45]

Uses 3DVP representation to generate occlusion-aware region proposals.
The proposals are refined and classified within the object representations
(3DVP). Improves RPN model refinement network using CNNs.

Since the 3DVP representation is employed, this method has
the same limitations as the previous one.

DeepManta
[42]

CNN to predict parts localization and visibility, fine orientation, 3D
localization and template, 3D template matching to recover 3D position.

Detection restricted to vehicles, ignoring other classes.

Deep3DBox
[40]

Simplified network architecture by independently regressing bounding
box size and angle. Then using image reprojection error minimization
to obtain 3D localization.

The reprojection error is dependent on the BB size and angle re-
gressed by the network. This dependence increases localization
error.

360Panoramic
[46]

Estimates depth for 360 degrees panoramic monocular images. Then
adapt a CNN to predict 3D object detections on the recovered panoramic
image. The only method capable of using images to detect objects at
any angle around the vehicle.

Limited to vehicle detection and fails when the vehicle is too
close to the camera. The resolution of the camera limits the
range of detection.

2) Volumetric convolutional methods: Volumetric methods

assume that the object or scene is represented in a 3D grid, or

a voxel representation, where each unit has attributes, such as

binary occupancy or a continuous point density. One advan-

tage of such methods is that they encode shape information

explicitly. However, as a consequence, most of the volume is

empty, resulting in reduced efficiency while processing these

empty cells. Additionally, since data is three dimensional by

nature 3D convolutions are necessary, drastically increasing

the computational cost of such models.

To this effect [54], [55] address the problem of object

detection on driving scenarios using one-stage FCN on the

entire scene volumetric representation. This one-stage detec-

tion differs from two-stage where region proposals are first

generated and then refined on a second processing stage.

Instead, one-stage detectors infer detection predictions in a

single forward pass. Li et al. [54] uses a binary volumetric

input and detects vehicles only. The model’s output maps

represent “objectness” and BB vertices predictions, similarly

to the authors’ previous work [48]. The first output predicts

if the estimated region belongs to an object of interest, while

the second predicts its coordinates. They use expensive 3D

convolutions which limits temporal performance.

Aiming at a more efficient implementation, [55] fixes BB

sizes for each class but detects cars, pedestrians and cyclists.

This assumption simplifies the architecture and together with a

sparse convolution algorithm greatly reduces the model’s com-

plexity. L1 regularization and Rectified Linear Unit (ReLU)

activation functions are used to maintain sparsity across con-

volutional layers. Parallel networks are used independently

for each class during inference. The assumption of fixed BB

sizes allows to train the network directly on the 3D crops

of positive samples. During training they augment the data

with rotation and translation transformation and employ hard

negative mining to reduce false positives.

3) Point-nets methods: Point clouds consist of a variable

number of 3D points sparsely distributed in space. There-

fore, it is not obvious how to incorporate their structure to

traditional feed-forward deep neural networks pipelines that

assume fixed input data sizes. Previous methods attempted

to either transform the point cloud raw points into images

using projections or into volumetric structures using voxel

representations. A third category of methods, called Point-nets,

handle the irregularities by using the raw points as input in an

attempt to reduce information loss caused by either projection

or quantization in 3D space. We first review seminal work and

then progress to driving specific applications.

The seminal work in the category is introduced by PointNet

[56]. Segmented 3D PCLs are used as input to perform object

classification and part-segmentation. The network performs

point-wise transformations using Fully-Connected (FC) layers

and aggregates a global feature through a max-pooling layer,

ensuring independence on point order. Experimental results

show that this approach outperforms volumetric methods [57],

[58]. This model is further extended in PointNet++ [59], where

each layer progressively encode more complex features in a

hierarchical structure. The model generate overlapping sets of

points and local attribute features are obtained by feeding each

set to a local PointNet. Follow up work by Wang et al. [60]

further generalize the PointNet architecture by considering

points pair-wise relationships. More detailed information on

convolutional neural networks for irregular domains is out of

the scope of this paper but can be found in [61].

The seminal methods assumed segmented PCLs that contain

a single object, but the gap between object classification

and detection is still an open question. VoxelNet [62] uses

raw point subsets to generate voxel-wise features, creating

a uniform representation of the point cloud, as obtained in

volumetric methods. The first step randomly selects a fixed

number of points from each voxel, reducing evaluation time

and enhancing generalization. Each set of points is used by

a voxel-feature-encoding (VFE) layer to generate a 4D point

cloud representation. This representation is fed to 3D convo-

lutional layers, followed by a 3D region proposal network to
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predict BB location, size and class. The authors implement

an efficient convolution operation considering the sparsity of

the voxel representation. Different voxel sizes are used for

cars and pedestrians/cyclists to avoid detail loss. Models are

trained independently for each class, resulting in three models

that must be used simultaneously during inference. In Frustum

PointNet [63] detection is achieved by selecting sets of 3D

points and using a PointNet to classify and predict bounding

boxes for each set. The set selection criterion is based on 2D

detections on the image plane, thus this method is classified

as a Fusion method, reviewed in Section IV-C.

4) Discussion: Among point cloud based methods, the

projection subcategory has gained most attention due to the

proximity to standard image object detection. Particularly, it

offers a good trade-off between time complexity and detection

performance. However, most methods rely on hand-engineered

features when projecting the point cloud (density, height, etc.).

In contrast, PointNet methods uses the raw 3D points to learn

a representation in feature space. In this last category it is

still necessary to investigate new forms of using a whole

scene point cloud as input, as regular PointNet models assume

segmented objects. Volumetric methods transform the point

cloud into voxel representations where the space information

in explicitly encoded. This approach causes a sparse represen-

tation which is inefficient given the need of 3D convolutions.

We present a summary of point cloud-based methods in Table

V.

C. Fusion based methods

As mentioned previously, point clouds do not provide tex-

ture information, which is valuable for class discrimination

in object detection and classification. In contrast, monocular

images cannot capture depth values, which are necessary for

accurate 3D localization and size estimation. Additionally, the

density of point clouds tends to reduce quickly as the distance

from the sensor increases, while images can still provide

a means of detecting far vehicles and objects. In order to

increase the overall performance, some methods try to use

both modalities with different strategies and fusion schemes.

Generally there are three types of fusion schemes [64]:

Early fusion: Modalities are combined at the beginning of

the process, creating a new representation that is depen-

dent on all modalities.

Late fusion: Modalities are processed separately and inde-

pendently up to the last stage, where fusion occurs. This

scheme does not require all modalities be available as it

can rely on the predictions of a single modality.

Deep fusion: Proposed in [64], it mixes the modalities hier-

archically in neural network layers, allowing the features

from different modalities to interact over layers, resulting

in a more general fusion scheme.

In [65] the authors evaluate the fusion at different stages of

a 3D pedestrian detection pipeline. Their model considered

two inputs: monocular image and a depth frame. The authors

conclude that late fusion yields the best performance, although

early fusion can be used with minor performance drop.

One fusion strategy consists of using the point cloud pro-

jection method, presented in Section IV-B1, with extra RGB

channels of front facing cameras along the projected PCL

maps to obtain higher detection performance. Two of these

methods [6], [64] use 3D region proposal networks (RPNs)

to generate 3D Regions of Interest (ROI) which are then

projected to the specific views and used to predict classes and

3D bounding boxes.

The first method, MV3D [64], uses bird-eye and front

view projections of lidar points along the RGB channels of

a forward facing camera. The network consists of three input

branches, one for each view, with VGG [38] based feature

extractors. The 3D proposals, generated based on the bird-

eye view features only, are projected to each view’s feature

maps. A ROI pooling layer extracts the features corresponding

to each view’s branch. These proposal-specific features are

aggregated in a deep fusion scheme, where feature maps

can hierarchically interact with one another. The final layers

output the classification result and the refined vertices of

the regressed 3D bounding box. The authors investigate the

performance of different fusion methods and conclude that

the deep fusion approach obtains the best performance since

it provides more flexible means of aggregating features from

different modalities.

The second method, AVOD [6], is the first to introduce an

early fusion approach where the bird-eye view and RGB chan-

nels are merged for region proposal. The input representations

are similar to MV3D [64] except that only the bird-eye view

and image input branches are used. Both modalities’ feature

maps are used by the RPN, achieving high proposal recall. The

highest scoring region proposals are sampled and projected

into the corresponding views’ feature maps. Each modality

proposal specific features are merged and a FC layer outputs

class distribution and refined 3D boxes for each proposal.

Commonly, loss of details after convolutional stages prevents

detection of small objects. The authors circumvent this by

upsampling the feature maps using Feature Pyramid Networks

[66]. Qualitative results show robustness to snowy scenes and

poor illumination conditions on private data.

A second strategy consists of using the monocular image

to obtain 2D candidates and extrapolate these detections to

the 3D space where point cloud data is employed. In this

category Frustum Point-Net [63] generates region proposals

on the image plane with monocular images and use the point

cloud to perform classification and bounding box regression.

The 2D boxes obtained over the image plane are extrapolated

to 3D using the camera calibration parameters, resulting

in frustums region proposals. The points enclosed by each

frustum are selected and segmented with a PointNet instance

to remove the background clutter. This set is then fed to a

second PointNet instance to perform classification and 3D BB

regression. Similarly, Du et al. [67] first select the points that

lie in the detection box when projected to the image plane,

then use these points to perform model fitting, resulting in

a preliminary 3D proposal. The proposal is processed by a

two-stage refinement CNN that outputs the final 3D box and

confidence score. The detections in both these approaches are

constrained by the proposal on monocular images, which can
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TABLE V
SUMMARY OF POINT CLOUD-BASED METHODS

SubCategory Method Methodology/Contributions Limitations

Projection

VeloFCN
[48]

Uses fully convolutional architecture with lidar point cloud bird-
eye view projections. Output maps represent 3D bounding box
regressions and “objectness” score, the likelihood of having an
object at that position.

Detects vehicles only. Limited performance on small or
occluded objects due to the loss of resolution across
feature maps.

C-YOLO
[30]

Uses a YOLO based single-shot detector extended for 3D BB
and orientation regression. The proposed architecture achieves
50 fps runtime, more than any previous method.

There is a tradeoff between inference time and detection
accuracy. Single-shot networks underperform networks
that use a second stage for refinement.

TowardsSafe
[53]

Uses variational dropout inference to quantify uncertainty in
class and bounding box predictions. Aleatoric noise modelling
allows the network to generalise better by reducing the impact
of noisy samples in the training process.

The uncertaity estimation requires several forward
passes of the network. This limits the temporal perfor-
mance of this method, preventing real-time results.

BirdNet
[51]

Normalizes point cloud representation to allow detection gen-
eralisation across different lidar models and specifications.

Input image with only 3 channels encoding height,
density and intensity information looses detailed infor-
mation, which degrades performance.

Volumetric

3DFCN
[54]

Extension of the FCN architecture to voxelized lidar points
clouds. Single shot detection method.

Requires 3D convolutions, limiting temporal perfor-
mance to 1 fps.

Vote3Deep
[55]

Proposes an efficient convolutional algorithm to exploit the
sparsity of volumetric point cloud data. Uses L1 regularisation
and Rectified Linear Unit (ReLU) to maintain sparsity.

Assumes fixed sizes for all detected objects, limiting the
detection performance.

PointNet

VoxelNet
[62]

Extends PointNet concept to point clouds in a scene scale.
Uses raw 3D points to learn a volumetric representation through
Voxel Feature Encoding layers. The volumetric features are used
for 3D region proposal.

Expensive 3D convolutions limits time performance.
Models are class specific, thus multiple models must
be run in parallel at run time.

be a limiting factor due to lighting conditions, etc.

Fusion methods obtain state-of-the-art detection results by

exploring complimentary information from multiple sensor

modalities. While lidar point clouds provide accurate depth

information with sparse and low point density at far locations,

cameras can provide texture information which is valuable

for class discrimination. Fusion of information at feature

levels allow to use complimentary information to enhance

performance. We provide a summary of fusion methods in

Table VI.

V. EVALUATION

This section presents metrics commonly used for 3D object

detection. Performance for some of the reviewed methods

is also provided, followed by a comprehensive discussion

of the results. Finally, we present research challenges and

opportunities.

A. Metrics

For any detection or classification task that outputs a con-

fidence yi of sample xi belonging to the positive class, it is

possible to compute a precision/recall curve using the ranked

output. Recall is defined as the proportion of all positive

samples ranked above a given threshold t:

r(t) = P (yi ≥ t | xi ∈ C) (1)

where C is the set of positive samples.

Likewise, precision is the proportion of all samples above

threshold t which are from the positive class:

p(t) = P (xi ∈ C | yi ≥ t). (2)

Although both precision and recall are parametrized by t,

the precision/recall curve can be parametrized by the recall

r. This curve can be summarized by a single metric called

Average Precision (AP) [68]:

AP =
1

11

∑

r∈{0,0.1,...,1}

pinterp(r) (3)

where pinterp(r) = maxr̃:r̃≥r p(r̃) is an interpolated version of

the precision for a recall level r. This metric is the average

precision at 11 different recall levels, ranging from 0 to 1 with

0.1 step size, and reduces the impact of small variations in the

probabilistic output.

Most of the discussed works used the KITTI dataset for

training and evaluation, which provides a consistent baseline

for comparison. Detections are evaluated considering the im-

age plane AP, hereafter called AP2D. Samples are considered

true positives if the overlapping area of the estimated and

ground-truth boxes exceeds a certain threshold. Specifically,

the Intersection over Union (IoU) of the bounding boxes areas

in the image plane should exceed 0.5 for pedestrians and

cyclists and 0.7 for vehicles. The dataset guidelines suggest

to evaluate 3D object detection using both AP2D and Average

Orientation Similarity (AOS) metrics [29]. The latter jointly

measures the 2D detection and 3D orientation performance by

weighting the AP2D score with the cosine similarity between

the estimated and ground-truth orientations.

Despite being employed by most monocular models, these

two metrics fail to decouple the effects of localization and

bounding box sizes estimation [69]. They also introduce

distortion due to image plane projection. For example, two

objects of different sizes at different locations can have the

same bounding box projection on the image plane. To solve
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TABLE VI
SUMMARY OF FUSION BASED METHODS

Method Methodology/Contributions Limitations

MV3D [64] Uses bird-eye and front view lidar projections as well as monocular
camera frames to detect vehicles. 3D proposal network based on the
bird-eye-view. Introduces a deep fusion architecture to allow interactions
between modalities.

Although far objects might be visible through the camera, the
low lidar point density prevents detection of these objects.
Specifically, the RPN based on the bird-eye view only limits
these detections. Detects vehicles only.

AVOD [6] Uses bird-eye lidar projection and monocular camera only. New RPN
uses both modalities to generate proposals. A Feature Pyramid Network
extension improves detection of small objects by up sampling feature
maps. New vector representation removes ambiguities in the orientation
regression. Can detect vehicles, pedestrians and cyclists.

Detection method only sensitive to objects in front of the vehicle
due to the forward-facing camera used.

F-PointNet
[63]

Extracts 2D detection from image plane, extrapolates detection to a 3D
frustum, selecting lidar points. Uses a PointNet instance to segment
background points and generate 3D detections. Can detect vehicles,
pedestrians and cyclists.

Since proposals are obtained from the front view image, failing
to detect objects in this view limits the detection performance.
This limits the use of this method at night time, for example.

this, Chen et al. [64] project the 3D detections into the bird-

eye view to compute a more meaningful 3D localization

metric (APBV). To overcome the projection distortion, they

also use an AP3D metric, which uses the IoU of volumes of 3D

boxes. These metrics are crucial because they allow to assess

localization and size regression performance that cannot be

reliably captured only by the image plane AP.

Still, the AP3D metric fails to precisely assess orientation

estimation. This is due to the metric considering positive

samples based on a threshold of the IoU metric. In this case, it

will not penalize orientation error as long as there is sufficient

overlapping volume. Ku et al. [6] penalize orientation angle

by extending the AOS metric with 3D volume overlapping.

They use the AP3D metric weighted by the cosine similarity

of regressed and ground-truth orientations, resulting in the

Average Heading Similarity (AHS) metric:

AHS =
1

11

∑

r∈{0,0.1,...,1}

max
r̃:r̃≥r

s(r̃) (4)

with s(r) being the orientation similarity defined for every

recall r as

s(r) =
1

|D(r)|

∑

i∈D(r)

✶(IoU ≥ λ)
1 + cos(θ − θ̃)

2
(5)

where θ is the orientation estimate and θ̃ the ground-truth

orientation, D(r) is the set of all detections at recall r and

✶(IoU ≥ λ) is the indicator function to consider valid

detection during AHS computation. The indicator function can

be shaped to compute both the 3D (using IoU of the volumes)

and bird-eye (IoU of the bird-eye projections) AHS. Note that

the AHS is upper bounded by AP3D or APBV, depending on

the metric used.

B. Performance of Existing Methods

All the reviewed methods in this paper provide 3D bounding

box outputs. However, most monocular based methods directly

predict 2D detections on their pipeline before generating the

3D detection. Many of these methods only provide AP2D

and AOS result metrics. For this reason and considering an

extensive comparison between methods, we report image plane

object detection results in Table VII for the car class and Table

VIII for pedestrian and cyclists classes obtained on the original

papers and the KITTI online benchmark [5].

The first group in Tables VII and VIII lists monocular based

methods which optimize 2D detections separately. On the other

hand, methods in the second group optimize 3D bounding

boxes directly. For evaluation, the latter group projects the

3D boxes onto the image plane. This projection result in 2D

boxes that does not necessarily fit tightly to predictions based

on the image plane directly due to the yaw angle and size

predictions. This explains the disparity of results between the

two groups, specifically for the Easy category.

The same tables reveal a disparity in performance between

classes: cars’ AP2D is at least 10% higher than pedestrians

and cyclists for most methods. This effect happens for two

reasons. Firstly, bigger objects are more easily detected and

are more resilient to occlusion than smaller ones. Secondly,

many methods only fine-tune their models for vehicles, where

different classes may require another set of hyper-parameters.

In addition, the intra-class performance degrades as the com-

plexity increases, which is explained by severe occlusion in

moderate and hard samples.

Despite the reasonable results on image plane projections,

the first two tables fail to assess all the components of 3D de-

tection, e.g. localization, dimension and orientation regression.

To this effect, Table IX obtained from [6] presents 3D metrics

on three methods for the car class on the KITTI validation

set with 0.7 3D IoU threshold. The AHS metric confirms that

the orientation regression proposed by AVOD [6] fixes the

ambiguity in the representation adopted in MV3D [64].

Monocular detection methods show very limited perfor-

mance on 3D detection metrics, as evidenced by the large

performance gap on 3D metrics between the two groups in

Table IX. This poor performance arises from the lack of

depth information in monocular images. Hence, monocular

methods cannot be reliably used for 3D object detection in

AVs. Moreover, this evaluation suggests that the AP2D and

AOS metrics are not enough to confidently assess 3D object

detection methods.

Table X presents 3D metrics on the KITTI 3D object detec-

tion benchmark [5] considering the impact of localization and
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TABLE VII
KITTI TEST SET RESULTS ON 2D OBJECT DETECTION FOR CAR CLASS

Method Modality
AP2D AOS

E M H E M H

DeepManta [42] Mono 96.4 90.1 80.79 96.32 89.91 80.55
SubCNN [45] Mono 90.81 89.04 79.27 90.67 88.62 78.68
Deep3DBox [40] Mono 92.98 89.04 77.17 92.9 88.75 76.76
DeepStOP [44] Stereo 93.45 89.04 79.58 92.04 86.86 77.34
Mono3D [39] Mono 92.33 88.66 78.96 91.01 86.62 76.84
3DOP [43] Stereo 93.04 88.64 79.1 91.44 86.1 76.52
3DVP [41] Mono 87.46 75.77 65.38 86.92 74.9 64.11

F-PointNet [63] LIDAR+Mono 90.78 90 80.8
MV3D [64] LIDAR+Mono 90.53 89.17 80.16
AVOD-FPN [6] LIDAR+Mono 89.99 87.44 80.05 89.95 87.13 79.74
VoxelNet [62] LIDAR 90.3 85.95 79.21
3DFCN [54] LIDAR 84.2 75.3 68 84.1 75.2 67.9
Vote3Deep [55] LIDAR 76.79 68.24 63.23
VeloFCN [48] LIDAR 60.3 47.5 42.7 59.1 459 41.1

E, M and H stands for Easy, Moderate and Hard, respectively.

bounding box parameters. The results of monocular methods

are not available because the 3D object detection benchmark

has been established after the publication of those methods.

Clearly the detection performance gap evidenced in 2D and

3D AP metrics is still large. The best performing method

achieves approximately 82% AP3D on the easy car class, while

the image plane counterpart achieves higher than 95% AP2D.

This is explained by the complexity in regressing parameters

for an extra dimension and also motivates further research to

improve results and enable robust detection for autonomous

driving applications.

Region proposal networks’ performance is critical as they

impose the upper bound detection recall for two stage de-

tectors. These networks can be regarded as weak classifiers,

which aim at narrowing down the object search space. Thus,

reducing the number of possibilities that a more specific,

complex network has to process. Ideally, it should retrieve all

the instances in order to avoid false negatives, although it is not

expected to get a high precision on these primitive proposals.

Ku et al. [6] assess their fusion RPN scheme using the recall

metric and compare it to other baseline methods, see Figure 4.

These results show the performance improvement achieved by

learning approaches versus hand-engineered based proposals

such as in [39], [43]. Unlike cars, pedestrians and cyclists

have a significant improvement when considering the fusion

scheme. These classes have smaller dimensions and cannot

be completely represented exclusively in the bird-eye view,

benefiting from more information obtained from the image

plane.

Regarding runtime, most methods cannot operate in the

real-time, considering the lidar or camera frame rate. As

an exception, Complex-YOLO [30] achieves a 50 fps frame

rate. The simpler single-shot architecture reflects in a small

performance drop. It must be noted that the authors did

not provide public results on the KITTI test set, reporting

their results on the validation set instead, which makes direct

comparison to other methods dubious.

Fig. 4. Recall vs number of proposals 3D IoU threshold of 0.5 for three
classes on KITTI validation set with moderate samples. Obtained from [6].

C. Research Challenges and Opportunities

We propose some further research topics that should be

considered to advance the performance of 3D object detection

in the context of autonomous vehicles. The topics were elab-

orated based on the significant performance disparity between

2D and 3D detectors and gaps found in the literature.

1) Most research in 3D object detection has focused on

improving the benchmark performance of such methods.

Although this is a valid goal, there is no understanding

on the required detection performance levels for reliable

driving applications. In this regard, a valid research op-

portunity is in investigating how detection performance

relates to the safety of driving, measured by relevant

Key Performance Indicators (KPIs).

2) The recent advances in PointNets, described in Section

IV-B3, can be explored to verify resilience to missing

points and occlusion, which is still the main cause of

poor performance on hard samples. More specifically,

the geometrical relationships between points could be

explored to obtain significant information that cannot

be attained considering each point individually.

3) Many methods consider sensor fusion to improve reli-

ability of the perception system. Considering the dis-

parity in point density, a possible contribution would

include a collaborative perception approach in a multi-

agent fusion scheme. Vehicles could use V2X or LTE

communication technology to share relevant perception

information that could improve and extend the visibility

of the environment and thus reduce uncertainty and

improve performance perception methods.

4) An important limitation of the KITTI dataset is its

characteristic daylight scenes and very standard weather

conditions. Although [6] reports having tested their

method during night-time and under snow, they only

report qualitative results. Further research should be

conducted to evaluate the effect of such conditions on

the object detection pipeline and how to achieve reliable

performance under general conditions. The simulation

tools described in Section III could be used to obtain

preliminary results.

5) The run time presented in Table X show that most

methods can only achieve lower than 10 fps, which is

the minimum rate to keep real time operation with the

lidar frame rate. Significant improvement has to be done

to obtain fast and reliable recognition systems operating

on real environments.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 12

TABLE VIII
KITTI TEST SET RESULTS ON 2D OBJECT DETECTION FOR PEDESTRIANS AND CYCLISTS

Method Modality
AP2D AOS

Pedestrians Cyclists Pedestrians Cyclists
E M H E M H E M H E M H

SubCNN [45] Mono 83.28 71.33 66.36 79.48 71.06 62.68 78.45 6.28 61.36 72 63.65 56.32
DeepStereoOP [39] Stereo 81.82 67.32 65.12 79.58 65.84 57.90 72.82 59.28 56.85 69.20 55.69 48.95
Mono3D [39] Mono 80.35 66.68 63.44 76.04 66.36 58.87 71.15 58.15 54.94 65.56 54.97 48.77
3DOP [43] Stereo 81.78 67.47 64.7 78.39 68.94 61.37 72.94 59.8 57.03 70.13 58.68 52.35

F-PointNet [63] LIDAR+Mono 87.81 77.5 74.46 84.9 72.25 65.14
AVOD-FPN [6] LIDAR+Mono 67.32 58.4 57.44 68.65 59.32 55.82 53.36 44.92 43.77 67.61 57.53 54.16
VoxelNet [62] LIDAR 50.61 44.08 42.84 72.04 59.33 54.72
Vote3Deep [55] LIDAR 68.39 55.37 52.59 79.92 67.88 62.98

E, M and H stands for Easy, Moderate and Hard, respectively.

TABLE IX
KITTI VALIDATION SET RESULTS FOR AP3D AND AHS FOR CAR CLASS.

OBTAINED FROM [6] AND [64].

Method Modality
AP3D AHS

E M H E M H

Mono3D [39] Mono 2.53 2.31 2.31
Deep3DBox [40] Mono 5.84 4.09 3.83 5.84 4.09 3.83
3DOP [43] Stereo 6.55 5.07 4.1

MV3D [64] LIDAR+Mono 83.87 52.74 72.35 64.56 43.75 39.86
AVOD-FPN [6] LIDAR+Mono 84.41 74.44 68.65 84.19 74.11 68.28

E, M and H stands for Easy, Moderate and Hard, respectively.

TABLE X
3D OBJECT DETECTION BENCHMARK ON KITTI TEST SET. 3D IOU 0.7

AP3D APBV

Method Time(s)Class E M H E M H

MV3D [64] 0.36

Car

71.09 62.35 55.12 86.02 76.9 68.49
AVOD [6] 0.08 73.59 65.78 58.38 86.8 85.44 77.73
AVOD-FPN [6] 0.1 81.94 71.88 66.38 88.53 83.79 77.9
F-Pointnet [63] 0.17 81.2 70.39 62.19 88.7 84 75.33
Voxelnet [62] 0.23 77.47 65.11 57.73 89.35 79.26 77.39

C-YOLO1 [30] 0.02 67.72 64 63.01 85.89 77.4 77.33

AVOD [6] 0.08

Ped

38.28 31.51 26.98 42.51 35.24 33.97
AVOD-FPN [6] 0.1 50.8 42.81 40.88 58.75 51.05 47.54
F-Pointnet [63] 0.17 51.21 44.89 40.23 58.09 50.22 47.2
Voxelnet [62] 0.23 39.48 33.69 31.51 46.13 40.74 38.11

C-YOLO1 [30] 0.02 41.79 39.7 35.92 46.08 45.9 44.2

AVOD [6] 0.08

Cyc

60.11 44.9 38.8 63.66 47.74 46.55
AVOD-FPN [6] 0.1 64 52.18 46.61 68.09 57.48 50.77
F-Pointnet [63] 0.17 71.96 56.77 50.39 75.38 61.96 54.68
Voxelnet [62] 0.23 61.22 48.36 44.37 66.7 54.76 50.55

C-YOLO1 [30] 0.02 68.17 58.32 54.3 72.37 63.36 60.27

1 The authors did not provide public test set results, only validation set
E, M and H stands for Easy, Moderate and Hard, respectively.

6) Most methods cannot output a calibrated confidence [70]

on predictions, which can lead to dangerous behaviours

in real scenarios. Seminal work [53] identified this

gap and proposed a method to quantify uncertainty

in detection models, but failed to achieve real-time

performance. More research should be conducted in this

area to understand the origins of uncertainty and how to

mitigate them.

VI. CONCLUSION

This paper reviewed the state-of-the-art of 3D object detec-

tion within the context of autonomous vehicles. We analysed

sensors technologies with their advantages and disadvantages,

and discussed standard datasets. The reviewed works were

categorized based on sensor modality: monocular images,

point clouds (obtained through lidars or depth cameras) and

fusion of both.

Quantitative results, obtained from the KITTI benchmark,

showed that monocular methods are not reliable for 3D object

detection, due to lack of depth information, which prevents

accurate 3D positioning. On the other hand, fusion methods

were used to extract the most relevant information from each

modality and achieve state-of-the-art results for 3D object

detection. Finally, we presented directions of future work.
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