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Introduction

Any dataset with unequal distribution between its majority and minority classes can be 

considered to have class imbalance, and in real-world applications, the severity of class 

imbalance can vary from minor to severe (high or extreme). A dataset can be considered 

imbalanced if the classes, e.g., fraud and non-fraud cases, are not equally represented. 

�e majority class makes up most of the dataset, whereas the minority class, with lim-

ited dataset representation, is often considered the class of interest. With real-world 

datasets, class imbalance should be expected. If the degree of class imbalance for the 

majority class is extreme, then a classifier may yield high overall prediction accuracy 

since the model is likely predicting most instances as belonging to the majority class. 

Such a model is not practically useful, since it is often the prediction performance of the 

class of interest (i.e., minority class) that is more important for the domain experts [1]. 

He and Garcia [2] suggest that a popular viewpoint held by academic researchers defines 

imbalanced data as data with a high-class imbalance between its two classes, stating that 

high-class imbalance is reflected when the majority-to-minority class ratio ranges from 
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100:1 to 10,000:1. While this range of class imbalance may be observed in big data, it is 

not a strict definition of high-class imbalance. From the viewpoint of effective problem-

solving, any class imbalance (e.g., 50:1) level that makes modeling and prediction of the 

minority class a complex and challenging task can be considered high-class imbalance 

by the domain experts [3]. It should be noted that we focus our survey investigation of 

published works on class imbalance in big data in the context of binary classification 

problems, since typically non-binary (i.e., multi-class) classification problems can be 

represented using a sequence of multiple binary classification tasks.

High-class imbalance, often observed in big data, makes identification of the minority 

class by a learner very complex and challenging because a high-class imbalance intro-

duces a bias in favor of the majority class. Consequently, it becomes quite difficult for 

the learner to effectively discriminate between the minority and majority classes, yield-

ing a task comparable to searching for the proverbial needle in a haystack, especially if 

the class imbalance is extreme. Such a biased learning process could result in the clas-

sification of all instances as the majority (negative) class and produce a deceptively high 

accuracy metric. In situations where the occurrence of false negatives is relatively cost-

lier than false positives, a learner’s prediction bias in favor of the majority class could 

have adverse consequences [4]. For example, among several patients with suspicious 

mole(s) pigmentation (melanocytic naevi), very few are likely to have melanoma can-

cer, i.e., minority class, while most are likely not to have melanoma cancer, i.e., majority 

class. Here, a false negative implies a patient with cancer is misclassified as not having 

the disease, which is a very serious error. In contrast, a false positive implies a patient 

without cancer is classified as having the disease, which is comparatively (to a false neg-

ative) not a serious error. In this example, the real-world class imbalance is observed 

to be very high, thus making the issue of class imbalance into a problem of great sig-

nificance in predictive learning. Class imbalance observed in the given dataset can be 

considered intrinsic or extrinsic [2], where intrinsic-based class imbalance reflects the 

organic data distribution characteristics of the given domain and extrinsic-based class 

imbalance reflects influences of external factors such as time and storage associated with 

domain data. �e problem of distinguishing between 1000 spam emails from 1,000,000 

non-spam emails is an example of intrinsic class imbalance, given that most emails are 

non-spam. In contrast, a domain where data is transmitted and collected using a sequen-

tial stream could lead to extrinsic class imbalance if the data streaming and collection 

is interrupted due to external factors specific to the domain, e.g., lack of data storage 

capacity, time-based data collection rules, etc. It should be noted that in this survey 

paper, we do not distinguish between published works that focus on either intrinsic class 

imbalance or extrinsic class imbalance.

Specific properties are used to comprehend and define big data, including volume, 

variety, velocity, variability, value and complexity. Katal et al. [5] state that these prop-

erties, notably associated with big data, make modeling and analysis of such data with 

traditional methods difficult. More specifically, traditional methods may have difficulty 

coping with high volume data, the diversity of data formats, the speed of data coming 

from various sources, inconsistencies of data flows, the filtering of important data, and 

the linking and transforming of data [5]. To differentiate between non-big-data and big-

data, we refer to the former as traditional data in this paper. An example of traditional 
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data could be a dataset of 5000 instances collected over a period of 1 month for a small 

company, where each instance represents the front door access record of an employee 

of the company. In contrast, an example of big data could be a dataset of several mil-

lion or more weather forecast reference points for collecting real-time weather data, or 

Medicare claims records collected from providers over several years [6]. �e increasing 

reliance on big data applications worldwide makes a case for developing effective and 

efficient ways to extract knowledge from this type of data. Class imbalance plagues tra-

ditional data as well as big data; however, with the latter, the mal-effects can be felt much 

more severely due to the extreme degrees of class imbalance [7].

�e goal of our survey paper is to summarize current research work on high-class 

imbalance issues in big data. �e scope of our study is investigating works conducted 

within the past 8 years (i.e., 2010–2018) that focus on the problem junction of big data 

and class imbalance, and the consequent solutions developed by researchers. Moreover, 

in the interest of our focus on big data only, we only consider relevant works that ana-

lyze (class imbalance in big data) at least one dataset consisting of 100,000 instances or 

higher. In addition to analyzing the surveyed papers, we also provide our own insights 

into likely gaps in current research in the area and discuss avenues for future work for 

the community. To the best of our knowledge, we have included all published articles 

that fall within our survey study’s scope. We believe such a large-scale survey of works 

addressing, and developing solutions for, high-class imbalance problems in big data is 

unique in the data mining and machine learning domain.

In related literature, the strategies for tackling class imbalance problems are similar 

for both traditional data and big data. Ali et al. [8] categorize approaches for address-

ing class imbalance into those conducted at the Data-Level or at the Algorithm-Level, 

where both categories include approaches used for both traditional data and big data 

(see Table 1), i.e., data sampling (under-sampling and over-sampling), feature selection, 

cost-sensitive methods, and hybrid/ensemble techniques. Data-Level methods include 

data sampling and feature selection approaches, while Algorithm-Level methods include 

cost-sensitive and hybrid/ensemble approaches. �is categorization is further explained 

in the next section.

We observed some interesting trends/results based on our investigation of the sur-

veyed works, and some key findings are summarized next. Among the Data-Level meth-

ods, empirical results of relevant works generally suggest that Random Over-Sampling 

(ROS) yields better classification performance than Random Under-Sampling or the Syn-

thetic Minority Over-Sampling Technique (SMOTE). Moreover, with the MapReduce 

environment for big data analysis with data sampling, the process of determining the 

preferred balance between the data over-sampling percentage and classification perfor-

mance is an empirical parameter/process, instead of a formulaic solution. At the Algo-

rithm-Level, there are a variety of methods that seemingly provide good classification 

Table 1 Categories of methods addressing class imbalance

Data-Level methods Algorithm-Level methods

Data-sampling Feature selection Cost-sensitive Hybrid/ensemble

Over-sampling Under-sampling
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performance for big data with high-class imbalance. For the cost-sensitive techniques, 

our discussion includes a fuzzy rule-based classification approach [9, 10] and an online 

learner scheme [11, 12]. For the hybrid/ensemble techniques, our discussion includes a 

Bayesian Optimization Algorithm that maximizes Matthew’s Correlation Coefficient by 

learning optimal weights for the positive and negative classes [13], and an approach that 

combines Random Over-Sampling (ROS) and Support Vector Machines (SVMs) [14].

One of the primary problems we encountered during our surveyed works was that the 

MapReduce big data framework was observed to be quite sensitive to high-class imbal-

ance [15], primarily due to the adverse effects of creating multiple partitions within the 

already very small minority class space. Hence, we suggest a greater focus on a more 

flexible computational environment for big data analysis, such as Apache Spark [16], 

for addressing the high-class imbalance problem. Another key issue plaguing big data is 

small disjuncts (described later in the paper) of data points within the overall dataset or 

within each of the two classes, and based on our survey, we note that this issue has not 

been given enough focus in the context of high-class imbalance in big data. In addition, 

given the problem’s relatively poor maturity in developed effective solutions, consider-

ably more research and empirical investigation still remain to be conducted. Many stud-

ies we investigated in this paper generally lacked sufficient depth in the scope of their 

empirical investigation of the high-class imbalance problem in big data. �is finding 

makes it difficult to conclude whether one approach is more effective and efficient than 

another.

�e remainder of this article is organized as follows. In “Methods addressing class 

imbalance in traditional data” section, we provide an overview of strategies and methods 

for handling traditional data with the class imbalance problem. While the primary focus 

of this paper is on high-class imbalance in big data, we present “Methods addressing 

class imbalance in traditional data” section to provide the reader with a more complete 

picture of existing approaches for class imbalance, since similar methods are generally 

used for both traditional data and big data. In “Methods addressing class imbalance in 

big data” section, we discuss the Data-Level methods and Algorithm-Level techniques 

for handling big data defined by high degrees of class imbalance. In “Discussion sum-

mary of surveyed works” section, we provide our insights into existing problems that 

still need focus (or more focus) in the context of effective solutions for big data with 

high-class imbalance. In “Conclusion” section, we conclude with the main points of our 

paper and suggest some directions for future work.

Methods addressing class imbalance in traditional data

�e two general categories of methods that address the class imbalance problem are 

Data-Level methods and Algorithm-Level methods, as noted by Ali et al. [8]. Each of the 

two categories can be further sub-divided into groups, as shown in Table 1.

Data-Level methods can be further sub-grouped into data-sampling methods and 

feature selection methods. Over-sampling methods and under-sampling methods form 

the two sub-groups of the data-sampling methods group, where data sampling from 

the given dataset is done either randomly or using a specified formulaic/algorithmic 

approach [17, 18]. During the over-sampling process, instances from the minority class 

are added (via replication) to the given dataset, where the replication is done either 



Page 5 of 30Leevy et al. J Big Data            (2018) 5:42 

randomly or using an intelligent algorithm. In contrast, during the under-sampling 

process, instances from the majority class are removed from the given dataset, where 

the removal is largely done randomly (as seen in related literature). Feature Selection 

Methods, while largely used only (without consideration to class imbalance) to improve 

classification performance [19, 20], may also help select the most influential features (or 

attributes) that can yield unique knowledge for inter-class discrimination. �is leads 

to a reduction of the adverse effects of class imbalance on classification performance 

[21–23].

Algorithm-Level methods can be further sub-grouped into cost-sensitive methods 

and hybrid/ensemble methods. �e former works on the general principal of assign-

ing more weight to an instance or learner in the event of a misclassification, e.g., a false 

negative prediction may be assigned a higher cost (i.e., weight) compared to a false posi-

tive prediction, given the latter is the class of interest. Ensemble methods can also be 

used as cost-sensitive methods, where the classification outcome is some combination 

of multiple classifiers built on the dataset; Bagging and Boosting are two common types 

of ensemble learners [24, 25]. Bagging minimizes the predictive variance by producing 

several training sets from the given dataset, with a classifier being generated for each 

training set and then their individual models combined for the final classification. Boost-

ing also uses several training sets from the given dataset, and after iteratively assigning 

different weights to each classifier based on their misclassifications, a weighted approach 

combining the individual classifier’s results yields the final classification. Hybrid meth-

ods are designed to remedy known problems arising from the data-sampling methods, 

feature selection methods, cost-sensitive methods, and basic learning algorithms such as 

Naive Bayes [26]. In some instances, sub-groups of Data-Level methods or Algorithm-

Level methods may be combined into an overall approach to address the class imbal-

ance problem. For example, the popular Random Forest (RF) classifier is a version of the 

original Random Decision Forest [27] algorithm, and is an ensemble learner which also 

implements Bagging. In contrast, the original Random Decision Forest is not considered 

an ensemble learner [28].

Data-sampling methods for class imbalance

�e common data-sampling approaches for handling class imbalance include: Random 

Over-Sampling (ROS), Random Under-Sampling (RUS), and Synthetic Minority Over-

Sampling Technique (SMOTE) [29, 24, 30]. While ROS and RUS are relatively simpler 

methods, their usefulness in addressing class imbalance should not be overlooked, in lieu 

of more complex methods such as SMOTE [31]. It is our opinion that different meth-

ods should be investigated for the given domain’s dataset to address class imbalance, as 

there is no one universal best approach. SMOTE is an intelligent over-sampling tech-

nique that forms new minority class instances by interpolating between several minority 

class instances that lie relatively close to each other [32]. �e creation of new minority 

class instances leads to a reduction in the class imbalance degree compared to the origi-

nal majority-to-minority class ratio. In over-sampling techniques, an important concern 

is overfitting by the learner (i.e., leading to poor generalization performance) and also 

an increase of the training dataset size. Fernandez et al. [32] suggest that overfitting is 

not a serious issue for SMOTE since it synthetically creates new instances, compared to 
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duplication of existing instances. In the case of under-sampling techniques, an issue of 

concern is the deletion of valuable information if a relatively large number of instances 

are removed from the majority class. A substantial removal of instances from the major-

ity class may also alter the distribution of the majority class (and thus overall dataset) 

that is representative of the given domain. It is therefore important to consider different 

data sampling methods for class imbalance.

Feature-selection methods for class imbalance

In our literature review for this survey paper, it was observed that feature-selection 

methods for addressing class imbalance is a largely unexplored research area. Ali et al. 

[8], while also noting the research gap in using feature selection for class imbalance, 

warn that extra computational cost can be an issue of concern. Mladenic and Grobelnik 

[22] utilized a feature-subset selection approach developed for a Naive Bayes classifier 

on imbalanced text data from multiple domains. A unique characteristic of the Naive 

Bayes learner is that it inherently assumes inter-attribute independence in the context 

of the given class attribute [26]. �eir empirical investigation compared 11 different fea-

ture scoring measures, and determined that the odds ratio (and its variants) produce the 

best results [22]. �e odds ratio is commonly used for information retrieval tasks, where 

documents are ranked according to positive or negative associations between words. 

�e proposed Naive Bayes classifier adopts the same conditional probability technique 

used by the Odds ratio for scoring features. �e authors also conclude that considering 

domain and algorithm characteristics significantly improves classification results.

Zheng et al. [23] investigate feature selection for text categorization with imbalanced 

data. �eir approach selected the positive features and negative features separately using 

feature selection techniques (including Information Gain, Chi Square, correlation coef-

ficient, and odds ratio), and then explicitly combined. �ey also present variations of 

the odds ratio and Information Gain metrics to especially address class imbalance. �eir 

study used the Naïve Bayes and Regularized Logistic Regression as classifiers, and the 

proposed approach yielded good results.

Yin et al. [21] demonstrated that both decomposition-based and Hellinger’s distance-

based methods can outperform existing feature-selection methods for imbalanced data. 

Decomposition methods partition the majority class into smaller pseudo-subclasses 

and assign the pseudo-class labels, while Hellinger’s distance is a measure of distribu-

tion divergence. �ere are three phases in a decomposition-based framework. In Phase 

1, K-means clustering is used to decompose the majority class into relatively balanced 

pseudo-subclasses. Class instance labels are then changed to subclass labels provided 

by the clustering step. In Phase 2, the goodness of each feature is measured with the 

pseudo-labels and the traditional measurement of the goodness of each feature. �e fea-

tures are then ranked according to the goodness based on the calculated scores. �e top 

k good features are selected, where k is a user-defined parameter, and the pseudo-labels 

are released back to the original labels. In Phase 3, the classification task is performed. 

�e Hellinger’s distance allows the notion of ‘‘affinity’’ to be captured between the prob-

ability measures on a finite event space. For example, let P and Q denote two probability 

measures that are continuous distributions with respect to a third probability measure. 

If P = Q, then distance = 0 (maximal affinity) and if P and Q are completely disjoint then 



Page 7 of 30Leevy et al. J Big Data            (2018) 5:42 

distance = √2 (zero affinity). A minimal affinity means that the given feature is most dis-

criminative between classes. �e higher the distance (i.e., lower affinity) value, the bet-

ter the corresponding feature. �us, the Hellinger’s distance can be used to measure the 

prediction power of features to classify instances.

Cost-sensitive methods for class imbalance

Several studies using cost-sensitive learning for minimizing class imbalance have 

been performed, and here we present some of the most relevant ones. Cao et  al. [33] 

introduced an effective wrapper framework incorporating classification performance 

measures, such as area under the receiver operating characteristic curve (AUC) and geo-

metric mean (GM), directly into the objective function of a cost-sensitive SVM. SVMs 

find the hyperplane that maximizes the margin used to separate two classes, and the vec-

tors defining the hyperplane are called support vectors. �e introduction of the wrapper 

framework improved the performance of classification by simultaneously optimizing the 

best feature subset, intrinsic parameters, and misclassification cost parameters [33]. In 

a related study, Cao et al. [34] used an objective function of cost-sensitive artificial neu-

ral networks (PSOCS-NN) instead of a cost-sensitive SVM [33], where the optimization 

is based on Particle Swarm Optimization (PSO) [35]. Neural networks are data-driven, 

self-adaptive models that attempt to mimic the operations of neurons in the human 

brain [36]. �eir empirical results showed that PSOCS-NN was superior in most cases 

compared to using a basic neural network learner with RUS, SMOTE [29], and SMOTE-

Boost [30]. �e proposed learner was also generally better than SMOTE combined with 

a non-optimized cost-sensitive neural network (SMOTE + CS-NN). In addition, among 

all methods examined, RUS had the worst classification performance.

Lopez et  al. [37] conducted a study on class imbalance with a comparison of cost-

sensitive learning with over-sampling, and it was determined that neither technique 

outperformed the other. �e study used two over-sampling techniques, SMOTE and 

SMOTE + ENN, where ENN is the Wilson’s Edited Nearest Neighbor rule. For the cost-

sensitive learners, the authors study several modifications to the C4.5, SVMs, k-NN, and 

Fuzzy Hybrid Genetics-Based Machine Learning methods, the combination of which 

is carried out through a wrapper classifier that uses these cost-sensitive approaches. In 

SMOTE + ENN, after SMOTE is performed, ENN is used to remove any instances mis-

classified by its three nearest neighbors in the training dataset. It should be noted that if 

the real cost matrix cannot be obtained for the cost-sensitive learners, an artificial cost 

matrix may have to be generated, leading to computational and empirical process over-

head. However, it is often the case that the real cost matrix is unavailable because there 

are a significant number of factors to consider [8].

Hybrid/ensemble methods for class imbalance

A hybrid method for addressing class imbalance may include two or more individual 

methods used for addressing the class imbalance problem, or may use multiple algo-

rithms for a specific part of the overall solution. Among the hybrid methods in pub-

lished works, many are centered around SVM, Artificial Neural Networks, and Decision 

Trees [8]. A decision tree is a classifier that is modeled on a tree-like structure of inter-

nal nodes, branches, and terminal nodes (class labels) [38]. Hybrid approaches have the 



Page 8 of 30Leevy et al. J Big Data            (2018) 5:42 

burden to ensure that the differences in the individual approaches properly complement 

each other as a whole, and together yield better performance compared to the individual 

methods alone.

Akbani et al. [39] present an algorithm that combines SVM with a variant of SMOTE 

combined with an error cost algorithm to overcome the sub-optimal performance of 

regular SVM with severely imbalanced data. �e authors compare their hybrid approach 

with RUS, SMOTE, and SVM, and conclude that it outperforms them all. Tang et  al. 

[40] present GSVM-RU, which is a variation of their previously proposed GSVM learner 

(granular computing-based learning framework that uses SVM), that incorporates 

under-sampling to address the problems SVM faces with working with severely imbal-

anced data. �e authors compare their approach to three other SVM-based hybrid 

learners: SVM-Weight, SVM-SMOTE, and SVM-RANDU, and demonstrate that, on 

the average, classification performance of GSVM-RU is better than the other methods. 

Ahumada et al. [41] propose a clustering-based technique combined with an SVM clas-

sifier to address class imbalance. �e clustering phase recursively splits the majority 

class instances into two groups, until the resulting datasets (sub-problem) are balanced 

or are relatively easy to discriminate. �e outcome of clustering is a directed acyclic 

graph (decision tree). An SVM classifier is subsequently fitted to each sub-problem. 

�e authors demonstrate that their approach outperforms ROS in most cases. �e two 

works presented above are hybrid approaches that use a cost-sensitive learning aspect in 

their approach.

In the case of Ensemble Methods designed to address the class imbalance problem, 

generally Bagging, AdaBoost, and Random Forest are popular approaches [42, 43]. Sev-

eral variants of Bagging have arisen from the original technique, such as Asymmetric 

Bagging, SMOTEBagging, ROSBagging, and RUSBagging. Adaptive Boosting (or Ada-

Boost) takes an iterative Boosting approach with the general goal of improving the clas-

sification performance of weak learners; some of its variants include RUSBoost [24] and 

ROSBoost [42]. A commonly used classifier, Random Forest is comprised of a bagging 

technique and random feature subspace selection that grows each tree in a Decision For-

est [27]. Balanced Random Forest and Weighted Random Forest are two variants of Ran-

dom Forest that have been proposed to use RF to address the problem of class imbalance 

[44]. Galar et  al. [45] suggest that under class imbalance conditions ensemble-based 

techniques generally produce better classification results than data sampling methods. 

However, the authors also conclude that SMOTEBagging, RUSBoost, and UnderBagging 

outperform other ensemble classifiers. Among these three methods there was no sta-

tistical difference; however, SMOTEBagging yielded slightly better classification perfor-

mance. As mentioned in the case of hybrid methods, it should be noted that ensemble 

methods (especially variants of basic ensemble learners) also have the burden to ensure 

that the differences in the individual approaches properly complement each other, and 

together yield better performance compared to the individual methods alone.

Methods addressing class imbalance in big data

�e strategies for tackling class imbalance are generally the same for traditional data and 

big data, and as noted in Table 1, these strategies are exercised at either the Data-Level 

or Algorithm-Level in their solutions. �e key differences are influenced by the unique 
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characteristics of big data, as discussed in “Introduction” section. We reiterate that our 

survey focuses on published works addressing the high-class imbalance problem(s) often 

observed in big data domains. Prior to discussing the relevant works, a brief discussion 

on big data processing is presented next.

�e processing and analysis of big data often requires specialized computational 

frameworks and environments that utilize computing clusters and parallel algorithms. 

�e more popular computational frameworks for working with big data include Apache 

Spark [16], MapReduce (original), and Apache Hadoop [46]. MapReduce generally 

divides the original dataset into subsets which are relatively easier to process, and then 

combines the multiple partial solutions that are obtained in determining the final out-

come. Apache Hadoop is an open source implementation and variant of MapReduce. 

Apache Spark performs faster distributed computing of big data by using in-memory 

operations instead of the divide-and-conquer approach of MapReduce [16]. Although 

Spark can run on Hadoop, this is generally not a requirement. Apache Mahout, which 

contains various implementations of classification models, is an open-source machine-

learning library that can run on Apache Hadoop or Apache Spark [46, 47]. It is a dis-

tributed linear algebra framework and mathematically expressive Scala programming 

language designed for quick implementation of algorithms.

If real-time solutions are of importance, one may wish to consider Apache Storm or 

Apache Flink instead, since they offer true stream processing while Spark’s use of micro-

batch streaming may have a small lag associated with it in receiving results [48]. Flink 

offers the best of both worlds in this regard, with a combination of batch and true stream 

processing, but it is a very young project and needs more research into its viability. 

Additionally, it does not currently support nearly as many machine learning solutions 

as the other platforms. No distributed machine-learning libraries have the same amount 

of options as some of the non-distributed tools such as Weka [49] because not every 

algorithm lends itself well to parallelization [48]. Mahout and MLLib1 provide the best-

rounded big data libraries in terms of algorithm coverage and both work with Spark. 

MLlib has a wider overall selection of algorithms and a larger and more dedicated team 

working on it, but is relatively new and largely unproven.

�e choice of tools will largely depend on the applications they are being used for as 

well as user preferences [48]. For example, Mahout and MLlib include options for rec-

ommendations, so if the intended application is an e-commerce site or social network, 

one may wish to choose from them for features such as item or user suggestions. Social 

Media or Internet of �ings data may require real-time results, necessitating the use of 

Storm or Flink along with their associated machine-learning libraries. Other domains 

such as Healthcare often produce disparate datasets that may require a mix of batch and 

streaming processing, in which case Flink or Spark could also be used.

Data-level methods for class imbalance in big data

Fernandez et al. [32] examine class imbalance in big data, focusing on problems with the 

MapReduce framework. �e authors state that the lack of data and small disjuncts issues 

1 https ://spark .apach e.org/docs/lates t/ml-guide .html.

https://spark.apache.org/docs/latest/ml-guide.html
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observed in big data are accentuated within MapReduce. �ey conduct an experiment 

comparing RUS, ROS, and SMOTE for class imbalance in big data using MapReduce 

with two subsets, extracted from the ECBDL14 dataset [50] and maintaining the original 

class ratio. �e two subsets respectively consisted of 12 million and 600,000 instances, a 

98:2 class ratio, and 90 features. �e original 631 features of the ECBDL14 dataset were 

reduced to 90 features by applying a feature selection algorithm [3, 50]. �e experiment 

examined performances of Random Forest (RF) and Decision Tree (DT) learners, using 

both Apache Spark and Apache Hadoop (MapReduce) frameworks. �e key conclusions 

are: SMOTE performed worse than RUS or ROS; RUS performed better with less parti-

tions (Maps); ROS performed better with higher partitions; Apache Spark based RF and 

DT yielded better results with RUS compared to ROS; number of partitions in Hadoop 

had significant influence on obtained performance; models using Apache Spark gener-

ally yielded better results compared to when using Hadoop. �e best overall values of 

geometric mean (GM) for ROS, RUS, and SMOTE were 0.706, 0.699, and 0.632, respec-

tively (Table 3, Appendix A1). Our general analysis of Fernandez et al. [32] includes the 

following:

• �e focus of this work was more on demonstrating limitations of MapReduce than 

on developing an effective solution for the high-class imbalance problem in big data.

• Different big data frameworks were used for some data-sampling methods, making 

comparative conclusions unreliable, i.e., SMOTE implementation is done in Apache 

Hadoop, while RUS and ROS implementations are done in Apache Spark.

• It is not clear what sampling ratios (90:10, 75:25, etc.) were used with RUS, ROS, 

and SMOTE, limiting the study without investigating the impact of various sampling 

ratio values of classification performance; impact of reducing the number of features 

to 90 (from 631) on the various experiments is not discussed.

• �e experimental results lack statistical validation; limiting classification perfor-

mance evaluation to GM, compared to AUC which is considered a more robust per-

formance metric.

• �e empirical conclusions were based on analyzing only one dataset, i.e., ECDBL14.

Moreover, the problems associated with MapReduce have been known to the big data 

community [15, 16], as well as the knowledge that in comparison Apache Spark is sig-

nificantly more efficient. Some key problems of MapReduce include: the division of the 

already very small minority class space reduces the number of positive class instances 

available in each partition for effective analysis; and, it seems to be adversely sensitive to 

the presence of disjunct data spaces in the overall data or within each class.

Rio et  al. [51] utilized the Apache Hadoop framework to investigate MapReduce 

versions of RUS and ROS with the MapReduce version of the RF classifier (from the 

Apache Mahout library). �e ECBDL14 dataset is used as the big data case study (from 

the bioinformatics domain), and the MapReduce approach for Differential Evolution-

ary Feature Weighting (DEFW-BigData) algorithm was utilized for detecting the most 

important features [3]. �e dataset consisted of approximately 32 million instances, 

a class ratio of 98:2, and 631 features. �e RF parameters were set to: 192 number of 

trees, 10 (and 25) number of features to build the trees, and unlimited depth of the trees. 
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�eir initial empirical results demonstrate that ROS performed slightly better than RUS, 

based on using the product of true positive rate (TPR) and true negative rate (TNR), i.e., 

TPR × TNR. �e best overall values for ROS and RUS were 0.489 and 0.483, respectively 

(Table 3, Appendix A1). However, the authors noted that ROS suffered from very low 

TPR compared to TNR. Hence, they experimented with a range of higher over-sampling 

ratios for ROS combined with the DEFW-BigData algorithm to select the top 90 fea-

tures based on the weight-based ranking obtained. An increase in the over-sampling rate 

increased the TPR rate and lowered the TNR, and the best results for this experimen-

tation were obtained with an over-sampling rate of 170%. Rio et  al. [51] generally has 

similar limitations that were discussed for Fernandez et al. [32], but in addition, it has 

the following issues: the number of features for building trees seem too small compared 

to available 631 features; there is no clear indication why the authors selected the top 90 

features; since the ECBDL14 data is used, a comparison with the other studies using that 

data would add value to the findings presented; inclusion of the popular SMOTE data-

sampling algorithm is missing; MapReduce, which is known to be sensitive to high-class 

imbalance is used (as noted by multiple works surveyed in our study), instead of the 

more efficient Apache Spark; and, the study seems like a subset of Fernandez et al. [51].

Tsai et  al. [15] compared the performance of a cloud-based MapReduce framework 

with a distributed learning framework based on the data parallelism paradigm, as well 

as with a baseline single machine framework. �e authors evaluated four datasets, with 

two of them being binary class datasets and the other two being non-binary class data-

sets. We summarize their results on the two binary class datasets, Breast Cancer and 

Protein Homology. �e former dataset consisted of 102,294 instances, 117 features, and 

an approximate class ratio of 99:1. �e Protein Homology dataset consisted of 145,751 

instances, 74 features, and an unstated class ratio value. SVMs were used by all three 

approaches, and the given dataset was divided into training and test datasets using a 

90:10 split. �e cloud-based MapReduce framework has a mapping function that han-

dles filtering and sorting, a shuffle function that reassigns data based on the keys output-

ted by the mapping operation, and a reduce function that parallelizes the computations 

done on each data group. �e procedure was implemented by a computer server using 

different settings of 1, 10, 20, 30, 40, and 50 virtual machines (computer nodes) to train 

the SVM classifier. �e distributed learning framework, using a divide-and-conquer 

approach, was based on dividing the training dataset into 10, 20, 30, 40, and 50 subsets, 

with one computer node associated with one specific subset for the training task. �e 

baseline single machine framework simply implemented the SVM learner on one com-

puter using centralized data. For the Breast Cancer data, classification accuracy of both 

the baseline and distributed frameworks was 99.39%, while the MapReduce framework 

yielded only 58% classification accuracy. For the Protein Homology dataset, all three 

approaches produced similar classification accuracy, around 99% with a relative differ-

ence of less than 0.12% among the three approaches. However, as the number of nodes 

was increased from 10 to 30, classification accuracy for the MapReduce and distributed 

frameworks fell slightly, but were relatively similar to each other with 30–50 nodes. Our 

analysis of Tsai et al. [15] brings out these salient points: accuracy percentage is not a 

good indicator of classification performance since it provided no information on the 

TPR and TNR values of the SVM learners. A highly imbalanced dataset, for example, 
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could have a 99.5% accuracy rate with a TNR of nearly 100% and TPR of almost 0%; com-

paring the baseline single machine and distributed learning frameworks with Apache 

Spark would have provided more valuable results, since Spark is significantly better than 

MapReduce; with classification accuracies over 99% (except for MapReduce framework 

with Breast Cancer data), the implementation of a cloud-based big data framework may 

be irrelevant for the case study datasets, perhaps since the dataset sizes were too small 

compared to other big data works examined in our survey; and, data-sampling, cost-sen-

sitive learning, or other commonly used techniques for addressing class imbalance in big 

data were not used in the comparative study.

Triguero et  al. [16] examine Evolutionary Under-Sampling (EUS) in cases of severe 

class imbalance in big data, based on the initial knowledge that EUS had shown promise 

in addressing class imbalance in traditional data [52]. �e authors implement the EUS 

approach with the Apache Spark framework, and compare it with their previous imple-

mentation of EUS with the Apache Hadoop (MapReduce) framework [53]. �e base 

learner in both implementations is the C4.5 decision tree learner which is incorporated 

into the overall class balancing and classification process. EUS provides a fitness func-

tion for a prototype selection method, where the fitness function aims to find the proper 

balance between reduction (under-sampling) of training data instances and classification 

performance [52]. �e authors recognized that divide-and-conquer methods based on 

MapReduce can potentially be affected by a lack of density from the minority class in 

the subsets created. Consequently, the in-memory operation of Apache Spark is modi-

fied such that the majority and minority class instances can be independently managed. 

�is enables a relatively higher number of minority class instances to be retained in each 

subset created. �e case study data was comprised of variants of two big data sets, i.e., 

ECDBL’14 and KDD Cup 1999 datasets. Two subsets, 50% and 25%, of the ECBDL’14 

data were used, each with 631 features and a class ratio of 98:2. �ree variants of the 

KDD Cup 1999 data were used, based on different binary class combinations (DOS vs. 

PRB; DOS vs. R2L; and, DOS vs. U2R), each with 41 features and the approximate class 

ratio values of 95:1, 3450:1, and 74,680:1 for the three datasets. �e key results observed 

in the paper include: Apache Spark framework had shorter runtimes than Apache 

Hadoop; EUS performed better than RUS, but as expected, its runtime was much longer 

than that of RUS. �e best overall values of GM classification performance metric for 

EUS and RUS were 0.672 and 0.662, respectively (Table  3, Appendix A1). �e study 

unfortunately does not present a complete picture of the promising classification per-

formance of EUS for high-class imbalance in big data. Regardless of its expected slow 

runtime, the author’s EUS implementations with Apache Spark and Apache Hadoop 

could have been compared with other commonly used strategies, e.g., SMOTE and ROS, 

ensemble methods, cost-sensitive methods, etc. For example, Apache Spark may be able 

to execute a task 10 times faster than Apache Hadoop (MapReduce) via one strategy, but 

100 times faster via another strategy. In addition, general research on increasing runt-

ime of evolutionary computing methods should be investigated for incorporation into 

approaches presented by Triguero et al. [16, 53].

Park et al. [54] develop an overall big data analysis scheme for predicting traffic acci-

dents on the road, including data collection, data processing involving data-sampling, 

and classification modeling using the Apache Hadoop (MapReduce) framework. Given 
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the context of our survey, we do not discuss their data collection approach, and instead 

focus on the class imbalance strategy investigated for the big data obtained from the 

periodic traffic reports. Within the Apache Hadoop framework, the authors implement 

a MapReduce modification of SMOTE for tackling the severely imbalanced traffic acci-

dents dataset, i.e., class ratio of approximately 370:1, and a total of 524,131 instances 

characterized by 14 features. Subsequent to the over-sampling approach, the minority 

class (accident) instances in the training dataset went from 0.27 to 23.5% of the dataset. 

�e Logistic Regression [55] learner yielded a classification accuracy of 76.35% (Table 3, 

Appendix A1) and the TPR was 40.83%, both of which the authors state as comparable 

to results presented by other investigators in the domain. Park and Ha [56] also experi-

mented with SMOTE in a MapReduce framework (Apache Hadoop) and obtained opti-

mal classification accuracy when the minority class reached about 30% of the training 

dataset (from the initial 0.14% of minority class instances). �e initial training dataset 

consisted of 1,024,541 instances, a class ratio of 710:1, and 13 predictive features. Based 

on the Logistic Regression learner, classification accuracy obtained was approximately 

0.806 (Table 3, Appendix A1). Our general analysis of the studies presented in [54, 56] 

are: MapReduce is known to have considerable sensitivity to high-class imbalance in a 

dataset, thus likely yielding sub-optimal classification performance; implementing the 

class imbalance scheme within the Apache Spark framework may yield better perfor-

mance; SMOTE used within the MapReduce framework tends to perform sub-par, as 

descriptively pointed out by Fernandez et al. [32]; classification accuracy is generally not 

a dependable performance metric for classifiers; the study does not determine which 

(domain-specific) method is optimal for addressing high-class imbalance in contrast to 

SMOTE, e.g., RUS, ROS, EUS, Ensemble Methods, etc. A collective look at the works 

of Fernandez et al. [51], Park et al. [54], and Park and Ha [56], suggests an interesting 

observation in our study. �e study presented in [51] obtained an optimal class balance 

for ROS with an over-sampling rate of 130%, which increased to 170% when ROS was 

modified to incorporate the DEFW-BigData algorithm [3, 50]. Whereas, experiments 

presented in [54, 56] indicated extremely high over-sampling percentage values for 

obtaining the best classification accuracy. �us, determination of the preferred balance 

between classification accuracy (or performance) and the over-sampling rate requires an 

empirical and observational approach, instead of a formulaic approach.

Chai et  al. [57] investigate high-class imbalance in big data in the context of statis-

tical text classification within the medical records domain. �e authors apply RUS to 

achieve equal class balance between the majority and minority classes, i.e., 50:50, with 

the goal of comparing classification performances between the original severely imbal-

anced dataset and the balanced dataset. Subsequent to some typical data cleansing and 

processing associated with text data, the training dataset was obtained which consisted 

of almost 516,000 instances, 85,650 features, and approximately 0.3% of instances form-

ing the minority class. Regularized Logistic Regression is used as the underlying classi-

fier, primarily because of its ability to avoid model overfitting while using a very large 

set of features that is typical in text classification. Empirical results indicated that the 

F1 score (F-measure) were relatively similar with or without under-sampling, i.e., the 

balanced dataset had no influence on the classification performance. However, under-

sampling increased Recall and decreased Precision of the learner. �e best overall value 
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of the F-measure was 0.99 (Table 3, Appendix A1). Our general analysis of Chai et al. 

[57] includes the following salient points: no clear indication is given as to why an equal 

class ratio with under-sampling is preferred for optimal classification performance, and 

this may be a significant drawback of the study; no clear explanation is provided on the 

selection of under-sampling over other relatively simple data-sampling methods, such 

as over-sampling; the case study dataset suffers from severe class imbalance, but it is not 

clear why the authors chose not to consider varying degrees of class ratios (90:10, 75:25, 

etc.) to study which imbalance ratio yields good classification performance.

Algorithm-Level methods for class imbalance in big data

Lopez et al. [9] propose the Chi-FRBCS-BigDataCS algorithm, a Fuzzy Rule-Based Clas-

sification System (FRBCS) that is able to deal with uncertainty involved in large volumes 

of data without ignoring the learning of the minority class, i.e., class imbalance in big 

data. Based on the classical FRBCS developed by Chi et al. [10], the proposed algorithm 

is a linguistic cost-sensitive FRBCS that is incorporated with the MapReduce framework 

using Apache Hadoop. To address class imbalance in big data, the proposed algorithm 

modifies the basic FRBCS approach as follows: first, the FRBCS method is adapted to fol-

low the MapReduce principles that direct a distribution of the work on several process-

ing nodes; and second, cost-sensitive learning modifications are applied to the FRBCS 

method. For the latter, a new rule weight computation is developed, i.e., Penalized cost-

sensitive Certainty Factor (PCF-CS) [9]. �e case study data involves class-based vari-

ants of the KDD Cup 1999 dataset, including DOS vs. Normal, DOS vs. R2L, and Normal 

vs. R2L binary class combinations, with each dataset consisting of 41 features. For each 

of these three binary class datasets, the following percentages were evaluated as train-

ing data using fivefold cross-validation: 10%, 25%, 40%, 50%, 60%, 75%, and 100%. �ese 

dataset sizes ranged between approximately 100,000 instances and 4,900,000 instances, 

with class ratio values varying from 80:20 to 74,680:1. �e study also examines variants 

of the Record Linkage Comparison Patterns (RLCP) and the Poker Hand dataset, both 

obtained from the UCI Machine Learning Dataset Repository.

�e authors of [9] compared their proposed Chi-FRBCS-BigDataCS algorithm with 

other FRBCS methods, including: Chi-FRBCS (the classical fuzzy rule-based classifier); 

Chi-FRBCS-CS (a proposed Chi-FRBCS version that introduces cost-sensitive learning 

by modifying some of the Chi-FRBCS operations); and Chi-FRBCS-BigData (the clas-

sical Chi-FRBCS version adapted to deal with big data, adopting a MapReduce design 

implemented under the Apache Hadoop framework). �e empirical results indicated 

that Chi-FRBCS-BigDataCS produced the best classification performance with an AUC 

of 0.99 (Table 4, Appendix A2). Some key shortcomings of Lopez et al. [9] include: com-

parison of the proposed Chi-FRBCS-BigDataCS algorithm is limited only to the original 

and iteratively-modified versions of the classical FRBCS method, and no other exist-

ing cost-sensitive approaches for handling high-class imbalance in big data; similar to 

previously mentioned statements, implementing the Chi-FRBCS-BigDataCS algorithm 

within the Apache Spark framework may yield better performances and also demon-

strate better tolerance to high-class imbalance, which is often noted in MapReduce; 

the computational cost and runtime of the proposed FRBCS variant is not discussed; 
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and, such a study could benefit from comparisons with non-cost-sensitive methods for 

addressing class imbalance.

In addition to high volume, high velocity, and high dimensionality, big data stream 

(online learning) categorization also suffers from high sparsity and high-class imbalance 

in the data. Utilizing batch learning for online data classification has drawbacks of not 

only requiring very large storage capacities, but also costly re-training for new data and 

the unavailability of all training data instances. �is is largely because, in real-world data 

stream schemes the data arrives rapidly in a sequential manner. A typical online learning 

algorithm processes one instance at a time, making very simple updates with each newly 

arriving instance iteratively. Wang et al. [11] develop a General Sparse Online Learning 

algorithm for classification of an online data stream, and modify it to propose the cost-

sensitive first-order sparse online learning (CS-FSOL) and cost-sensitive second-order 

sparse online learning (CS-SSOL) algorithms, to address high sparsity and high-class 

imbalance problems in big data stream classification. Sparse online learning generates 

a degree of sparsity into learned weights of online algorithms [12]. CS-SSOL is a second 

order learning algorithm, which enables it to exploit gradient-based learning more effi-

ciently. A second-order online learner dynamically incorporates knowledge of observed 

data from an earlier iteration to perform more informative gradient-based learning. In 

contrast, first-order online learners (such as CS-FSOL) generally utilize a constant learn-

ing rate for all coordinates on a curve. Several benchmark datasets from web machine 

learning repositories are used to evaluate multiple online learners, including CS-FSOL 

and CS-SSOL [11]. �e datasets sizes ranged between approximately 2000 and 2,400,000 

instances, with feature set sizes varying between 7510 and 16,079,971, and the class 

ratio being as high as 99:1. �e proposed CS-FSOL and CS-SSOL algorithms are com-

pared against the following online learning algorithms: Cost-Sensitive Online Gradient 

Descent; Cost-Sensitive Passive-Aggressive; and, Cost-Sensitive Perceptron Algorithm 

with Uneven Margin. Key conclusions made are: cost-sensitive algorithms are better 

than non-cost-sensitive algorithms; second-order algorithms are better than first-order 

algorithms; and CS-SSOL yields the best classification accuracy. �e best classification 

accuracy observed for CS-SSOL was 0.99 (Table 4, Appendix A2). Our general analysis 

of Wang et al. [11] includes: the proposed solutions need further validation by applica-

tion across other data-centric domains (for example, software engineering, healthcare, 

etc.), allowing for a broader insight into their effectiveness; classification accuracy is not 

a suitable performance metric, especially under high-class imbalance conditions; and, 

investigating the effectiveness of the proposed algorithm for only highly imbalanced data 

(i.e., without high sparsity) may provide useful insights.

Marchant and Rubinstein [58] analyzed the issue of class imbalance created by Entity 

Resolution for big data and proposed the OASIS (Optimal Asymptotic Sequential Impor-

tance Sampling) algorithm. Entity Resolution (ER), also known as record linkage, is the 

process of linking and grouping to locate records that refer to a unique entity within a 

dataset. OASIS enables the convergence of F-measure, Precision, and Recall to true pop-

ulation values, and is an effective tool for evaluating trained binary classifiers when the 

class labels are not readily available. It is based on Adaptive/Sequential Importance Sam-

pling (AIS), and at the time of writing this survey article, is available for download as an 
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open-source Python package.2 Importance sampling draws from a record-pair distribu-

tion, which may depend upon previously-sampled items, and an unbiased estimate can 

be obtained by using a bias correction estimator. Adaptive Sampling enables the esti-

mates to approach their true values. OASIS unites two key concepts: Stratification and a 

Bayesian generative model of the label distribution. Stratification is a popular statistical 

technique for dividing a population into homogenous sub-groups, while the Bayesian 

generative model partitions matching record pairs into strata.

�e empirical case study of Marchant and Rubinstein [58] consisted of five ER data-

sets, with the pooled/sampled training datasets ranging from approximately 20,000 to 

676,000 instances (record-pairs) and the imbalance ratio (IR) ranging from 0.99 to 3380. 

�e OASIS method was compared with three baseline sampling methods: Passive Sam-

pling, Stratified Sampling, and Non-Adaptive Importance Sampling. Passive Sampling 

is a relatively simple method that samples record pairs randomly with a uniform distri-

bution from the pool with replacement. At each iteration, the F-measure is estimated 

only on the record pairs/labels sampled so far. Stratified Sampling is used to estimate 

balanced F-measures, based on pools of record pairs being partitioned into strata. Non-

Adaptive Importance Sampling uses a static distribution to sample record pairs. Based 

on a Linear SVM classifier, the paper concludes that the performance score of OASIS 

outperformed the baseline methods, with an overall best value for F-measure Absolute 

Error of  10−5 (Table 4, Appendix A2). A further comparative investigation with the three 

baseline methods and OASIS was performed with other classifiers: Multilayer Percep-

tron with one hidden layer, AdaBoost, Logistic Regression, and SVM with a Gaussian 

kernel. OASIS also demonstrated superior performance compared to these four classi-

fiers. A likely shortcoming of this work is the relatively very small feature set size of two 

predictive attributes, which is generally not observed in the data mining community. �e 

ECBDL’14 Big Data Competition [3], for example, featured a dataset containing 631 fea-

tures. In addition, since OASIS is a relatively new approach, further empirical investiga-

tion is needed, including a wider range of comparison with other methods and learners, 

to ensure performance consistency.

Maurya [13] presents the ImbalancedBayesOpt (IBO) algorithm as a unique approach 

based on the optimization of Matthew’s Correlation Coefficient (MCC), which can be 

used as a measure of class imbalance in binary datasets. �e value for MCC is computed 

from the TP, TN, FP, and FN numbers provided in a classifier’s confusion matrix, and its 

equation is shown in Fig. 1. Based on a Gaussian process, IBO is a Bayesian algorithm 

that directly maximizes MCC by learning optimal weights for the positive and nega-

tive classes. �e author also proposes the ImbalancedGridOpt (IGO) algorithm, which 

(TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative)

Fig. 1 Matthew’s correlation coefficient (MCC)

2 https ://git.io/OASIS .

https://git.io/OASIS
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optimizes the MCC metric on an imbalanced dataset using a uniform grid search over 

the parameter, w, i.e., weight of the positive (minority) instances. �e case study pre-

sented is based on a dataset representing measurements of manufactured parts as they 

move through the production line, with the binary class representing whether or not 

a part will fail quality control, where a value of 1 indicates failure (minority class) [13]. 

�e severely imbalanced dataset, represented by a class ratio of about 171:1, consisted 

of approximately 1.18 million instances characterized by 6747 features. �e Gradient 

Boosting Machine (GBM) learner [59] is used to develop classification models for both 

IBO and IGO. Two types of sampling methods were used to obtain much smaller train-

ing datasets, Unbiased and Biased, where the former implies sampling was done from 

both classes using the same sampling rate, s, while the latter implies sampling was done 

only from the majority class (i.e., minority class size was not reduced) using a sampling 

rate of s. In both cases, s = 1% and s = 10%, were considered during the empirical study. 

A multi-perspective comparative study of the IBO, IGO, and GBM algorithms indicated 

these salient results: IBO and IGO perform better than GBM, especially under severely 

imbalanced datasets; IBO and IGO have comparable performances, with respect to 

classification accuracy, Recall, Precision, and MCC values; and IBO provides noticea-

bly faster runtimes than IGO. �e value of w for the best classification performance for 

IBO was 0.87 (Table 4, Appendix A2). Our general analysis of Maurya [13] is as follows: 

selection of GBM as the classifier over other more commonly used learners is not advis-

able, because a few studies show it as a better performer and classifier performances 

depend on multiple factors including dataset characteristics and empirical settings; the 

original big data is not completely utilized in the experiments—only a small fraction is 

used as the training dataset, making the empirical work more comparable to works on 

class imbalance in traditional data; proposed algorithms, IBO and IGO, are compared 

to only one other learner (i.e., GBM), limiting the results’ generalization in the data min-

ing community; and, only under-sampling is considered (for part of the experiments), 

instead of also including other data-sampling methods, such as EUS, ROS, and SMOTE.

Veeramachaneni et al. [60] developed the  AI2 approach, an active learning scheme for 

improving detection of outliers in big data in the computer networks domain. By consid-

ering both Analyst Intuition and Artificial Intelligence (thus  AI2), the approach combines 

the two common categories of information security analysis methods, i.e., an expert’s 

analytical expertise or using unsupervised machine learning algorithms. �e proposed 

system involves three general steps: (a) the system trains supervised and unsupervised 

models and uses these them to detect outliers; (b) the predicted outliers are scored by 

an aggregation of matrix decomposition, artificial neural networks, and joint probabil-

ity methods; and (c) an analyst inspects the scored instances and then selects the true 

positives, and incorporates the expert-based inferences into a new model for use the fol-

lowing day. �e dataset in this study contained approximately 3.6 billion instances and 

37 features, with a class ratio of 680:1. After 3 months of training,  AI2 showed a higher 

attack detection rate of IP packets than an unsupervised learning-only outlier detection 

approach, and also yielded a lower false positive rate with a higher Recall. �e best over-

all value for AUC was 0.85 (Table 4, Appendix A2). �e paper presents little to no infor-

mation of the unsupervised learning scheme used for comparison against the proposed 

approach, and to the best of our knowledge, the scheme is a basic clustering-based 



Page 18 of 30Leevy et al. J Big Data            (2018) 5:42 

method. �e improved performance of  AI2 is not that surprising since active knowledge 

(via the analyst’s expertise inferences) is being imparted to the model on a daily basis. 

In addition,  AI2 is a form of active learning; hence, it should also be compared against 

other active learning schemes, and not just a basic unsupervised learning approach. A 

suggested improvement in the  AI2 approach would be to automate or semi-automate the 

analyst’s inferences after a substantial amount of time has passed.

Galpert et al. [14] investigated class imbalance within the problem of ortholog detec-

tion of different yeast species. Orthologs are genes in different species that originate 

from the same gene in the last common ancestor. Several supervised big data techniques 

were evaluated, such as cost-sensitive Random Forest (RF-BDCS) using MapReduce, 

Random Over-Sampling with Random Forest (ROS + RF-BD) using MapReduce, and 

the Apache Spark Support Vector Machines (SVM-BD) combined with MapReduce ROS 

(ROS + SVM-BD). �e datasets in this study ranged from approximately 8,000,000 to 

29,900,000 instances, with all of them defined by a feature set size of six. �e majority-

to-minority class ratios varied between 1630:1 and 10,520:1. �e supervised approach 

was compared with unsupervised algorithms, Reciprocal Best Hits [61], Reciprocal 

Smallest Distance [62], and OMA [63]. �e OMA (“Orthologous MAtrix”) project is 

a method and database for the inference of orthologs among complete genomes. �e 

supervised learning classifiers outperformed the unsupervised learners, and among the 

supervised classifiers, ROS + SVM-BD showed the best performance with the best over-

all values for GM and AUC of 0.879 and 0.885, respectively (Table 4, Appendix A2). �e 

authors used an implementation of SVM in the scalable MLLib machine learning library 

of Spark, but compare it with ROS implemented within the Hadoop framework. �e 

top-performing algorithm, ROS + SVM-BD, was only evaluated against two supervised 

learning classifiers. In addition, since an over-sampling method was considered in the 

study, including the SMOTE algorithm also would have provided a broader perspective.

In order to distinguish fraudulent banking transactions from genuine ones within a 

highly imbalanced environment, Wei et al. [64] presented a system called i-Alertor. �e 

model integrates contrast pattern mining [65], cost-sensitive neural networks, and Deci-

sion Forest. Contrast pattern mining, an algorithm tailored for high-class imbalance, was 

proposed by Wei et al. [64] to improve the efficiency of an emerging pattern algorithm 

[66] called MDB-LLborder. �e efficiency is improved by the indirect calculation of 

minimum borders, use of hash tables during the validation checking phase, and imple-

mentation of a cross-coverage test that prunes redundant patterns. �e dataset in this 

study contained approximately 8,000,000 instances and 130 features, with a majority-

to-minority class ratio of 5330:1. An experiment to gauge the performance of i-Alertor 

against a popular rule-based system used by many Australian banks was carried out. No 

other information about this rule-based system was provided. �e authors found that 

i-Alertor had a higher detection rate of the minority class (fraud incidents). �e aver-

age true positive rate was 0.66 (Table 4, Appendix A2), which suggests that a significant 

percentage of fraudulent transactions can still occur undetected. Unfortunately, Wei 

et al. [64] only tested the model against one other system, limiting generalization across 

domains.

Research into the hybridization of under-sampling techniques was carried out by 

D’Addabbo and Maglietta [67], who introduced Parallel Selective Sampling (PSS). PSS is 
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an under-sampling technique that is based on Tomek links [68], a modified, condensed 

nearest-neighbor technique that only evaluates points close to the boundary. �is con-

cept is combined with SVM and called the PSS-SVM algorithm. �e datasets in this 

study ranged from approximately 25,000 to 1,000,000 instances, with feature set sizes 

between 2 and 54. Majority-to-minority class ratios varied between 93:7 and 200:1. PSS-

SVM was compared with SVM, RUS-SVM, and RUSBoost [24] classifiers. In terms of 

prediction accuracy and processing times, PSS-SVM outperformed RUSBoost, SVM, 

and RUS-SVM. �e best overall value for F-measure of PSS-SVM was 0.99 (Table  4, 

Appendix A2). �e experiment performed by D’Addabbo and Maglietta [67] is limited to 

combining PSS with SVM. It would be useful to investigate how the hybridization of PSS 

with other classifiers, such as logistic regression or Naive Bayes, affects performance. In 

addition, a comparison of PSS-SVM against a wide range of hybrid/ensemble techniques 

should be considered.

For the widely publicized ECDBL’14 Big Data competition [50], the winning algo-

rithm by Triguero et al. [3] deserves special mention. �e dataset in this study contained 

approximately 32 million instances and 631 features, with a majority-to-minority class 

ratio of 98:2. �e ROSEFW-RF algorithm [3] used several MapReduce techniques for 

potentially addressing the class imbalance problem. ROSEFW-RF stands for Random 

Over-Sampling and Evolutionary Feature Weighting for Random Forest, and can be 

described sequentially with six algorithms [3]: (1) Map phase for the ROS algorithm; (2) 

Reduce phase for the ROS algorithm; (3) Map phase for the RF-BigData algorithm for the 

building of the model phase; (4) Map phase for the RF-BigData algorithm for classifying 

phase; (5) Map phase for the DEFW [69] algorithm; (6) Reduce phase for the DEFW 

algorithm. �e best overall value for (true positive * true negative) rate of ROSEFW-RF 

was 0.53 (Table 4, Appendix A2). �e research is limited by MapReduce technologies, 

which may be sensitive to high-class imbalance.

�ere is recent research into the use of integrated Extreme Learning Machine (ELM) 

classifiers to address class imbalance within a MapReduce environment via Apache 

Hadoop [70]. An ELM classifier is designed to train single-hidden layer feed forward 

neural networks [70]. �e algorithm chooses hidden nodes at random [71]. �e datasets 

in this study ranged between approximately 1500 and 336,000 instances, with feature set 

sizes between 3 and 16. Majority-to-minority class ratios varied from 92:8 to 2140:1. �e 

new algorithm consists of four stages: (1) Alternately over-sample between positive class 

instances and negative class instances; (2) construct balanced data subsets based on the 

generated positive class instances; (3) train component classifiers with ELM algorithm 

on the constructed balanced data subsets; (4) integrate the ELM classifiers with simple 

voting approach. Performance-wise, the proposed ELM algorithm by Zhai et  al. [70] 

was shown to be superior to the SMOTE-Boost [30], SMOTE-Vote and SMOTE-Bag-

ging classification techniques. �e best overall value for Geometric Mean of the ELM 

algorithm was 0.969 (Table 4, Appendix A2). �e performance of the proposed method 

has only been compared with SMOTE ensemble methods. A comparison done against a 

more diverse set of methods would be more informative.

An imbalanced class environment can also be created by rare failure events within 

large-scale manufacturing operations. Hebert [72] separately compared RF and XGBoost 

(two tree-based classification methods) with logistic regression to research this issue. 
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XGBoost [73] is highly scalable, having the ability to process a dataset of billions of 

examples with very efficient use of computing resources. It is a boosted classification 

tree that, along with RF, can detect non-linear relationships. �e dataset in this study 

had approximately 1,180,000 instances and 4264 features, with a majority-to-minority 

class ratio of 170:1. Both tree-based classification methods were found to perform much 

better than logistic regression. �e best overall value for Accuracy Gain of XGBoost was 

0.049 (Table 4, Appendix A2). �e best overall value for Gini Index Mean Decrease of RF 

was 0.15 (Table 4, Appendix A2). �e Gini Index measures impurity between different 

classes in a population [72]. A lower Gini Index indicates better class separation. �e 

use of tree-based classifiers has its drawbacks. Implementing one or a couple decision 

trees may make the understanding of interactions between various parameters a simple 

process, but a forest of trees can be quite complex to comprehend. In addition, there are 

other classifiers, such as neural networks and k-nearest neighbors (k-NN), which can 

be also be used in an experiment to test comparative performances of linear systems vs. 

non-linear systems.

An evaluation of the performance of several methods used to address class imbal-

ance was performed by Rio et al. [46], where all methods were implemented within the 

MapReduce framework (via Apache Hadoop and Apache Mahout), with RF as the base 

classifier. �ese methods included ROS, RUS, SMOTE, and a cost-sensitive learning ver-

sion of RF. �e datasets in this study ranged from approximately 435,000 to 5,700,000 

instances, with feature set sizes between 2 and 41. Majority-to-minority class ratios 

varied between 80:20 and 77,670:1. �e results were inconclusive, as there was no best 

model among these four diverse algorithms. �e authors state that the best performing 

algorithm depends on the number of mappers with MapReduce that are chosen to run 

the experiment. �is is contrary to what was found in [32, 51], where ROS was the top 

performing method within the MapReduce environment. �is inconsistency of results 

opens up an avenue for future work. For Geometric Mean, the best overall values of 

ROS, RUS, SMOTE, and RF were 0.986, 0.984, 0.914, and 0.965, respectively (Table 4, 

Appendix A2). �e main limitation of this study relates to the relevance of the obtained 

results. Computational frameworks such as Apache Spark appear to be more tolerant to 

a highly imbalanced class environment [16], and in our opinion, experimental work done 

on highly imbalanced datasets within these flexible big data frameworks could produce 

more meaningful results.

Baughman et al. [74] examined a modification to DeepQA, the technology that pow-

ered IBM Watson on the Jeopardy! game show. DeepQA is a question-and-answer, nat-

ural language processing system that can help professionals make critical and timely 

decisions [75]. �e authors combined a Data-Level approach (manual question and 

answer vetting, over-sampling) with an Algorithm-Level approach (logistic regression 

with a regularization term) to address the issue of high-class imbalance. Adding a regu-

larization term to logistic regression during the training phase has been shown to reduce 

the effect of class imbalance [74]. �e dataset in this study contained approximately 

720,000 instances and 400 features, with a majority-to-minority class ratio of 6930:1. �e 

results show that regularized logistic regression with over-sampling outperformed un-

regularized logistic regression with over-sampling in terms of accuracy, which increased 

by 0.0158–0.28 (Table 4, Appendix A2). �is best value of accuracy is low. �e results 
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also show that the Data-Level techniques of vetting and over-sampling increased the 

recall rate. �e skill level of the person doing the vetting is potentially a limiting factor 

for the method proposed by Baughman et al. [74]. For example, vetting done by a profes-

sional would most likely yield higher accuracy values than vetting done by a college stu-

dent. Furthermore, apart from the logistic regression classifier, other classifiers should 

also be evaluated.

Performance scores of different approaches surveyed

In the Appendices (A1 and A2) sections, Tables 3 and 4 collectively show performance 

scores that represent the best experimental values for the Data-Level and Algorithm-

Level approaches in the papers covered by the survey. It should be noted that compar-

isons between performance measures from different datasets may not be valid. �ese 

datasets may vary in the number instances, number of features, and the type of compu-

tational framework selected, if any is used. Additionally, variations of an original experi-

ment may be carried out on the same dataset. However, providing these performance 

scores may be valuable for future comparative research.

Summarized highlights of surveyed works

Data-Level approaches

Fernandez et al. [32]

 The use of ROS and RUS produce better classification results than SMOTE. When ROS was compared with RUS, 
the better sampler was ROS. It was also shown that the performance of SMOTE is negatively affected by 
MapReduce partitioning

Rio et al. [51]

 ROS produced better classification results than RUS within a MapReduce framework

Triguero et al. [16]

 A shorter runtime was obtained when Apache Spark was used instead of Apache Hadoop (MapReduce). 
The authors also compared simple RUS with evolutionary under-sampling. RUS had a faster runtime, as 
expected, but the latter is a better classifier

Park et al. [54]

 SMOTE was implemented on Apache Hadoop (MapReduce) to determine the optimum balance between 
over-sampling and classification accuracy for big data. Results indicate that the greatest increase in classifica-
tion accuracy occurred when the minority class instances were increased to about 25% (11,200% over-
sampling) of the original dataset

Park and Ha [56]

 SMOTE was also implemented on Apache Hadoop (MapReduce) in this study. After over-sampling, the opti-
mum balance between over-sampling and classification accuracy was 30% (28,700% over-sampling) of the 
original dataset

Chai et al. [57]

 Research on the use of under-sampling to balance a dataset (majority class instances reduced to 50% of the 
original dataset) shows that classification performance is unaffected

Algorithm-Level approaches

Lopez et al. [9]

 The experiments conducted for this work are centered on a linguistic cost-sensitive fuzzy rule-based classifier 
using Apache Hadoop (MapReduce). The algorithm is called Chi-FRBCS-BigDataCS

Wang et al. [11]

 CS-SSOL is a second-order, sparse classifier designed for use on an online data stream

Marchant and Rubinstein [58]

 OASIS is a novel algorithm based on adaptive importance sampling. The algorithm is essentially a tool for 
evaluating trained binary classifiers when class labels are not readily available



Page 22 of 30Leevy et al. J Big Data            (2018) 5:42 

Algorithm-Level approaches

Maurya [13]

 ImbalancedBayesOpt is a Bayesian optimization algorithm that maximizes MCC by learning optimal weights 
for the positive and negative classes

Veeramachaneni et al. [60]

 AI2 combines artificial intelligence (matrix decomposition, neural networks, joint probability methods) with 
analyst intuition

Galpert et al. [14]

 This method combines Apache Hadoop (MapReduce) ROS with Apache Spark SVM (ROS + SVM-BD)

Wei et al. [64]

 The i-Alertor model was introduced in this research work. It integrates contrast pattern mining, cost-sensitive 
neural networks, and Decision Forest

D’Addabbo and Maglietta [67]

 This method combines Parallel Selective Sampling with SVM (PSS-SVM)

Triguero et al. [3]

 ROSEFW-RF, a combination of ROS and evolutionary feature weighting using Random Forest with Apache 
Hadoop (MapReduce), was the winning algorithm in the ECDBL’14 Big Data competition

Zhai et al. [70]

 This research is focused on the use of ELM classifiers with Apache Hadoop (MapReduce)

Hebert [72]

 Experimental results show that certain tree-based classifiers, such as RF and XGBoost, are better learners than 
logistic regression

Rio et al. [46]

 The results of this study indicate that the classification performance of sampling methods, such as ROS, RUS, 
and SMOTE, is strongly related to the number of mappers used within a MapReduce environment (Apache 
Hadoop). The type of Data-Level sampling technique does not appear to matter

Baughman et al. [74]

 The research work discusses the gamification of the DeepQA system for real-world use. The proposed solution 
is a combination of algorithm level approaches (logistic regression with a regularization term) and data level 
approaches (question and answer modifications, over-sampling)

Discussion summary of surveyed works

�e papers discussed in the previous section cover a wide range of solutions for class 

imbalance at the Data-Level and Algorithm-Level. However, we recognize that there 

are significant gaps in the current research on high-class imbalance in a big data envi-

ronment. �e literature is lacking in research methods on topics such as within-class 

imbalance, small disjuncts, feature selection, stacked ensembles, advanced over-sam-

pling techniques, and one-class learners. We expound on these topics in the following 

paragraphs.

Where minority class instances are very limited, the lack of representative data can 

make learning difficult regardless of the imbalance between classes [2]. Moreover, the 

minority target concept may also contain a sub-concept with limited instances, which 

can result in classification difficulty for the learner. �is condition is known as within-

class imbalance and is defined by the distribution of representative data for sub-con-

cepts within a class. For big data, there seems to be a knowledge gap concerning the 

effects of within-class imbalance on sampling, particularly for ROS [8]. In one of the 

papers covered by our survey, ROS was shown to outperform SMOTE and RUS within 

a MapReduce framework [32]. If the class imbalance problem of a dataset is caused by 

within-class concepts, ROS may over-duplicate samples on some regions more than on 
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others [8, 76]. A more favorable resampling process should, first, detect the sub-con-

cepts constituting the class, then oversample each concept respectively to balance the 

overall distribution [76].

�e problem of small disjuncts is related to the problem of within-class imbalances [2]. 

�e classifier frequently creates large disjuncts, which essentially are the rules that gov-

ern a significant portion of instances related to the target concept under consideration. 

However, there are also underrepresented sub-concepts with small portions of instances 

that are governed by rules or small disjuncts. �e validity of clusters corresponding to 

small disjuncts can be problematic, since these disjuncts may be influenced by factors 

such as noise. Furthermore, the amount of noise associated with big data may generally 

be higher than that of traditional data. �e problem of small disjuncts may also worsen 

during data partitioning within the MapReduce (Apache Hadoop) big data analysis 

framework [32], and in our opinion, the small disjuncts problem in big data analysis pre-

sents itself as a relatively open research question.

For classification tasks in a highly imbalanced class environment, feature selection 

helps to suggest the most influential features that can provide additional information 

for class discrimination, and the added benefits of improving classification performance 

and reducing computational cost in some cases. �e increasing use of the Internet has 

greatly contributed to the data sharing and the use of applications for big data with high 

dimensionality. For example, Wang et al. [11] proposed an online learning classifier in a 

study with datasets containing as many as 16,000,000 features. It should be noted that we 

were unable to locate research papers published within the last 8 years that exclusively 

used feature selection to address class imbalance for big data. Admittedly, we discussed 

ROSEFW-RF [3], an algorithm that combines ROS and Evolutionary Feature Weight-

ing, but there are certain feature selection methods [21–23] that specifically target class 

imbalance.

Although variations of the bagging and boosting ensemble techniques were included 

in our survey, we did not encounter any research that involved stacked ensembles being 

used to address class imbalance for big data. Stacking is a hybrid technique that consists 

of two phases [25]. �e first phase involves different models being learned, with the out-

put from each model combined to create a new dataset. In the second-phase, the new 

dataset is used with a meta-learner to provide the final output. Stacked ensembles are 

commonly used in data science competitions.3

With regard to intelligent over-sampling techniques at the Data-Level, our survey only 

found published research on SMOTE, which is commonly used as a benchmark. How-

ever, there are several other advanced over-sampling techniques that SMOTE could be 

evaluated against within a big data context. �e popular ones include Mega-Trend Dif-

fusion Function (MTDF), Adaptive Synthetic Sampling Approach (ADASYN), Major-

ity Weighted Minority Oversampling Technique (MWMOTE), Immune Centroids 

Oversampling Technique (ICOTE) and Couples Top-N Reverse k-Nearest Neighbor 

(TRkNN) [77].

3 https ://blogs .sas.com/conte nt/subco nscio usmus ings/2017/05/18/stack ed-ensem ble-model s-win-data-scien ce-
compe titio ns/.

https://blogs.sas.com/content/subconsciousmusings/2017/05/18/stacked-ensemble-models-win-data-science-competitions/
https://blogs.sas.com/content/subconsciousmusings/2017/05/18/stacked-ensemble-models-win-data-science-competitions/
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As a final point, we also did not encounter any one-class learners during our exhaus-

tive search for Algorithm-Level techniques. One-class learning algorithms, also known 

as recognition-based methods, work by modelling the classifier on the representation of 

the minority class, instead of both classes [8]. One-class learning is particularly useful 

when used on very highly imbalanced data sets composed of a high-dimensional noisy 

feature space. For big data, this technique is certainly worth researching. However, it 

should be noted that some machine learning algorithms, such as decision tree and k-NN, 

do not function with instances from only one class.

Conclusion

Big data with a class imbalance can introduce a bias in favor of the majority class. In situ-

ations where the occurrence of false negatives is costlier than false positives, this bias 

can have undesirable consequences. Our survey paper focuses on big data and high-class 

imbalance, with particular emphasis on big-data appropriate techniques for research 

work that uses at least one dataset of over 100,000 instances in a published study.

Data-Level and Algorithm-Level solutions can be implemented to address high-

class imbalance. �e Data-Level approach covers sampling and feature selection tech-

niques. Sampling techniques consist of over-sampling and under-sampling solutions. 

�e Algorithm-Level approach covers cost-sensitive and hybrid/ensemble techniques. 

For Data-Level sampling techniques, ROS had a better classification accuracy than RUS 

and SMOTE in most studies (using a MapReduce framework). Additionally, the deter-

mination of the optimum balance between over-sampling percentage and classification 

accuracy in a MapReduce environment was shown to be an empirical and not a for-

mulaic process. Furthermore, Rio et  al. [46] observed that the performance superior-

ity of SMOTE, ROS, RUS, (Data-Level methods) or cost-sensitive RF (Algorithm-Level 

method) may essentially depend on the number of MapReduce mappers used. With 

both Data-Level and Algorithm-Level approaches, a recurring limitation in the studies 

appears to be the use of MapReduce technology as a computational framework. A more 

flexible framework such as Apache Spark could provide more valuable results. Another 

general limitation is the narrow scope of evaluated techniques for each study. We recom-

mend that evaluations should be performed on a diverse range of classifiers presented in 

the surveyed works, as listed in Table 2.

Table 2 Surveyed works categorized based on method type

Detailed tables are provided in the Appendices A1, A2 section

Data-Level methods Algorithm-Level methods

Data-sampling methods Cost-sensitive methods Hybrid/ensemble methods

Fernandez et al. [32]
Rio et al. [51]
Triguero et al. [16]
Park et al. [54]
Park and Ha [56]
Chai et al. [57]

Lopez et al. [9]
Wang et al. [11]

Marchant and Rubinstein [58]
Maurya [13]
Veeramachaneni et al. [60]
Galpert et al. [14]
Wei et al. [64]
D’Addabbo and Maglietta [67]
Triguero et al. [3]
Zhai et al. [70]
Hebert [72]
Rio et al. [46]
Baughman et al. [74]
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Future work is needed to settle apparently conflicting conclusions about big data and 

high-class imbalance. For example, Fernandez et al. [32] and Rio et al. [51] vouch for the 

outstanding performance of ROS. However, Rio et al. [46] state that the performance of 

sampling techniques such as ROS, RUS, and SMOTE is closely related to the number of 

mappers used within a MapReduce environment, and that there was essentially no per-

formance difference between the three approaches. For experiments performed solely 

within a MapReduce environment, it would be interesting to see the results if those same 

experiments were conducted within a more flexible big data computational framework, 

such as Apache Spark.

Clearly, many more evaluations need to be done before a particular method can be 

judged a top performer. For example, Lopez et al. [9] introduced a cost-sensitive clas-

sifier, Chi-FRBCS-BigDataCS, for fuzzy rule-based systems, but there is no published 

work on how this technique compares with other cost-sensitive classifiers that are not 

fuzzy rule-based. Additionally, for some of the newer algorithms such as OASIS [58], 

evaluations on a diverse range of big data and classifiers should be carried out to vali-

date performance consistency. Lastly, future work should specifically address the 

research gaps discussed previously, including within-class imbalance, small disjuncts, 

feature selection, stacked ensembles, advanced over-sampling techniques, and one-class 

learners.
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Appendix A1

Data-Level approach

�e performance evaluators in Table 3 show score results that represent the best or opti-

mal experimental values. Comparisons between results for separate works of research or 

separate experiments within the same paper may not be valid. However, providing these 

performance scores may be valuable for future comparative research.

Appendix A2

Algorithm-Level approach

�e performance evaluators in Table 4 show score results that represent the best or opti-

mal experimental values. Comparisons between results for separate works of research or 

separate experiments within the same paper may not be valid. However, providing these 

performance scores may be valuable for future comparative research.

Table 3 Performances’ summary of Data-Level methods

Technique GM TPR * TNR AUC Accuracy F-measure Big Data framework

Data-Sampling methods

 Fernandez et al. [32] Apache Hadoop and 
Apache Spark  ROS 0.71 – – – –

  RUS 0.70 – – – –

  SMOTE 0.63 – – – –

 Rio et al. [51] Apache Hadoop

  ROS – 0.49 – – –

  RUS – 0.48 – – –

 Triguero et al. [16] Apache Hadoop and 
Apache Spark  EUS 0.67 – 0.67 – –

  RUS 0.66 – 0.66 – –

 Park et al. [54] Apache Hadoop

  SMOTE – – – 0.76 –

 Park and Ha [56] Apache Hadoop

  SMOTE – – – 0.81 –

 Chai et al. [57] –

  RUS – – – – 0.99
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Table 4 Performances’ summary of algorithm-level methods

a Geometric mean

b True positive rate * true negative rate

c Area under the ROC curve

d Accuracy

e Accuracy gain

f F-measure

g F-measure absolute error

h Positive datapoints weight

i True positive rate

j Gini index mean decrease

k Big Data framework

Technique GMa TP * TNb AUC c Ad AGe Ff FAEg
W

h TPi GDj BDFk

Cost-sensitive

 Lopez et al. [9] Apache Hadoop

  Chi-FRBCS-Big DataCS – – 0.99 – – – – – – –

 Wang et al. [11] –

  CS-SSOL – – – 0.99 – – – – – –

Hybrid/ensemble

 Marchant and Rubinstein [58] –

  OASIS – – – – – – 10−5 – – –

 Maurya [13] –

  IBO – – – – – – – 0.87 – –

 Veeramachaneni et al. [60] –

  AI2 – – 0.85 – – – – – – –

 Galpert et al. [14] Apache Hadoop 
and Apache 
Spark

  ROS + SVM-BD 0.88 – 0.89 – – – – – – –

 Wei et al. [64] –

  i-Alertor – – – – – – – – 0.66 –

 D’Addabbo and Maglietta [67] –

  PSS-SVM – – – – – 0.99 – – – –

 Triguero et al. [3] Apache Hadoop

  ROSEFW-RF – 0.53 – – – – – – – –

 Zhai et al. [70] Apache Hadoop

  ELM ensemble 0.97 – – – – – – – – –

 Hebert [72] –

  RF – – – – – – – – – 0.15

  XGBoost – – – – 0.05 – – – – –

 Rio et al. [46] Apache Hadoop

  ROS 0.99 – – – – – – – – –

  RUS 0.98 – – – – – – – – –

  SMOTE 0.91 – – – – – – – – –

  RF 0.97 – – – – – – – – –

 Baughman et al. [74] –

  DeepQA – – – 0.28 – – – – – –
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