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With the rapid evolution of the Internet, the application of artificial intelligence fields is more and more extensive, and the era of Al has
come. At the same time, adversarial attacks in the Al field are also frequent. Therefore, the research into adversarial attack security is
extremely urgent. An increasing number of researchers are working in this field. We provide a comprehensive review of the theories
and methods that enable researchers to enter the field of adversarial attack. This article is according to the “Why? — What? — How?”
research line for elaboration. Firstly, we explain the significance of adversarial attack. Then, we introduce the concepts, types, and
hazards of adversarial attack. Finally, we review the typical attack algorithms and defense techniques in each application area. Facing
the increasingly complex neural network model, this paper focuses on the fields of image, text, and malicious code and focuses on the
adversarial attack classifications and methods of these three data types, so that researchers can quickly find their own type of study. At

the end of this review, we also raised some discussions and open issues and compared them with other similar reviews.

1. Introduction

In the age of the Internet, with the accumulation of large
amounts of data, the evolution of computing power, and
the constant innovation and evolution of machine learning
methods and frameworks, artificial intelligence (AI) technol-
ogies such as image recognition, machine translation, and
autonomous driving have been widely deployed and widely
applied all over the world [1]. Artificial intelligence is march-
ing towards historic moments for mankind. At the same
time, machine learning algorithms also have a significant
impact on the research of the traditional computer security
field [2]. In addition to using machine learning (ML) to build
various malicious detections and attack identification sys-
tems, hackers may also use ML to achieve more accurate
attacks. Recent studies have shown that many application
fields, from computer vision to network security, are vulner-
able to adversarial attack threats [3, 4].

Szegedy et al. [5] first proposed the concept of adversarial
sample—an interesting weakness in neural networks. This

paper has sparked widespread interest in adversarial attacks
among researchers, and the number of adversarial attacks will
continue to increase in the future as the economic benefits
trend. Based on gradient descent and L-norm optimization
methods, Liu et al. [6] first presented the method to exploit a
malware-based visual detector to adversarial example attacks.
Zhou et al. [7] were the first to propose an alternative model
for training adversarial attacks without real data.

In order to provide a comprehensive reference tool
for researchers to study adversarial attack, this paper clas-
sifies and compares adversarial attack algorithms of
image, text, and malware fields. Moreover, the concepts,
types, harms, evolvement trends of adversarial attack,
and the commonly used defense technologies in recent
years are reviewed systematically, and the future research
direction is discussed [8, 9]. This paper is aimed at pro-
viding theoretical and methodological support for the
research on adversarial attack security by extensively
investigating the research literature on adversarial attacks
and robustness [10, 11].
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To sum up, the main contributions are as follows:

(1) Present adversarial attacks according to the idea of
“Why? — What? — How?” In this way, researchers
can quickly and efficiently establish the awareness
of adversarial attack

(2) Portray a roadmap for carrying out adversarial attack
research, which can help researchers quickly and effi-
ciently access the domain of adversarial attacks secu-
rity research

(3) In order to ensure the timeliness of the review, the
most up-to-date and comprehensive references are
provided based on the articles published in authorita-
tive journals and top academic conferences after 2010

(4) In order to enable researchers to find referable
methods as needed, the technical core and deficiency
of methods in each typical method are introduced

(5) In order to quickly find the entry point of adversarial
attack research, the pieces of literature on adversarial
attack are classified from different perspectives.

The structure of the article is as follows. In “Why Study
Adversarial Attack,” we first recommend why we should
study adversarial attacks. In “Adversarial Attack,” we
describe the concepts, classifications, hazards, and methods
associated with adversarial attacks. A separate section is
devoted to categorizing and comparing the adversarial attack
methods of images, text, and malware. In “Defense
Methods,” we discuss defense methods. Then, in “Additional
Complements,” the additional supplements needed for
adversarial attack research are presented. After that, we put
forward a broader prospect of research direction in “Discus-
sion.” In “Comparison with Other Similar Reviews,” the dif-
ferences between this paper and other similar reviews are
discussed. Finally, we concluded in “Conclusions.”

2. Why Study Adversarial Attack

Choosing directions is the first step in conducting research.
The research direction of adversarial attack security is
reflected in the following aspects:

(1) Adversarial attack has become a serious threat to the
current Al system. In the era of the Internet of Every-
thing, the network has become the ideal goal for
cyber attackers. Vulnerability in artificial intelligence
is often exploited by attackers to launch cyber-
attacks. In 2018, a fake video of Obama railing against
Trump went viral across the United States. Some
criminals fabricate information to manipulate the
election. With the frequent occurrence of these fraud
incidents, governments and organizations of various
countries have formulated and improved the relevant
laws and regulations. In the United States, for exam-
ple, the Deepfake Report Act was introduced in June
2019 and passed unanimously in the Senate as a sep-
arate bill only 120 days later. Despite the relentless
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efforts of the machine learning and AI communities
to erect protective fences, the number of adversarial
attacks is climbing significantly, and the threat posed
by them continues to increase. Szegedy et al. [5] first
proposed the concept of adversarial samples—intri-
guing weaknesses of neural networks. Their essay
has sparked broad interest among researchers in
adversarial attacks. Moreover, the number of adver-
sarial attacks will continue to increase in the future,
as economiic interests evolve. Only by continuously
strengthening the protective barrier of the deep
learning model can a secure network security envi-
ronment be built [12]

(2) The race of Al can promote adversarial attack secu-
rity research. Attacking and defending adversarial
machine learning is a process of iterative evolution.
Adversarial attack creators have been probing new
vulnerabilities, depicting new algorithms, and seek-
ing new threats, while the defenders have been ana-
lyzing the features of new adversarial attacks and
employing new methods to ensure efficient and effec-
tive defense against adversarial attacks. Conse-
quently, choosing adversarial attack security as the
research direction can not only merely keep the study
at the forefront of AI security but also enable
researchers to stimulate continuous motivation in
the process of research.

3. Adversarial Attack

3.1. Concepts. In this subsection, some common terms used
in the literature related to adversarial attacks are presented.

3.1.1. Adversarial Example. Adversarial example is an artifi-
cially constructed example that makes machine learning
models misjudge by adding subtle perturbations to the orig-
inal example but at the same time does not make human eyes
misjudge [13].

3.1.2. White-Box Attack. White-box attacks assume that the
target model can fully obtain the structure of the model,
including the composition of the model and the parameters
of the partition layer, and can fully control the input of the
model [14].

3.1.3. Black-Box Attack. Black-box attacks have no idea of the
internal structure of the model and can only control the input
and carry out the next attack by comparing the feedback of
the input and output [15].

3.1.4. Real-World Attack/Physical Attack. Real-world attack-
s/physical attacks do not understand the structure of the
model and even have weak control over the input [16].

3.1.5. Targeted Attack. Targeted attacks will set the target
before the attack, causing it to incorrectly predict the specific
label of the adversarial images, which means that the effects
after the attacks are determined [17].
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FiGure 1: Classification of image-based adversarial attack.

3.1.6. Untargeted Attack. Untargeted attacks do not need to
set the target before the attack, as long as the result of identi-
fication is wrong after the attack [18].

3.1.7. Evade Attack. Evade attacks refer to adding disturbance
to test samples and modifying the input during the test phase,
to avoid or deceive the detection of the model and make the
AT model unable to be correctly identified [19].

3.1.8. Poisoning Attack. By adding carefully constructed mali-
cious examples in the model training phase, poisoning
attacks make the trained model have backdoor or vulnerabil-
ity, which can be used by attackers to carry out attacks [20].

3.1.9. Backdoor Attack. Backdoor attack means that the
attacker can enter the system without identity authentication,
which means that the attacker can bypass the security control
to gain access to the system and even further damage the com-
puter or network. The neural network backdoor attack
referred to in this paper refers to that the attacker generates
a model with a backdoor by implanting specific neurons in
the neural network model, so that the judgment of the model
on normal inputs is consistent with the original model, but the
judgment on special inputs will be controlled by the attacker
[21]. A backdoor attack is a type of poisoning attack [22].

3.1.10. Detection Model. The detection model means to detect
whether the examples to be judged are adversarial examples
by detecting components. Various detection models may
judge whether the input is an adversarial example according
to different criteria [23].

3.2. Classifications. In this section, we describe the main
methods for generating adversarial examples in the image,
text, and malware domains. And the work of some
researchers is reviewed. Adversarial machine learning is a
widely used technology in the field of image, and the research
has been quite comprehensive. The malicious code domain
and the text domain are similar and can be borrowed from
each other. Figure 1 is the classification of image-based
adversarial attack. According to the attacker’s knowledge,
the attack can be divided into black-box attack, white-box

attack, and physical attack. Figure 2 is the classification of
text-based adversarial attack. According to the access permis-
sions of the model, the attack can be divided into black-box
attack and white-box attack. And according to the effect after
the attack, it can be divided into the targeted attack and non-
targeted attack. Moreover, according to the text granularity,
it can be divided into character level, word level, and sentence
level. Besides, according to the attack strategy, it can be
divided into image-to-text, importance-based, optimiza-
tion-based, and neural network-based. Figure 3 is the classi-
fication of malware-based adversarial attack. According to
the object, it can be divided into attacks on training data
and attacks on neural network model.

3.3. Hazards. The main harm of adversarial attack includes
the following:

(1) Model losing or stealing: network information data
has become the most precious intangible asset in
the current Internet of Everything era. In the current
era of the Internet of Everything, network informa-
tion data has become the most precious intangible
asset. Plenty of adversarial attacks are designed to
steal secret data, such as stealing privacy data from
computers or servers and after that deceiving or
blackmailing victims. More malicious attacks are
aimed at enterprises to steal valuable trade secrets
from enterprises and obtain economic benefits, even
worse, targeting a country and stealing national
security-related intelligence information from gov-
ernment departments for strategic purposes

(2) Model failure: the adversarial attack causes the failure
of the deep learning model and makes it unable to
work properly utilizing physical attack against the
vulnerability of the model. For instance, in the field
of autonomous driving, the superposition of image
data with subtle perturbations makes it difficult for
humans to recognize by senses, which leads to the
wrong classification decision made by the machine
learning model and causes traffic accidents
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(3) Data poisoning: a typical scenario is the recommen-
dation system. When hackers add abnormal data to
the training samples of deep learning, the most direct
impact is that the classification error of the deep
learning model, i.e., the recommendation system,
generates an error

(4) Other hidden hazards: apart from the obvious harms
mentioned above, adversarial attacks can also cause
some hidden hazards. For instance, many malwares
generate adversarial examples through some algo-
rithms, and the malicious behavior does not change,
but the detection of antivirus system fails, which
eventually leads to malicious attacks on computers
and networks as well as losses of profits.

3.4. Methods. The typical attack algorithms of each applica-
tion domain are shown in Table 1.

3.4.1. Image-Based Adversarial Attack. Adversarial attacks
are a major threat to computer vision. CCS 2020 has a total
of four papers on adversarial machine learning, all of which
are based on image research, three of which are about robust-
ness and defense mechanisms, and only one is about adver-
sarial attack methods. I have compared and summarized
several papers of CCS, NIPS, USENIX, ECML PKDD, and
JNCA from 2016 to 2020, as shown in Table 2.

Through reading the papers, it can be found that most of
the current research in the field of image are optimized and
improved based on previous research, and the attack types
are generally divided into white-box attack, black-box attack,
and physical attack [12].

3.4.2. Text-Based Adversarial Attack. Studies have shown that
DNN models are susceptible to adversarial samples that lead
to false predictions by adding imperceptible per to normal
input. The study of adversarial samples in the field of images
is abundant, but not enough in the field of text. Table 3 sum-
marizes some of the relevant papers on the research of adver-
sarial machine learning in the text field in recent years.

By reading the literature, the text domain adversarial
samples can be divided into character level, word level, and
sentence level. Attack types can be classified into white-box
attack and black-box attack according to the model access
rights. According to the effect after the attack, it can be
divided into the targeted attack and untargeted attack. Attack
strategies in the text domain generally include reference algo-
rithms in the field of image, transformed into optimization
problems, using gradient or designing scoring functions,
and training neural network models to automatically gener-
ate adversarial samples [13].
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TasLE 1: Typical attack algorithms for different application domains.

Method Access permission Targeted/nontargeted ~ Application domain Metrics/strategies
Papernot et al. 2016 [24] White box Nontargeted Text Gradient
TextFool 2018 [25] White and black box Targeted Text Gradient
HotFlip 2018 [26] White box Nontargeted Text Gradient
Alzantot et al. 2018 [27] Black box Targeted Text Euclidean distance
DeepWordBug 2018 [28] Black box Nontargeted Text Scoring function
Zhao et al. 2018 [29] Black box Nontargeted Text and image WGAN-based
TextBugger 2019 [30] White and black box Nontargeted Text Cor;fjriﬁzefiﬁi??g;ent’
DISTFLIP 2019 [31] Black box Nontargeted Text Gradient
UPSET 2011 [32] Black box Targeted Universal I

L-BFGS 2014 [33] White and black box Targeted Image I
FGSM-based 2015 [34] White box Targeted/nontargeted Universal Ll

JSMA 2015 [35] White box Targeted Image Lo

DeepFool 2016 [36] White box Nontargeted Image Ll

BIM and ILCM 2017 [37] White box Nontargeted Image N

One-pixel 2017 [38] Black box Targeted Image ly

C&W 2017 [39] White box Nontargeted Image Ll
Universal perturbations 2017 [40] White box Nontargeted Universal Ll

ANGRI 2017 [41] Black box Targeted Image Il

Houdini 2017 [42] Black box Targeted Image Llw

ATNs 2017 [43] White box Targeted Image loo

MalGAN 2017 [44] Black box Targeted Malware GAN-based, gradient
SLEIPNIR 2018 [45] White box Targeted Malware Saddle-point optimization
Kolosnjaji et al. 2018 [46] White box Targeted Malware Gradient

Song et al. 2020 [47] Black box Targeted Malware Number of bytes changed
Rosenberg et al. 2020 [48] Black box Targeted Malware API call-based, GAN
MalRNN 2020 [49] Black box Targeted Malware Varying the append size

3.4.3. Malware-Based Adversarial Attack. In recent years,
machine learning has been used to detect malware, and mal-
ware developers have a strong incentive to attack the detec-
tion model. Table 4 summarizes some of the papers related
to adversarial attacks in the field of malicious code in recent
years.

Through literature reading, it can be found that attack
types are generally divided into attacks on training data and
attacks on neural network models. According to the attack
scenario, it can be divided into white-box attack, gray-box
attack, and black-box attack. In addition, the methods
adopted include GAN-based, gradient-based, and heuristic-
based algorithms [14].

4. Defense Methods

At present, relevant studies have been conducted to explore
the security of Al itself, to ensure the integrity and confiden-
tiality of Al models and data, so that it will not be easily
affected by attackers to change judgment results or leak data
in different scenarios. Hendrycks and Gimpel [64] proposed
three methods for detecting adversarial images. Zhang et al.
[65] proposed a hardware-assisted randomization method

against adversarial examples to defend against various adver-
sarial attacks. At present, Al attacks are divided into the eva-
sive attack, poisoning attacks backdoor attack, and model-
stealing attack. The backdoor attack is a kind of poisoning
attack. Table 5 lists the various defense techniques of the Al
system during data collection, model training, and model
use phases. Furthermore, we need to continue to study Al
interpretability, enhance our understanding of how ML
works, and build institutional defense measures to build Al
security platforms [66].

4.1. Defense Methods of Evasive Attack

4.1.1. Adversarial Training. Adversarial training is an impor-
tant way to enhance the robustness of neural network
models. The basic principle of this technique is to use known
attack techniques to generate adversarial samples in the
model training stage. Then, the adversarial samples are added
to the training set of the model, and the model is iteratively
retrained until a new model that can resist disturbance is gen-
erated. At the same time, since the synthesis of multiple types
of adversarial samples increases the data of the training set,
this technique can not only enhance the robustness of the
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TaBLE 5: Al security defense technology.

Type Data collection phase

Phase

Model train phase Model usage phase

Evasive attack Generating adversarial examples

L Filtering training data;
Poisoning attack 5 &

regression analysis
Back door attack

Model-stealing attack Differential privacy

Adversarial examples
detection; input reconstruction;
DNN model validation

Network distillation;
adversarial training

Integration analysis

Model pruning Input preprocessing

Privacy aggregation teacher model;

model watermarking

newly generated model but also enhance the accuracy and
standardization of the model [67].

Ju et al. [68] propose E-ABS (analysis-by-synthesis) which
can extend the ABS robust classification model to more com-
plex image domains. The core contents include the following:
(1) generation model: Adversarial Auto Encoder (AAE) is
used to evaluate the class-conditional probability; (2) discrim-
inative loss: use the discriminative loss during training to
expose the conditional generation model to unevenly distrib-
uted samples; (3) variational inference: the ABS-like model
estimates the likelihood of each category by maximizing the
likelihood estimation; and (4) lower bound for the robustness
of E-ABS: the lower bound of the nearest adversarial example
to E-ABS is derived by using the ABS model. Nevertheless, the
generation model is sensitive to image similarity measure-
ments. And the reasoning and operation efficiency of ABS-
like model on large datasets are low.

Chen et al. [69] are the first to evaluate and train the ver-
ifiable robust properties of PDF malware classifiers. They
proposed a new distance metric in the PDF tree structure to
construe robustness, that is, the number of different subtrees
of depth 1 in two PDF trees. Furthermore, their experimental
results show that the most advanced and new adaptive evolu-
tionary attackers need 10 times the L0 feature distance and 21
times the PDF operation to evade the robustness model.
However, the tradeoff between multiple robustness attributes
and training costs needs further study.

4.1.2. Network Distillation. Distillation is a method of com-
pacting the knowledge of a large network into smaller net-
works. Specialist models means, for a large network,
multiple specialized networks can be trained to improve the
model performance of the large network. The practice of dis-
tillation is generally to train a large model (teacher network)
first and then heat the large model. The output of the large
model is used as a soft target, and the real label of data is used
as a hard target. The two are combined to train the small
model (student network) [70].

The basic principle of the network distillation technique
is to series multiple DNNs in the model training stage, in
which the classification results generated by the former
DNN are used to train the latter DNN. Papernot et al. [71]
found that the transfer knowledge could reduce the sensitiv-
ity of the model to subtle disturbances to some extent and
improve the robustness of the AI model. Therefore, network
distillation technology is proposed to defend against evasive

attacks, and it is tested on MNIST and CIFAR-10 datasets.
It is found that network distillation technology can reduce
the success rate of specific attacks (such as JSMA and FGSM).

4.1.3. Adversarial Example Detection. The principle of adver-
sarial example detection is to detect whether the example to
be judged is an adversarial example by adding the detection
component of the external detection model or the original
model in the usage stage of the model. Before the input exam-
ple reaches the original model, the detection model will
determine whether it is an adversarial example. The detection
model can also extract relevant information from each layer
of the original model and synthesize various information to
carry out detection. Various detection models may use differ-
ent criteria to determine whether the input is an adversarial
example [72].

Shumailov et al. [73] propose a new provable adversarial
example detection protocol, the Certifiable Taboo Trap
(CTT). They extended the Taboo Trap method. Moreover,
three different CTT modes (CTT-lite, CTT-loose, and CTT-
strict) are also discussed. However, this scheme cannot be
used to defend against a specific adversarial example, thus
resulting in a more flexible and universal defense mechanism.

4.1.4. Input Reconstruction. The principle of input recon-
struction is that the input samples are transformed to resist
evasive attack in the use stage of the model, and the trans-
formed data will not affect the normal classification function
of the model. Reconstruction methods include noising,
denoising, preprocessing, gradient masking, and using auto-
encoder to change the input examples [74]. At the same time,
I think the metamorphosis of the sample has some similari-
ties with the evolution of malicious code. Interestingly, 8
papers presented at the ICLR 2018 conference used gradient
masking, but researchers quickly cracked 7 of them.

4.1.5. DNN Verification. Similar to software verification anal-
ysis technology, DNN verification technology uses solvers to
verify various properties of DNN models, such as verifying
that there is no adversarial example within a specific pertur-
bation range. Nevertheless, the DNN model is usually veri-
fied as an NP-complete problem, and the efficiency of
solver is low. Through selection and optimization, such as
priority selection of model node validation, sharing of valida-
tion information, and validation by region, the operation effi-
ciency of DNN verification can be further improved [75].
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4.1.6. Data Augmentation. In reality, we often encounter the
situation of insufficient data. The essence of data augmenta-
tion is to expand the original training set with generated
adversarial samples when massive data is lacking, so as to
ensure effective training of the model [76].

4.2. Defense Methods of Poisoning Attack

4.2.1. Training Data Filtering. This technique focuses on the
control of the training dataset and uses detection and purifi-
cation methods to prevent the poisoning attack from affect-
ing the model. Specific directions include the following
[77]: finding possible poisoning attack data points according
to the label characteristics of the data and filtering these
attack points during retraining; the model contrast filtering
method was used to reduce the sampling data that could be
used by poisoning attack, and the filtering data was used to
against poisoning attack.

4.2.2. Regression Analysis. This technique is based on statisti-
cal methods that detect noise and outliers in datasets. Specific
methods include defining different loss functions for the
model to check outliers, using the distribution characteristics
of data for detection [78], etc.

4.2.3. Ensemble Learning. Ensemble learning is to build and
combine multiple machine learning classifiers to improve the
ability of the machine learning system to resist poisoning
attacks. Multiple independent models jointly constitute the
AI system. And the possibility of the whole system being
affected by the poisoning attack is further reduced due to the
different training datasets adopted by multiple models [79].

Liao et al. [80] design an adaptive attack method to study
the effectiveness of integrated defense based on transforma-
tion for image classification and its reasons. They propose
two adaptive attacks to evaluate the integrated robustness
of reversible transformation: TAA (adaptive attack based
on transferability) and PAA (perturbation aggregation
attack). Moreover, the ensemble evaluation method is used
to evaluate the ensemble robustness of the irreversible trans-
formation. However, the experimental results show that the
integrated defense based on transformation is not enough
to resist the antagonistic samples, the defense method is not
reliable, and further efforts are needed.

4.2.4. Iterative Retraining. Iterative retraining refers to the
iterative training of neural networks. Adversarial examples
are generated according to any attack model and added to
training data. Then, the neural network model is attacked,
and the process is repeated [81].

4.3. Defense Methods of Back Door Attack

4.3.1. Input Preprocessing. The purpose of this method is to
filter the input that can trigger the back door and reduce
the risk of the input triggering the back door and changing
the model judgment [82]. Data can be divided into discrete
and continuous types. The image data is continuous and easy
to encode as a numerical vector. The pretreatment operation
is linear and differentiable, and there are many operation
methods, such as mean standardization. Text data is discrete

Wireless Communications and Mobile Computing

and symbolized. The preprocessing operation is nonlinear
and nondifferentiable. One-hot is generally used for
pretreatment.

4.3.2. Model Pruning. Pruning in neural networks is inspired
by synaptic pruning in the human brain. Synaptic pruning,
complete decline and death of axons and dendrites, is a syn-
aptic elimination process that occurs between childhood and
the onset of puberty in many mammals, including humans.
The principle of model pruning is to cut off the neurons of
the original model appropriately, reducing the possibility of
the backdoor neurons working under the condition that nor-
mal function is consistent. Using a fine-grained pruning
method [83], the neurons that make up the backdoor can
be removed, and the backdoor attack can be prevented.

4.4. Defense Methods of Model-Stealing Attack

4.4.1. PATE. The basic principle of PATE is to divide the
training data into multiple datasets without intersection in
the model training stage, and each set is used to train an inde-
pendent DNN model (called teacher model). These indepen-
dent DNN models are then used to vote together to train a
student model [84]. This technology ensures that the judg-
ment of the student model will not disclose the information
of a particular training data, so as to ensure the privacy of
the training data.

4.4.2. Differential Privacy. In the model training stage, the
method is used to add noise to the data or the model training
step by conforming to the differential privacy [85]. For exam-
ple, Giraldo et al. [86] are the first to solve the adversarial
classification problem in a system that uses differential pri-
vacy to protect the user’s privacy. They find an optimal fake
data injection attack that reduces the system’s ability to detect
anomalies, while allowing the attacker to remain undetected
by “hiding” the fake data in the differential privacy noise.
Besides, they design the optimal defense method to minimize
the impact of such attack. They also show how the optimal
DP-BDD (differential privacy-bad-data detection) algorithm
achieves a Nash equilibrium between attackers trying to find
the optimal attack distribution and defenders trying to design
the optimal bad-data detection algorithm. Yet, the trade-offs
between security, privacy, and practicality need to be further
explored. Differential privacy adds noise to sensitive data or
calculations performed on sensitive data to ensure privacy
without unduly reducing the utility of the data.

4.4.3. Model Watermarking. The technique is to embed spe-
cial labels in the original model during the model training
stage. If a similar model is found, a special input sample
can be used to identify whether the similar model was
obtained by stealing the original model. Adi et al. [87] pro-
posed a black-box deep neural network watermarking
method. The robustness of the watermarking algorithm is
evaluated under black-box and gray-box attacks.

In addition to the defensive measures mentioned above,
there are other ways to improve the model’s robustness
against attacks, such as data compression, data randomiza-
tion, data secondary sampling, outliers removal, model
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TaBLE 6: Common datasets for image adversarial attack.

Type of dataset Data source

Application instances

ImageNet

MNIST

CIFAR-10

CH-MNIST; Fashion-MNIST;
Breast Cancer Wisconsin

VidTIMIT database
WebFace; VGGFace2
FaceScrub

Publicly accessible dataset PubFig

Cora; Citeseer; Polblogs
Social Face Classification (SFC) dataset

MS-COCO
CelebA

MS-COCO 2017; PASCAL VOC 2007;

PASCAL VOC 2012

Labeled Faces in the Wild (LFW) database

YouTube Faces (YTF) dataset

LIDC-IDRI dataset

ILSVRC 2012

Xiao et al. 2019 [55]; Ma et al. 2019 [92]

Demontis et al. 2019 [20]; Ling et al. 2019 [93];
Fang et al. 2020 [94]; Ma et al. 2019 [92];
Moosavi-Dezfooli et al. 2016 [36]; Yang et al. 2019 [95]

Ling et al. 2019 [93]; Shafahi et al. 2018 [52];
Ma et al. 2019 [92]; Moosavi-Dezfooli et al. 2016 [36];
Yang et al. 2019 [95]

Fang et al. 2020 [94]

Korshunov et al. 2018 [96]
Shan et al. 2019 [97]

Yang et al.2019 [95]; Shan et al. 2019 [97]
Sharif et al. 2016 [50]; Shan et al. 2019 [97]
Jin et al. 2020 [98]

Taigman et al. 2014 [99]

Chen et al. 2019 [54]

Yang et al. 2019 [95]

Wang et al. 2020 [56]

Demontis et al. 2019 [20];
Taigman et al. 2014 [99]; Ma et al. 2019 [92]

Taigman et al. 2014 [99]
Mirsky et al. 2019 [53]

Simonyan et al.2015 [100];
Moosavi-Dezfooli et al. 2016 [36]

Commercial dataset Fugazi

Din et al. 2018 [101]

Artificially generated dataset

Generated by toolkits manually

Yu et al. 2020 [102]

regularization, deep contractive network, biologically
inspired conservation [32], attention mechanism [88],
GAN-based, magnet [89], and high-level representation
guided denoiser (HGD) [90].

Each of the above defense techniques has specific
application scenarios and cannot completely defend
against all the adversarial attacks. We can consider the
above defense technology in parallel or serial integration
to see whether the defense effect is better. For instance,
data augmentation has the flexibility to easily plug in other
defense mechanisms [91].

5. Additional Complements for Adversarial
Machine Learning Research

Apart from focusing on the research methods of adversar-
ial attack and defense, we also need to know other sides of
this field.

5.1. The Choice of Dataset. By analyzing the already pub-
lished articles, there are three types of datasets used in the
adversarial machine learning research community currently.
The common dataset for image adversarial machine learning
research is shown in Table 6. The application of the text
adversarial machine learning dataset is shown in Table 7.

And Table 8 shows the application of the malware adversarial
machine learning dataset.

5.1.1. Publicly Accessible Dataset. At present, the majority of
published papers use publicly accessible datasets from the
Internet. These datasets are free to use and are maintained
and updated by researchers in the field of computer science.

5.1.2. Commercial Dataset. Commercial datasets are gener-
ally not freely utilized or publicly available.

5.1.3. Artificially Generated Dataset. Other datasets are man-
ually generated or crawled from the website by researchers
using special tools.

5.2. General Adversarial Machine Learning Tools. Some com-
monly used tools can be used to assist experimental verifica-
tion in the experimental phase of adversarial machine
learning research. Common tools for adversarial ML include
sandboxes, Python-based tools, and Java-based tools.

5.2.1. Sandbox. The Sandbox is a virtual system application
that allows the user to run a browser or other application in
a Sandbox environment, so the changes that result from run-
ning it can be deleted later. It creates a separate operating
environment that restricts program behavior according to
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TasLe 7: Common datasets for text adversarial attack.
Type of dataset Data source Application instances
AG’s news; SST Ebrahimi et al. 2018 [26]; Sato et al. 2018 [103]
Gao et al.2018 [28]; Zhang et al. 2020 [104];
IMDB Zang et al. 2020 [60]; Li et al. 2019 [105];
Neekhara et al. 2018 [104]
SNLI Zhang et al. 2020 [104]; Zang et al. 2020 [60]
Publicly accessible dataset SST-2 Zang et al. 2020 [60]

Enron spam emails
Rotten Tomatoes Movie Reviews
DUC2003; DUC2004; IGAWORD

Sogou News; DBPedia;
Yahoo! Answers; Amazon Review

Gao et al. 2018 [28]
Li et al. 2019 [105]
Cheng et al. 2020 [58]

Sato et al. 2018 [103]

Commercial dataset Kaggle

Liet al. 2019 [105]

TaBLE 8: Common datasets for malware adversarial attack.

Type of dataset Data source

Application instances

VirusShare; Citadel; APT1

VirusTotal

Drebin
Publicly accessible dataset

https://malwr.com/

NSL-KDD

MAMADROID

EMBER

MasterDGA; Alexa site

Kolosnjaji et al. 2018 [46];
Al-Dujaili et al. 2018 [45]

Song et al. 2020 [47]; Huang et al. 2019 [106];
Suciu et al. 2019 [107]

Xu et al. 2020 [108]; Chen et al. 2020 [63];
Demontis et al. 2019 [20]; Arp et al. 2014 [109]

Hu et al. 2017 [44]
Zhang et al. 2020 [110]
Chen et al. 2020 [63]
Suciu et al. 2019 [107]
Alaeiyan et al. 2019 [111]

The Kaggle Malware dataset of Microsoft

) McAfee Labs
Commercial dataset

FireEye; Reversing Lab

Microsoft’s antimalware team

Salem et al. 2019 [112]; Yan et al. 2018 [113]
Huang et al. 2019 [106]
Suciu et al. 2019 [107]
Stokes et al. 2018 [114]

Artificially generated dataset

Generated by toolkits manually

Suciu et al. 2019 [107]

security policies, and programs that run inside of it do not
permanently affect the hard disk. In cyber security, a sandbox
is a tool used to handle untrusted files or applications in an
isolated environment. For instance, Hu et al. used the
Cuckoo Sandbox to process malware samples.

5.2.2. Machine Learning Tools Based on Python. Python is
regarded as the best suited programming language for ML.
Therefore, a series of Python-based machine learning and
deep learning tools have been developed by researchers in
the adversarial ML.

5.2.3. TensorFlow. TensorFlow is an end-to-end open source
machine learning platform. It has a comprehensive and flex-
ible ecosystem of tools, libraries, and community resources
that will help researchers drive the development of advanced
machine learning technologies. Besides, it enables developers
to easily build and deploy applications powered by machine
learning.

5.2.4. Keras. Keras is a high-level neural network API written
in Python. It runs with TensorFlow, CNTK, or Theano as a
backend. The focus of Keras development is to support rapid
experimentation. Being able to turn ideas into results with
minimal delay is the key to carry out research. With it, deep
network can be built quickly and training parameters can be
selected flexibly.

5.2.5. PyTorch. PyTorch is based on Torch and is used for
applications such as natural language processing. It is a ten-
sor library optimized using GPU and CPU. Moreover, it
can be regarded as a powerful deep neural network with auto-
matic derivation function.

5.2.6. NumPy. NumPy is a basic package for scientific com-
puting using Python. It can be used to store and process large
matrices and support a large number of dimension arrays
and matrix operations. In addition, it also provides a large
number of mathematical libraries for array operations.
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TaBLE 9: The connections between papers.

Type Author Time/published in Connection
Mahmood Sharif et al. [50] 2016/CCS
Nicolas Papernot et al. [51] 2017/CCS
Ali Shafahi et al. [52] 2018/NIPS
Yossi Adi et al. [87 2018/USENIX
vi OSTM. 'e at [l []53] 2019/USENIX In the field of image, papers of CCF A and B
isroel Mirsky et al. conferences and top journals in the field of security
Image Shang-Tse Chen et al. [54] 2019/ECML PKDD were selected, covering the papers of nearly five years
8 Qixue Xiao et al. [55] 2019/USENIX from 2016 to 2020, involving offense and defense, and
Yajie Wang et al. [56] 2020/JNCA being able to understand the frontier research in the
Jestis Solano et al. [57] 2020/CCS field of adversarial machine learning.
esus Solano et al.
Chang Liao et al. [80] 2020/CCS
Tlia Shumailov et al. [73] 2020/CCS
An Ju et al. [68] 2020/CCS
Javid Ebrahimi et al. [26] 2018/ACL
Ji Gao et al. [115] 2018/SPW In the field of text, 6 papers including [30]
Text Minhao Cheng et al. [58] 2018/AAAI are selected, with [30] as the core. Among the
Jinfeng Li et al. [30] 2019/NDSS 40 related papers, 6 papers are selected, among which
Huangzhao Zhang et al. [59] 2019/ACL three [26, 58, 115] quoted by [30] are cited by [59, 60].
Yuan Zang et al. [60] 2020/ACL
Weiwei Hu et al. [44] 2017 /arXiv
Edward Raff et al. [61] 2017/arXiv
Abdullah Al-Dujaili et al. [45] 2018/arXiv ’f)hesel papers afre alZim;;[ malgare adverzarial
. - . machine learning found through connected papers.
Bojan I.<olosnja] ietal [46] ZOIS/MX?V Among them, [44-46] are the papers based on windows
Wei Song et al. [47] 2020/arXiv platform. [48] is the paper related to binary malware adversarial
Malware Ishai Rosenberg et al. [48] 2020/ACSAC examples. [47, 49] are similar to the same review on
Mohammadreza Ebrahimi et al. [49] 2020/AAAI Windows PE file generation adversarial examples. The
Thien Duc Nguyen et al. [22] 2020/DISS remaining papers include top conference papers, top journal
& .Y ) i papers, and arXiv in the field of security, among
Luca Demetrio et al. [62] 2020/arXiv which [69] is about robustness research paper.
Xiao Chen et al. [63] 2020/TIFS
Yizheng Chen et al. [69] 2020/USENIX

5.2.7. Scikit-Learn. Scikit-Learn is a machine learning tool
based on Python with simplicity and efficiency. It can per-
form data mining and data analysis. Everyone can access it,
and it is open source. It includes the following six basic func-
tions: classification, regression, clustering, dimensionality
reduction, model selection and preprocessing [115].

5.2.8. Machine Learning Tools Based on Java. Java-based
machine learning platforms include WEKA, KNIME, and
RapidMiner. WEKA provides Java’s graphical user inter-
face, command-line interface, and Java API interface. It
is probably the most popular Java machine learning
library. Apache OpenNLP is a toolkit for processing natu-
ral language text. It provides methods for natural language
processing tasks such as tokenization, segmentation, and
entity extraction.

5.3. The Connections between Papers. Table 9 shows the
relationships among some of the literatures listed in this

paper.

6. Discussion

The competition between offense and defense in the security
field is endless. The previous sections provide an introduc-
tion to adversarial attacks and defenses, so that the reader
can learn about them. Next, there is our discussion and out-
look in this area.

6.1. Adversarial Example Generation Based on Malware.
First, let us introduce the “feature engineering” of malicious
code:

(1) Digital feature extraction: scale, normalize, and
MinMaxScaler

(2) Text feature extraction: word set model and word bag
model

(3) Data extraction: CSV is the most common format.

Adversarial machine learning is a widely used technique
in the image domain. The adversarial attack technology in
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the field of the image is becoming more and more mature. In
the future, we plan research adversarial attack samples in the
field of malicious code. Since the structure of malicious code
is similar to that of text data, we can consider transferring the
text adversarial attack algorithm to the field of malicious
code. There are two main ways to generate text adversarial
samples. One is to generate adversarial samples directly
through text editing operations such as insert, delete, and
replace by using the characteristics of the text. The other is
to map the text data into continuous data and generate the
adversarial samples by using some algorithms in the field of
computer vision for reference. Yan et al. [116] propose a
genetic algorithm-based malicious code adversarial sample
generation method to static rewrite PE files. The atomic
rewrite operation screened by the fuzzy test is similar to the
text edit operation.

6.2. Adversarial Example Generation Based on Swarm
Intelligence Evolutionary Algorithm. Swarm intelligence evo-
lutionary algorithm is a heuristic computing method that
simulates the swarm behavior of insects, birds, and fish in
the biological world, including genetic algorithm, ant colony
algorithm, particle swarm algorithm, and cultural algorithm.
Currently, Liu et al., Yan et al. [116], and Wang et al. [56]
have all generated adversarial samples by improving swarm
intelligence evolutionary algorithm. However, the literature
review found that there are few articles about the cultural
algorithm, among which no one has conducted the research
of adversarial sample generation based on cultural algorithm.
This is one of our future research directions.

6.3. Malware Evolution. Adversarial sample generation in the
domain of malicious code is, in my opinion, similar to the
evolution of malicious code. In order to counter the network
security protection system, malicious code makers continue
to use new technologies and new methods to create new
malicious code. As a result, the malicious code is constantly
evolving to ensure that it can evade security systems. Taking
the evolutionary process of a family sample as an example,
the sample population within a family can be regarded as a
spatiotemporal set sequence, and the sample sets generated
at different stages have different functional characteristics.
Samples within each set will adopt different evolutionary
methods to carry out internal upgrading, and different sets
will also adopt collaboration methods to carry out coevolu-
tion. The goal of its evolution is to ensure its continued sur-
vival ability and attack ability to complete destructive tasks
under different network security protection environments.
The generated adversarial samples can be seen as a form of
evolution of the malicious code. More attention can be paid
to this research in the future.

6.4. Improve the Transportability. Transportability does not
mean that a program can be written without modification
to any computer, but rather that a program can be written
without many modifications when conditions change. Trans-
portability is one of the system quality assurances. It reflects
the universality of the model. And transportability means
that an adversarial sample generated by a neural network

Wireless Communications and Mobile Computing

model on one dataset can also successfully attack another
neural network model or dataset. Generally divided into
three types:(1) the same architecture, different datasets (for
example, both are based on Windows platform but use PE file
and APK file, two types of datasets, respectively); (2) the
same dataset with different architectures (for example, both
are PE files but are applied to Windows and iOS architec-
tures); and (3) different datasets and architectures. Although
some models have successfully achieved portability, perfor-
mance is still declining. Therefore, it is worth studying to
improve the portability of the model.

6.5. Automation. Although some researchers have achieved
automatic adversarial sample generation, many others craft
adversarial samples manually. The artificial way is time-
consuming and laborious and does not conform to the trend
and new requirements of the development of The Times. In
the future, with the efforts of researchers, I believe this prob-
lem will be greatly improved.

6.6. Possible Defensive Measures. In order to ensure system
security in the field of AL how to defend against attacks is
the focus of current research. Many good researchers have
designed powerful attacks but have not come up with effective
countermeasures to defend them. The attack mentioned in
this article must be carried out on the premise that the adver-
sary can access the software or system. If the security of the
access control is done well, it is helpful to protect the security
of AL In the stage of access control, identity authentication
technology is one of the most important links. Secure multi-
party computation (MPC) and homomorphic encryption
(HE) are important privacy protection technologies in identity
authentication systems [117-121]. I envision a combination of
MPC and fully homomorphic encryption (FHE) to defend
against attacks. MPC and FHE have high security. Zheng
et al. [122] design and build Helen, a system that can achieve
malicious security collaborative learning. They greatly reduced
the model training time for achieving stochastic gradient
descent (SGD) under MPC’s SPDZ protocol by using the alter-
nating direction multiplier method (ADMM) and singular
value decomposition (SVD). Giraldo et al. [86] have solved
the adversarial classification problem in a system that uses dif-
ferential privacy to protect user privacy. Differential privacy is
a noise-based MPC. Besides, the homomorphic encryption
model is an effective way to improve data security and avail-
ability, which means the behaviors of users will not be leaked
when trusted third parties help users process their data. To
sum up, it is worth trying to combine secure multiparty com-
puting and fully homomorphic encryption to defend against
attacks. In addition, the blockchain technology has been
mature and widely used in various fields, which can be
regarded as a solution for examining malicious input and
can be combined with MPC [123-125].

7. Comparison with Other Similar Reviews

As shown in Table 10, there are several similar surveys of the
adversarial attack. The differences between this article and
the other are as follows:
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(1) This paper follows the route of “Why? — What? —
How?” and does not put forward any new concepts,
intended to let beginners quickly enter the field of
adversarial attack and defense under the guidance
of this essay

(2) This paper did not carry out adversarial attack studies
from the L-BFGS method, FGSM-based attack, basic
and least-likely-class iterative methods, JSMA attack,
C&W method, and DeepFool method, as most of the
review did. Instead, the research methods of adver-
sarial attack are classified from the fields of image,
text, and malicious code to assist researchers to dis-
cover the breakthrough point for their research

(3) This paper is a systematic introduction of influential
papers published after 2010 to ensure the advanced
and comprehensive of the essay. Researchers can
quickly find their interest points by browsing this
article, improving the efficiency of the study.

8. Conclusions

In the field of AI security, it is a constant battle between
attack and defense. To help researchers quickly enter the field
of adversarial attack, this review is based on high-quality arti-
cles published since 2010. We summarize the typical adver-
sarial attacks in the fields of text, images, and malware to
help researchers locate their own research areas. Also, we
introduce defense technologies against attacks. Finally, we
present some discussions and open issues. Adversarial learn-
ing has a long history in the field of security. It is hoped that
under the guidance of this paper, new researchers can effec-
tively establish the framework of adversarial attack and
defense.
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