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Abstract—The use of aerial swarms to solve real-world prob-
lems has been increasing steadily, accompanied by falling prices
and improving performance of communication, sensing, and pro-
cessing hardware. The commoditization of hardware has reduced
unit costs, thereby lowering the barriers to entry to the field of
aerial swarm robotics. A key enabling technology for swarms is
the family of algorithms that allow the individual members of the
swarm to communicate and allocate tasks amongst themselves,
plan their trajectories, and coordinate their flight in such a way
that the overall objectives of the swarm are achieved efficiently.
These algorithms, often organized in a hierarchical fashion,
endow the swarm with autonomy at every level, and the role of
a human operator can be reduced, in principle, to interactions
at a higher level without direct intervention. This technology
depends on the clever and innovative application of theoretical
tools from control and estimation. This paper reviews the state of
the art of these theoretical tools, specifically focusing on how they
have been developed for, and applied to, aerial swarms. Aerial
swarms differ from swarms of ground-based vehicles in two
respects: they operate in a three-dimensional (3-D) space, and the
dynamics of individual vehicles adds an extra layer of complexity.
We review dynamic modeling and conditions for stability and
controllability that are essential in order to achieve cooperative
flight and distributed sensing. The main sections of the paper
focus on major results covering trajectory generation, task
allocation, adversarial control, distributed sensing, monitoring,
and mapping. Wherever possible, we indicate how the physics
and subsystem technologies of aerial robots are brought to bear
on these individual areas.

Index Terms—Aerial robotics, distributed robot systems, net-
worked robots.

I. INTRODUCTION

Aerial robotics has become an area of intense research

within the robotics and control community. Autonomous aerial

robots can capitalize on the three-dimensional (3-D) airspace

with aplomb, oftentimes equipped with vertical take-off and

landing capabilities using zero-emission distributed electric

fans. Swarms of such aerial robots or autonomous Unmanned

Aerial Vehicles (UAVs) are emerging as a disruptive technol-

ogy to enable highly-reconfigurable, on-demand, distributed

intelligent autonomous systems with high impact on many

S.-J. Chung is with the Graduate Aerospace Laboratories of California
Institute of Technology (GALCIT), Pasadena, CA 91125, USA (Email:
sjchung@caltech.edu).

A. A. Paranjape is with the Department of Aeronautics, Imperial
College London, South Kensington, London, United Kingdom (Email:
a.paranjape@imperial.ac.uk).

P. Dames is with the Department of Mechanical Engineering, Temple
University, Philadelphia, PA 19122, USA (Email: pdames@temple.edu).

S. Shen is with the Department of Electronic & Computer Engineering,
Hong Kong University of Science and Technology, Hong Kong (Email:
eeshaojie@ust.hk).

V. Kumar is with the School of Engineering & Applied Science,
University of Pennsylvania, Philadelphia, PA 19104, USA (Email: ku-
mar@seas.upenn.edu).

areas of science, technology, and society, including tracking,

inspection, and transporting systems. In any application, au-

tonomous aerial swarms are expected to be more capable

than a single large vehicle, offering significantly enhanced

flexibility (adaptability, scalability, and maintainability) and

robustness (reliability, survivability, and fault-tolerance) [1].

This survey article reflects on advances in aerial swarm

robotics and recognizes that a number of technological gaps

need to be bridged in order to achieve the aforementioned

benefits of swarms of aerial robots through autonomous and

safe operation. The papers included in this survey article rep-

resent the most important and promising approaches to mod-

eling, control, planning, sensing, design, and implementation

of aerial swarms, with an emphasis on enhanced flexibility,

robustness, and autonomy.

Swarming aerial robots must autonomously operate in a

complex 3-D world including urban canyons and an airspace

that is getting increasingly crowded with drones and com-

mercial airplanes. The success of aerial swarms flying in a

3-D world is predicated on the distributed and synergistic

capabilities of controlling individual and collective motions of

aerial robots with limited resources for on-board computation,

power, communication, sensing, and actuation (the so-called

size, weight and power, or SWaP, tradeoff). The goal is to

provide a unified framework within which to analyze the three-

way trade-off among computational efficiency for large-scale

swarms, stability and robustness of control and estimation

algorithms, and optimal system performance.

Compared to prior survey articles focused on robotic

swarms [2], we emphasize swarms of aerial robots flying in

a 3-D world. Other related survey papers on swarm robotics

include [3], which focused on problems such as formation con-

trol, cooperative tasking, spatiotemporal planning, and consen-

sus for generic multi-robot system. Our survey paper addresses

the challenges associated with transitioning from 2-D to 3-D

with limited SWaP with applications to swarm coordination

or collaboration and distributed tracking and estimation. Our

survey paper also addresses the challenges of integrating

autonomous aerial swarm systems with other types of robots,

such as ground vehicles. From a technological standpoint, the

broader impacts of research in aerial swarm robotics include

scalability and down-compatibility with 2-D robotic networks

(e.g., ground robots) and other 3-D unmanned systems such

as spacecraft swarms [4], [5] and underwater swarms [6].

The distinguishing characteristics of aerial swarm robotics are

summarized as follows:

3-D Flow and Swarm Autonomy: Motion planning and

control methods for aerial swarms rely on autonomously-

generated 3-D traffic flows that do not have fixed edges or

roads. Real-time flight control and swarm operation must
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also take into account high-fidelity six-degree-of-freedom (6-

DOF) flight dynamic models, traffic variations, weather, and

other time-varying operational conditions found in crowded

urban environments. These aspects stand in stark contrast

to those focused on 3-D air traffic flow control with much

longer time horizon [7]–[9] as well as 2-D road traffic flow

theory, bipartite matching, and transport operation theory that

assume fixed flight pathways and road/route topologies [10].

Furthermore, existing air traffic control systems require human

operators to perform real-time control of airport congestion

and prevention of mid-air collision [7]. We will describe

methods of simultaneous 6-DOF trajectory generation and

optimal swarm routing or control techniques for autonomous

aerial swarm system that require a minimal level of human

intervention.

Scalability Through Hierarchy and Multi-Modality: En-

abling large-scale swarm autonomy in complex environments

will require theoretically well-founded, computationally-

efficient, and scalable algorithms. This can be realized through

the use of hierarchical architectures for decentralized planning,

reasoning, learning, and perception that address scalability

and information management in the presence of uncertain-

ties. Hierarchical approaches are pervasive in both the ma-

chine learning and control fields for dealing with complex-

ity and high dimensionality (e.g., hierarchical task networks

(HTNs) [11], hierarchical tree or lattice networks employed

in Sequential Game Theory [12], and singular perturbation

theory [13], [14]). They are also especially well-suited for

aerial robots due to the inherent diversity of time scales in

the system. The inner-loop flight control, and especially the

attitude dynamics, must run faster than the timescales of the

rigid body dynamics of the aerial robot as well as the structural

dynamics of the wings or propellers to ensure stable flight.

Onboard perception algorithms must also run at a time scale

that is appropriately small to enable robots to avoid collisions

with dynamic, unexpected obstacles. Transient maneuvers of

aerials swarms are controlled at the same time scale as the

rigid-body flight dynamics, while outer-loop control (i.e.,

motion planning of swarms) and the cooperative estimation

and planning algorithms run an order of magnitude slower

than the flight dynamics. These outer-loop components must

be integrated closely with perception and reasoning of other

vehicles, environmental conditions, and scientific or customer

needs. This complexity in aerial swarms can be reduced by

exploiting hierarchical connections in spatial and temporal

scales of large-scale aerial swarm networks. In this survey

paper, we expand on the algorithms and technologies for aerial

robotics that depend on hierarchical architectures.

The organization of the present paper is shown in Fig. 1.

In each section, we attempt to provide elementary working

solutions, taken from the literature, for each subproblem.

We will then present refinements of these solutions, which

constitute the state of the art in the respective subject areas.

In Sec. 2, we review modeling the dynamics of a swarm

and nonlinear stability tools, in particular for hierarchical

decomposition, as well as issues of controllability for aerial

swarms. In Sec. 3, we review optimal control, motion plan-

ning, task assignment, and other control algorithms. In Sec.

Fig. 1. Major themes in swarm control and the organization of the paper.

4, we discuss distributed sensing and estimation using aerial

swarms, specifically addressing the problems of (multi-)target

tracking, distributed surveillance, and cooperative mapping.

In Sec. 5, we review essential system-level and component

technologies for aerial swarms. Finally, we conclude the paper

in Sec. 6 with a discussion of open problems in the area of

aerial swarms.

II. MODELS, STABILITY AND CONTROLLABILITY OF

SWARMS

A. Types of Multiagent Systems

Table I presents a classification of multiagent systems based

on the number of agents and their interaction. It has a direct

bearing on how the systems are modeled: the choice of

the governing equations, the assumptions made about the

underlying connectivity, and the nature of the control inputs

and information exchange.

In a team, the behavior and strategies of each individual

agent seek to explicitly maximize a local objective. In some

cases, this may cause the agents to compete against each other,

while in other cases the locally optimal behavior may also

(approximately) maximize the global reward. The latter is the

premise of game-theoretic methods and auction algorithms

[15], [16]. In auctions, for instance, maximizing the local

benefit also maximizes the net global benefit (defined as the

sum of individual benefits) and concurrently solves the dual

pricing problem [15]. In contrast to a team, a formation

almost always consists of cooperative interactions, and the

relationship between the states of the agents is well-defined

for objectives such as energy efficiency (e.g., flocks of birds

in an aerodynamically optimum V-formation [17]). A swarm

generally refers to a group of similar agents that displays

emergent behavior arising from local interactions among the

agents. The local interaction can be competitive or cooperative.

Although a swarm typically implies a large group of agents

(10s to 100s or more), this survey article uses “swarm” to also

include smaller groups as well (see Table I).
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TABLE I
CLASSIFICATION OF MULTI-AGENT SYSTEMS

Type Scope Size
Team Typically small groups; each agent opti-

mizes individual objectives in a cooperative
or competitive manner

typically
≤ 10

Formation Each agent is typically assigned a specific
sub-task, role, or placement

typically
≤ 10s

Swarm Typically large groups of dispensable
agents; global capability arises from emer-
gent behavior

large

B. Models for Swarm Dynamical Systems

One of the earliest engineering models for flocking is from

Reynolds [18], who used it to generate a realistic visualization

of flocks for computer graphics. Reynolds rules cover basic

neighbor-to-neighbor interaction: a nonlinear function which

governs the steady state separation between the agents, and a

velocity feedback term which seeks to ensure that the velocity

of each agent tracks the average of its neighbors. Reynolds’

model is given as:

ẍi = v̇i =
∑

j∈Ni

(ks∇W (xj − xi)+ka(vj − vi))+f i (1)

where xi and vi denote the position and the velocity of

the ith agent; W (xj − xi) is a coupling function; Ni is

the neighborhood of ith agent; and f i denotes an external

influence on the agent, such as that of the leader or an intruder.

Another early work [19] studied a flock moving in two-

dimensional space and discrete time using the following

equations:

xi(t+ 1) = xi(t) + vi(t)∆t

θi(t+ 1) =
1

card(Ni)

∑

j∈Ni

θj(t) + ∆θi(t) (2)

where the noise ∆θi(t) is normally distributed in the set

[−η, η]. Importantly, the velocity vi is assumed to have a

constant magnitude for all i and t, with its heading given by

θi(t). Despite the apparent simplicity of the model, it is able to

capture the possibility of long-range order, as explained later

in this section.

A generalized representation of the models in [18] and [19]

can be obtained by using partial difference equations (PdEs)

[20], [21]. The rules for obtaining PdEs permit a natural

association with continuum PDEs, and consequently, ways for

deriving flocking laws based on PDEs other than the wave

equation used in [20].

A unified, nonlinear continuum model, as against models

based on discretely defined agents on a graph, was proposed

in [22]:

∂v

∂t
+ (v · ∇)v

︸ ︷︷ ︸

convection

= αv − β‖v‖2v −∇P (ρ)

+DL∇(∇ · v) +D1∇
2v +D2(v · ∇)2v

︸ ︷︷ ︸

diffusion

+f

∂ρ

∂t
+∇ · (ρv) = 0 (3)

This model was claimed to resemble that of bird flocks for two

spatial dimensions, although the model itself is not constrained

to any particular number of dimensions and could be applica-

ble to three-dimensional flocks as well. The constants β, D{·}

are all positive; the term α > 0 corresponds to an ordered

velocity state (steady flight speed ‖v‖ =
√

α/β), while α < 0
gives rise to a disordered phase (e.g., a flock loitering around

a fixed point). The pressure term P =
∑

k σk(ρ−ρ0)
k, where

σk’s are constants and ρ0 is the mean local density, replaces

the potential-like term in Reynolds’ model. Finally, f denotes

disturbances, modeled as Gaussian noise.

Increasing the value of the noise (i.e., η) in (2) causes the

flock to spontaneously choose an ordered state [19], where

the critical value of the noise is correlated with the number

of agents in the flock. This is conjectured to be due to

the diffusive flow of information in the flock; i.e., agents

interacting with a time-varying set of neighbors and, in the

long run, this causes diffusion of information throughout the

flock. This conjecture was borne out in [22] for a two-

dimensional flock, wherein the nonlinear convection terms in

(3) were found to be responsible for stabilizing the ordered

state across large length scales.

In the context of swarms, one is interested in the questions

of stability and convergence of the states of the individual

agents. For such analysis, it is common to use a system of

linear(ized) equations, the simplest of which is the system

ẋi =
∑

j∈Ni

wij(xj − xi), i = 1, . . . , n (4)

⇔ ẋ = −(L ⊗ Ip)x, Lij =







wij ∃ edge from node j

to node i

0 otherwise

The matrix L or (L ⊗ Ip) is called a Laplacian matrix

and satisfies L1n = 0, where 1n ∈ R
n is a vector of

ones. It is evident that a constant L corresponds to a fixed

communication topology; when the communication topology

evolves with time, a time-varying L(t) is used. This is identical

to the diffusive coupling term one would find from (2).

For problems involving assignment or routing, it helps to

model the environment as a collection of “functional bins,”

together with accessibility conditions which restrict the agents’

transition between the bins. The end objective is to assign n
agents to a set of m bins, where each bin can accommodate

up to pi ≥ 1 (m < n; i = {1, 2, . . . , m}) agents. For

each agent i and a bin j, the accessible set Eij implicitly

accounts for the dynamics of the agent as well as the geometric

constraints imposed by the environment. Such models have

been used to control swarm shape with probabilistic transition

maps between the bins [23] and quadrotor formation control

with deterministic transition laws [24], [25].

C. Physics-Based Models for Robotic Agents

General linear systems similar to (4) can be constructed

readily in a double integrator setting (e.g., attitude dynamics

on SO(3) or rigid body motions on SE(3)), or by replacing the
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dynamics with a nonlinear version. Of particular interest here

are swarm systems comprising Euler-Lagrange equations:

Mi(qi)q̈i+Ci(qi, q̇i)q̇i+gi(qi)=τ i(qi, q̇i, qd, qj∈Ni
,q̇j∈Ni

)
(5)

where qi ∈ R
p are the generalized states of the ith agent; qd(t)

is the desired trajectory or a virtual leader for a target collective

motion; and τ i are the external forces/torques, which are

the source of coupling between agents. If a linear diffusive

coupling is used, τ i would produce L similar to (4). The Euler-

Lagrange equations appear routinely robotics in the study of

rigid body motions of manipulators [26], [27] and spacecraft or

aircraft (SE(3)), which have attitude dynamics on SO(3) [28]–

[30] and often times have articulated wings [14], [31], [32],

appendages, or manipulators attached:

In [33], the full 6-DOF aircraft model is used with actuator

time delays to compute optimal motion primitives and 3-D

path planning for fast flight through a forest. It shows that

a conventional 2-D Dubin’s vehicle model, often times used

for 2-D aircraft motion planning and swarm control, is not

appropriate for aerial robots moving in 3-D. For the purpose

of studying swarms of fixed- or flapping-wing aerial robots, it

may suffice to model the aerial robots as point-masses (mass

m) with velocity dynamics (speed V , climb angle γ, and

heading χ) described by

[ẋ, ẏ, ḣ] = V [cos γ cosχ, cos γ sinχ, sin γ]

mV̇ = T cosα−D(V, α)−mg sin γ

mV γ̇ =
1

mV
(L(V, α) + T sinα) cosµ−W cos γ

mV χ̇ = (L+ T sinα)
sinµ

cos γ
(6)

where L, D, and T are the lift, drag, and thrust, respectively.

In flapping-wing aerial robots, T is additionally a function of

V and α. This model is accurate under the assumption that

the rotational dynamics (α and µ) are stable and converge

rapidly to the commanded value. The 3-D aerial robot model

can be used effectively to reduce the computational burden on

a motion planning system and generate trajectories that are

optimal, stable, and safe (i.e., with collision avoidance) [14],

[33]. In [34], model-based control laws were derived, together

with a collision-avoiding system, for a swarm of parafoil-

payload systems. A model similar to (6) was employed, and

feedback about the position of the neighboring agents was

used to command the desired value of the turn rate (χ̇ in (6))

of each agent.

Although the terms L, D, and T have been presented in

the spirit of control inputs in (6), it is important to note that

their values could be affected significantly in a swarm of aerial

robots by flow induced by neighboring aircraft. When an aerial

robot experience failures and is unable to hold its position

accurately, it could have a detrimental effect on the efficiency

of the formation due to the adverse disruption in the flow

field experienced by the faulty aircraft’s neighbors. This sort

of physics-based interaction is unique to atmospheric flight

vehicles.

Fig. 2. A swarm of heterogeneous rigid bodies converging to the desired
shape (ellipsoid), whose center can be viewed as a virtual leader for the
swarm [28]. The angular separation between the vehicles is synchronized
actively and shows smaller synchronization error than tracking errors. Dotted
lines show diffusive couplings via communication or relative sensing.

D. Synchronization with Leader Following

To control a swarm, it is useful at times to define a physical

or virtual leader that the rest of swarm agents then follow

(see Fig. 2). The motion of the leader can be given a priori

or controlled directly by separate dynamics. Alternatively, a

desired trajectory (i.e., the path of a virtual leader) can be

computed using optimal control or motion planning algorithms

(see Sec. 3). The remaining agents are controlled indirectly

through interaction between neighbors [35] or through inter-

action with the leader [36], [37]. The problem of tracking

the trajectory of the virtual leader or the desired collective

behavior for agents with highly nonlinear dynamics (e.g.,

swarms rigid bodies with dynamics on SE(3) or agents with

multi-DOF manipulators) can be addressed simultaneously

with the problem of synchronization with neighboring agents

[27]. Based on time-scale separation, this unified framework

integrates trajectory tracking with an exponentially-stabilizing

consensus controller that synchronizes the relative motions of

swarms faster than following a common leader or a desired

trajectory. This yields a smaller synchronization error than an

uncoupled tracking control law in the presence of bounded

disturbances and modeling errors [28] (see Fig. 2). This time-

scale separation can be interpreted as a hierarchical connection

of faster and slower dynamics as discussed in Sec. II-F. Other

works follow the same problem formulation of synchronizing

coupled nonlinear dynamical systems concurrently with tra-

jectory tracking for various multi-robot/multi-vehicle applica-

tions. We can leverage concurrent synchronization of mixing

multiple virtual leaders with many synchronized groups to

create a complex time-varying swarm comprised of numerous

heterogeneous systems [27], [28], [30], [38]. One needs to

determine how many (virtual) leaders need to be chosen,

and which agents to nominate as leaders. This question is

analogous to that of controllability, while the dual observabil-

ity problem corresponds to sensor placement for distributed

estimation.

E. Leader Selection and Sensor Placement

When the dynamics of the aerial swarm agents are identical,

controllability from a given set of leader nodes (equivalently,

observability from a given set of sensors) depends on the

topology of the graph as well as the individual edge weights. A
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system defined on a graph is said to be structurally controllable

when it is controllable for almost all edge weights, and

strongly structural controllable when it is controllable for all

edge weights. The existence of a rooted tree is necessary

and sufficient for structural controllability with a single leader

node [39]–[42]. In [43]–[45], conditions and algorithms are

derived to determine whether a set of input nodes permit

strong structural controllability. Formulas linking the number

of driver nodes needed for a large network and its aggregate

properties (number of nodes, mean degree and the degree

exponent) are presented in [46]. It was observed that driver

nodes with the highest degree of controllability tend not to be

nodes of the largest degree.

In practical problems, we are generally interested in con-

trollability for a given set of edge weights, and especially for

identical edge weights (i.e., the system is described by the

Laplacian matrix –L in (4)). For this problem, there exist

necessary conditions based on symmetry and equipartition

[47]–[49]. While these conditions are not sufficient, a set of

sufficient conditions have been presented for path and cycle

graphs [50], and for a class of weakly-connected digraphs [51].

It must be noted that the selection of a leader (equivalently,

sensor placement) need not be optimal by the virtue of its con-

trollability (respectively, observability) properties alone, and it

is therefore necessary to measure the influence of the candidate

driver nodes on the actual control/estimation objectives [52].

If the objective is to optimize an objective function, as shall

be seen in (7), one can solve the problem of determining

the leader/sensor nodes computationally using techniques from

sub-modular optimization [53]–[55]. Maximization of sub-

modular functions is NP-hard; however, greedy algorithms can

yield approximate solutions with guaranteed sub-optimality

using at most O(n2) computations of the objective function.

Sub-modular optimization can also be viewed from the hier-

archical organization standpoint emphasized in this paper.

F. Synchronization and Hierarchical Stability for Swarms

Consider (4) with diffusive couplings. It is well-known that

the matrix L gives rise to a stable system under the following

conditions on the underlying graph:

1) Undirected time-invariant graph: the graph is con-

nected [56].

2) Directed time-invariant graph: consensus to the average

value if and only if the graph is balanced and weakly

connected [57]. Existence of a rooted tree guarantees

consensus, though not necessarily to the average value

[58].

3) Time-varying undirected/directed graph: satisfies a gen-

eralized strong connectivity condition [58, Propositions

1 and 2], [59].

The Laplacian matrix (L) captures the effect of diffusive

coupling terms on swarm or synchronization stability. The

spectral characteristics of Laplacian matrices have been used

to prove the stability of flocks obeying Reynolds’ rules [19],

[59]–[61], the stability under a distance-based communication

topology [62], and the exponential stabilization of networked,

nonlinear Euler-Lagrange systems [27], [28], [31], [63]. [64]

illustrate the effect of nonlinearities on the stability of net-

worked systems through bifurcations. Alternate methods for

stability analysis include tools from renormalization groups

[22] and the theory of normally hyperbolic invariant manifolds

[65]. The Laplacian matrix defined above can be replaced by

its variant, the edge Laplacian matrix, to solve for stability as

well as robustness and optimality [66].

The aforementioned conditions are conclusive in the ab-

sence of other dynamical terms like (4). The passivity of the

input-output dynamics [67]–[69] is commonly used to analyze

the stability of networked nonlinear systems that have both

the Laplacian matrix (L in (4)) and the nonlinear dynamical

terms (e.g., convection terms of (3) or the Lagrangian form in

(5)). Input-to-State Stability (ISS) is used to study stability of

swarm systems with bounded uncertainties [70], [71]. Contrac-

tion analysis [72] is used to study global exponential stability

of multiple solution trajectories, and hence forms a basis of

incremental stability analysis. Contraction-based incremental

stability analysis represents an important departure from tra-

ditional passivity-based methods using Lyapunov functions,

which are concerned primarily with stability of equilibrium

points.

Such an exponentially-safe and robust synchronization

framework can also be used to study the synchronization

stability and robustness of networked nonlinear dynamics

connected by a synchronization controller or by diffusive

communication couplings [27], [73]. One major advantage

of incremental stability in a synchronization framework [27],

[28], [73] over the passivity formalism is that a hierarchically-

combined structure of dynamic systems, emphasized in this

paper, can be handled more easily because of differential con-

traction analysis without using some implicit motion integrals.

Further, it can be shown that contraction-based exponential

incremental stability using a Riemannian metric possesses

superior robustness related to input-to-state stability (ISS),

output passivity, and finite-gain Lp stability [28]. Many types

of model uncertainty can be cast into a bounded pertur-

bation term, including constant unknown time delays [27],

[72] and errors arising from heterogeneous dynamics [27],

[63]. Recently, incremental stability has been extended to

synchronization stability of multiple Itō stochastic nonlinear

differential equations [38], [74] with unbounded stochastic

disturbances.

An extension of some of the aforementioned results arises

in the form of event-triggered information exchange. Instead

of exchanging communication continuously or over finite

intervals of time, as in the previous cases, it is sufficient

for stability to exchange information between neighboring

agents at discrete instants of time. Conditions for stability in

such cases have been found for single integrator dynamics on

undirected graphs [75], consensus on balanced digraphs [76],

convergence to a trajectory on time-varying graphs [77], and

synchronization of general nonlinear dynamics on balanced

graphs [28], [73], [78]. These conditions typically depend

on the underlying dynamics and also help determine the

conditions under which communication must be triggered.
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III. CONTROL OF SWARMS IN 3-D WORLDS

Typical tasks for which swarms are suitable include dis-

tributed sensing, search and rescue [79], and imaging using

sparse aperture techniques [1], [5]. These problems can be

split into two distinct classes: one where the environment is to

be explored (e.g., coverage, map building), and one where the

environment is only to be traversed or exploited (e.g., crossing

a field of obstacles) with a prescribed goal state or a desired

formation. In order to effectively complete any of these tasks a

swarm must be capable of planning paths for all team members

to safely and reliably reach their final destinations. Not only

does each individual robot need to avoid collisions with static

and dynamic obstacles in the environment, but the individuals

in the swarm must also avoid collisions with one another.

Furthermore, in complex, obstacle-filled environments, the

robots need to sequence their motions to avoid having one

robot block the paths for others. For example, if the swarm

needs to pass through a small bottleneck and the end goal for

one of the agents is just through that bottleneck, then it must

be the last one to pass through in order to not block the rest

of the team [80].

A. Trajectory Generation and Motion Planning for Swarms

Approaches to trajectory generation may be classified on

the basis of whether or not the trajectories are generated

in conjunction with the task allocation problem discussed in

Sec. III-B. Trajectories generated independently of the task

assignment algorithm can be thought of in the same light

as traditional optimal motion planning or boundary value

problems. Popular randomized algorithms, such as PRM [81],

RRT [82], and RRT* [83], may not be effective for obtaining

optimal and safe flight of multiple 6-DOF aerial robots;

not only can they not effectively handle 6-DOF nonlinear

dynamics, but they also use a finite set of primitives pred-

icated on asymptotic optimality without using higher-fidelity

dynamic models, which could preclude a large set of otherwise

flyable trajectories in a high-dimensional space. The rapid

advancement in computing capacity combined with algorith-

mic improvements has enabled the development of tools that

are capable of solving constrained optimization problems in

real-time, which can better provide explicit or approximate

solutions to an optimal control problem of the form

N∑

j=1

(

h
(
tjf , x

j(tjf )
)

+

∫ t
j

f

t
j
0

L
(
γj(t), uj(t), αj(t), t

)
dt

)

(7)

Subject to:

Valid goal and task assignment, including terminal states

Robot dynamics, capabilities, and input constraints

State constraints (collision-free region, sensing restrictions)

where γj(t) denotes the trajectory for robot j, h(·) denotes

a terminal cost, αj(·) denotes a set of parameters of a

mode of operation, and L(·) is the cost-to-go functional.

The first constraint ensures that robots are assigned to valid

goals or end at desired terminal states (xj(tif )) while the

second constraint ensures that the trajectories obey both the

kinematic and dynamic constraints of the robots and the

input (uj(·)) constraints. The third constraint ensures that the

optimal trajectories begin at the actual initial states while

ensuring safety and other state-dependent constraints. Since

the cost function is optimized in real-time over a finite-time

horizon, often times recomputed using the current states of the

robots as the initial conditions, (7) can be viewed as model

predictive control (MPC) [25], [84]–[87]. Another approach

to multi-agent planning under uncertainty over a discretized

state domain is to employ a decentralized partially observable

Markov decision process (POMDP) [88], [89].

Optimality in the multi-robot path planning problem (7)

may be with respect to any number of different objectives,

including integrated control effort, maximum single-robot

travel distance, last arrival time, and total distance or time

[90]. Although solving for the exact optimal solutions is NP-

hard, approximate sub-optimal solutions can be computed

efficiently using well-chosen heuristics [90]. One must ensure

that the resulting paths are kinematically or dynamically

feasible for the robots to follow [91], [92]. Direct optimal

control approaches [25], [85]–[87] cast the dynamics into

equality constraints between the states in successive time steps

for optimization (e.g., iterative linearization of dynamics in

sequential convex programming [25], [87]). Alternatively, one

can find a geometric path for each robot to reach its goal and

then use these paths as inputs to a trajectory optimization step

to make the paths dynamically feasible [92].

Another objective of trajectory design and motion planning

is to enable the design of control laws for the robotic agents.

One direct way to obtain control input values is to re-solve the

trajectory generation problem in the MPC setting (7) and apply

the new optimal control input value frequently. But the process

can be computationally expensive and stability guarantees are

challenging. Alternately, the control design can be separated

from optimal trajectory design by treating the optimized state

trajectory for each robot, obtained from (7), as a desired

trajectory for the tracking controller [25], [28], [87], [93], [94].

This approach has the benefit of setting up the control design

problem in the traditional input-tracking or model reference

setting with guaranteed closed-loop stability. It is particularly

suitable for robotic systems, such as aerial robots, whose phys-

ical models are complex but well-understood from the point

of view of control design. Alternately, control laws designed

without virtual leaders typically consist of a sum of terms

that represent the multiple objectives: trajectory-following,

coordination with neighbors, and collision-avoidance. As ex-

plained above, trajectory-following laws can be derived readily

using a physical model of the robots. Terms for coordination

and collision-avoidance require sensing and communication

with other agents in the formation. Controllers capable of

accommodating time-varying communication topologies have

been derived and demonstrated for quadrotors using modified

temporal coordinates [95], for Dubin’s vehicles using local

potential functions [96], and for spacecraft [97].

Trajectory generation occasionally requires a hierarchical

“model-based” approach when motion requirements stem from

specific tasks that the swarm needs to perform, or from
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needing to deal with exigencies. For instance, cooperative con-

struction [98], [99] requires formation-like motion as well as

specialized low-level motions for stabilizing and manipulating

objects. In such cases, physics-based models for manipulation

can be solved to find a relative motion plan for the robots,

while a global path plan can be constructed using any of the

well-known path planning algorithms [98].

Specialized controllers must be designed to allow aerial

robots flying in an energy-efficient formation to deal with actu-

ator failures in individual aircraft and enable them to hold their

formation [100]. These controllers benefit from aerodynamic

models which help estimate the influence of neighboring

aircraft on the controllability of a given aircraft. As pointed out

in Sec. II-B, aerial swarms differ from ground-based robots in

that the individual aircraft are coupled aerodynamically, due

to the flow induced by one vehicle affecting its neighbors.

The team may also generate trajectories that account for

these aerodynamic effects and plan trajectories that minimize

disturbance [101]. Alternately, the team can reconstruct the

wake profile, as demonstrated in [102], although it requires

that the aircraft perform cross-track motion to ensure the

stability of the estimator.

Looking at constraints beyond collision avoidance and dy-

namic feasibility, one key factor with UAVs is their limited

battery life. To extend the mission life, a cooperative team of

ground vehicles may be used as mobile recharging stations

[103]. The UAVs then plan paths to ensure that they are able

to accomplish their missions while maintaining power.

B. Simultaneous Planning with Distributed Assignment

In a homogeneous swarm of robots, it does not matter which

agent completes a given task. This fact may be exploited to

do simultaneous task assignment and trajectory planning for

teams of 100’s of agents in a centralized or decentralized for-

mulation [80]. This decentralized formulation is sub-optimal

compared to the centralized solution, but it is still complete.

For example, simultaneous optimal assignment and trajectory

planning computes an optimal terminal point constraint of (7)

for shape reconfiguration control [25], [87].

A special case of assignment is cooperative pursuit, wherein

multiple pursuers seek a single target. A pursuit strategy and

conditions for a successful pursuit in a bounded domain were

determined in [104]. The conditions for a successful pursuit

link the relative speeds of the pursuers and the evader, the

turning radius of the pursuer (assuming an arbitrarily agile

evader), and the total number of pursuers. More realistic,

physics-based scenarios have been investigated in the context

of missile interception, wherein multiple defensive missiles

are used to intercept one or more incoming (target) missiles,

which are assumed to use a standard optimal guidance and

evasion law. Estimating the states and guidance laws of the

target missiles is a significant challenge, compounded by the

fact that the time delay involved in estimating the states

can have a severely adverse effect on the pursuit [105]. In

[106], cooperative estimation of the target states (compared

to each missile using solely its own estimates) was shown to

improve the likelihood of success significantly. Information

sharing between the missiles can also be used to directly tune

their navigation law, as demonstrated in [107], to achieve a

synchronized hit on the target.

A scenario related to cooperative pursuit is that of multiple

UAVs tracking a single target. From the point of view of trajec-

tory generation, it is of interest to consider scenarios wherein

the environment is populated with no-go areas and with terrain

features that may sporadically occlude the pursuers’ view of

the target, such as a typical urban neighborhood. In order

to facilitate the generation of trajectories which minimize

occlusion, it is beneficial to develop adequate models of the

sensors, such as gimbaled cameras, that are used to track the

target. The constraints of the tracking system can then be

added to the dynamic limitations of each UAV to generate

guidance laws for the complete team of UAVs [108].

The simplest task assignment problem is the following

static, symmetric problem: given a set of n agents, n bins,

and a matrix of rewards P ∈ R
n×n (or, equivalently, a matrix

of costs C ∈ R
n×n) , where Pi,j (resp. Ci,j) denotes the

reward derived (resp. cost incurred) by agent i from being

assigned to bin j and Pi,j = −∞ (resp. Ci,j = ∞) denotes

an infeasible assignment, determine the map A : i 7→ j = A(i)
which assigns to each agent a unique bin while maximiz-

ing the collective reward
∑

i Pi, A(i) (resp. minimizing the

equivalent collective cost). Parallel or distributed algorithms

to solve target assignment include many variants of distributed

auction algorithms [16], [25], [109]–[111] and decentralized

hierarchical strategies [112] that approximate true optimality

of Kuhn’s centralized Hungarian method. As an illustration

of the computational complexity of auction algorithms, the

number of computations required for the distributed algorithm

from [16] to converge is O(∆n2), where ∆ is the diameter

of the communication graph underlying the network of agents

participating in the auction.

An elementary auction algorithm is illustrated in Algo-

rithm 1. This algorithm is centralized, and requires a central

register where information about the bids and assignments

is maintained. In contrast, distributed algorithms distribute

computation as well as communication among the agents. For

instance, the algorithm in [25] adjusts the number of targets

based on the number of agents available at a specific stage.

This is accomplished through bidding, rather than a consensus-

like process, which is useful in large swarms with agents that

may drop out spontaneously. This distributed target assignment

can be solved simultaneously to provide goal states of real-

time optimal trajectory generation, thereby effectively solving

(7) [25], [80], [113]

An equivalent geometric problem involves partitioning a

physical volume into portions that are then assigned to each

agent inside the volume. A well-known result is that the

optimal partition corresponds to the generation of Voronoi

cells using a suitable metric function [114]. This approach

was introduced in [114] for sensor coverage, and generalized

in [115], [116] to cover learning (of the task distribution) and

decentralized information sharing.

Assignment can be obtained as the solution to an optimal

transport problem [117] when the transition between bins is

modeled in a probabilistic framework through homogeneous
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Algorithm 1 Symmetric Auction-based Assignment

1: Given: Terminal bins to be filled; for each (agent, bin),

the cost of occupancy; an initial price for each bin

2: while There is an unoccupied bin do

3: for Each unassigned agent do

4: Identify bins with lowest and second lowest value of

(cost + price)

5: Bid = difference in the prices + random number

6: Cost of the least expensive bin increased by the bid

7: Assign the least expensive bin to the agent, and the

previous occupant (if any) is unassigned

8: end for

9: end while

10: End: Each agent has a unique bin assigned to it

Markov matrices. An improved approach has been proposed

in [23] using time-inhomogeneous Markov chains which allow

for the inclusion of feedback terms, thereby solving both bin-

to-bin swarm shape control and stochastic target assignment.

C. Collision Avoidance and Collision-Free Motions

The problem of collision avoidance becomes particularly

challenging in swarms because the obstacles encountered by a

robot include other members of its swarm, and collision avoid-

ance has to factor in the need to maximize the performance

of the swarm (e.g., avoid increasing the time to complete

an assignment). The most intuitive techniques for avoiding

collisions are speed adjustment [118] and sequentially re-

planning the trajectories [87] without changing the assignment

in an optimal control framework (7). In particular, mixed-

integer linear programming (MILP) has been successfully

derived for optimal collision-free motions and applied to

mobile robots, spacecraft, and UAVs [85], [86], [119]. More

recently, sequential convex programming (SCP) has been

used to approximate collision-free regions by incrementally

drawing hyperplanes and has been demonstrated in simulation

and experiments on swarms [25], [87]. The conservatism of

hyperplane-based convexification of collision-free regions has

been relaxed by expanding convex spherical regions along

graph-based primitive paths in [120]. An alternate approach to

replanning just the trajectories involves reassigning the goals

as shown in [80]. The reassignment is purely local and need

not affect the criteria used for the assignment in the first place.

A more direct approach to collision avoidance in swarms

involves the use of artificial potential fields [121]–[124] or

barrier functions [125], [126]. It must be noted that Reynolds’

model (1) also includes the gradient of a potential function.

Potential fields are computationally easy to implement for

the purpose of collision avoidance, but not necessarily for

path planning. Furthermore, artificial potential fields directly

couple the dynamics of the individual robots and this can ad-

versely affect the stability of the swarm if the communication

topology is not selected properly. Connectivity is not enough

to guarantee stability in directed graphs (see Sec. II-F). An

approach similar to potential fields involves using the gradient

of a Lyapunov function, which implicitly takes into account

the possibility of collisions. Such control laws have been

constructed using a differential game approach [127], [128]

and simultaneously solve a greedy optimization problem. The

difficulty lies in solving the optimal control problem in the

presence of nonlinearities and local communication.

D. Aerial Manipulation

Aerial robotic swarms have the ability to transport objects in

two ways, where each individual robot is capable of carrying

an object or where multiple robots are required to lift a single

object. In either scenario, the object may be suspended via

cables attached to the robots [129]–[133] or may be rigidly

attached to the robots [134]–[138]. UAVs that are rigidly

attached to the objects use a variety of grippers, including

friction-based [134], penetration-based [135], or magnetic

[137].

When each individual robot is capable of grasping an object,

having a swarm of robots allows a large number of objects to

be moved more quickly. This can be used for tasks such as

package delivery [133], [138] and construction [134].

When multiple robots are required to move a single object,

small teams of robots may be used to cooperatively transport

a single object [129]–[132], [135]–[137]. This task requires

some type of communication between the robots. This is

typically done in an explicit manner, but can also be done

implicitly by sensing the internal forces of the robots acting on

the transported object [132]. The swarm also seeks to minimize

these internal forces, as these represent wasted energy usage

[136].

E. External Control of Aerial Swarms

External control of swarms refers to one of two situations:

1) The swarm is assigned objectives in real time by an

external user, especially a human operator.

2) Some or all members of the swarm interact with an

adversary or a hostile agent which, in turn, is within

a human user’s control.

At the simplest level, a human teleoperator sends motion

commands to the swarm. In order to reduce the cognitive load

on the operator, it is desirable to minimize the number of

inputs that the operator must provide and manage. To this

end, it is possible to control the bulk motion of the swarm

by guiding a single virtual leader and controlling the size and

shape of the swarm with respect to this virtual leader [139],

[140]. An alternative to using a virtual leader is to use the

virtual rigid body framework, developed and demonstrated in

[141], [142]. The human could also issue a command in a

language that the swarm is designed to understand. This is no

different conceptually from the usual setting of an autonomous

swarm, since it involves the human acting essentially outside

the algorithmic loop. It has been argued that humans are able

to guide a swarm better using a dynamic set of leaders [143],

as compared to manipulating a fixed leader. There is also

evidence which suggests that human operators can adapt their

handling of (virtual) leaders to guide large swarms through

obstacle-rich environments in a better manner than built-in,
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standard flocking rules [144]. The next level of sophistication

involves the human issuing commands using natural language,

while still staying outside the algorithmic loop that controls

the swarm. Here, the challenge is one of inferring a specific

command from the operator’s verbiage [145]. The highest

explored level of sophistication is using computer to infer

human intent. Here, the human is very a much a part of

the algorithmic loop: the algorithm that controls the swarm

actively seeks input from the human about its performance.

[146] proposes a framework to extend this idea to a team of

robotic agents (including UAVs).

The concept of adversarial control addresses the case where

there is no direct way of tapping into a swarm’s command

and control algorithm. An example of adversarial control is

the family containment and herding strategies modeled after

dolphins [21], sheep-dogs [147]–[152] and birds of prey used

to herd a flock of birds [153]. In [153], the authors examined

the use of a robotic UAV, possibly one built to resemble a

bird of prey like a falcon, to herd flocks of birds away from

sensitive areas like airports and solar farms. The UAV interacts

with the flock by engaging birds located on the boundary

of the flock. The herding algorithm make use of the flock’s

inherent tendency to maintain a cohesive structure to reduce

the number of robotic agents required to achieve herding. The

perturbation in the velocity of the birds on the boundary of

the flock diffuses through the swarm and causes the flock to

alter its heading and speed. It has been shown in [153] that

a single robotic agent suffices to herd a flock of birds, while

related work [150] suggests that the quality of the herding can

be improved substantially by using multiple UAVs.

One particular problem of interest in the context of adver-

sarial control is inferring the model underlying the swarm’s

motion. If the model is known, together with the response of

the swarm to an adversary, it would be possible to not just

design optimal strategies to divert or control the swarm, but

also derive guarantees on the performance of such strategies.

In [153], experimental data was used to identify a model,

based on [154], [155], for the response of a flock of birds

to a UAV located within a certain range of the flock. The

approach adopted in [153] works for flocks whose response to

perturbations is based on a static, deterministic law. When the

response takes a more strategic, dynamic form, it is necessary

to use learning-based techniques which expressly account for

this behavior [156], [157]. A filter-based technique lies mid-

way between the two sets of aforementioned approaches.

Consider the case of missiles where it is known that a target

missile follows one of a well-defined set of navigation laws at

all times. The exact law and its parameters are unknown. Such

problems can be solved efficiently using a bank of filters to

determine the most likely model, as demonstrated in [158].

IV. AERIAL DISTRIBUTED SENSING, MONITORING, AND

COOPERATIVE MAPPING

Distributed sensing is one of the main application areas of

aerial robotic swarms. Swarms of aerial robots have the ability

to simultaneously gather information from disjoint locations.

They are also more robust to failures in sensing and actuation

since there is some redundancy in the system. Distributed

sensing tasks can have three main foci: targets, space, and

maps. With any focus, the robots need to have information

about the area of interest and the objects within it to safely

and successfully complete the task. However, the goal in each

sub-task is different. In the first, the goal is to search for

and/or track targets inside of an area of interest. In the second,

the goal is to maximize some measure of sensor coverage or

to ensure that all areas are eventually covered, possibly at a

desired frequency. In the last, the goal is to build a map of

the unknown or partially-known environment.

A. Target Search and Tracking

Target search and tracking is a canonical distributed sensing

task. From an aerial robotics perspective, several key variants

of this problem have been studied. The divisions between the

variants occur along two main categories: static vs. dynamic

targets and single- vs. multi-target. In the multi-target case,

there are two sub-cases of a known vs. unknown number of

targets. Note that the latter problem can be significantly more

difficult: when the number of targets is known, then a detection

(or lack thereof) not only gives the team information about

what is in the field of view of the sensors, but also what is

outside of the field of view. For example, if the team knows

that there are 8 targets and that 4 of them are currently visible,

then they know that there are 4 left to be found. In the case

where the number of targets is unknown, then seeing 4 targets

only tells the team that there are at least 4 targets.

1) Single, Dynamic Target Estimation: A team of robots

has the ability to simultaneously view disjoint regions of an

area of interest or to simultaneously view the same region

from different perspectives. The former allows the team to

more quickly gain global information while the latter allows

the team to more quickly decrease uncertainty and to be

robust to sensor errors. This problem can be written as a

distributed estimation task [159], [160]. In a general discrete-

time representation, the target’s dynamics are given by:

xk+1 = fk(xk,wk,∆) , ∀k ∈ N , (8)

where fk is a nonlinear, time-varying function of the target

state xk, the independent and identically distributed (i.i.d.)

process noise wk, and the discretization time step size ∆. A

network of N heterogeneous sensing agents are simultane-

ously tracking (8). Let yi
k denote the measurement taken by

the ith agent at the kth time instant:

yi
k = hi

k(xk,v
i
k), ∀i ∈ V = {1, . . . , N} , ∀k ∈ N , (9)

where hi
k is a nonlinear time-varying function of the state xk

and the i.i.d. measurement noise vi
k. Then, agents are able

to use the distributed Bayesian filtering proposed in [159],

to track the state of the target (see Algorithm 2). A similar

cooperative estimation algorithm can be used to cooperatively

map a target region as well to obtain pose estimates of UAVs

(see Sec. IV-C).

This type of problem is found in a variety of settings,

including tracking a radio-tagged animal with a team of UAVs

[161] or seeking, tracking, and capturing a hostile UAV [162].

Additionally, these UAV teams may collaborate with a team
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Algorithm 2 Distributed Bayesian Filtering Algorithm

1: Compute the local prior of the target(s)

2: Obtain local measurements and communicate with neighbors

3: Fuse probability distributions using Logarithmic Opinion Pool

4: Compute posteriors and iterate

of ground robots and/or fixed sensors [161]. The problem of

target tracking is further complicated when not only the state

of the target unknown, but also the state of each UAV [163].

2) Estimation of Multiple Targets of Known Number: The

simplest form of multi-target tracking is when the number

of targets is known and the targets are stationary [161].

However, tracking dynamic targets has been of greater interest

to the research community as it represents a much greater

share of practical applications. One common situation for a

small team of UAVs is where the number of targets is larger

than the number of robots. In this situation the team must

decide between focusing on tracking the largest number of

targets and tracking individual targets with a high quality of

tracking. This tradeoff typically results in a decision about

the elevation of the robot, where a high elevation results in

a large sensor field-of-view but higher sensor noise [113],

[164]. Furthermore, simultaneously planning trajectories for

large teams can be computationally expensive and slow. This

problem is typically mitigated through the use of approxima-

tion algorithms [113], [164] or anytime planning algorithms

[165]. In order to cooperatively plan, the robots must be able

to share information across the team. In the case where robots

have limited communication range, line-of-sight visibility, and

operate in a cluttered environment, it can be difficult to

maintain connectivity across the team [166].

3) Multiple Targets of Unknown Number: As mentioned

above, when the number of targets is unknown the search

problem becomes much more difficult and the team must

always explore the entire environment in order to complete the

task. The standard method used to solve this task is to utilize

a quadtree representation to adaptively refine the environment

in areas that are likely to contain targets [167]–[169]. The

main distinction between these three works is that [167], [168]

assume that each robot sees one and only one cell, which

implicitly connects the elevation of the robots to the quadtree

resolution (and the sensing quality) while [169] allows the

robots to see multiple cells and utilize the theory of random

finite sets [170] to estimate the set of targets.

Tracking an unknown number of dynamic targets is even

more difficult since, barring being able to see the entire

environment at one time, there is no way for the team to

be sure that they have seen every target. [171] considers the

situation where the number of targets is unknown but constant.

This focuses on creating an efficient, camera-based tracking

for collision avoidance within a large swarm of UAVs, which

is run on board UAVs in real time. In a single-team situations,

this allows the system to be robust to delays or failures in the

communication, and it is also useful in situations where there

are multiple, non-communicating teams in the same airspace.

Perhaps the most challenging target search and tracking

problem is when the number of targets is unknown and

dynamically changes over time, e.g., due to targets entering

and leaving the area of interest. The tool most commonly

used in this scenario is the PHD filter [170], which allows

the team to simultaneously estimate the number of targets and

the dynamic state of each target. This has been used by a small

team of fixed-wing UAVs to track vehicles on roadways using

an information-based technique [172] and by a large team of

multi-rotor UAVs to track ground robots using a Voronoi-based

controller [173].

B. Surveillance and Monitoring

Target tracking, as the name implies, takes a target-centric

approach. The alternative is to take an area-centered approach,

where the team of robots focuses on covering an area of

interest. This is often called surveillance. If all areas of interest

must be visited at some desired, or maximum, frequency,

the problem is called persistent monitoring. Surveillance and

monitoring have been the subject of a large body of literature,

including many aerial swarm-specific approaches.

A surveillance or monitoring task is a tuple (R, γ,Q), where

R is the robot model, γ are the curves followed by the robots,

and Q is the set of points of interest [174]. Let φ(q, t) be the

field at point q and time t, which often represents the time

elapsed since the point q was last seen by some robot or some

local measure of uncertainty about the environment. Then the

goal is to find a set of trajectories γ that minimizes the cost

γ∗ =argmin
γ

(

max
q∈Q

(

lim sup
t→∞

φ(q, t)

))

(10)

subject to lim sup
t→∞

φ(q, t) is finite ∀q ∈ Q

Robot capabilities,R

In general, the value of the field φ(q, t) increases over time

and decreases only when a robot observes it. Due to the finite

time horizon considered in this problem, it is computationally

expensive to solve for robot trajectories, especially in the

multi-UAV case.

1) Persistent Monitoring: Early works in multi-UAV persis-

tent monitoring used a heuristic approach to extend traditional

single-UAV solutions to multiple UAVs [175], [176]. Other

work focused on enabling real-time computation on-board the

UAVs by using parameterized B-spline curves to define the

set of feasible trajectories [177]. The authors later extended

this work to account for the fact that the sensor field of view

and the turning radius of fixed-wing UAVs are typically of a

comparable length scale, making it difficult to see all parts of

the environment. [178].

Another way to think about a monitoring problem is as a

vehicle routing problem, where the UAVs must visit a desired

set of locations [179].

2) Surveillance: The primary distinction between persistent

monitoring and surveillance is that in surveillance there is no

hard requirement that each area be visited with a certain fre-

quency. Instead, the goal is often to maximize some measure

of coverage or information [180], [181]. The robots in the

team communicate over a multi-hop network and solve the

surveillance task in a distributed fashion.
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In addition to maximizing coverage or information, the

swarm can be tasked to monitor a spatio-temporal field over

the environment. Such spatio-temporal fields are often found

in environmental monitoring and precision agriculture tasks,

where the field could be something like water temperature or

nutrient concentration. One recent approach to this is Rapidly-

exploring Random Cycles (RRCs) [182], which is better suited

to surveillance and monitoring tasks where areas must be con-

sistently revisited than its cousin, Rapidly-exploring Random

Trees (RRTs) [82], which focus on single-use trajectories.

Monitoring spatio-temporal fields is a challenging task and

may often be better accomplished by using a heterogeneous

team [183].

C. Cooperative Aerial Mapping

In contrast to surveillance and monitoring tasks, where the

goal is to only to observe the environment, mapping is the

process of acquiring a globally-consistent representation of an

environment. Such representations can be sparse [184], semi-

dense [185], or fully dense [186]. While dense representations

can be directly used for autonomous navigation [186] or

geographical reference, sparse representations are often only

used for state estimation [187] or collaborative control of

robotic agents. Due to the fact that the environment is often

only partially known or even totally unknown, mapping tasks

are often coupled with localization (pose estimation) issues,

which turn them into the classic simultaneous localization and

mapping (SLAM) problem. Admittedly, SLAM and its exten-

sion to distributed multi-robot SLAM are extensively studied

areas. Solving SLAM using multiple distributed sensors (e.g.,

multiple cameras carried by different aerial robots) is hence

related to target tracking and estimation discussed in Sec. IV-A

and Algorithm 2. In this paper, we limit our discussion to only

those that are most relevant to aerial robot swarms.
The technical contributions of collaborative mapping exper-

iments are limited when they are conducted in simulation or

in a lab setting. However, due to the high technical barrier

of deploying multiple aerial robots in a real-world setting,

a very small number of collaborative mapping systems have

so far been tested in realistic settings. Even for successful

applications, the scale has been limited to a few (fewer than

ten) robots. Further discussion of these technical challenges

follows in Sec. V.
Problems and current solutions for multi-robot mapping are

reviewed in [188]. In the following, we categorize mapping

solutions based on their sensing modalities and representation

of the environment as either visual sparse, visual dense, or

lidar-based solutions.
1) Visual Sparse Mapping: Visual sparse representation

consists of points and lines, which are extracted and tracked

from images. Points are usually augmented with descriptors for

feature matching purposes. By matching 3-D points and lines,

robots can estimate their relative poses and fuse their local

maps to maintain geometric consistency and achieve effective

cooperation in large-scale environments [189]. Robots may

also maintain the position uncertainty of each point in the map

for handling of dynamic objects [190]. Early work on vision-

based, collaborative SLAM for aerial robots was introduced in

[184], in which a centralized ground station was used to collect

data from multiple aerial robots. The data was used to perform

sparse feature matching for robot localization, and to detect

overlap in the sensor field of view of different robots. Recent

results utilizing similar mapping frameworks were presented

in [191], [192].

Visual-inertial SLAM frameworks are often more suitable

for aerial robot systems than other robotic platforms thanks

to the guaranteed availability of onboard IMUs. State-of-

the-art visual-inertial SLAM frameworks are often able to

process multi-session maps [193], [194], making them ideal

for merging maps acquired by multiple robots into globally

consistent representations. The global localization capability

of these frameworks also enables drift-free pose estimation of

multiple aerial robots in the same sparse visual map.

Real-world swarm systems typically have very strict con-

straints in communication bandwidth. To this end, researchers

have been focusing on minimizing or limiting the amount of

data required to perform decentralized mapping [195], [196].

Specifically, [196] proposes a decentralized SLAM framework

based on decentralized place recognition and optimization

algorithms. These algorithms scale linearly with respect to the

size of the team and build highly compact representations of

the environment, resulting in very low bandwidth usage. This

enables robots to navigate in environments where absolute

positioning is not available, and where there is no central

base station. Another approach to decrease bandwidth usage

is for the robots to utilize object-based models rather than

exchanging raw sensor measurements (e.g., point clouds or

RGB-D data) [197].

2) Visual Dense Mapping: Dense mapping systems de-

scribe the environment using a dense collection of points

or planes. Dense representations are very powerful for au-

tonomous navigation in cluttered environments, but they also

pose much higher requirements in terms of processing power

and data storage. RGB-D cameras that provide both depth and

color information for each image are often used for cooperative

visual dense mapping. Due to the high computational load

required to process dense maps in real time, robots with

limited computational power may choose to send local maps to

a cloud server to perform map merging and batch optimization

[198], [199]. Recent work demonstrated real-time pose esti-

mation for autonomous flight and cooperative dense mapping

using onboard computation with two quadrotors equipped with

RGB-D cameras [200], and with a heterogeneous team of a

quadrotor and a ground robot [201].

3) Lidar-based Mapping: Lidar is another commonly used

sensor for mapping applications. In [202], a small hetero-

geneous team of a quadrotor and a ground robot is used

for cooperative mapping, where the actuation advantages of

each agent can be utilized to ensure that the entire space

is explored. Scan matching is used for merging maps from

the two robots. An expectation maximization (EM) algorithm

that utilizes lidar scan information was proposed in [203] for

efficient identification of inliers in multi-robot loop closure.

This significantly improves the trajectory accuracy over long-

term navigation.
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V. TECHNOLOGY FOR SWARMING

In this section, we discuss the practicalities of operating

a swarm of aerial robots, focusing on the main hardware and

software components. Aerial robotic swarms have been studied

extensively in simulations, but have not been used in full-

scale experimental tests in real-world scenarios until recently.

This is due to a confluence of factors. On-board sensing and

computation has significantly improved to the point where it

is possible to do real-time state estimation. At the same time,

drone hardware has significantly improved in recent years with

the explosive growth of the commercial drone market. In the

US alone, the commercial market grew from $40M in 2012

to nearly $1B in 2017 [204] and the global UAV market is

expected to surpass $12B by 2021 [205]. This growth has

lowered hardware costs enough to make large-scale swarms

possible.

A. Platforms

Some of the first work on aerial robotic swarm hardware

focused on providing an open-source hardware and software

stack that did not require any external infrastructure [206].

This was meant as an educational tool to teach young scholars

to work with hardware and to give them a testbed to implement

their ideas, but the swarm only had a handful of robots

in it. Other indoor swarms utilize motion capture systems

for localization [207], [208]. More recently, the field has

focused on expanding the size of the swarm, with one of the

largest indoor swarms consisting of 49 CrazyFlie quadrotors

simultaneously flying in a motion capture system [209]. The

palm-sized CrazyFlie platform does not have sufficient on-

board computation or sensing for state estimation, but it is

ideal for large-scale, indoor swarms.
Other researchers have focused on getting the swarm outside

of the lab, including a swarm of 12 quadrotors working

both indoors and outdoors without the need for any external

infrastructure [210] and outdoor formation flight of 10 aerial

robots [211]. The robots use Visual-Inertial Odometry (VIO)

for state estimation, which allows them to navigate in chal-

lenging outdoor conditions, including at night and with wind.

An even larger outdoor swarm of 50 fixed-wing UAVs was

also recently demonstrated [212], with the goal of becoming a

testbed to study adversarial swarm systems. Note that popular

drones shows performed by Intel1 or EHang2 use GPS-based

navigation with pre-defined trajectories.

B. Vehicle Power Management

With any swarms, one of the key challenges is power

management. For example, in [212] the full 50 robots in the

swarm were all simultaneously airborne for only 10 minutes

out of the 60 minutes it took for all of the vehicles to be

launched and land safely. Unlike fixed-wing UAVs, vertical

take-off and landing UAVs, such as multi-rotors, are able

to simultaneously take off and land but have a significantly

shorter flight time.

1https://www.intel.com/content/www/us/en/technology-innovation/aerial-
technology-light-show.html

2http://www.ehang.com/news/249.html

Recharging or refueling robots can be done from static

charging pads [213], [214] or on mobile charging pads (i.e., on

top of ground vehicles) [103]. Health monitoring beyond fuel

or battery levels is also important. For example, the operator of

the team may also be interested in malfunctions, degradation,

or failure of sensors, actuators, and other components [215].

C. Pose and State Estimation

Due to the inherently unstable dynamics of most aerial

robot configurations, robust state estimation is essential for

almost all aerial robot applications. This is the fundamental

building block that enables transition from simulation or lab

settings (with external motion capture systems) to real-world

deployment. In the following, we categorize state estimation

solutions as either based on external sensors or self-contained

with on-board sensors.

1) Pose Estimation using External Sensors: External sens-

ing options, such as real-time kinematic (RTK) GPS, optical

motion capture systems, and ultra-wideband (UWB) solutions,

have enabled impressive cooperative missions on aerial robots.

It is well known that GPS, which provides absolute longitude

and latitude information, is suitable for large scale outdoor

environments. RTK GPS further achieves centimeter-level

accuracy with the help of additional base stations. These

GPS-based solutions have powered various commercial aerial

swarm shows by Intel, EHang, and others. In indoor GPS-

denied environments, optical motion capture systems enable

millimeter-level position tracking utilizing multiple infrared

cameras [216], [217]. Alternatively, UWB-based solutions

offer a less expensive and more flexible, but less accurate,

state estimate for large-scale indoor aerial swarms [218]. The

major drawback of any of these systems is that they require

the installation of fixed infrastructure, limiting the swarm to

operate in a fixed airspace.

2) Pose Estimation using On-board Sensors: To enable

swarms to operate in any environment, one must eliminate

the need for external sensors for state estimation. Instead, the

robots must rely on on-board sensors, such as cameras, lidars,

and inertial measurement units (IMUs). Cameras and lidars are

exteroceptive sensors, relying on external features to provide

incremental pose estimates [219]. On the other hand, IMUs

are interoceptive sensors, providing high-frequency velocity

and attitude feedback for the purpose of real-time control. A

recent major breakthrough in this area is the use of visual-

inertial odometry (VIO) [210] for real-time state estimation

and feedback control. On-board camera sensors can also be

used to localize other members of the swarm [220]–[225]. This

can be used to enable distributed formation control without the

need for any explicit communication between agents. How-

ever, cooperative estimation and multi-agent SLAM techniques

discussed in Sec. IV-C can also be used to provide state and

pose estimates of each aerial robot.

D. Communication Infrastructure

The communication infrastructure is another essential build-

ing block for real-world deployment of aerial swarm systems,

as it enables exchange of state information, motion plans, and
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high-level swarm behaviors. Researchers often select short-

range but low power consumption communication protocols,

such as Bluetooth, ultra-wideband (UWB), or standard Wi-

Fi, for building up the communication infrastructure. A de-

tailed discussion of these protocols was presented in [226].

However, due to limited bandwidths, these protocols may

not satisfy the communication requirement for large-scale

swarms. Researchers are looking into possible alternatives that

demonstrate low latency, high reliability, and high bandwidth,

such as URLLC [227].
Due to a limited selection of physical communication infras-

tructure components, current swarm realizations are limited to

using one of a small number of communication topologies.

Centralized topologies with one ground station and multiple

agents are used for most cases [209], [216], [217]. Decen-

tralized communication topologies are still mostly used in

the realm of theoretical research [57], [59]. Very limited

experimental results are presented in the literature [228],

[229].

VI. CONCLUSION AND FUTURE WORK

In the near future, our airspace will be populated by swarms

of aerial robots, performing complex tasks that would be

impossible for a single vehicle. This papers reviews work that

could provide the fundamental algorithmic, analytic, percep-

tive, and technological building blocks necessary to realize this

future. The research issues discussed in this survey paper span

hierarchical integration of swarm synchronization control with

safe trajectory optimization and assignment, and cooperative

estimation and control with perception in the loop, offering

the readers a broad perspective on aerial swarm robotics.
In addition, we emphasize the importance of the three-

way tradeoff between computational efficiency, stability and

robustness, and optimal system performance. To truly address

this tradeoff, we argue that it is imperative to advance beyond

methods that are currently being used in autonomous drones

and general swarm robotics in order to realize long-term

autonomy of aerial swarm systems.
One important area of further study is to develop learning

and decision-making architectures that will endow swarms of

aerial robots with high levels of autonomy and flexibility. We

argue that such architectures will ultimately lead to reduced

risk and cost as well as long-term autonomous operations.

To be successful, any such architecture must provide the

framework for reasoning about the wide-ranging nature of

uncertainties and modeling errors, ranging from known un-

knowns (e.g., sensor and actuator noise) to unknown unknowns

(e.g., wind disturbance, hardware failures). All of these impact

the safety and robustness of algorithms and system-level

functions of swarm behaviors. Furthermore, computation and

communication within a swarm must be fast enough to ensure

stability under model changes and mission specifications at

the various timescales and bandwidths within the system.
For aerial swarm systems with highly uncertain environmen-

tal models, the role of high-level planning, decision making,

and classification in flight in conjunction with low-level swarm

control and estimation systems can be characterized mathe-

matically through the properties of stability, convergence, and

robustness. Various aspects of the swarm decision-making,

control, and estimation should come in different timescales

and hierarchical levels to exploit scalability and computational

efficiency. An example of such characterization on stability

would be a mathematical theorem correlating desired models

and parameters to be updated on-line as well as their update

or learning rates, to functions of various system features, such

as sampling rate, swarm control law update rate, bandwidth

of dynamics and communication, dimensions of dynamic

systems, and properties of environmental uncertainties. This

should also provide a guideline as to gauge how efficient and

robust a particular swarm algorithm or system-level architec-

ture is at achieving autonomy in aerial swarms. For example,

distributed optimal planning (e.g., [25], [87]) requires robots

to share their optimal solutions with their neighbors, up to

a certain time horizon. Adding simultaneous target or task

allocation to this problem further increases the required size

of communicated information. It would be beneficial to com-

bine such methods with on-line adaptation methods that can

forecast the neighbors’ future behavior and would, in turn,

effectively reduce communication requirements. The key idea

is again combining formal mathematical analysis with the

hierarchical and multi-modal decomposition discussed earlier.

Another important area is to establish rigorous methodologies

for fault detection, isolation, and recovery to handle various

potential faults occurring at sub-system levels, individual sys-

tem levels, and swarm levels.

As swarms are deployed to a greater extent for aggressive

or agile autonomous missions, it will become necessary to

create the means to exert some form of adversarial control

on swarms. Such counter-swarm techniques can also be used

for civilian purposes, such as maintaining law and order and

herding birds and animals away from environmental hazards

such as floods or wildfires. The work reported in Sec. III-E is

a good starting point for these techniques. Key open questions

include the type of maneuvers that need to be performed

to rapidly estimate a swarm’s location and intent; assess an

aerial swarm’s internal dynamics; identify the task and role

assignment within a given swarm; and identify the primary

leader and sensing nodes. The next level of questions pertain

to identifying ways of defeating these types of probing maneu-

vers from an adversarial swarm, which is a direct analogue of

the usual minimax paradigm for games. It is interesting to note

the similarities exhibited in the case of social networks, which

suggests that an adoption of the tools from that literature may

provide early breakthroughs for counter-swarm development.

Yet, even by adopting well-established tools from the theory

of social networks and games, an important and significant

challenge at both levels is identifying the role of the aerial

vehicle dynamics in enabling, and defeating, the probing

operations. A cleverly executed set of maneuvers could help

identify, and equally provide deceptive leads about, a swarm’s

intent, organization and capabilities.

In summary, many open problems and research issues

in aerial swarm robotics involve the characterization of the

interdependencies between the properties of swarm vehicle

dynamics, the properties of uncertainties, and different swarm

learning/control methods employed. Only by understanding



14

these interdependencies, either through careful system iden-

tification or integrated system design, can fully-autonomous

aerial swarms be proven to operate in complex, real-world

environments.
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