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A SURVEY ON AMERICAN OPTIONS: OLD APPROACHES

AND NEW TRENDS

Se Ryoong Ahn, Hyeong-Ohk Bae, Hyeng Keun Koo, and Kijung Lee

Abstract. This is a survey on American options. An American option
allows its owner the privilege of early exercise, whereas a European op-
tion can be exercised only at expiration. Because of this early exercise

privilege American option pricing involves an optimal stopping problem;
the price of an American option is given as a free boundary value problem
associated with a Black-Scholes type partial differential equation. Up un-

til now there is no simple closed-form solution to the problem, but there
have been a variety of approaches which contribute to the understanding
of the properties of the price and the early exercise boundary. These ap-
proaches typically provide numerical or approximate analytic methods to

find the price and the boundary. Topics included in this survey are early
approaches(trees, finite difference schemes, and quasi-analytic methods),
an analytic method of lines and randomization, a homotopy method, an-
alytic approximation of early exercise boundaries, Monte Carlo methods,

and relatively recent topics such as model uncertainty, backward stochas-
tic differential equations, and real options. We also provide open problems
whose answers are expected to contribute to American option pricing.

1. Introduction

Derivatives have dramatically revolutionized the modern world of finance;
practice of corporate finance, investment, and financial services have under-
gone a big transformation since introduction of new derivative products. Their
primary role has been hedging tools, i.e., products to be used for reducing risk
associated with interest rates, foreign exchange, equity, commodity, energy, and
weather. They have, however, been used also for speculative purposes, since
they provide numerous ways to increase leverage. Furthermore, their prices
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have generated signals about economic fundamentals and market conditions
for the world financial community (Grossman [34]).

This spectacular success of derivative markets, however, would not have been
possible, if there had been no well-accepted pricing models. A pricing model
has allowed traders to base their trades on the prices discovered through it.
In addition, a hedging method associated with the pricing model has induced
financial institutions to make quite a large supply of derivative products by
enabling them to reduce risk in their positions. A typical example of such a
model is the Black-Scholes model which provides a simple closed-form formula
for a European call option (or a European put option by the put-call parity)
[7]. The Black-Scholes formula is a solution to a constant-coefficient para-
bolic partial differential equation with a terminal condition; the equation is
derived based on the principle of absence of arbitrage from a set of simplifying
assumptions, i.e., a geometric Brownian assumption for the underlying asset
price process, no short-selling restrictions, no taxes nor transaction costs. Due
to later development on risk-neutral pricing, the price can also be expressed
as an expected discounted value of the option’s payoff at expiration under the
risk-neutral measure (see e.g., Karatzas and Shreve [50]).

Although there exists a simple pricing formula for a European option, such
does not for an American option. An American option allows its holder to
exercise earlier than expiration. This early exercise privilege complicates the
pricing problem; the problem involves the owner’s optimal choice of the time
for exercise and this choice should be reflected in pricing and hedging. Under
the assumption of the Black-Scholes model, the time for optimal exercise can be
shown to be the first hitting time of a boundary, the early exercise boundary,
in the plane consisting of pairs of the stock price and the time-to-maturity,
which is to be found as a free boundary associated with the Black-Scholes
partial differential equation [50]. Alternatively, the problem can be formulated
as a variational inequality (see e.g., Broadie and Detemple [11]). Except for
perpetual options, there is, in general, no simple formula for the early exercise
boundary and option price.

Non-existence of a simple formula triggered two major trends in research
on American options: In the first trend researchers seek conceptual under-
standing of the early exercise privilege and try to come out with a theoretical
framework or an approximate formula. In the second trend they try to develop
numerical methods for pricing and hedging American options, e.g., finite dif-
ference/element schemes for the free boundary value problem, or Monte Carlo
methods.

In this survey we review major ideas in the first trend of research, i.e., con-
ceptual understanding of the early exercise privilege. In our opinion the follow-
ing have been prominent ideas: early attempts to obtain approximate prices
[58, 9], the integral representation of the early exercise premium [51, 53, 19],
the analytic method of lines and its associated randomization method [17], and
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a homotopy method [80], analytic approximations of the early exercise bound-
ary [20], and Monte Calro methods for American options. We discuss these key
ideas and identify problems that need to be answered for further development
of their methods. We will also discuss model uncertainty, backward stochastic
differential equations, and real options.

Of course, there are other approaches which are not covered in this review.
They are omitted not because they are less important but, to our view, the
aforementioned methods seem best fit to our purpose.

There are already good surveys on the subject; for example, Broadie and De-
temple [11] is a survey on both European and American options, Detemple [24]
is a book for a comprehensive survey on American-style options, and Glasser-
man [32] is a book for a comprehensive treatment for Monte Calro simulation
methods for American options. Our contribution is to be more up to date and
cover such recent development as the homotopy method, analytic approxima-
tion to the early exercise boundary, model uncertainty, and relationship with
real options and backward stochastic differential equations.

This survey is organized as follows. Section 2 sets up the American option
pricing problem. Section 3 reviews early approaches to pricing of American
options. Section 4 studies the integral representation of the early exercise
premium and its uses. Section 5 reviews the analytic method of lines and its
associated randomization method. Section 6 provides a critical review of Zhu’s
homotopy method [80], and Section 7 reviews analytic approximation of the
early exercise boundary. Section 8 explains Monte Carlo methods, and Section
9 discusses recent topics: model uncertainty, backward stochastic differential
equations, and real options. Section 10 reviews open problems and suggests
directions for future research. Section 11 concludes.

2. An American option pricing problem

In this section we present a simple financial market model in which an Amer-
ican option is traded. For simplicity of exposition we focus our discussion on
an American put option. There is a put-call symmetry between American put
and American call options [33, 56, 69, 15, 16] and the approaches we review in
this survey can be applied equally to an American call option with continuous
dividends with modification of parameters.1

There are a stock and a bond in the financial market. The bond is risk-free
and assumed to have a constant rate of return r. The price S(t) of the stock

1In a geometric Brownian motion setting assumed in this paper the put-call symmetry is
stated as follows:

C(S,K, r, δ, T ) = P (K,S.δ, r, T ),

where C, P denote prices of American call and put options, respectively, and the other
notation is the same as in the rest of the paper.
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evolves according to the following equation

dS(t)

S(t)
= µdt+ σdB̃(t), S(0) = S0,

where µ and σ are constants describing the mean and volatility of the stock
return, and B̃(t) is a standard Brownian motion on a filtered probability space
(Ω,F , {Ft}t≥0, P ). The stock pays dividends at a constant rate δ, namely, the
amount of dividend paid over the infinitesimal time interval [t, t+ dt) is equal
to δS(t)dt.

We assume that there are no taxes, no transaction costs and no short-sale
constraints. Portfolio strategies, particularly self-financing strategies starting
with a given initial wealth, are defined as in a standard financial model (see
e.g., Chapter 1, [50]).

By Girsanov’ theorem there exists an equivalent martingale measureQ under
which the stock price evolves as follows

dS(t)

S(t)
= (r − δ)dt+ σdB(t), S(0) = S0,(1)

where B(t) ≡ B̃(t) + µ−r
σ t is a Brownian motion under Q.

We now consider an American put option written on the stock with a strike
price K and maturity T < ∞. The option pays g(S(τ)) ≡ (K − S(τ))+ to the
holder when it is exercised at τ . Suppose S(t) = S, then we define

P (T − t, S) ≡ ess sup
t≤τ≤T

EQ[e−r(τ−t)g(S(τ))| Ft],(2)

where τ runs all {Fs}t≤s≤T -stopping times. Bensoussan [6] and Karatzas [49]
have shown that P (T − t, S) is a unique fair price of the American put at time
t and the price at time 0 is equal to the smallest initial wealth required such
that there exists a self financing strategy whose wealth process X(u) satisfies

(i) X(u) ≥ g(S(u)) for all 0 ≤ u < T ,
(ii) X(T ) = g(S(T )).

The free boundary value problem

We denote the American option price in (2) by f(u, S) := P (u, S). The
variable u := T − t stands for time until expiration of the option. Mckean [58]
and Van Moerbeke [76] have shown that the fair value of the American put
option is a solution to the following free boundary value problem2.

(3) Lf(u, S) ≡ σ2

2
S2fSS + (r − δ)SfS − rf − fu = 0 for S > S

subject to the following boundary conditions

lim
S↑∞

max
0≤u≤T

f(u, S) = lim
S↑∞

g(S) = 0,

2Here subscripts denote partial derivatives, i.e., fSS = ∂2f
∂S2 , fS = ∂f

∂S
and fu = ∂f

∂u
.
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lim
S↓S(u)

f(u, S) = g(S(u)), lim
S↓S(u)

fS(u, S) =
∂g(S)

∂S
= −1(4)

and terminal conditions

S(0+) =

{
K if r ≥ δ,
rK
δ if r < δ,

f(0, S) = g(S(T )) for S > 0.

Furthermore,

f(u, S) = g(S) for S ≤ S(u), u ∈ [0, T ],

and

f(u, S) ≥ g(S) for u ∈ [0, T ], S > 0.

Here, S is called the early exercise boundary and the optimal exercise time is
the first hitting time of the stock price at the boundary.

Equivalently, the function f(u, S) can be shown to be a solution to the
following linear complementarity problem (LCP) [24]:

Lf · (f − g) = 0,(5)

f(u, S) ≥ g(S), Lf ≤ 0

subject to the boundary conditions

lim
S↑∞

max
0≤u≤T

f(u, S) = lim
S↑∞

g(S) = 0,

lim
S↓0

max
0≤u≤T

f(u, S) = lim
S↓0

g(S) = K,

f(0, S) = g(S(T )).

In the LCP formulation the early exercise boundary is not shown explicitly,
but rather should be discovered as a part of a solution to the problem. It is
well-known that the LCP formulation is equivalent to variational inequality
[11].

3. Early approaches and ideas

3.1. A perpetual American option

McKean, Samuelson, and Merton [58, 68, 59] derived an explicit analytic
solution to the free boundary value problem for the case T = ∞, i.e., for a
perpetual American option. In this case the derivative with respect to time,
fu, disappears in the equation (3), because time is homogeneous in an infinite
horizon problem. That is, the equation (3) becomes a linear homogeneous
second-order ordinary differential equation, which has a known general solution.
By the boundary and terminal conditions, one can derive the following formula
for an American put:

(6) P (S) =

{
(K − S)

(
SS−1

)γ
when S ≥ S,

K − S when 0 < S < S,
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where

S =
γK

γ − 1
, γ := − 1

σ

[
ν +

√
ν2 + 2r

]
for ν =

r − δ

σ
− 1

2
σ,

see [50].

3.2. Trees and finite difference schemes

Soon after the discovery of the simple formula for a perpetual American
option price, people noticed genuine difficulty of finding an analytic solution
to the free boundary value problem or the LCP. Instead, they started to apply
known numerical techniques such as lattices and finite difference methods.

Lattices, also known as trees, are (weak) discrete approximations to a conti-
nuous-time process. Parkinson was the first to use a trinomial lattice to price
an American option [63]. Cox, Ross, and Rubinstein [22] and Rendleman and
Bartter [65] applied binomial trees to price both European and American op-
tions. Kim and Byun [52] studied properties of the optimal exercise boundary
in a binomial tree. For further development of the lattice methods, see Broadie
and Detemple [11].

Brennan and Schwartz [8] and Schwartz [70] were the first to use finite
difference methods to the LCP problem in order to price American options.
Brennan and Schwartz, in particular, showed the equivalence of the explicit
finite difference scheme and a trinomial tree and also established the equivalence
of the implicit finite difference scheme and an infinite lattice.

The trees and the finite difference schemes are now treated as standard
numerical procedures to price American options in popular textbooks such as
Hull’s book [39].

3.3. Analytic approximations

There were also proposals for approximate analytic solutions. Johnson [47]
used the observation that an American put on a non-dividend paying stock is
never exercised earlier than expiration if the strike price is increasing over time
at the risk-free rate, and thus, is equivalent to a European put. Therefore, the
American put price has both the lower bound and the upper bound; the lower
bound is the price of a European put with the same terms as the American put
and the upper bound is that of a European put with a strike price adjusted
upward to KerT . Johnson derived an approximate formula which is a weighted
average of the lower and upper bounds. His approximation, however, was
totally ad hoc and lacked any justification for convergence to the true price.

Geske and Johnson [30] derived an approximation assuming that the Amer-
ican option can be exercised only at discrete times. In this case the option
at a current time can be viewed as an option on an option at later periods,
i.e., a compound option. They applied a pricing formula similar to that of a
compound option to get an approximation to the American option price. They
claimed that the approximation converges to the true value as the number of
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periods increases to infinity, however, no proof was given in their paper. The
approximation involves distribution functions of n-variate normal distributions
with n early exercise periods, and becomes impractical as n becomes large.
They proposed Richardson extrapolation as a method to expedite convergence.

MacMillan [57] and Barone-Adesi and Whaley [5] proposed a quadratic
approximation by considering the equation for the early exercise premium,
ε(T, S) := P (T, S) − p(T, S), where p(T, S) is the price of a European put
with the same terms as the American put: Since both P (T, S) and p(T, S) sat-
isfy the equation (3) in the region above the early exercise boundary, ε(T, S)
also satisfies the equation in the region. Normalizing K = 1 and writing
ε(T, S) = K(T )h(K(T ), S) where K(T ) = 1− e−rT , the equation (3) becomes

σ2

2
S2hSS + (r − δ)ShS − r

K(T )
h− r(1−K(T ))hK = 0.

By assuming (1 −K(T ))hK = 0, the above equation can be approximated by
the second-order ordinary differential equation, which is called the quadratic
approximation:

σ2

2
S2hSS + (r − δ)ShS − r

K(T )
h = 0.

For a given T , an analytic solution to the free boundary value problem with the
quadratic approximation for the early exercise premium can be obtained in a
way similar to that of the perpetual option. The resulting approximate formula
is expressed as the sum of the European option price and an approximation
of the early exercise premium, while the latter resembling the formula for the
price of a perpetual put option. Barone-Adesi and Whaley claimed that the
approximation is good for an option with maturity less than or equal to one
year, but the error tends to be large for longer term options.

4. An integral representation of the early exercise premium

An essential difference between an American option and its European coun-
terpart is its early exercise privilege. The market price of this privilege is called
the early exercise premium and equal to the difference between the American
option price and the European option price.

As discussed in the previous section, MacMillan, Barone-Adesi and Whalley
approximated the equation for the early exercise premium by a second-order
ordinary differential equation and derived an approximate analytic formula for
it. There occurred a conceptual and methodological break-through, however,
when a few researchers discovered a rigorous integral representation of this
early exercise premium (Kim [51], Jacka [45], and Carr, Jarrow, and Myneni
[19]). The following theorem provides the representation:

Theorem 4.1. Let p(T, S) be the fair price of a European option with strike
price equal to K, time to maturity equal to T when the current stock price is
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S. Then,

(7) P (T, S) = p(T, S) +

∫ T

0

e−r(T−t)(rK − δS(T − t))χ{S(T−t)<S(T−t)}dt,

where χA denotes its characteristic function, i.e., χA(x) = 1 if x ∈ A and
χA(x) = 0 if x ∈ Ω−A.

The representation provides an economic interpretation of the early exercise
premium: it is equal to the sum (or integral) of the present discounted values
of the difference between interest rK from the revenue K and the dividend
δS foregone from the sale of a share of the stock, when the option is early
exercised.

The representation also provides a functional equation for the early exercise
boundary; since P (T, S) = K − S(T ) at the boundary,

(8) K−S(T ) = p(T, S(T ))+

∫ T

0

e−r(T−t)(rK−δS(T−t))χ{S(T−t)<S(T−t)}dt,

And this equation can be used to compute the early exercise boundary numeri-
cally. See [51] and [53] for numerical methods which try to solve the functional
equation (8) iteratively.

The representation in the equation (7) and the functional equation (8) are
applied in a number of ways in the literature: Huang, Subrahmanyam, and Yu
[38] have employed step functions, and Ju [48] a piecewise exponential function
to approximate the early exercise boundary and used the equations to study
pricing and hedging of American options. Gao, Huang, and Subrahmanyam
[29] have applied the representation and the functional equation for pricing and
hedging of American Barrier options. Broadie and Detemple [10] have used the
representation to obtain an upper bound for the price of an American option.

5. An analytic method of lines and randomization of
the expiration date

The method of lines refers to approximating a parabolic partial differential
equation with a space variable and a time variable by using a numerical deriv-
ative with respect to one variable [60]. The equation is then approximated by
a series of ordinary differential equations. Applied to our American put prob-
lem by using a numerical derivative with respect to time, the approximation
becomes

σ2

2
S2fSS(un, S) + (r− δ)SfS(un, S)− rf(un, S) +

f(un, S)− f(un−1, S)

∆N
= 0,

where 0 = u0, u1, . . . , uN = T is an equal partition of [0, T ] and ∆N = un −
un−1 = T

N . Then, an approximation of the option price and the early exercise
boundary can be found by solving the ordinary differential equation successively
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with the boundary conditions. By proceeding this way Carr and Faguet [18]
have obtained analytic approximation to the American put price.

This method has interesting economic interpretations: As explained in [18],
the American option can be regarded as a perpetual option, but time decay
can be modeled as credit downgrades occurring according to a random jump
of a Poisson process. Namely, there are N credit classes of the option and it
experiences a downgrade to the next credit class at the next jump time of a
Poisson process with intensity λN = 1

∆ = N
T . Alternatively, the option can

be regarded as maturing at the N -th jump τN of a Poisson process with the
same intensity, which is an interpretation by Carr [17]. According to these
interpretations, the method of lines is a way to approximate the price of a
finite maturity American option by a series of perpetual options with random
maturities.

The random maturity time τN has expectation and variance

E[τN ] =
T

N
+ · · ·+ T

N
= T,

Var(τN ) =
T 2

N2
+ · · ·+ T 2

N2
=

T 2

N
.

Therefore,

lim
N→∞

Var(τN ) = 0.

That is, τN converges to T in probability as N → ∞. This fact provides justi-
fication for approximation. Carr and Faguet, however, have not given a proof
of convergence of the prices with random maturities to the true option price
with a fixed maturity as N tends to infinity. Nevertheless, their approximation
seems good in computational point of view. As a demonstration, we present
an application of their approximation to the behavior of the exercise boundary
near expiration.

For demonstration we assume δ = 0 and let b̂2
(
T
N

)
:= SN,1 denote the

free boundary decided after the first arrival among N arrivals for a given N .
Intuitively, this approximates the early exercise boundary and we expect that

the sequence {b̂2
(
T
N

)
: N = 1, 2 . . . , } generates delicate information on the

actual boundary near expiration. Carr and Faguet’s formula reads

b̂2

(
T

N

)
= K

(
(εN − 2r

σ2 )rT

N + r + r(εN − 2r
σ2 )

) 1
2r
σ2 +εN

,

where εN is given by

εN =

√
1

4

(
1 +

2r

σ2

)2

+
2N

σ2
.
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In the following simulation the lower curve is b̂2 and it is evaluated and inter-
polated on a nonuniform partition π1000 of [0, T ],

π1000 := { T

1000
,
T

999
, . . . ,

T

2
, T}

with T = 0.01 which is approximately equal to 4 days. We remark that the
partition points are clustered at time 0, meaning that all the information is
concentrated near expiration.

0 0.002 0.004 0.006 0.008 0.01
93

94

95

96
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100

Reversed time to expiration

S
to
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p
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ce

Figure 1. Comparison between two approximations to the
early exercise boundary with K = 100, interest rate = 0.1,
volatility = 0.3, time unit = year

The upper curve serves as a benchmark and gives the value of the following
function on π1000 :

b̂1(t) = K exp
[
−
√
σ2t log(v2(t)Ct)

]
,(9)

where C = 8πr2

σ2 and v(t) = 1+ 1
log(Ct) . The function b̂1 in (9) is claimed to be

a sharp approximation to the free boundary near expiration (see [62]). As we

see, the difference between b̂1 and b̂2 seems bounded by b̂1(T ) − b̂2(T ) which
goes to zero as T gets smaller. Hence, the lower curve generated by Carr and
Faguet’s formula can be regarded as a reasonably good approximation to the
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free boundary near expiration. Carr and Faguet have shown that their method
can generate good approximations also for options away from expiration by
using the Richardson extrapolation. Jang and Koo [46] have also shown that
the randomization method can be applied to the case where the volatility is
time-varying in accordance with a two-state regime switching process.

6. A homotopy method

Another approach to find the price of an American put is a homotopy-
analysis method proposed by Zhu [80].

Zhu has constructed a homotopy in which there is a deformation of boundary
value problems parameterized by p where p ranges from 0 to 1; for p = 0 the
boundary value problem has an easy solution and for p = 1 the boundary value
problem provides the American option price and the early exercise boundary.
He has, then, assumed the homotopy’s analyticity and taken a Taylor series
expansion around p = 0. By plugging in p = 1 to the series, he has obtained
the American put price together with the early exercise boundary.

We now proceed to explain Zhu’s idea in more detail. For simplicity, we
assume that the stock pays no dividend and the strike price is equal to 1. By
introducing γ := 2r

σ2 , the relative interest rate to the volatility of the underlying
asset price, one gets the following version of free boundary value problem:

fu − S2fSS − γSfS + γf = 0,

f(0, S) = max(1− S, 0),

f(u, S(u)) = 1− S(u),

fS(u, S(u)) = −1,

lim
S↑∞

f(u, S) = 0,(10)

where S(u) is the optimal exercise boundary. With intention of flattening
boundary Zhu uses the change of variable3

x = ln
S

S(u)

to get

fu − fxx − (γ − 1)fx + γf =
Su(u)

S(u)
fx,

f(0, x) = 0,

f(u, 0) = 1− S(u),

fx(u, 0) = −S(u),

lim
x↑∞

f(u, x) = 0.(11)

3The change of variable was previously done by Wu and Kwok [78].
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Zhu constructs two unknown functions f̄(u, x, p) and B̄(u, p) with parameter
p ∈ [0, 1] that satisfy

(1− p)L[f̄(u, x, p)− f̄0(u, x)] = −p{A[f̄(u, x, p), B̄(u, p)]},
f̄(0, x, p) = (1− p)f̄0(0, x),

f̄(u, 0, p) = 1− B̄(u, p),

f̄x(u, 0, p) + B̄(u, p) = (1− p)

[
1 +

∂f̄0
∂x

(u, 0)− f̄0(u, 0)

]
,

lim
x↑∞

f̄(u, x, p) = 0,(12)

where L is a differential operator defined as follows:

L =
∂

∂u
− ∂2

∂x2
− (γ − 1)

∂

∂x
+ γ,

and A is a functional defined by the equation

A[f̄(u, x, p), B̄(u, p)] = L(f̄)− Su(u, p)

S(u, p)
fx(u, x, p).

Notice that, when p = 0, (12) is solvable and the case p = 1 is (11), what we
want to solve. To attack this question, Zhu expresses the functions f̄(u, x, p)
and B̄(u, p) as a Taylor series expansion around p = 0

f̄(u, x, p) =

∞∑
m=0

f̄m(u, x)

m!
pm, B̄(u, p) =

∞∑
m=0

B̄m(u)

m!
pm,(13)

where

f̄m(u, x) =
∂m

∂pm
f̄(u, x, p)

∣∣∣∣
p=0

, B̄m(u) =
∂m

∂pm
B̄(u, p)

∣∣∣∣
p=0

.

It turns out that the coefficients in the series are solutions to auxiliary
equations which are solvable.

However, what is missing here is theoretical evidence of convergence of the
series. To show convergence, we must be able to show that

lim
m→∞

m

m+ 1

∣∣∣∣ f̄m+1

f̄m

∣∣∣∣ p < 1

for p ∈ [0, 1]. But, Zhu has left the convergence as a conjecture and provided
only numerical evidence. Moreover, one has to find f̄n(u, x) and B̄n(u) recur-
sively using f̄n−1(u, x) and B̄n−1(u) and it requires a recursive procedure of
solving differential equations to arrive at (13). Therefore, (13) with p = 1 is
not a closed-form in an ordinary sense.
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7. Analytic approximation to the early exercise boundary and
the tail of the boundary

Under the current situation in which we don’t have any exact closed-form
expression for the exercise boundaries of American put options, information on
parts of an exercise boundary are valuable. Some detailed information of the
boundaries near expiration and boundaries far from expiration are available.

7.1. The early exercise boundary near expiration

There has been research which tries to understand behavior of the early ex-
ercise boundary near expiration. For instance, there have been approximations
proposed by Kuske and Keller [54], Bunch and Johnson [14], and Stamicar,
Sevcovic and Chadam [71] for options near maturity. These approximations
are summarized succinctly in Chen and Chadam [20]:

(KK) 9πγ2tα2(t)e2α(t) ∼ 1,

(BJ) 4γ2tα(t)e2α(t) ∼ 1− γ2

2(1 + γ)2
,

(SSC) 4πγ2te2α(t) ∼ 1,

where α(t) := s2(t)
4t , s(t) is the re-scaled exercise boundary with t being time

until expiration (see (P ) below). Recently, Chen and Chadam [20] have con-
firmed with mathematical rigor that (SSC) is correct; they have derived and
proved high-order asymptotic expansions for the early exercise boundary near
expiration.

Assuming that the asset price S satisfies (1) with no dividends paid, δ = 0,
they start from the following free boundary problem which is essentially the
same as (10):

(F )


fu − 1

2σ
2S2fSS − rSfS + rf = 0 u > 0, S(u) < S,

f(u, S) = K − S, fS(u, S) = −1 u > 0, 0 < S ≤ S(u),
limS↑∞ f(u, S) = 0 u > 0, 0 < S,
S(0) = K u = 0,
f(0, S) = max(K − S, 0) u = 0, 0 < S.

By change of variables, u = σ2

2 t, S = Kex, and setting

p(t, x) :=
1

K
P (u, S), s(t) := ln

S(u)

K
, γ =

2r

σ2
,

one obtains

(P )


pt − pxx − (γ − 1)px + γp = 0 t > 0, s(t) < t,
p(t, x) = 1− ex, px(t, x) = −ex t > 0, 0 < t ≤ s(t),
limx↑∞ p(t, x) = 0 t > 0, x ∈ R,
s(0) = 0 t = 0,
p(0, x) = max(1− ex, 0) t = 0, x ∈ R.
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Chen and Chadam [20] analyze s(t) near t = 0 by looking at asymptotic ex-

pansion for α(t) := s2(t)
4t so that they get a sharp estimate for the early exercise

boundary. Their result is

4πγ2te2α(t) ∼ 1

for each sufficiently small positive t. In other words, one derives

α(t) ∼ −ξ(t),

where ξ(t) := log
√
4πγ2t. From this we get the following approximations to

s(t) and S(u) :

s(t) ∼ −
√
−2t log(4πγ2t), S(u) ∼ K exp

[
−

√
−4u

σ2
log

(
8πγ2

σ2
u

)]
for small t and u. In fact, they have the following asymptotic expansion for α :

α(t) = −ξ(t)− 1

2ξ(t)
+

1

8ξ2(t)
+

17

24ξ3(t)
− 51

64ξ4(t)
− 287

120ξ5(t)
+

199

32ξ6(t)

+O(ξ−7(t)).(14)

To reach (14), first, they use Green’s representation for solutions of the linear
parabolic PDE in (P ). Next, one isolates an equation for the free boundary
s(·). Finally, they derive an equation for α(·) and analyze it to obtain (14).

7.2. The early exercise boundary far away from expiration

On the other hand, one can also obtain the behavior of the free boundary for
a time far away from expiration. This information sheds insight to the shape
of the boundary by providing knowledge about how fast the boundary becomes
flat. Ahn, Choe, and Lee [1] have provided an estimate for the speed.

Suppose that δ = 0. For any given γ = 2r
σ2 > 0 it holds that

0 < s(t)− s∗ ≤ N1e
− (γ+1)2

4 t, t ≥ 0,(15)

where s∗ is the bounded limit of s(·) and constant N1 depends only on γ.

In this case one needs an integral equation for s(·) :

G(t, s(t)) = −γ

∫ t

0

G(t− s, s(t)− s(s))s′(s)ds,(16)

where G is the fundamental solution corresponding to the second order para-
bolic partial differential equation in (P ), that is,

G(s, y) =
1√
4πs

exp

{
− (y + (γ − 1)s)

2

4s
− γs

}
, s > 0, y ∈ R.

Using (16) and the convexity of s(·), one can prove (15).
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8. Monte Carlo methods

Monte Carlo simulation has been the most popular method for pricing com-
plex derivatives since its introduction by Boyle [13]. In particular, when pric-
ing involves multiple risk sources, the resulting mathematical problem is multi-
dimensional and traditional numerical methods such as trees or finite difference
schemes are not practical, the only practical method available is usually Monte
Carlo simulation.

This popular method, however, had a serious problem for American option
pricing because of its inherent forward nature. When pricing a derivative,
the method starts by simulating many paths of prices under the risk neutral
probability measure. Then cash flows of the derivative for each simulated path
are computed and discounted to get their total present value. Then, the average
of all the present values on the simulation paths is the derivative’s current price.
When trying to apply the method to an American option, people discovered
that it was not easy to decide the optimal exercise time of the option on each
path, since it was not easy to know the continuation value of the option at a
point of time on the path. In this section we review approaches to get over
the difficulty and use Monte Carlo simulation to price American options. For
a more comprehensive review on this topic, see Glasserman [32].

The first class of approaches to extend Monte-Carlo pricing to American-
style options is approximating the early exercise boundary based on average
future values. Tilley [73] has proposed the following method: At a point of
time all the paths are reordered according to the price levels and grouped into
a number of bundles, and the continuation value is computed as the average
present value of future cash flows for the bundle. Then, for each price, 0 is as-
signed if the intrinsic value at the price is less than or equal to the continuation
value, and 1 is assigned otherwise, and the critical price for early exercise is
chosen to be the price corresponding to a sequence of 1’s which is longer than
any subsequent sequences of 0’s. Anderson [3] has proposed another approach
belonging to this class: After simulating price paths, one proceeds backward
starting from one period before expiration to choose the critical price levels
which maximize the average present values of all future cash values.

The second class attempts to find the upward and downward biased price-
estimators and find confidence intervals which shrink to a point estimate asymp-
totically as the number of simulation increases in an appropriate way. For
example, Broadie and Glasserman [12] have considered a random tree and ob-
tained a high estimate by a traditional backward induction method and a low
estimate by a similar backward induction but using a branch among all the
branches emanating from a state-time in the tree for the continuation value
and the other branches for the exercise decision. The upward bias comes from
the fact that information about future, which is not available to the option
holder, is used in the backward induction, and the downward bias from that a
suboptimal exercise-time is used for the simulated value.
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The third class, which is currently most popular, tries to approximate the
continuation value at each time of a simulation path by regression. Tsitsik-
lis and Van Roy [75] and Longstaff and Schwartz [55] have proposed to use a
set of basis functions to approximate the continuation value; at each point of
time on each simulation path the discounted future value is regressed against
basis functions to obtain an approximate analytic form, and the exercise deci-
sion is made by comparison of the current intrinsic value and the value of the
approximate analytic form of the continuation value.4

Tsitsiklis and Van Roy have also proposed to use basis functions which are
functions not only of the state but also of time. With these basis functions one
does not need the backward induction described in the previous paragraph, but
needs to carry out iteration starting from guessed initial values of the regression
parameters. Tsitsiklis and Van Roy have shown that the iteration converges
because the operator involved in it is a contraction. They, however, have not
shown practical examples based on regression on state-time basis functions.

All the methods involving the choice of an early exercise boundary (e.g.,
[3, 55, 73]) produce downward-biased estimates for the price of an American
option, since they involve a sub-optimal choice of the exercise time. Relying on
duality results developed by Davis and Karatzas [23], and Rogers [67], Andersen
and Broadie [4] have obtained an upward-biased estimate of the price.

9. New topics: model uncertainty, backward stochastic differential
equations, and real options

In this section we review topics that are developed recently, model uncer-
tainty, backward stochastic differential equations, and real options.

If the financial market is complete, the risk-neutral probability measure is
uniquely determined, and the previously mentioned approaches are applicable
for pricing American options. In case the market is incomplete, however, there
are infinitely many risk-neutral probability measures consistent with the cur-
rent prices of existing products, and there is an ambiguity in pricing a newly
introduced derivative. In derivative pricing this typically translates into the
existence of infinitely many different pricing models and model uncertainty
refers to this existence multiple pricing models. In order to handle this prob-
lem, risk measures and nonlinear expectations such as g-expectations and G-
expectations have been introduced (see e.g., Föllmer [26] and Peng [64]). Many
of risk measures as well as nonlinear expectations can be expressed as solutions
to backward stochastic differential equations (BSDE’s) [64].

4Tsitsiklis and Van Roy’s method is essentially the same as that of Longstaff and Schwartz,
but differs only in that the former use the estimated continuation value at time t as the future
value of the option for computing the continuation value at time t− 1 whereas the latter use
the actual cash flow at time t as the future value.
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Pricing American options under model uncertainty is a relatively unexplored
field. Riedel [66] has studied an optimal stopping problem such as that asso-
ciated with optimal exercise of an American option in the face of model un-
certainty, assuming that the decision maker optimizes against the worst-case
scenario as modeled in Gilboa and Schmeidler [31]. He has shown that for a
complex barrier option there may exist path dependences in the worst case
scenario even if the uncertainty is modeled as a straightforward generaliza-
tion of an i.i.d. process. A more general treatment of an American option
pricing under model uncertainty will require solving BSDE’s, since that will
involve risk measures and/or nonlinear expectations whose implementation is
generally carried out through BSDE’s.

The price of an American option can also be modeled as a backward sto-
chastic differential equation with a reflecting barrier, where the barrier is its
intrinsic value. Generalizing this, a generalized American option can be de-
fined as a contingent claim which can be switched into other N − 1 different
regimes starting from a regime by paying appropriate fixed costs. The price
of a generalized American option can be expressed as a solution to a system
of N BSDE’s with reflecting barriers. Hu and Tang [37] have obtained results
concerning existence and uniqueness for such BSDE’s.

Real options are real investment opportunities involving sunk costs. The
sunk costs make them resemble American options, even though continuous
hedging is not usually possible (see e.g., Dixit and Pindyck [25]). Real op-
tions are very widely applied to real world investment problems: R&D evalua-
tion, venture capital investment, oil exploration, research on alternative energy
sources or desalination5 (See e.g., Trigeorgis [74]). Real options with multiple
choices can be modeled as a generalized American option we discussed above,
and their values can be obtained as solutions to a system of BSDE’s with
reflecting barriers.

10. Open problems and future research

1. Convergence
The important contributions, the randomization method and the homotopy

method lack the proof of convergence.6 Numerical examples seem to suggest
the methods’ convergence to the true values. However, unless a mathematical
proof is given, we are not sure whether the method is valid for all parameter
values.

2. Stochastic Volatility Models and Other Multi-factor Models
Stochastic volatility models have been popular to consider the effects of

stochastically changing volatilities on option pricing ([40, 36]). For the case
where the speed of mean reversion of volatility is very fast and the option

5Desalination refers to transforming salted water into drinking water.
6For discrete Markovian approximations such as multinomial trees, Amin and Khanna [2]

have provided a convergence proof.
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is away from expiration Fouque, Papanicolaou, and Sircar [28] have provided
a Taylor series approximation for the price of a European option; it is equal
to the sum of the Black-Scholes price with constant volatility equal to the
average future volatility and correction terms for the volatility and skewness
of the stochastic volatility. In the same book they have extended the following
extension of their method to pricing an American option: Retain the same
early exercise boundary as that of the constant volatility, where the volatility
is equal to the average future volatility, formulate the LCP for the American
option by using the approximate operators for the European option, and solve
the LCP to obtain an approximate price of an American option which they
claim to be a good approximation away from the early exercise boundary.

Except for this, however, there has been only sparse research on analytic
pricing of American options in an environment where volatility is changing
stochastically.7 It will be even interesting to see an analytic solution to the
perpetual option pricing problem in a stochastic volatility model such as in [36].
Or it will be interesting to see an extension of the randomization approach to
this case.

There is extensive literature on pricing an American option with stochastic
volatility, on multiple assets, or, more generally, with multiple sources of risk
based on finite difference/element methods. Such methods include projected
successive overrelaxation (PSOR) methods [77, 72], penalty methods [27, 79],
multigrid methods [21, 61], operator splitting methods [41, 42, 44], compo-
nentwise splitting methods [43], etc. A comprehensive survey on the growing
literature is beyond the scope of the current paper and is left as a future task.

3. Analytic Solution to the Early Exercise Boundary and Option Price
The most prominent problem in American option pricing is still to discover

analytic solution to the early exercise boundary and the option price. The
approximations by [17] and [80] seem close to the goal. But, as our review has
shown, the foremost objective of obtaining a simple analytic solution is not
achieved and waits for further innovations.

4. American Options and BSDE’s with Reflecting Barriers.
We have discussed the relationship between American options and BSDE’s

with reflecting barriers in the previous section. Research on this relationship
and associated BSDE’s is in its infancy. Both theoretical research (e.g., general
results on existence and uniqueness of BSDE’s with reflecting barriers) and
numerical analysis in this direction (e.g., Monte Carlo methods for BSDE’s) is
one of the most promising areas in financial mathematics.

11. Conclusion

In this paper we have surveyed approaches to price American options. We
have shown that analytic approximations, the integral representation of the
early exercise boundary, the randomization method, the homotopy method,

7Exceptions are [35] and [46].
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the Monte Carlo method, and applications of backward stochastic differen-
tial equations have made important innovations in the area. However, as we
have indicated, convergence of the best-known approximations still needs to
be proved (or disproved) and innovations are necessary to deal with stochas-
tic volatilities and multiple sources of uncertainty. Furthermore, the ultimate
objective to get a simple analytic solution is yet to be achieved.
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