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Introduction and survey structure

�e recent rise of big data gave birth to a new promise for AI based in statistical learn-

ing, and at this time, contrary to previous AI winters, it seems that statistical learning 

enabled AI has survived the hype, in that it has been able to surpass human-level per-

formance in certain domains. Similar to any other engineering deployment, building AI 

systems requires evaluation, which may be called assurance, validation, verification or 

another name. We address this terminology debate in the next section.

Defining the scope of AI assurance is worth studying, AI is currently deployed at mul-

tiple domains, it is forecasting revenue, guiding robots in the battlefield, driving cars, 

recommending policies to government officials, predicting pregnancies, and classifying 

customers. AI has multiple subareas such as machine learning, computer vision, knowl-

edge-based systems, and many more—therefore, we pose the question: is it possible to 

provide a generic assurance solution across all subareas and domains? �is review sheds 

light on existing works in AI assurance, provides a comprehensive overview of the state-

of-the-science, and discusses patterns in AI assurance publishing. �is section sets that 
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stage for the manuscript by presenting the motivation, clear definitions and distinctions, 

as well as the inclusion/exclusion criteria of reviewed articles.

Relevant terminology and de�nitions

All AI systems require assurance; it is important to distinguish between different terms 

that might have been used interchangeably in literature. We acknowledge the following 

relevant terms: (1) validation, (2) verification, (3) testing, and (4) assurance. �is paper is 

concerned with all of the mentioned terms. �e following definitions are adopted in our 

manuscript, for the purposes of clarity and to avoid ambiguity in upcoming theoretical 

discussions:

Verification: “�e process of evaluating a system or component to determine whether 

the products of a given development phase satisfy the conditions imposed at the start of 

that phase”. Validation: “�e process of evaluating a system or component during or at 

the end of the development process to determine whether it satisfies specified require-

ments” (Gonzalez and Barr, 2020). Another definition for V&V is from the Department 

of Defense, as they applied testing practices to simulation systems, it states the follow-

ing: Verification is the “process of determining that a model implementation accurately 

represents the developer’s conceptual descriptions and specifications”, and Validation is 

the process of “determining the degree to which a model is an accurate representation” 

[60].

Testing: according to the American Software testing Qualification Board, testing is 

“the process consisting of all lifecycle activities, both static and dynamic, concerned with 

planning, preparation and evaluation of software products and related work products to 

determine that they satisfy specified requirements, to demonstrate that they are fit for 

purpose and to detect defects”. Based on that (and other reviewed definitions), testing 

includes both validation and verification.

Assurance: this term has been rarely applied to conventional software engineering; 

rather, it is used in the context of AI and learning algorithms. In this manuscript, based 

on prior definitions and recent AI challenges, we propose the following definition for AI 

assurance:

A process that is applied at all stages of the AI engineering lifecycle ensur-

ing that any intelligent system is producing outcomes that are valid, verified, 

data-driven, trustworthy and explainable to a layman, ethical in the context of 

its deployment, unbiased in its learning, and fair to its users.

Our definition is by design generic and therefore applicable to all AI domains and 

subareas. Additionally, based on our review of a wide variety of existing definitions of 

assurance, it is evident that the two main AI components of interest are the data and the 

algorithm; accordingly, those are the two main pillars of our definition. Additionally, we 

highlight that the outcomes the AI enable system (intelligent system) are evaluated at the 

system level, where the decision or action is being taken.

�e remaining of this paper is focused on a review of existing AI assurance methods, 

and it is structured as follows: the next section presents the inclusion/exclusion crite-

ria,   "AI assurance landscape" section provides a historical perspective as well as the 

entire assurance landscape, "�e review and scoring of methods" section includes an 
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exhaustive list of papers relevant to AI assurance (as well as the scoring system), "Rec-

ommendations and the future of AI assurance" section presents overall insights and dis-

cussions of the survey, and lastly, "Conclusions" section presents conclusions.

Description of included articles

Articles that are included in this paper were found using the following search terms: 

assurance, validation, verification, and testing. Additionally, as it is well known, AI 

has many subareas, in this paper, the following subareas were included in the search: 

machine learning, data science, deep learning, reinforcement learning, genetic algo-

rithms, agent-based systems, computer vision, natural language processing, and knowl-

edge-based systems (expert systems). We looked for papers in conference proceedings, 

journals, books and book chapters, dissertations, as well as industry white papers. �e 

search yielded results from year 1985 to year 2021. Besides university libraries, multiple 

online repositories were searched (the most commonplace AI peer-reviewed venues). 

Additionally, areas of research such as data bias, data incompleteness, Fair AI, Explain-

able AI (XAI), and Ethical AI were used to widen the net of search. �e next section pre-

sents an executive summary of the history of AI assurance.

AI assurance landscape

�e history and current state of AI assurance is certainly a debatable matter. In this sec-

tion, multiple methods are discussed, critiqued, and aggregated by AI subarea. �e goal 

is to illuminate the need for an organized system for evaluating and presenting assur-

ance methods; which is presented in next sections of this manuscript.

A historical perspective (analysis of the state-of-the-science)

As a starting point for AI assurance and testing, there is nowhere more suitable to begin 

than the Turing test [219]. In his famous manuscript: Computing Machinery and Intel-

ligence, he introduced the imitation game, which was then popularized as the Turing 

test. Turing states: “�e object of the game for the interrogator is to determine which 

of the other two is the man and which is the woman”. Based on a series of questions, the 

intelligent agent “learns” how to make such a distinction. If we consider the different 

types of intelligence, it becomes evident that different paradigms have different expecta-

tions. A genetic algorithm aims to optimize, while a classification algorithm aims to clas-

sify (choose between yes and no for instance). As Turing stated in his paper: “We are of 

course supposing for the present that the questions are of the kind to which an answer: 

Yes or No is appropriate, rather than questions such as: What do you think of Picasso?” 

Comparing predictions (or classifications) to actual outputs is one way of evaluating that 

the results of an algorithm match what the real world created.

�ere were a dominating number of validation and verification methods in the sev-

enties, eighties, and nineties for two forms of intelligence, knowledge-based systems 

(i.e., expert systems) and simulation systems (majorly for defense and military appli-

cations). One of the first times where AI turned towards data-driven methods was 

apparent in 1996 at the �ird International Math and Science Study (TIMSS), which, 
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focused on quality assurance in data collection (Martin and Mullis, 1996). Data from 

Forty-five countries were included in the analysis. In a very deliberate process, the 

data collectors were faced with challenges relevant to the internationalization of data. 

For example, data from Indonesia had errors in translation; data collection processes 

were different in Korea, Germany, and Kuwait than the standard process due to fund-

ing and timing issues. Such real-world issues in data collection certainly pose a chal-

lenge to the assurance of statistical learning AI that require addressing.

In the 1990s, AI testing and assurance were majorly inspired by the big research 

archive of testing of software (i.e., within software engineering) [23]. However, a slim 

amount of literature explored algorithms such as genetic algorithms [104], reinforce-

ment learning (Hailu and Sommer, 1997), and neural networks (Paladini, 1999). It was 

not until the 2000s that there was a serious surge in data-driven assurance and the 

testing of AI methods.

In the early 2000s, mostly manual methods of assurance were developed, for exam-

ple, CommonKADS was a popular and commonplace method that was used to incre-

mentally develop and test an intelligent system. Other domain-specific works were 

published in areas such as healthcare [27], or algorithms-specific assurance such as 

Crisp Clustering for k-means clustering [85].

Fig. 1 A history of AI assurance by year and subarea

Fig. 2 Past and future (using trend lines) of AI assurance (by AI subarea)



Page 5 of 30Batarseh et al. J Big Data            (2021) 8:60  

It was not until the 2010s that a spike in AI assurance for big data occurred. Vali-

dation of data analytics and other new areas, such as XAI and Trustworthy AI have 

dominated the AI assurance field in recent years. Figure 1 illustrates that areas includ-

ing XAI, computer vision, deep learning, and reinforcement learning have had a 

recent spike in assurance methods; and the trend is expected to be increasingly on 

the rise (as shown in Fig. 2). �e figure also illustrates that knowledge-based systems 

were the focus until the early nineties, and shows a shift towards the statistical learn-

ing based subareas in the 2010s. A version of the dashboard is available in a public 

repository (with instructions on how to run it): https:// github. com/ feras batar seh/ AI- 

Assur ance- Review.

�e p-values for the trend lines presented in Fig. 2 are as follows: Data Science (DS): 

0.87, Genetic Algorithms (GA): 0.50, Reinforcement Learning (RL): 0.15, Knowledge-

Based Systems (KBS): 0.97, Computer Vision (CV): 0.22, Natural Language Process-

ing (NLP): 0.17, Generic AI: 0.95, Agent-Based Systems (ABS): 0.33, Machine Learning 

(ML): 0.72, Deep Learning (DL): 0.37, and XAI: 0.44.

It is undeniable that there is a rise in the research of AI, and especially in the area of 

assurance. �e next section "�e state of AI assurance" provides further details on the 

state-of-the-art, and "�e review and scoring of methods" section presents an exhaustive 

review of all AI assurance methods found under the predefined search criteria.

The state of AI assurance

�is section introduces some milestone methods and discussion in AI assurance. Many 

of the discussed works rely on standard software validation and verification methods. 

Such methods are inadequate for AI systems, because they have a dimension of intel-

ligence, learning, and re-learning, as well as adaptability to certain contexts. �erefore, 

errors in AI system “may manifest themselves because of autonomous changes” [211], 

and among other scenarios would require extensive assurance. For instance, in expert 

systems, the inference engine component creates rules and new logic based on forward 

and backward propagation [20]. Such processes require extensive assurance of the pro-

cess as well as the outcome rules. Alternatively, for other AI areas such as neural net-

works, while propagation is used, taxonomic evaluations and adversarial targeting are 

more critical to their assurance [145]. For other subareas such as machine learning, the 

structure of data, data collection decisions, and other data-relevant properties need 

step-wise assurance to evaluate the resulted predictions and forecasts. For instance, sev-

eral types of bias can occur in any phase of the data science lifecycle or while extracting 

outcomes. Bias can begin during data collection, data wrangling, modeling, or any other 

phase. Biases and variances which arise in the data are independent of the sample size 

or statistical significance, and they can directly affect the context or the results or the 

model. Other issues such as incompleteness, data skewness, or lack of structure have a 

negative influence on the quality of outcomes of any AI model and require data assur-

ance [117].

While the historic majority of methods for knowledge-based systems and expert sys-

tems (as well as neural networks) aimed at finding generic solutions for their assur-

ance [21, 218], and [166], other “more recent” methods were focused on one AI subarea 

and one domain. For instance, in Mason et  al. [142, 144], assurance was applied to 

https://github.com/ferasbatarseh/AI-Assurance-Review
https://github.com/ferasbatarseh/AI-Assurance-Review
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reinforcement learning methods for safety–critical systems. Prentzas et  al. [174] pre-

sented an assurance method for machine learning as its applied to stroke predictions, 

similar to Pawar’s et al.’s [167] XAI for healthcare framework. Pepe et al. [169], and Chit-

tajallu et al.’s [42] developed a method for surgery video detection methods. Moreover, 

domains such as law and society would generally benefit from AI subareas such as natu-

ral language processing for analyzing legal contracts [135], but also require assurance.

Another major aspect (for most domains) that was evident in the papers reviewed 

was the need for explainability (i.e. XAI) of the learning algorithm, defined as: to iden-

tify how the outcomes were arrived at (transforming the black-box to a white-box) [193]. 

Few papers without substantial formal methods were found for Fair AI, Safe AI [68], 

Transparent AI [1], or Trustworthy AI [6], but XAI [83] has been central (as the previous 

figures in this paper also suggest). For instance, in Lee et al. [121], layer-wise relevance 

propagation was introduced to obtain the effects of every neural layer and each neu-

ron on the outcome of the algorithm. �ose observations are then presented for bet-

ter understanding of the model and its inner workings. Additionally, Arrieta et al. [16] 

presented a model for XAI that is tailored for road traffic forecasting, and Guo [82] pre-

sented the same, albeit for 5G and wireless networks [200]. Similarly, Kuppa and Le-

Khac [118] presented a method focused on Cyber Security using gradient maps and 

bots. Go and Lee [76] presented an AI assurance method for trustworthiness of secu-

rity systems. Lastly, Guo [82] developed a framework for 6G testing using deep neural 

networks.

Multi-agent AI is another aspect that requires a specific kind of assurance, by validat-

ing every agent, and verifying the integration of agents [163]. �e challenges of AI algo-

rithms and their assurance is evident and consistent across many of the manuscripts, 

such as in Janssen and Kuk’s [100] study of the limitations of AI for government, on the 

other hand, Batarseh et  al. [22] presented multiple methods for applying data science 

at government (with assurance using knowledge-based systems). Assurance is especially 

difficult when it comes to being performed in real time, timeliness in critical systems, 

and other defense-relevant environments is very important [54, 105, 124], and (Laat, 

2017). Other less “time-constrained” activities such as decisions at organizations [186] 

and time series decision support systems could utilize slower methods such as genetic 

algorithms [214], but they require a different take on assurance. �e authors suggested 

that “by no means we have a definitive answer, what we do here is intended to be sug-

gestive” [214] when addressing the validation part of their work. A recent publication 

by Raji et al. [180] shows a study from the Google team claiming that they are “aiming 

to close the accountability gap of AI” using an internal audit system (at Google). IBM 

research also proposed few solutions to manage the bias of AI services [202, 225]. As 

expected, the relevance and success of assurance methods varied, and so we developed 

a scoring system to evaluate existing methods. We were able to identify 200 + relevant 

manuscripts with methods. �e next section presents the exhaustive list of the works 

presented in this section in addition to multiple others with our derived scores.
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The review and scoring of assurance methods

�e scoring of each AI assurance method/paper was based on the sum of the score 

of ten metrics. �e objective of the metrics is to provide readers with a meaningful 

strategy for sorting through the vast literature on AI assurance. �e scoring metric is 

based on the authors’ review of what makes a useful reference paper for AI assurance. 

Each elemental metric is allocated one point, and each method is either given that 

point or not (0 or 1), as follows:

I. Specificity to AI: some assurance methods are generically tailored to many systems, 

others are deployable only to intelligent systems; one point was assigned to meth-

ods that focused (i.e. specific) on the inner workings of AI systems.

II. �e existence of a formal method: this metric indicates whether the manuscript 

under review presented a formal (quantitative and qualitative) description of their 

method (1 point) or not (0 points).

III. Declared successful results: in experimental work of a method under review, some 

authors declared success and presented success rates, if that is present, we gave 

that method a point.

IV. Datasets provided: whether the method has a big dataset associated with it for test-

ing (1) or not (0). �is is an important factor for reproducibility and research eval-

uation purposes.

V. AI system size: methods were applied to a small AI system, other were applied to big-

ger systems for instance, we gave a point to methods that could be applied to big 

real-world systems rather than ones with theoretical deployments.

VI. Declared success: whether the authors declared success of their method in reach-

ing an assured AI system (1) or not (0).

VII. Mentioned limitations: whether there are obvious method limitations (0) or not 

(1).

VIII. Generalized to other AI deployments: some methods are broad and are able to be 

generalized for multiple AI systems (1), others are “narrow” (0) and more specific 

to one application or one system.

IX. A real-world application: if the method presented is applied to a real-world appli-

cation, it is granted one point.

X. Contrasted with other methods: if the method reviewed is compared, contrasted, or 

measured against other methods, or if it proves its superiority over other methods, 

then it is granted a point.

Table  1 presents the methods reviewed, along with their first author’s last name, 

publishing venue, AI subarea, as well as the score (sum of ten metrics).

Other aspects such as domain of application were missing from many papers and 

inconsistent, therefore, we didn’t include them in the table. Additionally, we consid-

ered citations per paper. However, the data on citations (for a 250+ papers study) were 

incomplete and difficult to find in many cases. For many of the papers, we did not 

have information on how many times they were cited, because many publishers failed 

to index their papers across consistent venues (e.g., Scopus, MedLine, Web of Sci-

ence, and others). Additionally, the issue of self-citation is in some cases considered 
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Table 1 Reviewed methods and their total scores

Year First author’s last name and citation Publishing venue AI 
subarea

Total score

2020 D’Alterio [50] FUZZ-IEEE XAI 10

2019 Tao [208] IEEE Access Generic 10

2020 Anderson [11] ACM TIIS RL 9

2020 Birkenbihl [29] EPMA ML 9

2020 Checco [39] JAIR DS 9

2020 Chen [40] IEEE Access XAI 9

2020 Cluzeau [43] EASA DL 9

2019 Kaur [109] WAINA XAI 9

2020 Kulkarni [117] Academic Press DS 9

2020 Kuppa [118] IEEE IJCNN XAI 9

2020 Kuzlu [120] IEEE Access XAI 9

2021 Massoli [145] CVIU DL 9

2020 Spinner [201] IEEE TVCG XAI 9

2016 Veeramachaneni [226] IEEE HPSC DS 9

2018 Wei [230] AS RL 9

2020 Winkel [236] EJR RL 9

2014 Ali [8] GISci DS 8

2018 Alves [9] NASA ARIAS ABS 8

2019 Batarseh [24] EDML DS 8

2016 Gao [71] SEKE DS 8

2020 Gardiner [72] Nature Sci Rep ML 8

2016 Gulshan [81] JAMA CV 8

2020 Guo [82] IEEE ICCVW XAI 8

2020 Han [87] IET JoE XAI 8

2016 Heaney [93] OD GA 8

2019 Huber [97] KI AAI RL 8

2019 Keneni [112] IEEE Access XAI 8

2020 Kohlbrenner [116] IEEE IJCNN XAI 8

2019 Maloca [134] PLoS ONE DL 8

2020 Malolan [136] IEEE ICICT XAI 8

2020 Payrovnaziri [168] JAMIA ML 8

2008 Peppler [170] OASJ DS 8

2020 Sequeira [196] SciDir AI RL 8

2020 Sivamani [199] IEEE LCS DL 8

2020 Tan [207] IEEE IJCNN XAI 8

2020 Tao [209] IEEE CoG XAI 8

2020 Welch [231] PhysMedBiol DL 8

2020 Xiao [239] IS DL 8

2016 Aitken [6] UC ABS 7

2019 Barredo-Arrieta [19] IEEE ITSC XAI 7

2013 Batarseh [20] IEEE TSMCS KBS 7

2001 Berndt [27] COMP DS 7

2010 Bone [30] CEUS RL 7

2016 Celis [38] PrePrint ML 7

2019 Chittajallu [42] IEEE ISBI XAI 7

2018 Elsayed [67] NIPS CV 7

2019 Ferreyra [69] FUZZ-IEEE XAI 7

2006 Forster [70] Uni of South Africa AGI 7

1985 Ginsberg [74] IJCAI KBS 7
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Table 1 (continued)

Year First author’s last name and citation Publishing venue AI 
subarea

Total score

2018 Go [76] ACM CCS DL 7

2020 Halliwell [86] PrePrint DL 7

2015 He [90] MPE GA 7

2020 Heuer [94] ACM UMAP ML 7

2016 Jiang [102] PMLR RL 7

2020 Kaur [111] AINA XAI 7

2016 Kianifar [113] SC GA 7

2019 Lee [121] IEEE ICTC XAI 7

2017 Liang [126] MILCOM DS 7

2020 Mackowiak [132] PrePrint CV 7

2018 Mason [143] AHIM RL 7

2018 Murray [157] FUZZ-IEEE XAI 7

2019 Naqa [66] MedPhys ML 7

2019 Prentzas [174] IEEE BIBE XAI 7

2018 Pynadath [177] Springer HCIS ML 7

2020 Ragot [179] CHI ML 7

2020 Rotman [184] PrePrint RL 7

2015 Rovcanin [185] WN RL 7

2020 Sarathy [188] IEEE SISY XAI 7

2018 Stock [203] ECCV CV 7

2009 Tadj [206] SCI KBS 7

1999 Thomas [214] AAAI GA 7

2020 Uslu [220] AINA XAI 7

2018 Xu [240] PrePrint DL 7

2019 Bellamy [26] IBM JRD XAI 6

2019 Beyret [28] IEEE IROS RL 6

2018 Cao [35] JAIHC ML 6

2020 Cruz [47] PrePrint RL 6

2001 Halkidi [85] JIIS ML 6

2020 He [91, 92] PrePrint RL 6

2020 Islam [98] IEEE TFS XAI 6

2005 Liu [128] AI2005 DL 6

2019 Madumal [133] PrePrint RL 6

1996 Martin [138] ERIC DS 6

2007 Martín-Guerrero [141] AJCAI RL 6

2000 Mosqueira-Rey [155] ESA KBS 6

2020 Mynuddin [160] IETITS RL 6

2020 Puiutta [175] CD-MAKE RL 6

2018 Ruan [187] IJCAI DL 6

2019 Schlegel [193] IEEE ICCVW XAI 6

2020 Toreini [216, 217] ACM FAT ML 6

2020 Toreini [216, 217] PrePrint ML 6

2019 Vabalas [222] PLoS ONE ML 6

2010 Winkler [237] IEEE SUTC CV 6

2002 Wu [238] IJHCS KBS 6

2019 Zhu [246] ACM PLDI RL 6

1992 Andert [12] IJM KBS 5

2018 Antunes [14] IEEE DSN-W ML 5

1989 Becker [25] NASA KBS 5
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Table 1 (continued)

Year First author’s last name and citation Publishing venue AI 
subarea

Total score

2019 Chen [41] CS RL 5

2019 Cruz [46] AI 2019 AAI RL 5

2020 Diallo [57] IEEE ACSOS-C XAI 5

2010 Dong [62] IEEE ICWIIAT GA 5

2019 Dupuis [64] UoG XAI 5

2015 Goodfellow [79] PrePrint ML 5

2020 Guo [82] IEEE CM XAI 5

2020 Haverinen [89] Uni of Jyväskylä XAI 5

1997 Jones [104] JMB GA 5

2019 Joo [106] IEEE CoG RL 5

2020 Katell [107] ACM FAT XAI 5

2007 Knauf [115] IEEE TSMC KBS 5

1995 Lockwood [130] AES KBS 5

2000 Marcos [137] IEE Proc KBS 5

2017 Mason [144] WhiteRose RL 5

1988 Morell [154] IEA/AIE KBS 5

2020 Murray [158] IEEE TETCI XAI 5

2010 Niazi [162] SpringSim ABS 5

2000 Onoyama [166] JETAI KBS 5

2019 Ren [182] PrePrint DL 5

2013 Sargent [189] JoS ABS 5

2003 Schumann [195] EANN DL 5

1995 Singer [198] POQ DS 5

2019 Srivastava [202] AAAI AIES NLP 5

2006 Taylor [211] Springer DL 5

2020 Taylor [213] IEEE CVPRW XAI 5

2020 Tjoa [215] IEEE TNNLS ML 5

2020 Uslu [221] BWCCA XAI 5

2020 Varshney [225] IEEE CISS ML 5

2018 Volz [228] IEEE CIG XAI 5

2020 Wieringa [234] ACM FAT XAI 5

2020 Wing [235] PrePrint ML 5

2019 Yoon [242] IEEE ICCVW XAI 5

2019 Zhou [245] IJCAI XAI ML 5

1994 Zlatareva [249] ESA KBS 5

2018 AI Now (Algorithmic Accountability Policy Tooklit) [7] AI Now XAI 4

2015 Arifin [15] Springer ABS 4

2015 Batarseh [21] AIR KBS 4

2007 Brancovici [31] IEEE CEC XAI 4

1987 Castore [37] NASA STI KBS 4

2013 Cohen [45] EternalS NLP 4

2020 Das [51] PrePrint XAI 4

2013 David [52] UCS ABS 4

2018 Došilović [63] MIPRO ML 4

2000 Edwards [65] Oxford DS 4

2018 EY (Assurance in the Age of AI) [17] EY ML 4

2019 Guidotti [80] ACM CS XAI 4

2018 Jilk [103] PrePrint ABS 4

2017 Leibovici [123] ISPRS Int J. Geo-Inf DS 4
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Table 1 (continued)

Year First author’s last name and citation Publishing venue AI 
subarea

Total score

2020 Li [125] IEEE TKDE XAI 4

2019 Mehrabi [146] PrePrint ML 4

2019 Meskauskas [150] FUZZ-IEEE XAI 4

1998 Miller [151] MS GA 4

2019 Nassar [161] WIREs DMKD XAI 4

1992 Preece [173] ESA KBS 4

2019 Qiu [178] AS Generic 4

1984 Sargent [190] IEEE WSC ABS 4

2003 Taylor [212] SPIE DL 4

1999 Tsai [218] IEEE TKDE KBS 4

1991 Vinze [227] IM KBS 4

2019 Wang [229] ACM CHI XAI 4

1993 Wells [232] AAAI KBS 4

2018 Zhu [247] IEEE CIG XAI 4

1998 Zlatareva [248] DBLP KBS 4

2018 Abdollahi [1] Springer ML 3

1997 Abel [2] FLAIRS Conference KBS 3

2018 Adadi [4] IEEE Access XAI 3

2018 Agarwal [5] PrePrint Generic 3

2016 Amodei [10] PrePrint ML 3

2019 Breck [32] SysML ML 3

1996 Carley [36] CASOS KBS 3

2000 Coenen [44] CUP KBS 3

1987 Culbert [48] NASA SOAR KBS 3

2020 Dağlarli [49] ADL XAI 3

1992 Davis [53] RAND ABS 3

2020 Dodge [61] ExSS-ATEC XAI 3

2018 Everitt [68] IJCAI AGI 3

1991 Gilstrap [73] TI KBS 3

2019 Glomsrud [75] ISSAV XAI 3

1996 Gonzalez [78] EAAI KBS 3

1997 Harmelen [88] EUROVAV KBS 3

2019 He [91, 92] PrePrint DL 3

2020 Heuillet [95] PrePrint RL 3

2009 Hibbard [96] AGI AGI 3

2019 Israelsen [99] ACM CSUR Generic 3

2019 Jha [101] NeurIPS DL 3

2002 Knauf [114] IEEE TSMC KBS 3

2017 de Laat [54] PhilosTechnol ML 3

1994 Lee [122] IEEE TSMC KBS 3

2004 Liu [127] IEEE MLC ABS 3

1997 Lowry [131] ISMIS Generic 3

2012 Martinez-Balleste [139] IEEE SIPC CV 3

2020 Martinez-Fernandez [140] PrePrint XAI 3

2017 Mason [142] DCAART RL 3

1993 Mengshoel [148] IEEE exp KBS 3

2005 Menzies [149] AC Generic 3

2007 Min [152] WSC KBS 3

1997 Murrell [159] DSS KBS 3
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Table 1 (continued)

Year First author’s last name and citation Publishing venue AI 
subarea

Total score

1987 O’Keefe [164] IEEE exp KBS 3

2020 Putzer [176] PrePrint XAI 3

1991 De Raedt [55] JWS KBS 3

2020 Raji [180] ACM FAT XAI 3

2004 Sargent [191] IEEE WSC ABS 3

1990 Suen [204] ESA KBS 3

2019 Sun [205] IEEE VTC XAI 3

2006 Yilmaz [241] CMOT ABS 3

1997 Zaidi [243] Automatica KBS 3

1996 Abel [3] FLAIRS Conference KBS 2

2016 Aitken [6] PrePrint ABS 2

1998 Antoniou [13] AI Magazine KBS 2

2019 Arrieta [16] SciDir IF XAI 2

2018 Bride [34] ICFEM XAI 2

2020 Dghaym [56] AU SSAV XAI 2

2015 Dobson [59] JCLS ML 2

2018 Hagras [83] IEEE Comp XAI 2

1999 Hailu [84] IEEE SMC RL 2

2020 He [91, 92] IEEE IRCE XAI 2

2016 Janssen [100] GIQ DS 2

2020 Kaur [110] NBiS XAI 2

2008 Liu [129] IEEE SSSC ABS 2

2006 Min [153] ICMLC KBS 2

2019 Mueller [156] PrePrint XAI 2

1996 Nourani [163] ACM SIGSOFT Generic 2

2020 Pawar [167] IEEE CyberSA XAI 2

2009 Pèpe [169] JCG GA 2

2013 Pitchforth [171] ESA DL 2

2017 Protiviti (Validation of Machine Learning Models) 
[223]

Protiviti ML 2

2010 Sargent [192] WSC ABS 2

2019 Spada [200] AIAI XAI 2

2005 Taylor [210] IEEE IJCNN DL 2

2016 Zeigler [244] JDMS ABS 2

2001 Barr [18] ACL NLP 1

2020 Brennen [33] ACM CHI EA XAI 1

2006 Dibie-Barthélemy [58] KBS KBS 1

2020 European Commission (A European Approach to 
Excellence and Trust) [165]

European Commission XAI 1

2000 Gonzalez [77] JETAI Generic 1

2018 Kaul [108] ACM AIES ML 1

2003 Kurd [119] SAFECOMP DL 1

2017 Lepri [124] PhilosTechnology ML 1

2018 Mehri [147] ACM ARES DL 1

2019 Pocius [172] AAAI-19 RL 1

2019 Rossi [183] JIA XAI 1

2010 Schumann [194] NASA SCI DL 1

2018 Sileno [197] PrePrint XAI 1

2019 Varshney [224] ACM XRDS ML 1
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in scoring but in other cases is not. Due to these citation inconsistencies (which are 

believed to be a challenge that reaches all areas of science), we deemed that using 

citations would provide more questions than answers than our subject matter expert 

based metrics.

Appendix presents a list of all reviewed manuscripts and their detailed scores (for the 

ten metrics) by ranking category; ten columns matching the presented scoring method, 

as follows: AI subarea: AI.s; Relevance: R; Method: M; Results: Rs; Dataset: Ds; Size: Sz; 

Success: Sc; Limitations: L; General: G; Application: A; and Comparison: C. �e papers, 

data, dashboard, and lists are on a public GitHub repository: https:// github. com/ feras 

batar seh/ AI- Assur ance- Review.

In 2018, AI papers accounted for 3% of all peer reviewed papers published world-

wide [181]. �e share of AI papers has grown three-fold over twenty years. Moreover, 

between 2010 and 2019, the total number of AI papers on arXiv increased over 20-fold 

[181]. As of 2019, machine learning papers have increased most dramatically, followed 

by computer vision and pattern recognition. While machine learning was the most 

active research areas in AI, its subarea, DL have become increasing popularly in the past 

few years. According to GitHub, TensorFlow is the most popular free and open-source 

software library for AI. TensorFlow is a corporate-backed research framework, and it 

has been shown that, in recent years, there’s noticeable trend of the emergence of such 

corporate-backed research frameworks. Since 2005, attendances at large AI conferences 

have grown significantly, NeurIPS and ICML (being the two fastest growing conferences 

have over eight-fold increase. Attendances at small AI conferences have also grown over 

15-fold starting from 2014, and the increase is highly related to the emergence of deep 

and reinforcement learning [181]. As the field of AI continues to grow, assurance of AI 

has become a more important and timely topic.

Recommendations and the future of AI assurance

The need for AI assurance

�e emergence of complex, opaque, and invisible algorithms that learn from data 

motivated a variety of investigations, including: algorithm awareness, clarity, variance, 

and bias [94]. Algorithmic bias for instance, whether it occurs in an unintentional or 

intentional manner, is found to severely limit the performance of an AI model. Given 

AI systems provide recommendations based on data, users’ faith in that the recom-

mended outcomes are trustworthy, fair, and not biased is another critical challenge for 

AI assurance.

Applications of AI such as facial recognition using deep learning have become com-

monplace. Deep learning models are often exposed to adversarial inputs (such as deep-

fakes), thus limiting their adoption and increasing their threat [145]. Unlike conventional 

software, aspects such as explainability (unveiling the blackbox of AI models) dictate 

Table 1 (continued)

Year First author’s last name and citation Publishing venue AI 
subarea

Total score

2016 Wickramage [233] FTC DS 1

https://github.com/ferasbatarseh/AI-Assurance-Review
https://github.com/ferasbatarseh/AI-Assurance-Review
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how assurance is performed and what is needed to accomplish it. Unfortunately how-

ever, similar to the software engineering community’s experience with testing, ensuring 

a valid and verified system is often an afterthought. Some of the classical engineering 

approaches would prove useful to the AI assurance community, for instance, perform-

ing testing in an incremental manner, involving users, and allocating time and budget 

specifically to testing, are some main lessons that ought to be considered. A worthy 

recent trend that might aid majorly in assurance is using AI for testing AI (i.e., deploying 

intelligence methods for the testing and assurance of AI methods). Additionally, from a 

user’s perspective, recent growing questions in research that are relevant to assurance 

pose the following concerns: how is learning performed inside the blackbox? How is the 

algorithm creating its outcomes? Which dependent variables are the most influential? Is 

the AI algorithm dependable, safe, secure, and ethical? Besides all the previously men-

tioned assurance aspects, we deem the following foundational concepts as highly con-

nected, worthy of considering by developers and AI engineers, and essential to all forms 

of AI assurance: (1) Context: refers to the scope of the system, which could be associ-

ated with a timeframe, a geographical area, specific set of users, and any other system 

environmental specifications (2) Correlation: the amount of relevance between the vari-

ables, this is usually part of exploratory analysis, however, it is key to understand which 

dependent variables are correlated and which ones are not, (3) Causation: the study of 

cause and effect; i.e., which variables directly cause the outcome to change (increase or 

decrease) in any fashion, (4) Distribution: whether a normal distribution is assumed or 

not. Data distribution of the inputted dependent variables can dictate which models are 

best suited for the problem at hand, and (5) Attribution: aims at allocating the variables 

in the dataset that have the strongest influence on the outcomes of the AI algorithm.

Providing a scoring system to evaluate existing methods provides support to scholars 

in evaluating the field, avoiding future mistakes, and creating a system where AI scien-

tific methods are measured and evaluated by others, a practice that is becoming increas-

ingly rare in scientific arenas. More importantly, practitioners –in most cases– find it 

difficult to identify the best method for assurance relevant to their domain and subarea. 

We anticipate that this comprehensive review will help in that regard as well. As part of 

AI assurance, ethical outcomes should be evaluated, while ethical considerations might 

differ from one context to another, it is evident that requiring outcomes to be ethical, 

fair, secure, and safe necessitates the involvement of humans, and in most cases, experts 

from other domains. �at notion qualifies AI assurance as a multidisciplinary area of 

investigation.

Future components of AI assurance research

In some AI subareas, there are known issues to be tackled by AI assurance, such as deep 

learning’s sensitivity to adversarial attacks, as well as overfitting and underfitting issues 

in machine learning. Based on that and on the papers reviewed in this survey, it is evi-

dent that AI assurance is a necessary pursuit, but a difficult and multi-faceted area to 

address. However, previous experiences, successes, and failures can point us to what 

would work well and what is worth pursuing. Accordingly, we suggest performing and 
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developing AI assurance by (1) domain, by (2) AI sub area, and by (3) AI goal; as a theo-

retical roadmap, similar to what is shown in Fig. 3.

In some cases, such as in unsupervised learning techniques, it is difficult to know 

what to validate or assure [86]. In such cases, the outcome is not predefined (contrary 

to supervised learning). Genetic algorithms and reinforcement learning have the same 

issue, and so in such cases, feature selection, data bias, and other data-relevant valida-

tion measures, as well as hypothesis generation and testing become more important. 

Additionally, different domains require different tradeoffs; trustworthiness for instance 

is more important when it comes to using AI in healthcare versus when its being used 

for revenue estimates at a private sector firm; also, AI safety is more critical in defense 

systems than in systems built for education or energy application.

Other surveys presented a review of AI validation and verification [71] and [21], how-

ever, none was found that covered the three dimensional structure presented (by sub-

area, goal, and domain) like this review.

Conclusions

In AI assurance, there are other philosophical questions that are also very relevant, 

such as what is a valid system? What is a trustworthy outcome? When to stop test-

ing or model learning? When to claim victory on AI safety? When to allow human 

intervention (and when not to)? And many other similar questions that require close 

attention and evaluation by the research community. �e most successful methods 

presented in literature (scored as 8, 9, or 10), are the ones that were specific to an AI 

subarea and goal; additionally, ones that had done extensive theoretical and hands-on 

experimentation. Accordingly, we propose the following five considerations as they 

were evident in existing successful works when defining or applying new AI assurance 

Fig. 3 Three-dimensional AI assurance by subarea, domain, and goal
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methods: (1) Data quality: similar to assuring the outcomes, assuring the dataset and 

its quality mitigates issues that would eventually prevail in the AI algorithm. (2) Spec-

ificity: as this review concluded, the assurance methods ought to be designed to one 

goal and subarea of AI. (3) Addressing invisible issues: AI engineers should carry out 

assurance in a procedural manner, not as an afterthought or a process that is per-

formed only in cases of the presence of visible issues. (4) Automated assurance: using 

manual methods for assurance would in many cases defeat the purpose. It is difficult 

to evaluate the validity of the assurance method itself, hence, automating the assur-

ance process can—if done with best practices in mind– minimize error rates due 

to human interference. (5) �e user: involving the user in an incremental manner is 

critical in expert-relevant (non-engineering) domains such as healthcare, education, 

economics, and other areas. Explainability is a relative and subjective matter; hence, 

users of the AI system can help in defining how explainability ought to be presented.

Based on all discussions presented, we assert it will be beneficial to have multi-dis-

ciplinary collaborations in the field of AI assurance. �e growth of the field might 

need not only computer scientists and engineers to develop advanced algorithms, 

but also economists, physicians, biologists, lawyers, cognitive scientists, and other 

domain experts to unveil AI deployments to their domains, create a data-driven 

culture within their organizations, and ultimately enable the wide-scale adoption of 

assured AI systems.

Appendix: All manuscripts and their detailed scores by ranking category

Year Author AI.s R M Rs Ds Sz Sc L G A C

1985 Ginsberg KBS 1 1 1 1 1 1 0 0 1 0

1987 Castore KBS 1 1 0 0 0 0 1 0 1 0

1987 Culbert KBS 1 0 0 0 0 0 1 0 1 0

1987 O’Keefe KBS 1 0 0 0 0 0 0 1 0 1

1988 Morell KBS 1 1 1 0 0 1 1 0 0 0

1988 Sargent ABS 1 1 0 0 0 0 0 1 0 1

1989 Becker KBS 1 1 1 0 0 1 0 0 1 0

1990 Suen KBS 1 1 1 0 0 0 0 0 0 0

1991 Vinze KBS 1 1 1 0 0 1 0 0 0 0

1991 Gilstrap KBS 1 1 0 0 0 0 0 1 0 0

1991 Raedt KBS 1 1 0 0 0 0 0 0 0 1

1992 Andert KBS 1 1 1 0 0 1 0 0 0 1

1992 Preece KBS 1 1 1 0 0 0 0 0 0 1

1992 Davis ABS 1 1 0 0 0 0 0 0 0 1

1993 Wells KBS 1 1 0 0 0 1 0 1 0 0

1993 Mengshoel KBS 1 1 0 0 0 1 0 0 0 0

1994 Zlatareva KBS 1 1 1 0 0 1 0 0 1 0

1994 Lee KBS 1 1 0 0 0 0 0 0 0 1

1995 Lockwood KBS 1 1 1 0 0 1 0 0 1 0

1995 Singer DS 1 1 1 1 0 1 0 0 0 0

1996 Martin DS 0 1 1 0 0 1 0 1 1 1
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Year Author AI.s R M Rs Ds Sz Sc L G A C

1996 Carley KBS 1 0 0 0 0 0 0 1 0 1

1996 Gonzalez KBS 1 1 0 0 0 1 0 0 0 0

1996 Abel KBS 1 1 0 0 0 0 0 0 0 0

1996 Nourani Generic 1 1 0 0 0 0 0 0 0 0

1997 Jones GA 0 1 1 0 0 1 0 0 1 1

1997 Abel KBS 1 1 1 0 0 0 0 0 0 0

1997 Harmelen KBS 1 1 0 0 0 0 0 0 0 1

1997 Lowry Generic 1 1 0 0 0 0 0 0 1 0

1997 Murrell KBS 1 0 0 0 0 0 0 1 0 1

1997 Zaidi KBS 1 1 0 0 0 1 0 0 0 0

1998 Miller GA 1 1 1 0 0 1 0 0 0 0

1998 Zlatareva KBS 1 1 1 0 0 1 0 0 0 0

1998 Antoniou KBS 0 1 0 0 0 0 0 0 0 1

1999 Thomas GA 1 1 1 1 1 1 0 0 0 1

1999 Tsai KBS 1 1 0 0 0 0 0 0 1 1

1999 Hailu RL 0 1 1 0 0 0 0 0 0 0

2000 Mosqueira-Rey KBS 1 1 1 0 0 1 0 1 1 0

2000 Marcos KBS 1 0 1 0 0 1 0 1 1 0

2000 Onoyama KBS 1 1 1 0 0 1 0 0 1 0

2000 Edwards DS 1 0 0 0 0 0 0 1 1 1

2000 Coenen KBS 0 0 0 0 0 0 0 1 1 1

2000 Gonzalez Generic 0 0 0 0 0 0 0 1 0 0

2001 Berndt DS 1 1 1 1 1 1 0 0 1 0

2001 Halkidi ML 1 1 1 0 0 1 0 0 1 1

2001 Barr NLP 0 0 0 0 0 0 0 0 1 0

2002 Wu KBS 1 1 0 0 0 1 1 0 1 1

2002 Knauf KBS 1 1 0 0 0 1 0 0 0 0

2003 Schumann DL 1 1 1 0 0 0 0 0 1 1

2003 Taylor DL 1 1 0 0 0 0 0 1 0 1

2003 Kurd DL 0 0 0 0 0 0 0 1 0 0

2004 Liu ABS 1 0 0 0 0 0 0 1 0 1

2004 Sargent ABS 1 0 0 0 0 0 0 1 0 1

2005 Liu DL 1 1 1 1 0 1 0 0 0 1

2005 Menzies Generic 1 1 0 0 0 0 0 1 0 0

2005 Taylor DL 1 1 0 0 0 0 0 0 0 0

2006 Forster AGI 1 1 1 1 1 1 0 0 0 1

2006 Taylor DL 1 0 1 0 0 0 0 1 1 1

2006 Yilmaz ABS 1 1 0 0 0 0 0 0 0 1

2006 Min KBS 1 1 0 0 0 0 0 0 0 0

2006 Dibie-Barthélemy KBS 0 0 0 0 0 0 0 0 0 1

2007 Martín-Guerrero RL 1 1 1 1 0 1 0 0 1 0

2007 Knauf KBS 1 1 1 1 0 0 0 0 0 1

2007 Brancovici XAI 1 1 0 0 0 0 0 0 1 1

2007 Min KBS 1 1 0 0 0 0 0 0 1 0

2008 Peppler DS 1 1 1 1 1 1 1 0 1 0

2008 Liu ABS 1 1 0 0 0 0 0 0 0 0

2009 Tadj KBS 1 1 1 1 0 1 1 0 0 1

2009 Hibbard AGI 0 1 1 0 0 1 0 0 0 0

2009 Pèpe GA 0 1 1 0 0 0 0 0 0 0

2010 Bone RL 1 1 1 1 1 1 0 0 1 0

2010 Winkler CV 1 1 1 0 0 1 0 0 1 1
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Year Author AI.s R M Rs Ds Sz Sc L G A C

2010 Dong GA 1 1 1 0 0 1 0 0 0 1

2010 Niazi ABS 1 1 1 1 0 1 0 0 0 0

2010 Sargent ABS 0 0 0 0 0 0 0 1 0 1

2010 Schumann DL 0 0 0 0 0 0 0 0 0 1

2012 Cohen NLP 0 1 1 1 0 1 0 0 0 0

2012 Martinez-Balleste CV 1 0 0 0 0 0 0 0 1 1

2013 Batarseh KBS 1 1 1 1 1 1 0 0 1 0

2013 Sargent ABS 1 1 1 0 0 0 0 0 1 1

2013 David ABS 1 1 0 0 0 0 0 1 0 1

2013 Pitchforth DL 1 1 0 0 0 0 0 0 0 0

2014 Ali DS 1 1 1 1 1 1 1 0 0 1

2015 He GA 1 1 1 0 0 1 1 0 1 1

2015 Rovcanin RL 1 1 1 1 0 1 0 0 1 1

2015 Goodfellow ML 1 1 1 0 0 1 0 0 0 1

2015 Arifin ABS 1 0 0 0 0 0 0 1 1 1

2015 Batarseh KBS 1 0 0 0 0 0 0 1 1 1

2015 Dobson ML 1 0 0 0 0 0 0 0 0 1

2016 Veeramachaneni DS 1 1 1 1 1 1 1 1 1 0

2016 Gao DS 1 0 1 1 1 1 0 1 1 1

2016 Gulshan CV 1 1 1 1 1 1 0 0 1 1

2016 Heaney GA 1 1 1 1 1 1 1 0 1 0

2016 Aitken ABS 1 1 1 1 1 1 0 0 0 1

2016 Celis ML 1 1 1 1 1 1 0 0 1 0

2016 Jiang RL 0 1 1 1 1 1 0 0 1 1

2016 Kianifar GA 1 1 1 1 1 1 0 0 1 0

2016 Jilk ABS 1 0 1 0 0 1 0 1 0 0

2016 Amodei ML 1 0 0 0 0 0 0 1 0 1

2016 Aitken ABS 1 1 0 0 0 0 0 0 0 0

2016 Janssen DS 0 0 0 0 0 0 0 1 0 1

2016 Zeigler ABS 1 1 0 0 0 0 0 0 0 0

2016 Wickramage DS 1 0 0 0 0 0 0 0 0 0

2017 Liang DS 1 1 1 1 0 1 0 0 1 1

2017 Xu DL 1 1 1 1 1 1 0 0 0 1

2017 Mason RL 1 1 1 0 0 1 0 0 0 1

2017 Leibovici DS 1 1 0 0 0 0 0 1 0 1

2017 Laat ML 0 1 0 0 0 0 0 1 0 1

2017 Mason RL 1 1 0 0 0 0 0 0 0 1

2017 Lepri ML 0 0 0 0 0 0 0 0 0 1

2018 Wei RL 1 1 1 1 1 1 1 0 1 1

2018 Alves ABS 1 1 1 1 1 1 0 0 1 1

2018 Elsayed CV 1 1 1 1 1 1 0 0 0 1

2018 Go DL 1 1 1 1 1 1 0 0 1 0

2018 Mason RL 1 1 1 0 0 1 1 1 0 1

2018 Murray XAI 1 1 1 1 1 1 0 0 0 1

2018 Pynadath ML 1 1 1 0 0 1 1 0 1 1

2018 Stock CV 1 1 1 1 1 1 0 0 1 0

2018 Cao ML 1 1 1 1 0 1 0 0 0 1

2018 Ruan DL 1 0 1 1 0 1 1 0 0 1

2018 Antunes ML 1 1 1 0 0 1 1 0 0 0

2018 Volz XAI 0 1 1 0 0 1 0 0 1 1

2018 AI Now XAI 1 1 0 0 0 0 0 1 1 0
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Year Author AI.s R M Rs Ds Sz Sc L G A C

2018 Došilović ML 1 0 0 0 0 0 0 1 1 1

2018 EY ML 1 0 0 0 0 0 0 1 1 1

2018 Guidotti XAI 1 0 0 0 0 0 0 1 1 1

2018 Zhu XAI 1 0 0 0 0 0 0 1 1 1

2018 Abdollahi ML 1 0 0 0 0 0 0 1 0 1

2018 Adadi XAI 1 0 0 0 0 0 0 1 0 1

2018 Agarwal Generic 1 1 0 0 0 0 0 0 0 1

2018 Everitt AGI 1 0 0 0 0 0 0 1 0 1

2018 Bride XAI 1 1 0 0 0 0 0 0 0 0

2018 Hagras XAI 1 0 0 0 0 0 0 0 0 1

2018 Kaul ML 1 0 0 0 0 0 0 0 0 0

2018 Mehri DL 0 0 0 0 0 0 0 0 0 1

2018 Sileno XAI 1 0 0 0 0 0 0 0 0 0

2019 Tao Generic 1 1 1 1 1 1 1 1 1 1

2019 Kaur XAI 1 1 1 1 1 1 1 0 1 1

2019 Batarseh DS 1 1 1 1 1 1 0 0 1 1

2019 Huber RL 1 1 1 1 1 1 1 0 0 1

2019 Keneni XAI 1 1 1 1 1 1 1 0 1 0

2019 Maloca DL 1 1 1 1 1 1 0 0 1 1

2019 Barredo-Arrieta XAI 1 1 1 1 1 0 0 1 1 0

2019 Chittajallu XAI 1 1 1 1 0 1 1 0 0 1

2019 Ferreyra XAI 1 1 1 0 0 1 0 1 1 1

2019 Lee XAI 1 1 1 1 1 1 0 0 0 1

2019 Naqa ML 1 1 1 1 0 1 0 0 1 1

2019 Prentzas XAI 1 1 1 1 1 1 0 0 1 0

2019 Bellamy XAI 1 1 1 0 0 1 1 1 0 0

2019 Beyret RL 1 1 1 0 0 1 1 0 1 0

2019 Madumal RL 1 1 1 0 0 1 0 0 1 1

2019 Schlegel XAI 1 1 1 1 1 1 0 0 0 0

2019 Vabalas ML 1 1 1 1 0 1 0 0 1 0

2019 Zhu RL 1 1 1 0 0 1 1 0 0 1

2019 Chen RL 1 1 0 0 0 0 0 1 1 1

2019 Cruz RL 1 1 1 0 0 1 0 0 0 1

2019 Dupuis XAI 1 1 1 0 0 1 0 0 0 1

2019 Joo RL 1 1 1 0 0 1 1 0 0 0

2019 Ren DL 0 1 1 0 0 1 1 0 1 0

2019 Srivastava NLP 1 1 1 0 0 1 0 0 0 1

2019 Uslu XAI 1 1 1 0 0 1 0 0 0 1

2019 Yoon XAI 1 1 1 0 0 1 0 0 0 1

2019 Zhou ML 1 1 1 0 0 1 0 0 0 1

2019 Mehrabi ML 1 0 0 0 0 0 0 1 1 1

2019 Meskauskas XAI 1 1 1 0 0 1 0 0 0 0

2019 Nassar XAI 1 1 0 0 0 0 0 0 1 1

2019 Qiu Generic 1 0 0 0 0 0 0 1 1 1

2019 Wang XAI 1 1 0 0 0 0 0 1 0 1

2019 Breck ML 1 1 0 0 0 0 0 0 1 0

2019 Glomsrud XAI 1 0 0 0 0 0 0 0 1 1

2019 He DL 1 0 0 0 0 0 0 1 0 1

2019 Israelsen Generic 1 0 0 0 0 0 0 1 0 1

2019 Jha DL 1 0 1 0 0 0 0 0 0 1

2019 Sun XAI 0 1 1 0 0 1 0 0 0 0
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Year Author AI.s R M Rs Ds Sz Sc L G A C

2019 Dghaym XAI 0 0 0 0 0 0 0 0 1 1

2019 Mueller XAI 1 0 0 0 0 0 0 0 0 1

2019 Protiviti ML 0 0 0 0 0 0 0 1 0 1

2019 Spada XAI 0 1 0 0 0 0 0 0 1 0

2019 Pocius RL 1 0 0 0 0 0 0 0 0 0

2019 Rossi XAI 1 0 0 0 0 0 0 0 0 0

2019 Varshney ML 0 0 0 0 0 0 0 1 0 0

2020 D’Alterio XAI 1 1 1 1 1 1 1 1 1 1

2020 Anderson RL 1 1 1 1 1 1 0 1 1 1

2020 Birkenbihl ML 1 1 1 1 1 1 1 0 1 1

2020 Checco DS 1 1 1 1 1 1 0 1 1 1

2020 Chen XAI 1 1 1 1 1 1 1 0 1 1

2020 EASA DL 1 1 1 1 1 1 0 1 1 1

2020 Kulkarni DS 1 1 1 1 1 1 0 1 1 1

2020 Kuppa XAI 1 1 1 1 1 1 1 0 1 1

2020 Kuzlu XAI 1 1 1 1 1 1 0 1 1 1

2020 Spinner XAI 1 1 1 1 1 1 0 1 1 1

2020 Winkel RL 1 1 1 1 1 1 1 0 1 1

2020 Gardiner ML 1 1 1 1 1 1 0 0 1 1

2020 Guo XAI 1 1 1 1 1 1 1 0 1 0

2020 Han XAI 1 1 1 1 1 1 0 0 1 1

2020 Kohlbrenner XAI 1 1 1 1 1 1 1 0 0 1

2020 Malolan XAI 1 1 1 1 1 1 1 0 1 0

2020 Payrovnaziri ML 1 1 0 1 1 0 1 1 1 1

2020 Sequeira RL 1 1 1 1 1 1 0 0 1 1

2020 Sivamani DL 1 1 1 1 1 1 0 0 1 1

2020 Tan XAI 1 1 1 1 1 1 0 0 1 1

2020 Tao XAI 1 1 1 1 1 1 1 0 1 0

2020 Welch DL 1 1 1 1 1 1 0 0 1 1

2020 Xiao DL 1 1 1 1 1 1 0 0 1 1

2020 Halliwell DL 1 1 1 1 1 1 0 0 0 1

2020 Heuer ML 1 1 1 1 1 1 0 0 0 1

2020 Kaur XAI 1 1 1 1 1 1 0 0 1 0

2020 Mackowiak CV 1 1 1 1 0 1 0 0 1 1

2020 Ragot ML 1 1 1 1 1 1 0 0 1 0

2020 Rotman RL 1 1 1 1 1 0 0 0 1 1

2020 Sarathy XAI 1 1 1 1 0 1 0 0 1 1

2020 Uslu XAI 0 1 1 1 1 1 0 0 1 1

2020 Cruz RL 1 1 1 0 0 1 1 0 0 1

2020 He RL 1 1 1 1 1 0 0 0 1 0

2020 Islam XAI 0 1 1 1 1 0 0 0 1 1

2020 Mynuddin RL 1 1 1 1 0 1 0 0 1 0

2020 Puiutta RL 1 1 0 0 0 0 1 1 1 1

2020 Toreini ML 1 0 0 0 1 1 1 1 0 1

2020 Toreini ML 1 0 0 0 1 1 1 1 0 1

2020 Diallo XAI 1 1 1 1 0 1 0 0 0 0

2020 Guo XAI 1 0 0 0 0 1 0 1 1 1

2020 Haverinen XAI 0 1 1 1 0 1 0 0 0 1

2020 Katell XAI 1 1 0 0 0 0 1 0 1 1

2020 Murray XAI 0 1 1 1 1 0 0 0 1 0

2020 Taylor XAI 1 1 1 1 1 0 0 0 0 0
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Year Author AI.s R M Rs Ds Sz Sc L G A C

2020 Tjoa ML 1 0 0 0 1 0 1 1 0 1

2020 Varshney ML 1 1 0 0 0 0 1 1 0 1

2020 Wieringa XAI 1 0 0 0 1 0 1 1 0 1

2020 Wing ML 1 0 0 0 1 0 1 1 0 1

2020 Das XAI 1 0 0 0 0 0 1 1 0 1

2020 Li XAI 0 0 0 0 1 0 1 1 0 1

2020 Dağlarli XAI 1 0 0 0 0 0 0 1 0 1

2020 Dodge XAI 1 1 0 0 0 0 0 0 0 1

2020 Heuillet RL 1 0 0 0 0 0 0 1 0 1

2020 Martinez-Fernandez XAI 1 1 0 0 0 0 0 0 1 0

2020 Putzer XAI 0 1 0 0 0 0 0 0 1 1

2020 Raji XAI 1 0 0 0 0 0 0 1 1 0

2020 Arrieta XAI 1 0 0 0 0 0 0 0 0 1

2020 He XAI 1 0 0 0 0 0 0 1 0 0

2020 Kaur XAI 1 0 0 0 0 0 0 0 0 1

2020 Pawar XAI 0 1 0 0 0 0 0 0 0 1

2020 Brennen XAI 0 0 0 0 0 0 0 1 0 0

2020 European Commission XAI 0 0 0 0 0 0 0 1 0 0

2021 Massoli DL 1 1 1 1 1 1 1 0 1 1

Columns: AI subarea: AI.s; Relevance: R; Method: M; Results: Rs; Dataset: Ds; Size: Sz; 

Success: Sc; Limitations: L; General: G; Application: A; Comparison: C
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